
Ninth Workshop on Speech and Language Processing for Assistive Technologies (SLPAT-2022), pages 1 - 16
May 27, 2022 c©2022 Association for Computational Linguistics

Design principles of an open-source language modeling
microservice package for AAC text-entry applications

Brian Roark
Google Research, US
roark@google.com

Alexander Gutkin
Google Research, UK
agutkin@google.com

Abstract

We present MozoLM, an open-source language
model microservice package intended for use
in AAC text-entry applications, with a partic-
ular focus on the design principles of the li-
brary. The intent of the library is to allow the
ensembling of multiple diverse language mod-
els without requiring the clients (user interface
designers, system users or speech-language
pathologists) to attend to the formats of the
models. Issues around privacy, security, dy-
namic versus static models, and methods of
model combination are explored and specific
design choices motivated. Some simulation
experiments demonstrating the benefits of per-
sonalized language model ensembling via the
library are presented.

1 Introduction

Designing and building text-entry systems for in-
dividuals with severe motor impairments is a key
challenge in the field of augmentative and alterna-
tive communication (AAC). In successful cases this
typically involves people with many diverse areas
of expertise, including speech-language patholo-
gists, those with human-computer interaction (HCI)
or natural language processing (NLP) expertise,
and, of course, users of the technology themselves.
Given this diversity, few individuals will have the
breadth of expertise to address all of the issues at
play. For example, those focused on interface de-
sign or customization for a specific individual’s
needs may not have the NLP expertise to assemble
effective predictive models to help drive the inter-
face; and those who are building state-of-the-art
language models (LMs) often lack HCI or AAC ex-
perience and are not optimizing their models with
text-entry scenarios in mind. As we will illustrate
later in the paper, choices of how a system employs
LMs can make a big difference in the quality of the
resulting predictions, thus effective LM services are
critical for these systems. This paper presents the

MozoLM open-source software library1 for build-
ing services that allow user interfaces (UIs) to re-
quest probabilities from a collection of diverse LMs
without having to match their requests to the for-
mats of the models. This frees those working on
interfaces and user configuration optimization from
having to focus on specific LM details, and frees
those working on LMs from necessarily focusing
on UI or text-entry scenario specifics.

This work was initially inspired by our interest in
Dasher (Ward et al., 2000, 2002), a text-entry sys-
tem that in its standard implementation2 is closely
tied to certain dynamic language modeling methods
(see Section 2 for details).3 The dynamic nature of
the models in Dasher have the virtue of automati-
cally adapting to user input in an open-vocabulary
manner, thus learning the idiosyncrasies of the in-
dividual over time; however the tight coupling be-
tween the modeling choice and interface has some
serious drawbacks. First, Dasher could make use of
large static general background LMs in addition to
user-specific dynamic LMs, to provide extra predic-
tive power for novices with little personalized text
but also for more advanced users. This was demon-
strated in Rough et al. (2014), who included a static
word-based 𝑛-gram model in Dasher; we also pro-
vide evidence of the benefit of using ensembled
static and dynamic LMs later in the paper. Second,
Dasher may not be the only text-entry system that
an individual makes use of, yet the personalized
models maintained by the Dasher system are not
straightforwardly accessible to these other applica-
tions. Finally, the tight coupling between modeling
and the interface requires UI designers to take into
account the specifics of the LM and those interested
in improving the LMs must attend to the interface.
Ideally, a text-entry application should be able to
plug in any and all given LMs to derive whatever

1https://github.com/google-research/mozolm/
2https://www.inference.org.uk/dasher/
3MozoLM started as part of work on a new Dasher version.

1

https://github.com/google-research/mozolm/
https://www.inference.org.uk/dasher/
https://dasher.acecentre.net/about/

useful information they can, even when all of the
models are trained completely independently.

The design of the library was motivated by sev-
eral considerations. First, large, possibly remote,
general purpose LMs and small(er), local person-
alized models can profitably work in tandem to
support open-vocabulary applications, and this is
a potentially complex coordination that likely falls
outside what many of those contributing to such
an application design are interested in developing
the expertise to perform. The library should allow
for easy-to-configure support of these best prac-
tices. Section 3.1 presents the language model
design criteria for the library. Second, personal-
ized models must remain secure due to privacy
concerns, so such services must include adequate
security and privacy functionality. Further, multi-
ple applications could potentially share the same
microservice – either multiple text-entry applica-
tions on the same local device (hence possibly shar-
ing dynamic models) or many clients for remotely
running hubs. Finally, separation of the language
modeling functionality into a completely separate
component allows for independent development
and testing. Such general architectural considera-
tions are presented in Section 3.2.

2 Background

2.1 Language modeling intro and notation
Language models are used to determine the prob-
ability of a string 𝑆 of discrete tokens 𝑡 drawn
from a vocabulary Σ. For ease of notation, let
𝑆 = 𝑡0𝑡1𝑡2 . . . 𝑡𝑘 where 𝑡𝑖 ∈ Σ for all 𝑖. By conven-
tion, without loss of generality, let the initial token
𝑡0 always be a special start-of-string token
and the final token 𝑡𝑘 always be a special end-of-
string token <E>. For a given token 𝑡𝑖 , let ℎ𝑖 be the
history at that position, i.e., the tokens in 𝑆 prior to
𝑡𝑖 which are 𝑡0 . . . 𝑡𝑖−1. Then, by the chain rule,

𝑃(𝑆) =

𝑘∏
𝑖=1

𝑃(𝑡𝑖 | ℎ𝑖) .

Language models can vary in what they consider
a token (e.g., words or characters), what is present
in their vocabulary Σ, and in the methods used to
estimate 𝑃(𝑡𝑖 | ℎ𝑖) at each position in the string4,
but the above formulation holds in general. To pro-
vide probabilities, the model must be appropriately

4Some methods assign probabilities to whole sentences
without relying on single-token estimates, such as Rosenfeld
(1997), but for our purposes, this formulation suffices.

normalized so that, for any given history ℎ∑︁
𝑡∈Σ

𝑃(𝑡 | ℎ) = 1

and for all 𝑡 ∈ Σ, 0 ≤ 𝑃(𝑡 | ℎ) ≤ 1. Many if
not most models in use today are appropriately
smoothed (or regularized) so that for all 𝑡 ∈ Σ and
ℎ ∈ Σ∗, 0 < 𝑃(𝑡 | ℎ) < 1, i.e., all vocabulary items
have non-zero probability in all contexts. Any to-
ken that is not found within the vocabulary Σ is
called out-of-vocabulary (OOV) and receives zero
probability from the model without some additional
mechanism to allocate probability to OOVs.

Another language modeling concept that is key
for text entry applications is whether the model is
dynamic or static. Dynamic LMs update the model
as new text is produced, so that the LM can subse-
quently provide higher probabilities to sequences
that have already been observed, thus personal-
izing the model. Most large LMs, such as those
discussed next as well as neural LMs, are static,
i.e., they are estimated once then probabilities are
served without being updated as text is produced.

2.2 Conventional Word-based n-gram LMs
Word-based 𝑛-gram models are a common class of
LMs that have been widely used for many appli-
cations. They are distinguished by the nature of
the vocabulary Σ, which is made up of a closed-
vocabulary of words, and by methods for defining
equivalence classes of histories based on a Markov
assumption. The Markov assumption states that
given the previous 𝑚 words (for some value of 𝑚)
in the history, the probability of a word is condi-
tionally independent of words earlier in the his-
tory (Norris, 1998). Operationally, this assumption
implies that, for a given token 𝑡𝑖 and history ℎ𝑖

𝑃(𝑡𝑖 | ℎ𝑖) = 𝑃(𝑡𝑖 | 𝑡𝑖−𝑚 . . . 𝑡𝑖−1) .

So, for example, if 𝑚 = 2, then 𝑃(𝑡 | ℎ) can be
estimated by only considering the previous 2 words
in the history, e.g., if ℎ = “they are under the
bathroom”, then

𝑃(sink | ℎ) = 𝑃(sink | the bathroom) .

The most common smoothing (regularization)
method for these models relies on “backing off”
to lower-order Markov models (i.e., smaller 𝑚) in
certain circumstances, and using various methods
to both decide when to back off and how to allo-
cate the probabilities appropriately when doing so

2

(Katz, 1987; Kneser and Ney, 1995). See Chen and
Goodman (1996) for an overview of such methods.

Importantly in the context of text-entry appli-
cations, having a closed vocabulary means that
words outside of that vocabulary are OOV, hence
those words are assigned zero probability, even
with backed off probabilities. Further regularizing
to provide non-zero probability to words outside
of Σ requires incorporation of probabilities from
other kinds of language models.

Recent work in neural language modeling has
generally emphasized models with tokens defined
somewhere between word and character, at the
level of multi-character sub-word tokens. For ex-
ample, byte-pair encoding (Sennrich et al., 2016)
or word-pieces (Schuster and Nakajima, 2012) are
learned tokenizations that group together frequent
character units, resulting in a configurable bal-
ance between the size of the vocabulary and the
lengths of dependencies being effectively modeled.
Models with these tokenizations provide open-
vocabulary modeling like character-based models.

2.3 Language Modeling in AAC

Higginbotham et al. (2012) provide a thorough
overview of early work on language modeling in
AAC, beyond what we have the space to provide
here; we refer readers to that paper for more de-
tails. Briefly, LMs are used to optimize keyboard
layout and to provide word-completion and pre-
diction utilities, among other uses, mirroring (and
often pre-dating) similar approaches for mobile
text entry. Optimization of the keyboard layout for
scanning methods of text entry, whereby rows and
columns of text in a grid are highlighted for se-
lection, were extensively investigated by Lesher
et al. (1998a) and others, and frequency-driven
placement of characters in such systems remains
common. Contextual probabilities can be used for
disambiguation in ambiguous keyboards, such as
the well-known T9 (Grover et al., 1998), where
individual keys are assigned multiple possible char-
acters. Optimizing groupings of such symbols and
use of LMs for disambiguation are long-standing
practices (Lesher et al., 1998b). LMs can also be
used for word prediction, whereby full words are
predicted either based on prior context or on the
prefix of the word that has been typed (or both),
and this has been shown to provide substantial re-
ductions in keystrokes required for text entry in an
AAC setting (Higginbotham, 1992). Issues around

Figure 1: Screenshot of Dasher keyboard.

the cognitive load imposed by attending to word
predictions in addition to keyboard manipulation
cause the speedup to be less than the keystroke sav-
ings might suggest, but this remains a standard
component in AAC text-entry systems (Higgin-
botham et al., 2012). LMs have also been used
to improve the accuracy of brain-computer inter-
face (BCI) text-entry systems (Oken et al., 2014),
much as they are in mobile keyboards for auto-
correction in the face of so-called fat-finger errors
or for gesture-based input (Kristensson and Zhai,
2004). With the advent of larger, higher quality
neural LMs such as GPT-3 (Brown et al., 2020) or
T5 (Raffel et al., 2019), higher quality predictions
are available to be leveraged for inclusion in such
systems, in many of the same ways that they have
been over the years.

2.4 Dasher and the PPM Language Model

We will provide some additional details about lan-
guage modeling in the Dasher system (Ward et al.,
2000, 2002; MacKay et al., 2004), both because
it provided the initial motivation for the work, but
also because the role of the LM in the interface is
central (and unique) and the LM focus in Dasher
has largely been on dynamic modeling (i.e., per-
sonalization), which is particularly important for
text-entry applications. A screenshot of the system
in operation is shown in Figure 1. Text entry in
Dasher is achieved by navigating through an array
of characters arranged in lexicographic order. Typ-
ing occurs by moving into regions to the right of

3

the screen that are labeled with the intended let-
ter. In the image, the central point has moved past
the letters ‘T’ and ‘h’ and the most likely next let-
ters (mostly vowels) are associated with relatively
large regions, i.e., they are easy targets to navigate
into. Word boundaries are marked with the square
box, and some predictions extend beyond just the
next character. For example, in the image, moving
straight to the right of the central dot would result
in the continuation “is□is□”, corresponding to the
(relatively likely) string “This is . . . ” Even unlikely
continuations have some probability, hence some
space allocated to them.

The amount of space allocated for each charac-
ter is determined by arithmetic coding (Rissanen
and Langdon, 1979; Witten et al., 1987), so that
high probability characters are larger targets for the
navigating user than lower probability characters.
Entering text is thus made easier by effective pre-
dictions of next characters, via easier-to-hit targets.
The letters are arrayed in descending lexicographic
order, so that one can move towards a character
even if it is too small to see, until that character
grows in size as one gets closer. Thus, for exam-
ple, if one wants to type “Thx” – perhaps as an
abbreviation for “Thanks” – then one would navi-
gate towards the bottom of the sorted list. As one
navigates in that direction, the probability that the
target symbol is found on that end of the list grows,
and the regions for those letters grow accordingly.
Eventually the region allocated to the character will
become large enough to be visible and navigation
to that region becomes easier.

These examples illustrate a couple of important
considerations for language modeling in Dasher.
First, probabilities must be provided for the next
character, not just the next word. Second, we may
want to type something that does not occur in a stan-
dard lexicon, such as “Thx”, including things that
we may type frequently due to our own personal
conventions. Hence personalization, i.e., updating
the language model as one types, can lead to higher
probabilities for things that an individual frequently
types. Due to these considerations, a major compo-
nent of the Dasher system since the beginning was
a dynamic character-based language model, most
commonly Prediction by Partial Match or PPM
(Cleary and Witten, 1984; Moffat, 1990).5 See Ap-

5In addition, Dasher supports the Context Tree Weighting
(CTW) method (Willems et al., 1995; Willems, 1998) that was
shown to be superior to PPM (van Veen, 2007) but has rarely
been used in practical Dasher configurations.

pendix A.1 for explicit mathematical details of the
specific PPM version implemented in MozoLM.

2.5 Microservices in a Nutshell

Before the advent of sophisticated web technolo-
gies, such as cloud computing, software architec-
tures were mostly monolithic, consisting of tightly
coupled and often overlapping components hosted
on the same machine and viewed as a single atomic
unit. More often than not, introducing architectural
changes to such a system, such as factoring out the
data intensive components to run elsewhere or sup-
porting a new platform, required a time-consuming
and costly redesign. In recent years a modern alter-
native paradigm revolving around the notion of mi-
croservices has gained much popularity and wide
acceptance in the industry, well attested by the
plethora of books on the subject.6

Some of the commonly found definitions of the
microservices concept are due to Dragoni et al.
(2017) and Zimmermann (2017), who loosely de-
fine a microservice architecture as a collection of
self-contained distributed services communicating
via well-defined APIs, such as remote procedure
call (RPC) message passing interfaces. The archi-
tecture follows the fine-grained separation of con-
cerns, with each individual service designed around
a particular business capability. One example may
include a hypothetical component focused on user
interaction (UI) loosely coupled with an LM com-
ponent. Developing, testing and maintaining these
two components in a microservices architecture
can be made possible by two independent cross-
functional teams each working in their own area of
expertise. The component microservices are inde-
pendently deployable, scalable, and testable. In our
example, adding a new sensory interface to the UI,
upgrading the LM or scaling its serving capacity,
should not adversely affect the functioning of other
components nor require their duplication. The ar-
chitecture is often polyglot, which implies that the
development is not restricted to any particular pro-
gramming language, platform or development stack
as long as individual components adhere to the
same API for communication. Our implementa-
tion is based on popular gRPC high-performance
communication framework. See Appendix B for
the rationale behind its adoption and the review of
such frameworks’ use in healthcare.

6See, e.g. Nadareishvili et al. (2016); Richardson (2019);
Newman (2019, 2021); Vernon and Jaskula (2021); Khan et al.
(2021); Ziadé and Fraser (2021).

4

3 Design Considerations

3.1 Language Model Issues
In this section we present general LM issues ad-
dressed by the library; further specific language
modeling details are provided in Appendix A. A
text-entry interface may request probabilities from
the LMs given the current context (i.e., what has al-
ready been typed), then update the context (and pos-
sibly counts of observed strings in dynamic mod-
els) as further characters are typed. The interface
to LMs should thus focus on two key requests: re-
trieving probabilities and updating counts/contexts.
From the client’s perspective, all models are ac-
cessed together through a single interface, so these
functions must be supported by each model and co-
ordinated by a central “hub”. This raises key issues
around the coordination of diverse models, includ-
ing tokenization, static versus dynamic modeling,
and methods of ensembling.

Tokenization is a major issue, since LMs are
trained variously on different kinds of tokens, from
words to sub-words to single characters. For exam-
ple, the PPM model used in Dasher is a character-
based LM, thus providing probabilities over sin-
gle characters given the context. Large general
LMs may be word-based, i.e., providing proba-
bilities over a vocabulary of words, or based on
other multi-character sub-word tokens. How does
one create an ensemble over models with diverse
tokenization? Our approach is to derive the esti-
mates at the smallest unit: single characters, which
in the library are defined as single Unicode code
points. For a model with multi-character tokens,
the probabilities must be calculated by summing
the probabilities of all items in the vocabulary that
have that character in that context. For example,
if the already-typed context is “the dog h”, then
the probability of a particular letter following ‘h’
(say ‘o’) would be the sum of the probabilities of all
words in the vocabulary beginning with ‘ho’ (house,
home, hound, however, etc.) following the context
‘the dog’, appropriately normalized. Similar calcu-
lations must happen for sub-word models, so that
all models being ensembled within the hub provide
single character probabilities. If the UI requires
multi-character estimates, e.g., for word prediction
or completion, then some additional computation
would be required to build them up from single
characters. Note that whitespace is a character as
well in this approach. Word-based models typically
include whitespace implicitly at word boundaries,

which must be accounted for.

The software library is built so that a given model
type can be defined as a sub-class of the general
LM class. Each sub-class must define its version
of a set of core functions, such as returning prob-
abilities given a context, returning a new context
identifier given a previous context identifier and
a newly typed character, and updating the model
when characters are typed. Specific sub-classes
will have different processing requirements to sat-
isfy these core requests, including summing over
multi-character tokens if the model has such a to-
kenization (as described above), normalizing the
probabilities if the model stores raw counts, or ac-
tually updating counts in dynamic models. Ap-
pendix A.3 presents the model classes that have
already been implemented in the MozoLM library.

Different models may provide probabilities for
distinct vocabularies of characters, and the en-
semble provides probabilities for the union of the
model character vocabularies. For example, a lo-
cal personalized LM 𝑃 may have never used an
accented vowel such as ‘é’, while a background
LM 𝑄 would perhaps give that character non-zero
probability, having observed it in a large corpus.
Since 𝑃 does not include the character in its vocab-
ulary, its contribution to the overall probability of
the character is zero, and all the probability mass
for that character must come from 𝑄. The union
of all of the model vocabularies will have at least
some probability mass coming from some of the
models. The LM hub collects the probabilities over
single characters from each model, and takes the
union in the ensembling process, before returning
the results to the client.

Dynamic models must be updated when text is
entered, and it is the responsibility of the interface
to call the update function. The hub tracks whether
models are static or dynamic, and only dynamic
models are updated. Dynamic models like the PPM
will typically store raw counts and normalize on-
the-fly to yield probabilities, while static models
can pre-compute normalized probabilities.

Ensembling methods are defined at the hub level
and can involve relatively simple approaches, such
as interpolation with fixed weights, or more com-
plicated ones that keep track of recent model per-
formance on typed text to determine which model
to rely upon. The hub is responsible for determin-
ing the mixing weights and ensuring that the final
mixture is properly normalized – see Appendix A.2

5

AAC
USER

USER
INTERFACE

INFERENCE
ENGINE

MODEL

LOCAL ENVIRONMENT

AAC APPLICATION

Figure 2: Monolithic AAC text-entry architecture.

for methods available in the library.
Many modeling methods require some extra pro-

cessing to provide normalized character-level prob-
abilities upon request at a given context, so it may
be useful to cache the values for a context, to han-
dle repeated visits more efficiently. This introduces
a speed/memory tradeoff, and this tradeoff is gener-
ally handled at the LM sub-class level, since each
modeling method may need to cache different infor-
mation. For example, word-based 𝑛-gram models
must sum over tokens to derive character-level es-
timates, and some information may be cached to
make such summing more efficient. Again, see
Appendix A.3 for details.

3.2 Architecture Details
AAC text-entry systems are commonly structured
as a monolith compiled into a single application,
shown schematically in Figure 2, where the sys-
tem’s tightly coupled components are crudely di-
vided into a UI, an inference engine and an LM.
The UI is often a complex system on its own, typ-
ically integrating various modes of user control,
such as gaze tracking, and display. The inference
engine is responsible for querying the supported
LM and translating the LM estimates into a repre-
sentation anticipated by the UI.

Separation of Concerns with LM Hub Splitting
the business logic into interaction with the UI and
display on the one hand, and LMs on the other,
provides several advantages over the monolithic
design. Consider the architecture in Figure 3 which
shows a microservices configuration consisting of
two components hosted on the same device. The
main difference from the monolithic configuration
in Figure 2 is that all the functionality that deals
with LM inference now resides in a separated local
service – the LM hub. What is left in the AAC
application is a thin inter-process communication
(IPC) layer for communicating with the LM hub
using a gRPC UNIX socket mechanism (Stevens
and Rago, 2013).

AAC
USER

USER
INTERFACE

MODELS

LOCAL ENVIRONMENT

AAC APPLICATION

MODEL HUB

gRPC

INFERENCE
ENGINES

MODEL HUB PROCESS

CONFIGURATION

1

2

Figure 3: Monolith split into the UI and the LM hub.

In a typical scenario we envisage the LM hub
as a standalone service binary that runs as a sepa-
rate process from the UI application if on the same
device, and as a remote gRPC service if config-
ured to run over the network. Alternatively, the
LM hub is also available as a regular library, which
still allows the developer to combine the UI and
LM components into a single monolith, simply a
better structured one. The additional advantage of
this architecture (mentioned in Section 2) is that
it is “polyglot”, e.g., the AAC application may be
implemented in C++, while the LM hub may be im-
plemented in Swift for accessing the native Apple
iOS keyboard predictions (Ruan et al., 2018).

LM Hub Structure The primary purpose of the
model hub service is to provide the LM predictions
from one or several inference engines based on
the service configuration (Appendix C.1 describes
the configuration language). The inference engine
is an abstraction that implements the model serv-
ing logic for particular types of model. The local
architecture in Figure 3 has two model inference
engines. The first engine serves two models. This
inference engine implements light-weight dynamic
LMs (models 1 and 2 in the figure) with the individ-
ual model predictions served by this engine com-
bined by the model hub using a mixture method
such as one of those presented in Appendix A. The
second inference engine may serve bigger static
LMs, such as pruned 𝑛-gram LMs (Heafield, 2011;
Roark et al., 2012). Alternatively, this inference en-
gine may serve a distilled neural model (Jiao et al.,
2020; Sun et al., 2020; Niu et al., 2020). In either
case the static model is optimized for running on
an edge device.

Distributed LM Hubs Because in the proposed
architecture the model hub is an independently de-
ployable service, building a fully distributed ar-
chitecture, where the model hub runs as a remote
service, becomes easy. Figure 4 shows two of the

6

AAC
USER USER

INTERFACE
MODELS

LOCAL

AAC APPLICATION

MODEL HUB
gRPC

INFERENCE
ENGINE

HUB SERVICE

CONFIGURATION

1

CLOUD

TLS

A

MODEL HUB

2
B

TLS

CONFIGURATION

INFERENCE
ENGINE

MODEL

LOCAL HUB

3

Figure 4: Architecture with a local and remote LM hubs
in two configurations: a remote hub (𝐴) only, and a
local hub (𝐵) communicating with the remote hub.

simplest distributed configurations possible.
The first scenario involves a single remote model

hub service (denoted 𝐴 in the figure). In our ex-
ample this hub is virtually identical to the local
in-process hub from Figure 3 in that it also serves
two models. The main difference, of course, is that
the models served by the remote hub may be cho-
sen to be static rather than dynamic for a number
of reasons, e.g., related to privacy (remote machine
may not be fully trusted with user data) or com-
putation (the machine may be powerful enough to
serve large unoptimized models). Another impor-
tant difference is that the communication between
the AAC application and the model hub uses net-
work gRPC channel secured using standard authen-
tication mechanism, such as transport layer security
(TLS) protocol (IETF, 2018). More implementa-
tion details are provided in Appendix C.2.

The second scenario in Figure 4 involves a dis-
tributed dual hub architecture: the AAC applica-
tion communicates with a local model hub service
(denoted 𝐵 in the figure), which in turn communi-
cates with the remote LM hub service (𝐴) described
above. The design feature that allows each LM hub
to act as a client for other LM hubs enables more
sophisticated architectures such as the one we are
describing. In this example, the local hub is serving
a single dynamic model, while the remote hub may
be providing predictions from two third-party static
models, with model ensembling being performed
by each hub. Even more complex architectures are
supported (see Appendix D).

4 Personalization Experiment

We have motivated this work in part with the idea
that LMs with different characteristics can be prof-

itably ensembled to provide better estimates, and
in this section we present a small experiment to
demonstrate this. This experiment was run us-
ing the MozoLM library with differently config-
ured LM hubs and implementations of several com-
mon LM sub-classes.7 We evaluated LM perfor-
mance using data from the Enron Personalization
Validation Set8 (Fowler et al., 2015). That data
collects emails written by 89 individuals, each
in their own separate file, 45 of which are avail-
able for dev and 44 for test. Here we use the
text from the 45 dev individuals, found in files
dev??.message.text.tsv, up to a maximum of
140,000 characters per individual, in aggregate over
720k words and 3.9M characters.

Language models can be used for any number
of applications – including text entry, the focus of
this software library – but evaluation of language
model quality is often performed intrinsically, by
examining the probabilities assigned by models
to attested text from the domain. Operationally,
one measures the log probability of the validation
corpus; and for ease of comparison at the character
level, normalizes by the number of characters. If
the log is base 2, this provides the number of bits
per character (BPC), and lower values correspond
to higher probabilities, i.e., better models.

Since each file in the dev set consists of text
written by a single individual, dynamic models that
update counts as the text file is processed will per-
sonalize the model to predict frequent patterns of
that particular user. We score the cumulative BPC
of the model, which, at each character, shows us
how well the model has predicted the text that was
typed up to that point. Lower BPC corresponds to
higher probability assigned to the actual characters
that were typed, i.e., better predictions of what the
user will type. In Dasher, for example, this would
correspond to larger regions being allocated to ac-
tual target characters within its arithmetic coding
approach. Since we measure cumulative BPC at
each character position, we can track the learning
of any dynamic models that are included in the
ensemble.

Figure 5 presents cumulative BPC aggregated
over all 45 individuals in the dev partition, report-
ing the aggregate bits divided by aggregate char-
acters as we synchronously step through each text

7The data used to train models is available at https://github.
com/agutkin/slpat2022.

8https://github.com/google-research-datasets/
EnronPersonalizationValidation

7

https://github.com/agutkin/slpat2022
https://github.com/agutkin/slpat2022
https://github.com/google-research-datasets/EnronPersonalizationValidation
https://github.com/google-research-datasets/EnronPersonalizationValidation

0 20 40 60 80 100 120 140

1.9

2

2.1

2.2

2.3

2.4

Character position in text (x1000)

(a)
(b)
(c)
(d)

Figure 5: Cumulative BPC at text positions in collec-
tions of emails by the same individual, in four condi-
tions: (a) uniformly-mixed ensemble of two static LMs;
(b) uniformly-mixed ensemble of the two static models
and a dynamic PPM 6-gram for each individual; and
(c) and (d) Bayesian-mixed ensembles of the two static
models and a dynamic PPM 6-gram for each individual,
using history lengths 6 and 1, respectively, to determine
mixing coefficients.

file. Thus, at position 5000, the cumulative BPC
shows that measure for all users up to and includ-
ing character 5000 in each of the files. Note that
the dynamic LMs are being updated only for the
specific individual, not shared among individuals.

Figure 5 presents cumulative BPC for four con-
ditions. First, we combined two large static LMs
trained on 20M sentences of English Wikipedia
text (426M words). The first is a trigram word
model with a closed vocabulary of 414,715 words;
all other words are mapped to an out-of-vocabulary
(OOV) token. This model was built using the Open-
Grm NGram library (Roark et al., 2012) and pruned
to contain a total of 100M 𝑛-grams. The second
static model is an unpruned PPM model with a
maximum 𝑛-gram length of 6, trained on the same
data. Since this is a character-level model, the
ensembling of these two models provides a fully
open-vocabulary model over the characters found
in the Wikipedia training data, and there are no
OOV characters in the evaluation text. Condition
(a) in Figure 5 shows the performance of an ensem-
ble of the two static models, mixed uniformly. Note
that this yields lower BPC (i.e., better performance)
than using either model independently, conditions
which are not shown for clarity.

The other three conditions mix the above static
models with a dynamic PPM model (also maxi-

mum 6-gram) that is only trained on previously
typed strings in the dev set itself. This dynamic
model on its own performs far worse than any of
the ensembles shown (results are omitted for clar-
ity). The difference between these three dynamic
model conditions is in the ensembling method. In
condition (b), all three models are mixed uniformly,
i.e., each contributes 1/3 of the probability mass.
One can see from Figure 5 that condition (b) ends
up improving substantially over condition (a), but
at early character positions (b) has significantly
higher BPC, since the dynamic model needs many
observations before it can begin to produce use-
ful probabilities. The other two conditions use a
generalization of Bayesian interpolation (see Ap-
pendix A.2) to establish the ensemble mixing coeffi-
cients, which, among other things, reduces reliance
on the dynamic model at earlier positions. Choos-
ing the mixing coefficients based on just the pre-
viously typed character (condition d) outperforms
using the previous 6 typed characters to calculate
the coefficients (condition c).

This experiment is simply intended to motivate
the ensembling of multiple diverse models, as we
advocate for in the design of this library, as well
as demonstrating the software in action. Of course,
actual optimal model configuration will depend on
the user and on the specific text-entry system being
used. We can at least say that different models
can have complementary characteristics, so that
combining them, even in simple ways, can yield
better models.

5 Conclusion and Future Work

We have presented the rationale for many choices
made in designing an open-source microservice
package for language modeling in AAC text-entry
applications. The code presented is available open-
source, and the experiments run in Section 4 were
performed using the library. Future work will in-
clude adding more LM sub-classes, including com-
monly used neural LMs.

Acknowledgements

Thanks to Keith Vertanen, Jim Hawkins, Jeremy
Cope, Will Wade, Jay Beavers, Stefan Zecevic,
Lisie Lillianfeld and Jiban Adhikary for sharing
their insights and expertise with us during the work
on this project. The authors also thank Richard
Sproat and the three anonymous reviewers for their
useful feedback on the earlier version of this paper.

8

References
Randy Abernethy. 2019. Programmer’s Guide to

Apache Thrift. Manning Publications Co., Shelter
Island, NY, USA.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy
Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In Pro-
ceedings of the 33rd AAAI conference on Artificial
Intelligence, pages 3159–3166, Honolulu, Hawaii,
USA. ACM.

Cyril Allauzen and Michael Riley. 2011. Bayesian lan-
guage model interpolation for mobile speech input.
In Proceedings of Interspeech, pages 1429–1432, Flo-
rence, Italy. International Speech Communication
Association (ISCA).

Adam Berger, Stephen A. Della Pietra, and Vincent J.
Della Pietra. 1996. A maximum entropy approach to
natural language processing. Computational Linguis-
tics, 22(1):39–71.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Mauro Caporuscio, Danny Weyns, Jesper Andersson,
Clara Axelsson, and Göran Petersson. 2017. IoT-
enabled physical telerehabilitation platform. In 2017
IEEE International Conference on Software Archi-
tecture Workshops (ICSAW), pages 112–119, Gothen-
burg, Sweden. IEEE.

Stanley F. Chen and Joshua Goodman. 1996. An em-
pirical study of smoothing techniques for language
modeling. In 34th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 310–318,
Santa Cruz, California, USA. Association for Com-
putational Linguistics.

John Cleary and Ian Witten. 1984. Data compression
using adaptive coding and partial string matching.
IEEE Transactions on Communications, 32(4):396–
402.

Ciprian Dobre, Lidia Băjenaru, Ion Alexandru Mari-
nescu, Mihaela Tomescu, Gabriel Ioan Prada, and Su-
sanna Spinsante. 2021. New opportunities for older
adults care transition from traditional to personalised
assistive care: vINCI platform. In Proceedings of
2021 23rd International Conference on Control Sys-
tems and Computer Science (CSCS), pages 515–520,
Bucharest, Romania. IEEE.

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch La-
fuente, Manuel Mazzara, Fabrizio Montesi, Ruslan
Mustafin, and Larisa Safina. 2017. Microservices:
Yesterday, today, and tomorrow. Present and Ulte-
rior Software Engineering, pages 195–216.

Hicham El Boukkouri, Olivier Ferret, Thomas Lavergne,
Hiroshi Noji, Pierre Zweigenbaum, and Jun’ichi Tsu-
jii. 2020. CharacterBERT: Reconciling ELMo and
BERT for word-level open-vocabulary representa-
tions from characters. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 6903–6915, Barcelona, Spain (Online).
International Committee on Computational Linguis-
tics.

Marius Eriksen. 2014. Your server as a function. ACM
SIGOPS Operating Systems Review, 48(1):51–57.

Andrew Fowler, Kurt Partridge, Ciprian Chelba, Xiao-
jun Bi, Tom Ouyang, and Shumin Zhai. 2015. Ef-
fects of language modeling and its personalization on
touchscreen typing performance. In Proceedings of
the 33rd ACM SIGCHI Conference on Human Fac-
tors in Computing Systems, pages 649–658, Seoul,
Korea. ACM.

Dale L. Grover, Martin T. King, and Clifford A. Kushler.
1998. Reduced keyboard disambiguating computer.
U.S. Patent US5818437A, October. Tegic Communi-
cations Inc.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
187–197, Edinburgh, Scotland. Association for Com-
putational Linguistics.

D. Jeffery Higginbotham. 1992. Evaluation of keystroke
savings across five assistive communication technolo-
gies. Augmentative and Alternative Communication,
8(4):258–272.

D. Jeffery Higginbotham, Gregory W. Lesher, Bryan J.
Moulton, and Brian Roark. 2012. The application
of natural language processing to augmentative and
alternative communication. Assistive Technology,
24(1):14–24.

Paul Glor Howard. 1993. The design and analysis of effi-
cient lossless data compression systems. Ph.D. thesis,
Department of Computer Science, Brown University,
Providence, RI, USA. Tech. Report No. CS-93-28.

Bo-June Hsu. 2007. Generalized linear interpolation of
language models. In Proceedings of IEEE Workshop
on Automatic Speech Recognition & Understanding
(ASRU), pages 136–140, Kyoto, Japan. IEEE.

Joshua Humphries, David Konsumer, David Muto,
Robert Ross, and Carles Sistare. 2018. Practical
gRPC. Bleeding Edge Press, Santa Rosa, CA, USA.

IETF. 2018. The transport layer security (TLS) protocol
version 1.3. Internet Engineering Task Force, RFC
8446. Version 1.3, August.

9

https://www.manning.com/books/programmers-guide-to-apache-thrift
https://www.manning.com/books/programmers-guide-to-apache-thrift
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.21437/Interspeech.2011-249
https://doi.org/10.21437/Interspeech.2011-249
https://doi.org/10.5555/234285.234289
https://doi.org/10.5555/234285.234289
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1109/ICSAW.2017.43
https://doi.org/10.1109/ICSAW.2017.43
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.3115/981863.981904
https://doi.org/10.1109/TCOM.1984.1096090
https://doi.org/10.1109/TCOM.1984.1096090
https://doi.org/10.1109/CSCS52396.2021.00090
https://doi.org/10.1109/CSCS52396.2021.00090
https://doi.org/10.1109/CSCS52396.2021.00090
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/10.18653/v1/2020.coling-main.609
https://doi.org/doi.org/10.1145/2626401.2626413
https://doi.org/10.1145/2702123.2702503
https://doi.org/10.1145/2702123.2702503
https://doi.org/10.1145/2702123.2702503
https://patents.google.com/patent/US5818437A/
https://aclanthology.org/W11-2123
https://aclanthology.org/W11-2123
https://doi.org/10.1080/07434619212331276303
https://doi.org/10.1080/07434619212331276303
https://doi.org/10.1080/07434619212331276303
https://doi.org/10.1080/10400435.2011.648714
https://doi.org/10.1080/10400435.2011.648714
https://doi.org/10.1080/10400435.2011.648714
https://doi.org/10.1109/ASRU.2007.4430098
https://doi.org/10.1109/ASRU.2007.4430098

Kasun Indrasiri and Danesh Kuruppu. 2020. gRPC Up
& Running: Building Cloud Native Applications with
Go and Java for Docker and Kubernetes. O’Reilly
Media, Inc., USA.

Frederick Jelinek and R. L. Mercer. 1980. Interpolated
estimation of Markov source parameters from sparse
data. In Proceedings of Workshop on Pattern Recog-
nition in Practice, pages 381–397, Amsterdam, The
Netherlands. North-Holland Publishing.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. 2020.
TinyBERT: Distilling BERT for natural language un-
derstanding. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4163–
4174, Online. Association for Computational Lin-
guistics.

Simon Josefsson and Sean Leonard. 2015. Textual en-
codings of PKIX, PKCS, and CMS structures. In-
ternet Engineering Task Force (IETF), RFC 7468.
April.

Slava Katz. 1987. Estimation of probabilities from
sparse data for the language model component of
a speech recognizer. IEEE transactions on acoustics,
speech, and signal processing, 35(3):400–401.

Ovais Mehboob Ahmed Khan, Arvind Chandaka, and
Robert Vettor. 2021. Developing Microservices Ar-
chitecture on Microsoft Azure with Open Source Tech-
nologies. Microsoft Press.

Dietrich Klakow. 1998. Log-linear interpolation of lan-
guage models. In Proceedings of the 5th Interna-
tional Conference on Spoken Language Processing
(ICSLP), page paper 0522, Sydney, Australia. Interna-
tional Speech Communication Association (ISCA).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for 𝑚-gram language modeling. In Pro-
ceedings of the 1995 International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
volume 1, pages 181–184, Detroit, Michigan, USA.
IEEE.

Per-Ola Kristensson and Shumin Zhai. 2004. SHARK2:
a large vocabulary shorthand writing system for pen-
based computers. In Proceedings of the 17th an-
nual ACM symposium on User Interface Software
and Technology (UIST), pages 43–52, Santa Fe, NM,
USA. Association for Computing Machinery (ACM).

Gregory Lesher, Bryan Moulton, and D. Jeffery Higgin-
botham. 1998a. Techniques for augmenting scanning
communication. Augmentative and Alternative Com-
munication, 14(2):81–101.

Gregory W. Lesher, Bryan J. Moulton, and D. Jeffery
Higginbotham. 1998b. Optimal character arrange-
ments for ambiguous keyboards. IEEE Transactions
on Rehabilitation Engineering, 6(4):415–423.

Xunying Liu, Mark John Francis Gales, and Philip C.
Woodland. 2013. Use of contexts in language model
interpolation and adaptation. Computer Speech &
Language, 27(1):301–321.

David J. C. MacKay, Chris J. Ball, and Mick Donegan.
2004. Efficient communication with one or two but-
tons. AIP Conference Proceedings, 735(1):207–218.

Argyro Mavrogiorgou, Spyridon Kleftakis, Konstanti-
nos Mavrogiorgos, Nikolaos Zafeiropoulos, Andreas
Menychtas, Athanasios Kiourtis, Ilias Maglogiannis,
and Dimosthenis Kyriazis. 2021. beHEALTHIER: A
microservices platform for analyzing and exploiting
healthcare data. In Proceedings of IEEE 34th In-
ternational Symposium on Computer-Based Medical
Systems (CBMS), pages 283–288, Aveiro, Portugal.
IEEE.

Andrea Melis, Silvia Mirri, Catia Prandi, Marco Pran-
dini, Paola Salomoni, and Franco Callegati. 2016. A
microservice architecture use case for persons with
disabilities. In Proceedings of 2nd International Con-
ference on Smart Objects and Technologies for Social
Good (GOODTECHS), pages 41–50, Venice, Italy.
Springer.

Russ Miles and Kim Hamilton. 2006. Learning UML
2.0: A Pragmatic Introduction to UML. O’Reilly
Media, Inc., USA.

Alistair Moffat. 1990. Implementing the PPM data
compression scheme. IEEE Transactions on Commu-
nications, 38(11):1917–1921.

Mukhriddin Mukhiddinov and Jinsoo Cho. 2021. Smart
glass system using deep learning for the blind and
visually impaired. Electronics, 10(22):2756.

Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and
Mike Amundsen. 2016. Microservice Architecture:
Aligning Principles, Practices, and Culture. O’Reilly
Media, Inc., USA.

Sam Newman. 2019. Monolith to Microservices:
Evolutionary Patterns to Transform Your Monolith.
O’Reilly Media, Inc., USA.

Sam Newman. 2021. Building Microservices: Design-
ing Fine-Grained Systems, 2nd edition. O’Reilly
Media, Inc., USA.

Wei Niu, Zhenglun Kong, Geng Yuan, Weiwen Jiang,
Jiexiong Guan, Caiwen Ding, Pu Zhao, Sijia Liu, Bin
Ren, and Yanzhi Wang. 2020. Real-time execution
of large-scale language models on mobile. arXiv
preprint arXiv:2009.06823.

James Robert Norris. 1998. Markov Chains. Num-
ber 2 in Cambridge Series in Statistical and Prob-
abilistic Mathematics. Cambridge University Press,
Cambridge, UK.

Barry S. Oken, Umut Orhan, Brian Roark, Deniz Er-
dogmus, Andrew Fowler, Aimee Mooney, Betts Pe-
ters, Meghan Miller, and Melanie B. Fried-Oken.

10

https://www.oreilly.com/library/view/grpc-up-and/9781492058328/
https://www.oreilly.com/library/view/grpc-up-and/9781492058328/
https://www.oreilly.com/library/view/grpc-up-and/9781492058328/
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://doi.org/10.18653/v1/2020.findings-emnlp.372
https://datatracker.ietf.org/doc/rfc7468/
https://datatracker.ietf.org/doc/rfc7468/
https://www.isca-speech.org/archive/icslp_1998/klakow98_icslp.html
https://www.isca-speech.org/archive/icslp_1998/klakow98_icslp.html
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1109/ICASSP.1995.479394
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1145/1029632.1029640
https://doi.org/10.1080/07434619812331278236
https://doi.org/10.1080/07434619812331278236
https://doi.org/10.1109/86.736156
https://doi.org/10.1109/86.736156
https://doi.org/10.1016/j.csl.2012.06.004
https://doi.org/10.1016/j.csl.2012.06.004
https://doi.org/10.1063/1.1835215
https://doi.org/10.1063/1.1835215
https://doi.org/10.1109/CBMS52027.2021.00078
https://doi.org/10.1109/CBMS52027.2021.00078
https://doi.org/10.1109/CBMS52027.2021.00078
https://doi.org/10.1007/978-3-319-61949-1_5
https://doi.org/10.1007/978-3-319-61949-1_5
https://doi.org/10.1007/978-3-319-61949-1_5
https://doi.org/10.1109/26.61469
https://doi.org/10.1109/26.61469
https://doi.org/10.3390/electronics10222756
https://doi.org/10.3390/electronics10222756
https://doi.org/10.3390/electronics10222756
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834/
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834/
https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018/
https://www.oreilly.com/library/view/building-microservices-2nd/9781492034018/
https://arxiv.org/abs/2009.06823
https://arxiv.org/abs/2009.06823

2014. Brain–computer interface with language
model–electroencephalography fusion for locked-in
syndrome. Neurorehabilitation and Neural Repair,
28(4):387–394.

Adina M. Panchea, Dominic Létourneau, Simon Brière,
Mathieu Hamel, Marc-Antoine Maheux, Cédric
Godin, Michel Tousignant, Mathieu Labbé, François
Ferland, François Grondin, and François Michaud.
2021. OpenTera: A microservice architecture so-
lution for rapid prototyping of robotic solutions
to COVID-19 challenges in care facilities. arXiv
preprint arXiv:2103.06171.

Anelis Pereira-Vale, Eduardo B Fernandez, Raúl Monge,
Hernán Astudillo, and Gastón Márquez. 2021. Secu-
rity in microservice-based systems: A multivocal lit-
erature review. Computers & Security, 103:102200.

Gabriela Postolache, Pedro Silva Girão, Octa-
vian Adrian Postolache, José Miguel Dias Pereira,
and Vitor Viegas. 2019. IoT based model of health-
care for physiotherapy. In Proceedings of 2019
13th International Conference on Sensing Technology
(ICST), pages 1–6, Sydney, Australia. IEEE.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Krzysztof Rakowski. 2015. Learning Apache Thrift.
Packt Publishing, Birmingham, UK.

Jorge Rendulich, Jorge R. Beingolea, Milagros Zegarra,
Isaac G. G. Vizcarra, and Sergio T. Kofuji. 2019. An
IoT environment for the development of assistive ap-
plications in smart cities. In Proceedings of 2019
IEEE 1st Sustainable Cities Latin America Confer-
ence (SCLA), pages 1–4, Arequipa, Peru. IEEE.

Chris Richardson. 2019. Microservices Patterns: With
examples in Java. Manning Publications Co., Shelter
Island, NY, USA.

Jorma Rissanen and Glen G. Langdon. 1979. Arithmetic
coding. IBM Journal of Research and Development,
23(2):149–162.

Brian Roark, Richard Sproat, Cyril Allauzen, Michael
Riley, Jeffrey Sorensen, and Terry Tai. 2012. The
OpenGrm open-source finite-state grammar software
libraries. In Proceedings of the ACL 2012 System
Demonstrations, pages 61–66, Jeju Island, Korea.
Association for Computational Linguistics.

Ronald Rosenfeld. 1997. A whole sentence maximum
entropy language model. In Proceedings of the IEEE
Workshop on Automatic Speech Recognition and Un-
derstanding (ASRU), pages 230–237, Santa Barbara,
CA, USA. IEEE.

Daniel Rough, Keith Vertanen, and Per Ola Kristens-
son. 2014. An evaluation of Dasher with a high-
performance language model as a gaze communi-
cation method. In Proceedings of the 2014 Inter-
national Working Conference on Advanced Visual
Interfaces, pages 169–176, Como, Italy. Association
for Computing Machinery (ACM).

Sherry Ruan, Jacob O. Wobbrock, Kenny Liou, An-
drew Ng, and James A. Landay. 2018. Comparing
speech and keyboard text entry for short messages in
two languages on touchscreen phones. Proceedings
of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 1(4):1–23.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and Korean voice search. In Proceedings of 2012
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5149–5152,
Kyoto, Japan. IEEE.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Christian Steinruecken, Zoubin Ghahramani, and David
MacKay. 2015. Improving PPM with dynamic pa-
rameter updates. In Proceedings of 2015 Data Com-
pression Conference (DCC), pages 193–202, Snow-
bird, Utah, USA. IEEE.

W. Richard Stevens and Stephen A. Rago. 2013. Ad-
vanced Programming in the UNIX ® Environment,
3rd edition. Addison-Wesley Professional Comput-
ing Series. Addison-Wesley.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. MobileBERT:
a compact task-agnostic BERT for resource-limited
devices. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2158–2170, Online. Association for Computa-
tional Linguistics.

Martijn van Veen. 2007. Using context-tree weighting
as a language modeler in Dasher. Master’s thesis, De-
partment of Electrical Engineering, Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands,
February.

Vaughn Vernon and Tomasz Jaskula. 2021. Strategic
Monoliths and Microservices: Driving Innovation
Using Purposeful Architecture. Pearson Addison-
Wesley Signature Series. Addison-Wesley Profes-
sional.

David J. Ward. 2001. Adaptive Computer Interfaces.
Ph.D. thesis, Inference Group, Cavendish Laboratory,
University of Cambridge, Cambridge, UK.

11

https://doi.org/10.1177/1545968313516867
https://doi.org/10.1177/1545968313516867
https://doi.org/10.1177/1545968313516867
https://arxiv.org/abs/2103.06171
https://arxiv.org/abs/2103.06171
https://arxiv.org/abs/2103.06171
https://doi.org/10.1016/j.cose.2021.102200
https://doi.org/10.1016/j.cose.2021.102200
https://doi.org/10.1016/j.cose.2021.102200
https://doi.org/10.1109/ICST46873.2019.9047710
https://doi.org/10.1109/ICST46873.2019.9047710
https://www.packtpub.com/product/learning-apache-thrift/9781785882746
https://doi.org/10.1109/SCLA.2019.8905513
https://doi.org/10.1109/SCLA.2019.8905513
https://doi.org/10.1109/SCLA.2019.8905513
https://www.manning.com/books/microservices-patterns
https://www.manning.com/books/microservices-patterns
https://doi.org/10.1147/rd.232.0149
https://doi.org/10.1147/rd.232.0149
https://aclanthology.org/P12-3011
https://aclanthology.org/P12-3011
https://aclanthology.org/P12-3011
https://doi.org/10.1109/ASRU.1997.659010
https://doi.org/10.1109/ASRU.1997.659010
https://doi.org/10.1145/2598153.2598157
https://doi.org/10.1145/2598153.2598157
https://doi.org/10.1145/2598153.2598157
https://doi.org/10.1145/3161187
https://doi.org/10.1145/3161187
https://doi.org/10.1145/3161187
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.1109/DCC.2015.77
https://doi.org/10.1109/DCC.2015.77
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195
https://doi.org/10.18653/v1/2020.acl-main.195

David J. Ward, Alan F. Blackwell, and David J. C.
MacKay. 2000. Dasher — a data entry interface us-
ing continuous gestures and language models. In
Proceedings of the 13th annual ACM symposium
on User Interface Software and Technology (UIST),
pages 129–137, San Diego, California, USA. Associ-
ation for Computing Machinery (ACM).

David J. Ward, Alan F. Blackwell, and David J. C.
MacKay. 2002. Dasher: A gesture-driven data entry
interface for mobile computing. Human–Computer
Interaction, 17(2-3):199–228.

Frans M. J. Willems. 1998. The context-tree weighting
method: Extensions. IEEE Transactions on Informa-
tion Theory, 44(2):792–798.

Frans M. J. Willems, Yuri M. Shtarkov, and Tjalling J.
Tjalkens. 1995. The context-tree weighting method:
Basic properties. IEEE Transactions on Information
Theory, 41(3):653–664.

Edwin B. Wilson. 1927. Probable inference, the law of
succession, and statistical inference. Journal of the
American Statistical Association, 22(158):209–212.

Ian H. Witten, Radford M. Neal, and John G. Cleary.
1987. Arithmetic coding for data compression. Com-
munications of the ACM, 30(6):520–540.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems (NeurIPS), volume 32.
Curran Associates, Inc.

Tetiana Yarygina. 2018. Exploring Microservice Secu-
rity. Ph.D. thesis, Department of Informatics, Uni-
versity of Bergen, Bergen, Norway.

Yeliz Yesilada and Simon Harper. 2019. Futurama. In
Yeliz Yesilada and Simon Harper, editors, Web Ac-
cessibility: A Foundation for Research, 2nd edition,
Human–Computer Interaction Series, pages 791–803.
Springer, London, UK.

Tarek Ziadé and Simon Fraser. 2021. Python Microser-
vices Development: Build efficient and lightweight
microservices using the Python tooling ecosystem,
2nd edition. Packt Publishing, Birmingham, UK.

Olaf Zimmermann. 2017. Microservices tenets: Agile
approach to service development and deployment.
Computer Science — Research and Development,
32(3):301–310.

A Language Modeling Specifics

A.1 PPM Language Model
There are many PPM variants – see Ward (2001)
for a review. Here we will present the PPMD vari-
ant (Howard, 1993) that has been implemented in
this library. We follow the “blending” and “update

exclusion” (known as single counting from Moffat,
1990) approach taken in Steinruecken et al. (2015),
and assign probabilities using a variant of equation
4 in that paper. In such an approach, there are three
hyperparameters: 𝛼, 𝛽 and 𝑚. Both 𝛼 and 𝛽 fall be-
tween 0 and 1, and 𝑚 ≥ 0 specifies that the longest
strings included in the model are of length 𝑚+1.

Let Σ be a vocabulary of characters, including
a special end-of-string symbol. Let ℎ ∈ Σ∗ be the
contextual history and 𝑡 ∈ Σ a token following ℎ,
e.g., ℎ might be “this is the contextual histor” and
𝑡 might be “y”. Let ℎ′ be the back-off contextual
history for ℎ, which is the longest proper suffix
of ℎ if one exists, and the empty string otherwise.
Thus, for our example above, ℎ′ is “his is the con-
textual histor”. For any 𝑥 ∈ Σ∗ let 𝑐(𝑥) denote the
count of 𝑥, and 𝐶 (𝑥) = max(𝑐(𝑥) − 𝛽, 0). We will
specify how counts are derived later. Finally, let
𝑈 (ℎ) = {𝑡 : 𝑐(ℎ𝑡) > 0} and 𝑆(ℎ) = ∑

𝑥 𝑐(ℎ𝑥).
Probabilities are defined based on “blending”

multiple orders, a calculation which recurses to
lower orders, terminating at the unigram probabil-
ity, which is when ℎ is the empty string. For the un-
igram probability, we smooth via add-one Laplace
smoothing (Wilson, 1927), i.e., for all 𝑡 ∈ Σ

𝑃(𝑡) =
𝑐(𝑡) + 1∑
𝑥 𝑐(𝑥) + 1

.

If ℎ is non-empty, then its probability is defined
using the metaparameters 𝛼, 𝛽 mentioned earlier:

𝑃(𝑡 | ℎ) =
𝐶 (ℎ𝑡) + (𝑈 (ℎ)𝛽 + 𝛼) 𝑃(𝑡 | ℎ′)

𝑆(ℎ) + 𝛼 .

Counting occurs via “update exclusion”. With
each new observation 𝑡 in the context of ℎ, we up-
date our count 𝑐(ℎ𝑡). Let 𝑘 = min(length(ℎ𝑡), 𝑚 +
1), and let 𝑋 = ℎ′𝑡 be the suffix of ℎ𝑡 of length 𝑘 .
Let 𝑋 ′ be the longest suffix of 𝑋 that was previ-
ously observed, i.e., where 𝑐(𝑋 ′) > 0.9 Then we
increment the counts by one for all substrings 𝑌 of
ℎ𝑡 such that length(𝑋) >= length(𝑌) >= length(𝑋 ′).
See Steinruecken et al. (2015) for further details
about this method.

A.2 Ensembling Methods
Two language models, such as 𝑀1 and 𝑀2 shown in
Figure 3, can be combined into an ensemble model
in many ways. Perhaps the simplest requires just a
single parameter 𝜆 between 0 and 1 that determines

9We assume that 𝑡 has been observed, since we use Laplace
add-one smoothing for the unigram.

12

https://doi.org/10.1145/354401.354427
https://doi.org/10.1145/354401.354427
https://doi.org/10.1080/07370024.2002.9667314
https://doi.org/10.1080/07370024.2002.9667314
https://doi.org/10.1109/18.661523
https://doi.org/10.1109/18.661523
https://doi.org/10.1109/18.382012
https://doi.org/10.1109/18.382012
https://doi.org/10.2307/2276774
https://doi.org/10.2307/2276774
https://doi.org/10.1145/214762.214771
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.1007/978-1-4471-7440-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

how much of the probability to derive from 𝑀1,
with the rest (1−𝜆) coming from 𝑀2:

𝑃(𝑡 | ℎ) = 𝜆𝑃1(𝑡 | ℎ) + (1 − 𝜆)𝑃2(𝑡 | ℎ) ,

where 𝑃𝑘 is the probability as given by model 𝑀𝑘 .
This approach can generalize beyond two models
by mixing a third model, such as 𝑀3 in the local
hub of Figure 4, with the above ensemble using a
second mixing parameter 𝛾 (also between 0 and 1):

𝑃(𝑡 | ℎ) = 𝛾(𝜆𝑃1(𝑡 | ℎ) + (1 − 𝜆)𝑃2(𝑡 | ℎ))
+ (1 − 𝛾)𝑃3(𝑡 | ℎ)

The method of estimating the mixing parameters
𝜆, 𝛾 can vary, and includes long-known methods
such as using expectation maximization (EM) on
a held-aside corpus (Jelinek and Mercer, 1980),
which is also used for backoff smoothing parameter
estimation in some approaches.

Ensembling can have several benefits in the con-
text of text-entry applications. First, it can al-
low for the use of closed-vocabulary word-based
models without assigning zero probability to OOV
words, when mixed with an open-vocabulary, e.g.,
character-based, model. Second, models trained
on different training sets can be complementary in
their distributions, so that a mixture of the two pro-
vides better overall probabilities than either model
on its own. Finally, mixtures of static and dynamic
models can provide better personalization than is
provided by just dynamic models on their own, as
evidenced in the results of Section 4.

For those experiments, we used a somewhat
more complicated method (also available in the
library) for calculating the mixture than single pa-
rameters 𝜆 and 𝛾, based on a generalization of
Bayesian interpolation (Allauzen and Riley, 2011).
Given 𝐾 models, each 𝑘 ∈ 𝐾 having a normalized
prior weight 𝑤𝑘 such that

∑
𝑘∈𝐾 𝑤𝑘 = 1.0, then

𝑃(𝑡 | ℎ) =
∑︁
𝑘∈𝐾

𝑚𝑘 (ℎ)𝑃𝑘 (𝑡 | ℎ) ,

where 𝑃𝑘 (𝑡 | ℎ) is the probability of 𝑡 given ℎ

in model 𝑘 , and 𝑚𝑘 (ℎ) is the mixture weight for
model 𝑘 given history ℎ, calculated as

𝑚𝑘 (ℎ) =
𝑤𝑘𝑃𝑘 (ℎ)∑

𝑘′∈𝐾 𝑤𝑘′𝑃𝑘′ (ℎ)
.

In this version, the length of the history consid-
ered when calculating 𝑃𝑘 (ℎ) is parameterized, so

that we consider only the previous 𝑗 symbols re-
gardless of the order of the model, where 𝑗 is a
given parameter. For 𝑗 > 0:

𝑚𝑘 (ℎ𝑖) =
1
𝑍
𝑤𝑘𝑃𝑘 (𝑡𝑖−1 | ℎ𝑖−1) . . . 𝑃𝑘 (𝑡𝑖− 𝑗 | ℎ𝑖− 𝑗) ,

where 𝑍 is the appropriate normalization across all
models so that the mixture weights sum to one.

The plot in Figure 5 shows that using this method
can effectively balance the use of static and dy-
namic models so that, before sufficient observa-
tions have been accrued in the dynamic model, the
static models are relied upon. Using just one previ-
ous character to assign the mixtures yielded a better
ensemble model than using the prior 6 characters.

In addition to the linear formulation that we’ve
been presenting in this section, more sophisticated
types of fixed-weight interpolation exist, includ-
ing log-linear interpolation (Klakow, 1998) in-
spired by maximum entropy models (Berger et al.,
1996); generalized linear interpolation using con-
text (history)-dependent weights (Hsu, 2007); and
the combination of both linear and log-linear meth-
ods (Liu et al., 2013).

A.3 Model Classes Implemented in Library
At the current time, four language model sub-
classes have been defined in the library: a simple
bigram character model class using a dense ma-
trix to encode the model; a character 𝑛-gram class
that uses the OpenGrm NGram model finite-state
transducer (FST) format (Roark et al., 2012) to en-
code the model; a word-based 𝑛-gram class also
using the OpenGrm FST format; and a PPM model
class, also represented internally as a finite-state
transducer. The point of the library is to allow the
addition of new model classes, and these existing
classes provide examples of how to do this for, say,
neural language models. In this section, we will
briefly identify some of the features of the model
classes that were required to make them function
within the ensembling framework.

Two of the classes require extra processing to
serve the probabilities from the stored model for-
mat. First, for the word-based 𝑛-gram model,
character-level probabilities must be derived by
summing over all words that match the history. To
do this, we sort the model lexicon in lexicographic
order and collect all word probabilities at the word-
initial position. Then, as each letter of the current
word is typed, all the words that match that prefix
fall within an interval in the lexicon. Pre-summing

13

the probabilities over the whole list allows us to
calculate the total probability in the interval via a
single difference in probabilities. Second, counts
are stored in the PPM model, rather than normal-
ized probabilities, since the model is typically dy-
namic, i.e., it is being updated with new counts as
the system operates. For this reason, calculation of
probabilities from counts is required before serving
probabilities in this model class.

Because both of these models require extra pro-
cessing, a small bounded caching approach is in-
cluded in both model classes, to permit states in
the model to store calculated results in case the
states are revisited during revision or as part of
probability calculation.

B gRPC and Microservices in Healthcare

Several open-source high-performance RPC com-
munication frameworks for microservice archi-
tectures have emerged over the years, Google
gRPC (Humphries et al., 2018; Indrasiri and
Kuruppu, 2020),10 Apache Thrift (Rakowski,
2015; Abernethy, 2019),11 and Finagle from Twit-
ter (Eriksen, 2014),12 among several others. Our
work adopts gRPC not least because of its fea-
ture maturity, stability, popularity in the industry
and academia, as well as the availability of secu-
rity mechanisms, crucial in microservice environ-
ments (Yarygina, 2018; Pereira-Vale et al., 2021),
which it provides out of the box.

There is a growing body of literature either solely
devoted to or mentioning the use of microservices
architectures in healthcare, in particular in health
information systems (HIS) (Mavrogiorgou et al.,
2021), mobility (Melis et al., 2016; Rendulich et al.,
2019; Mukhiddinov and Cho, 2021), physiother-
apy (Caporuscio et al., 2017; Postolache et al.,
2019), and elderly patients care (Dobre et al., 2021;
Panchea et al., 2021). Furthermore, there is a grow-
ing awareness of the importance of flexible soft-
ware architectures in assistive technologies as the
Web becomes even more ubiquitous (Yesilada and
Harper, 2019). Our work investigates one such
architecture in the area of text entry for AAC.

10https://grpc.io/
11https://thrift.apache.org/
12https://twitter.github.io/finagle/

// Model hub section.
model_hub_config {
mixture_type: LINEAR_INTERPOLATION
model_config { // First model.

type: PPM
weight: 0.301 // -std::log10(0.5)
storage {
model_file: "${PRIVATE_TEXT_FILE}"
ppm_options {
max_order: 5 // 5-gram.
static_model: false // Dynamic.

}
}

}
model_config { // Second model.

type: CHAR_NGRAM_FST
weight: 0.301 // -std::log10(0.5)
storage {
model_file: "${FST_FILE}"
vocabulary_file: "${VOCAB_FILE}"

}
}

}
// Networking and authentication.
address_uri: "x.x.x.x:${PORT}"
auth { // Authentication.
tls { // Transport layer security.

// Strings below are PEM-encoded.
private_key: "..."
// Public certificate.
server_cert: "..."
// Custom certificate authority.
custom_ca_cert: "..."
// Require valid client certificate.
client_verify: true

}
}

Table 1: Example microservice configuration consisting
of two linearly interpolated dynamic and static models.

C Practical Example

C.1 Configuration Language
We use the flexible text format of Google protocol
buffers13 as a configuration language for customiz-
ing the LM hub, where a number of different LM
algorithms, their particular run-time parameters,
types of tokens (e.g., character or word-based mod-
els), alphabets, and various prediction blending
techniques can be defined for a particular LM hub
configuration. Here we present a concrete example
of this configuration language.

Table 1 shows an example of a two-model config-
uration using this syntax that may correspond to the
model hub running locally (Figure 3) or remotely
(model hub 𝐻𝐴 in Figure 4).

The configuration consists of two main sections:
the LM hub, and the microservice settings for net-
working and authentication mechanisms. In this

13https://developers.google.com/protocol-buffers

14

https://grpc.io/
https://thrift.apache.org/
https://twitter.github.io/finagle/
https://developers.google.com/protocol-buffers

particular configuration, the LM hub is configured
to serve the linearly interpolated predictions from
two models: the dynamic PPM 5-gram model (the
first model in hub’s configuration) and the character
𝑛-gram model encoded as a finite state transducer
(FST) with unspecified model order (which is as-
sumed to be stored in the model file) and explicitly
specified external vocabulary file. Both models are
contributing equally to the final prediction with in-
terpolation weight 𝜆 = 0.5.14 Also note, that in
this example the dynamic model relies on the exter-
nal text file (provided by the PRIVATE_TEXT_FILE

environment variable) for initialization: this file is
used to bootstrap the dynamic PPM model from
user’s previous typing history during the initializa-
tion, similar to implementation in Dasher. If the
PPM file is empty or not provided, the model starts
with a uniform distribution.

The second configuration section in our example
contains the networking and authentication setup
for the LM hub microservice: the IP address and
the port of the network interface, as well as the con-
figuration for the TLS authentication mechanism
with the necessary cryptographic keys and certifi-
cates encoded as strings in Privacy Enhanced Mail
(PEM) format (Josefsson and Leonard, 2015). Note
that in this example the microservice authenticates
all the client connections for added security by
requiring the clients to present the valid client cer-
tificates, achieved by enabling the client_verify
configuration flag.

C.2 Life of an Estimate
The simplified class diagram providing the details
of the core LM hub components (excluding the
gRPC-based microservice details) in Unified Mod-
eling Language (UML) notation (Miles and Hamil-
ton, 2006) is shown in Figure 6. The bare bones
LM interface is provided by the LanguageModel

abstract class from which the concrete implemen-
tations for the dynamic (PpmModel) and static
(CharNGramFstModel) models discussed in the
previous Section C.1 are derived. Each of the
models implements its own input-output (I/O)
mechanism and provides its own character infer-
ence engine. Each concrete model implements
several prediction interfaces, such as obtaining
probability distribution over the entire alphabet
(GetScores) given the context (represented by

14Internally we represent the probabilities as negative log-
likelihoods, hence the weights for both models in the configu-
ration are set to be approximately equal to −0.301.

H Context

String (RNN) or state (FST).

A LanguageModel

Write()
Read()

I/O

GetScores(Context)
GetScore(Context, int symbol)
Update(Context, int count)

Predictions

C PpmModel

Write()
Read()

I/O

GetScores(Context)
GetScore(int symbol)
Update(Context, int count)

Predictions

C NGramFstModel

Write()
Read()

C CharNGramFstModel

GetScores(Context)
GetScore(int symbol)

C ModelHub

Init(HubConfig)
config : HubConfig

I/O

GetScores(Context)
GetScore(int symbol)
Update(Context, int count)
models: LanguageModel[]
states: HubState[]

Predictions

C HubConfig

C HubState

inherits

inherits

inherits

contains

contains

Figure 6: Simplified UML class diagram corresponding
to the LM stack of configuration shown in Table 1.

the handle Context in the figure),15 as well as
querying for probabilities of individual symbols
(GetScore). In addition, the dynamic model also
provides a concrete implementation of dynamic
updates of symbol counts (Update). Note that the
character 𝑛-gram FST model derives from an inter-
mediate abstract class shared by all the 𝑛-gram FST
implementations (NGramFstModel). This class pro-
vides common functionality for representing 𝑛-
grams within the FST formalism and is extended
by other classes that implement character inference
from more complex models, such as word-based
𝑛-grams (not shown in the figure).

The LM API that is integrated with the gRPC
microservice layer is provided by the ModelHub

class. It provides a facade over all the model and
interpolation types provided by the configuration
(HubConfig). The responsibility of this class is
to manufacture the required LMs and provide a
unified prediction and model update mechanism
at run-time. Internally, the class maintains model
and input-specific state (denoted HubState in the
figure) for efficiency at inference time.

A simplified UML sequence diagram describ-
ing the sequence of events involved in establish-
ing a gRPC connection with the remote LM hub
(Connect) and performing a single inference query
(RPC GetScores) is shown in Figure 7. In our

15The handle Context representing the current context in
which the predictions or updates are to be made is implemen-
tation specific: for finite-state models, such as 𝑛-grams, this is
simply an integer FST state ID. For neural models, this handle
can point to a particular input string in a cache of histories.

15

AAC

App

AAC

App

LM

Service

LM

Service
gRPC

Channel

LM

Hub

LM

Hub

PPM

PPM

n -gram

n -gram

Connection

Connect

Auth

New gRPC

Channel

Ack

Inference Query

gRPC

GetScores

gRPC

GetScores

GetScores

GetScores

Scores

GetScores

Scores

Blend

Scores

gRPC

Scores

gRPC

Scores

Figure 7: Simplified UML sequence diagram detailing
the processing of a single inference query against the
remote LM hub configured according to Table 1.

example the LM hub runs as a standalone gRPC
microservice on a remote node. The network
API (denoted LM Service in the figure) imple-
ments the RPC protocol that exposes the underly-
ing LM hub API via portable gRPC protocol buffer
messages for requests (such as RPC GetScores)
and responses (RPC Scores). After authenticat-
ing the client and establishing a communication
channel (denoted gRPC Channel) an asynchronous
event loop within the service processes the in-
coming requests, dispatching them to LM hub en-
gine for processing. In our example, the infer-
ence call GetScores to LM hub yields the pre-
dictions Scores blended from predictions of two
models (PPM and 𝑛-gram). A gRPC response (RPC
Scores) is then formed by the microservice and
returned to the client application.

MODEL HUBS

LMs

AAC USER

Figure 8: Hypothetical (and impractical) LM inference
network over many models. The inference engines are
not shown for brevity — the LM hubs directly use the
models.

D Complex LM Hub Network Example

Allowing each LM hub microservice to both serve
the models as well as securely communicate to
other LM hub microservices allows one to con-
struct significantly more complex inference archi-
tectures than the ones described above. One such
hypothetical configuration is shown in Figure 8. In
this example, the user interacts with a local hub
(shown in a black node) that serves one local dy-
namic model (shown in a purple node). The local
hub mixes the predictions from this dynamic model
with the multiple predictions arriving via a com-
plex network of other model hubs. The groups
of nodes (hubs) and leafs (models) with the same
color may denote the external organization provid-
ing the model service and hosting, specific types of
models16 or the provenance of the data the models
were trained on (e.g., the medical domain). Need-
less to say, the LM microservices architectures of
such complexity are unlikely to be required in prac-
tice, yet constructing configurations along the lines
of the one shown in Figure 8 is definitely a feasible
task in our framework.

16Such as XLNet (Yang et al., 2019), character-based
BERT (El Boukkouri et al., 2020) and simpler transformer
architectures (Al-Rfou et al., 2019).

16

