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Abstract

End-to-end task bots are typically learned over
a static and usually limited-size corpus. How-
ever, when deployed in dynamic, changing, and
open environments to interact with users, task
bots tend to fail when confronted with data that
deviate from the training corpus, i.e., out-of-
distribution samples. In this paper, we study
the problem of automatically adapting task bots
to changing environments by learning from
human-bot interactions with minimum or zero
human annotations. We propose SL-AGENT1,
a novel self-learning framework for building
end-to-end task bots. SL-AGENT consists of a
dialog model and a pre-trained reward model to
predict the quality of an agent response. It en-
ables task bots to automatically adapt to chang-
ing environments by learning from the unla-
beled human-bot dialog logs accumulated after
deployment via reinforcement learning with the
incorporated reward model. Experimental re-
sults on four well-studied dialog tasks show the
effectiveness of SL-AGENT to automatically
adapt to changing environments, using both au-
tomatic and human evaluations. We will release
code and data for further research.

1 Introduction

The most common approach of building end-to-end
task-oriented dialog systems is to train neural mod-
els to imitate human behaviors in fixed task-specific
annotated corpora (Gao et al., 2018; Zhang et al.,
2020). Existing state-of-the-art approaches usu-
ally adopt Pre-trained Language Models (PLMs)
(Peng et al., 2020a; Ham et al., 2020; Hosseini-Asl
et al., 2020) to build end-to-end dialog systems.
However, these data-driven approaches assume an
independent and identically distributed (IID) data
setting2, i.e., a static environment3, and usually ex-

1S
¯
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¯

EARNING AGENT.
2Assume the same user behaviors at deployment as in the

training stage.
3Environment is the Agent’s world in which it lives and

interacts.

Figure 1: Illustration of the proposed SL-AGENT with
a human-bot dialog example. (i) The human-bot dialog
example, containing an inappropriate response related to
unseen user behaviors (upper part). (ii) Demonstration
of the refining process in SL-AGENT with the exhibited
dialog example (lower part).

hibit a tendency of failure, when confronted with
out-of-distribution (OOD) examples in real-world
scenarios, i.e., changing environments.

In the context of task-oriented dialog systems,
changing environments are quite common and arise
from the following two aspects: (i) unseen user
behaviors – real users may query with unseen lan-
guage patterns and unknown user goals (i.e., un-
seen slot values and dialog flows) of the designated
tasks outside the pre-built training corpora (Liu
et al., 2018; Peng et al., 2020b). For example, real
users may query entities in the database but not cov-
ered by the training examples. (ii) task definition
extensions – dialog systems need to handle new
functions or new tasks as user and business require-
ments evolve, i.e., add new slot types (Lipton et al.,
2018; Gasic et al., 2014). For example, a restau-
rant bot designed for the table-booking service may
also encounter queries about delivery service after
deployment. These human-bot interactions accu-
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mulated after deployment are cheap, dynamic and
contain useful information (Hancock et al., 2019),
i.e., unseen user behaviors are related to the train-
ing examples and the probabilistic dialog model
may generate appropriate responses. As shown in
the upper part of Figure 1, when user queries ca-
sually about address, the system fails to provide
address in the second response, but gives it in the
third response, when user queries in a detailed way
(similar to the training examples). Therefore, rather
than merely imitating human behaviors in a fixed
corpus, task bots are desired to spontaneously learn
from the interactions with real users, progressively
improve and adapt after being deployed in dynamic
and constantly changing environments.

There are several attempts to leverage human-
bot interactions to improve task bots in changing
environments. For example, Liu et al. (2018); Shah
et al. (2018); Dai et al. (2020) propose to query hu-
mans for adequate feedback scores or annotations.
However, it relies on human annotations or user
feedback, which can be costly and sometimes users
are unwilling to give any feedback. In addition,
these works center on dialog policy optimization or
retrieval-based task bots. Automatically adapting
task bots to changing environments is imperative
for end-to-end dialog model yet under-explored.
Furthermore, these works usually omit task defini-
tion extensions.

In this paper, we propose SL-AGENT, a novel
self-learning framework for building end-to-end
task bots in a more realistic changing environment
setting with minimum or zero human annotations.
It consists of a neural dialog model and a pre-
trained reward model, where the dialog model gen-
erates responses and the reward model judges the
quality of agent responses. Specifically, we devise
a data augmentation strategy to construct positive
and negative examples based on the given dialog
training corpus to endow the reward model with
the capability to judge the quality of responses for
unlabeled human-bot dialog logs. The bot (includ-
ing dialog model and reward model) is first trained
with the same available training data, then deployed
to converse with real users and collect human-bot
dialog logs. After that, as shown in the lower part
of Figure 1, the bot is refined with the unlabeled
human-bot dialog logs via reinforcement learning,
where the response quality is judged by the reward
model. In this way, the bot can automatically adapt
to unseen user behaviors, without extra human an-

notations. Regarding the problem of extensions
in task definitions, machine teaching is utilized to
correct representative failed dialogs with minimum
human annotations to provide necessary instruc-
tions on how to handle new functions. After that,
the bot quickly adapts to new functions through the
self-learning procedure.

Our contributions are summarized as below:

• We propose a new research problem i.e.,
how to enable task bots to automatically
adapt themselves to changing environments
by learning from interactions with minimum
or zero human annotations.

• We propose a novel self-learning framework
SL-AGENT that equips with a pre-trained
reward model trained by the devised data-
augmentation strategy to build generative end-
to-end task bots in a realistic changing envi-
ronment setting, with minimum or zero human
annotations.

• We conduct comprehensive experiments on
four datasets to demonstrate the effectiveness
of SL-AGENT for enabling automatic adap-
tation to changing environments by learning
from the unlabeled human-bot dialog logs us-
ing both automatic and human evaluations.

2 Related Work

RL for Dialog Policy Learning Reinforcement
learning has been widely applied to dialog systems
for policy optimization. Young et al. (2013); Peng
et al. (2018, 2017); Liu and Lane (2017); Gasic
et al. (2014); Tseng et al. (2021) formulate dialog
policy learning as a sequential problem and use
REINFORCE (Williams, 1992) and/or Q-learning
(Watkins and Dayan, 1992) to optimize the dialog
policy. SL-AGENT utilizes a similar REINFORCE
algorithm but focuses on generative end-to-end op-
timization.

Adapting to Changing Environments for Dialog
Systems Several attempts have been made to deal
with changing environments after deployment. Ra-
jendran et al. (2019); Dai et al. (2020) propose to
learn from the human-bot interactions but requires
lots of human corrections. Shah et al. (2018); Liu
et al. (2018); Gašić et al. (2011); Gasic et al. (2014)
propose to learn from human-bot interactions via
reinforcement learning based on the queried hu-
man feedback scores after each dialog. To reduce
the efforts of querying humans, Su et al. (2016)
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Figure 2: Training pipeline of the proposed SL-AGENT.

introduces a session-level Bi-LSTM reward model
trained with extra pre-collected classification cor-
pus to predict the task success of each dialog. Nev-
ertheless, session-level reward model may under-
estimate the quality of responses in single dialog
turns. Different from the works mentioned above,
SL-AGENT leverages a turn-level pre-trained re-
ward model built on the given dialog corpus using
the devised data augmentation approach and fo-
cuses on generative end-to-end dialog systems. An-
other line of research is using data-augmentation
methods to generate diverse user behaviors dur-
ing the training stage (Gao et al., 2020; Li et al.,
2020b). Additionally, Madotto et al. (2020); Liu
et al. (2021) continually collect extra labeled data to
train task bots but aim to overcome the catastrophic
forgetting problem, which is a different research
topic (i.e., continual learning) from our paper.

3 SL-AGENT

3.1 Overview
As depicted in Figure 2, SL-AGENT contains two
components: (i) a dialog model for generating re-
sponses (Section 3.2); (ii) a pre-trained reward
model for judging the quality of agent responses
and outputting reward scores to guide the refine-
ment of the dialog model (Section 3.3). Specifi-
cally, SL-AGENT operates in the following steps:
(i) First, the bot (both dialog model and pre-trained
reward model) is fine-tuned with the same avail-
able annotated task-specific dialogs. (ii) Then, the
bot is deployed online to converse with users and
accumulate unlabeled human-bot dialog logs. (iii)
Next, the dialog model is refined with these human-
bot dialog logs via reinforcement learning, using
the reward scores from the reward model (Section

3.4). (iv) For task definition extensions, machine
teaching is utilized to correct representative failed
dialogs to provide instructions on how to handle
new functions (Section 3.5). After that, the bot fur-
ther improves through the self-learning procedure.

3.2 Dialog Model
SL-AGENT is a general framework that is compati-
ble with any generative end-to-end dialog models
(Peng et al., 2020a; Ham et al., 2020; Hosseini-Asl
et al., 2020). In this paper, we employ SOLOIST

(Peng et al., 2020a), a pre-trained end-to-end dialog
model, resulting in an agent termed SL-SOLOIST4.

We briefly review SOLOIST for completeness.
SOLOIST formulates the end-to-end dialog genera-
tion as a sequence generation problem, by sequen-
tially concatenating the inputs and outputs of 4
dialog modules (i.e., NLU, DST, POL, NLG) in a
typical dialog system. Each dialog turn is repre-
sented as:

x = (s, b, c, r), (1)

where s is the entire dialog history, b is the anno-
tated belief state, c refers to DB state fetched from
database, and r is the delexicalized agent response.
SOLOIST employs a Transformer-based model with
parameters θD to characterize the sequence gener-
ation probability pθD(x). Initialized with GPT-2
(Radford et al., 2019), the model is pre-trained on
large-scale annotated dialog corpora, and then fine-
tuned with limited task-specific dialogs.

Synthetic Dialog Construction. To identify user
behaviors with unseen slot values, we propose to
synthesize dialog examples by exhausting database
(DB) values and substitute corresponding slot val-
ues of in the training set. Specifically, for each
dialog turn x, we replace slot values in the utter-
ances and user goal with corresponding new values
of the randomly sampled DB entry.

3.3 Reward Model
The human-bot dialog logs accumulated after de-
ployment may contain previously unseen user be-
haviors with unseen language patterns and un-
known user goals. To enable the dialog model to
identify these new types of user inputs to which the
previously trained system cannot respond appropri-
ately, we propose a reward model that judges the

4In this paper, SL-AGENT refers to the proposed frame-
work and SL-SOLOIST is an instance of it, which utilizes
SOLOIST as its dialog model.
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quality of an agent response through a reward score
(a positive reward for an appropriate response, a
negative reward for an inappropriate response).

We formulate the quality evaluation problem as
a binary classification task. Dialog responses are
jointly determined by the dialog history, generated
belief state, and fetched DB state. Therefore, given
the training dataD (annotated with belief states and
DB states), we build a turn-level reward model R,
which is parameterized by a Transformer θR with
the input dialog turn sequence x, defined as Equa-
tion 1 to characterize the classification probability:
pθR(x) = pθR(s, b, c, r).

The reward model R is trained using contrastive
objective to discriminate between an appropriate
response (i.e., positive example x) and an inappro-
priate response (i.e., negative example x̂), given the
dialog history. Specifically, for each dialog turn, we
construct several positive examples {xm}Mm=1 and
negative examples {x̂n}Nn=1 based on the sequence
x, to add the relevance of real-world scenarios and
endow the reward model with the capability of eval-
uating the response quality. Then we apply a binary
classifier on top of the output sequence representa-
tion from the Transformer to discriminate between
a positive example x (y = 1) and a negative exam-
ple x̂ (y = 0). The training objective for a single
example in the training set D is defined as:

LθR =y
M∑

m=1

log (pθR(xm))

+(1− y)
N∑
n=1

log (1− pθR (x̂n)) ,

(2)

Positive Examples. For each dialog turn, we con-
sider two kinds of user utterances: (i) the original
user utterance in the training set D, to identify the
appropriate response to the user behavior; (ii) the
paraphrased user utterances generated based on
the original user utterance using back translation
(Edunov et al., 2018), to enhance the ability of
reward model for identifying user behaviors with
diverse language patterns.

Negative Examples. Based on the analysis on
200 human-bot dialog logs collected from the eval-
uation platform of DSTC8 Track 1 challenge (Li
et al., 2020a)5, we summarize 5 types of dialog

5These human-bot dialog logs contain the evaluation
scores and comments from Amazon Mechanical Turks.

turns that have inappropriate responses (in Ap-
pendix J). Then, for each dialog turn in the train-
ing data D, we construct negative examples x̂ (in
brackets) according to these 5 types:

• Repetition The dialog model failed to under-
stand the user’s repeated query and generated
the same response twice. (Repeating the re-
sponse from the previous turn.)

• Inconsistency The dialog model generated
an incoherent response. (Randomly sampling
a response from the dataset D to replace the
original response .)

• Partial Information The dialog model par-
tially understood user request and answered
incompletely. (For those user utterances with
multiple slots request, randomly dropping a
slot answer in the original response.)

• Non-fluency The dialog model generated a
non-fluent response. (Randomly repeating
some word tokens in the original response.)

• Misunderstanding The dialog model gener-
ated the incoherent belief state and response.
(Randomly sampling a belief state and re-
sponse from the dataset D to replace the orig-
inal belief state and response.)

To boost the model performance with limited
annotated task-specific corpora, we propose to fol-
low the pre-training and fine-tuning paradigm to
build the reward model, i.e., pre-train the reward
model using large-scale annotated heterogeneous
dialog corpora, then fine-tune the pre-trained re-
ward model with annotated task-specific data using
the same training objective. The pre-training cor-
pora is Schema dataset (Rastogi et al., 2019).

3.4 Refine with Reinforcement Learning
The interactions between the agent and users can
be modeled as a sequential decision problem. As
such, the dialog model can be refined via the RE-
INFORCE algorithm (Williams, 1992). The pol-
icy is the trained dialog model pθD(x), the initial
state is the dialog history s, and the action space
corresponds to the vocabulary set V . The reward
perceived by the dialog model is R (s, b, c, r) from
the reward model. The parameters θD are updated
by maximizing the cumulative reward score. The
refining procedure is described in detail as follows:

For each RL episode, we randomly sample a
dialog turn with dialog history and delexicalized
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response. We run the dialog model to generate
belief state b̂, based on the input dialog history se-
quence s. At each time step t, we sample a token b̂t
according to the model distribution, where the log-
its’ distribution of the model is first filtered using
Nucleus (top-p) filtering (Holtzman et al., 2019),
then redistributed via softmax function. Then we
retrieve DB state ĉ from the database using b̂, and
sample the delexicalized response sequence r fol-
lowing same sampling procedure, based on the to-
ken sequence (s, b̂, ĉ). Note that the delexicalized
response is given as part of the input. Then we feed
the concatenation of dialog history s, generated
belief state b̂, retrieved DB state ĉ and the response
r, i.e. (s, b̂, ĉ, r) into the reward model pθR(x) to
obtain the reward score R(s, b̂, ĉ, r). The positive
reward is 1, negative reward is -1. The training
objective for a single example is represented as:

LθD = −
Tb̂∑
t=1

log pθD

(
b̂t | b̂<t, s

)
×R(s, b̂, ĉ, r)

−
Tr∑
t=1

log pθD

(
rt | r<t, b̂, ĉ, s

)
×R(s, b̂, ĉ, r),

(3)
where the length of generated belief state and in-
put delexicalized response are Tb̂, Tr, respectively.
Algorithm 1 (in Appendix A) summarizes the self-
learning-based RL refining framework for refining
the dialog model.

3.5 Minimum annotations via Machine
Teaching

To handle the queries about new functions in ad-
ditional dialog turns, we need to introduce new
slot-value pairs, action templates, etc.(An example
is in Appendix G.) Machine teaching is an efficient
approach to training task bots (Simard et al., 2017;
Williams and Liden, 2017). In this paper, we imple-
ment machine teaching via Conversational Learner
(CL) (Shukla et al., 2020). The teaching process
is conducted in three steps: (i) The trained task
bot is deployed online to fulfill the given goals by
interacting with real users, leaving a handful of
human-bot dialog logs. (ii) Human experts select a
few representative failed dialogs to construct train-
ing examples with new functions by adding new
action templates, introducing new slot-value pairs,
correcting inappropriate responses and annotations
(i.e., belief states). (iii) The deployed task bot (i.e.,
both dialog model and reward model) is trained on
these training examples to handle new functions.

Domain Attraction Train Hotel Restaurant

#Train 50 50 50 50
#Valid 50 50 50 50
#Test 100 200 200 200

Table 1: Data statistics of four single-domain dialog
datasets (Peng et al., 2020a; Budzianowski et al., 2018).

4 Experiments

4.1 Experimental Setup
We validate the efficiency and flexibility of pro-
posed SL-AGENT on four different end-to-end di-
alog tasks using MultiWOZ single-domain dialog
datasets (Budzianowski et al., 2018), reorganized
by Peng et al. (2020a). Data statistics are shown in
Table 1. Based on above datasets, we construct two
settings to represent the changing environments –
Setting I for unseen user behaviors and Setting II
for task definition extensions.

Implementation Details. To implement the pro-
posed reward model, we conduct experiments with
several Transformer-based models and GPT-2 (Rad-
ford et al., 2019) (enhanced with auxiliary gener-
ation task) shows better performance than others.
Therefore, we implement proposed reward model
using GPT-2-117M and the multi-task training ob-
jective. Full details are in Appendix B.

Automatic Evaluation Metrics. We report the
results using the same automatic evaluation met-
rics following Budzianowski et al. (2018): (i)
Inform(%) evaluates whether the agent returns
an appropriate entity. (ii) Success(%) judges
whether the agent correctly answers all requested
attributes. (iii) BLEU(%) measures the word over-
lap of the generated response against human re-
sponse. (iv) Combined(%) assesses the overall
quality, which is defined as: Combined = (Inform
+ Success) × 0.5 + BLEU.

Human Evaluation Metrics. Following the
same evaluation protocol in the DSTC9 Track 1
challenge (Gunasekara et al., 2020), we conduct
human evaluations to judge the agent quality. For
each dialog session, Amazon Mechanic Turkers
are presented with a goal and instructions, then
they are required to converse with agent to achieve
the goal via natural language. At the end of each
dialog session, Turks are required to assess the
overall dialog quality using the following five met-
rics: (i) Success w/o g(%) judges whether the
agent completes the task. (ii) Success w/ g(%)
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Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOIST5 27.00 14.00 4.07 72.73 32.32 5.43 25.00 3.50 2.93 26.50 2.00 4.71
SOLOISTS 60.00 33.00 8.14 73.74 54.55 6.94 56.00 29.50 7.05 62.50 41.50 7.33
SOLOIST+PARG 60.00 32.00 8.83 75.25 56.06 8.45 58.00 29.00 7.71 64.00 42.00 9.17

SOLOIST-OA 61.00 36.00 8.66 74.75 55.05 7.58 56.50 29.00 7.14 64.50 42.50 8.56
SL-SOLOIST 64.00 40.00 8.99 75.76 61.62 10.97 60.50 39.50 8.34 75.00 44.50 10.60
SOLOIST-TH 66.00 41.00 9.01 77.27 62.87 10.70 60.00 42.50 9.82 70.50 46.00 11.76

SOLOIST50 86.00 65.00 12.90 80.81 64.65 9.96 74.50 43.50 8.12 81.00 55.50 12.80

Table 2: End-to-end evaluation results on four tasks. The forth to sixth rows indicate the results of refining with 45
simulated (unlabeled) human-bot dialog logs, based on SOLOISTS. SOLOIST50 is quoted from Peng et al. (2020a).
(SL-SOLOIST significantly outperforms all baselines in mean with p<0.01 based on Combined.)

Model Attraction Train Hotel Restaurant

Inform Success BLEU Inform Success BLEU Inform Success BLEU Inform Success BLEU

SOLOISTS 60.00 33.00 8.14 73.74 54.55 6.94 56.00 29.50 7.05 62.50 41.50 7.33
SOLOIST-OA 63.00 34.00 8.66 77.78 55.05 8.13 58.50 30.00 7.08 63.00 42.00 10.03
SL-SOLOIST 70.00 36.00 8.68 78.28 60.10 9.06 62.00 33.50 7.39 70.00 45.00 10.93
SOLOIST-TH 68.00 40.00 9.01 76.77 62.63 9.55 62.50 35.50 7.83 70.50 47.50 11.36

Table 3: Automatic evaluation results on four tasks in Real-Scenario Setting. The first row refers to previously
reported SOLOISTS. The last three rows refer to refining with 30 real (unlabeled) human-bot dialog logs based on
SOLOISTS. (SL-SOLOIST significantly outperforms all baselines in mean with p<0.01 based on Combined.)

judges whether the agent completes the task and
provides matched slot values against the database
record. (iii) Understanding(1-5) measures the
understanding correctness of user utterances. (iv)
Appropriateness(1-5) indicates the appropriate-
ness, naturalness, and fluency of an agent response.
(v) Turns reports the average number of dialog
turns for successful dialog sessions.

Compared Methods. To demonstrate the effec-
tiveness of the proposed reward model in SL-
AGENT, we use SOLOIST as the dialog model to
compare the performance of different methods.

• SOLOIST5 is trained with 5 labeled dialogs,
randomly sampled from the train set.

• SOLOISTS is trained using synthetic dialogs
constructed from the 5 labeled dialogs used
for training SOLOIST5.

• SOLOIST+PARG is trained on SOLOISTS
with paraphrased dialogs (Gao et al., 2020;
Edunov et al., 2018) constructed from the 5 la-
beled dialogs, i.e., data-augmentation baseline
for adapting to unseen user behaviors.

• SOLOIST-OA is refined with unlabeled
human-bot dialog logs based on SOLOISTS
using the session-level reward of task success
from online activate reward model (trained us-
ing the same 5 labeled dialogs as SOLOIST5)
and partially queried session-level human
feedback score (Su et al., 2016).

• SL-SOLOIST (Ours) is refined with unlabeled
human-bot dialog logs based on SOLOISTS
using the pre-trained reward model in SL-
AGENT, which is fine-tuned using the same 5
labeled dialogs as SOLOIST5. Machine teach-
ing is not utilized by now6.

• SOLOIST-TH is refined with unlabeled
human-bot dialog logs based on SOLOISTS us-
ing queried turn-level human feedback score,
which is an upper bound.

• SOLOIST50 is trained with whole 50 labeled
dialogs, which can be regarded as the result of
sufficient human corrections, i.e., the highest
bound. (Details are shown in Appendix C.)

4.2 Results of Setting I - Unseen User
Behaviors

Simulation Evaluation Setup. Deploying a
trained agent to interact with real human users and
collect dialog logs is labor-intensive and costly for
experimental purposes. Hence, we construct a set-
ting to simulate unseen user behaviors. We ran-
domly sample 5 dialogs from the training set as la-
beled data to train a task bot (i.e., both dialog model
and reward model). Note that the remaining 45 di-
alogs contain unseen user behaviors with unseen

6To better demonstrate the self-learning capability of SL-
AGENT, machine teaching is only used in the setting of task
definition extensions. However, machine teaching can be
optionally used to update the bot for better performance in the
setting of unseen user behaviors.
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language patterns and unknown user goals. Hence,
it is applicable to simulate unseen user behaviors by
modifying the remaining 45 dialogs as unlabeled
imperfect human-bot dialog logs (through adding
noise, i.e., corrupting responses7). These 45 unla-
beled human-bot dialog logs are further used for
refining SOLOISTS, resulting in SOLOIST-OA, SL-
SOLOIST, SOLOIST-TH. This simulation setting
allows us to perform a detailed analysis of the re-
ward model in SL-AGENT without much cost and
easily reproduce the experimental results.

Simulation Evaluation Results. The end-to-end
evaluation results on four different tasks are pre-
sented in Table 2. SOLOISTS significantly outper-
forms SOLOIST5 over all evaluation metrics on all
tasks, which shows the effectiveness of the pro-
posed synthetic dialog construction for identify-
ing user behaviors with unseen slot values. SL-
SOLOIST outperforms SOLOIST+PARG over all
the metrics, which demonstrates the higher effi-
ciency of directly learning from human-bot dialog
logs. We observe that SL-SOLOIST outperforms
SOLOIST-OA by a large margin, and achieves com-
parable performance with SOLOIST-TH (refining
with turn-level human feedback score, i.e., the up-
per bound). This shows the strong capability of the
turn-level pre-trained reward model in SL-AGENT

for predicting the quality of responses. We con-
jecture that our proposed reward model trained
with the proposed data-augmentation strategy is
more robust to unseen user behaviors and thus ports
richer useful information to dialog models. The
results verify the vast potential of the proposed SL-
AGENT, allowing the bot to automatically adapt to
unseen user behaviors without extra human anno-
tations. Results of further policy improvement are
shown in Appendix E.

Real-Scenario Evaluation Setup. Simulation
setting allows effortless experimental studies to
validate the effectiveness of the reward model in
SL-AGENT. However, the results are likely biased.
Therefore, in the real-scenario setting, we deploy
SOLOISTS online and recruit human users to con-
verse with it. We collect 30 real (unlabeled) human-
bot dialog logs to refine SOLOISTS, resulting in the
agent SOLOIST-OA, SL-SOLOIST, SOLOIST-TH.

Real-Scenario Evaluation Results. The evalu-
ation results on four tasks are shown in Table 3.

7Note that the associated labels of belief states are not used.
Construction details are in Appendix D.

Model Restaurant-Ext

Inform Success BLEU Combined

SOLOISTS 54.00 0.00 6.42 33.42
SOLOISTS+TEACH 64.00 18.00 9.34 50.34
SL-SOLOIST+TEACH 68.00 24.00 11.76 57.76
SOLOIST-TH+TEACH 68.50 26.00 11.88 59.13

Table 4: Automatic evaluation results on task defini-
tion extensions. (Difference in mean is significant with
p<0.01 based on Combined.)

We observe that SL-SOLOIST refined using the
reward model in SL-AGENT outperforms other
methods over all evaluation metrics on all tasks.
Furthermore, SL-SOLOIST achieves comparable
performance with SOLOIST-TH, even achieves bet-
ter performance on certain metrics. We conclude
that the results of real-scenario evaluation and sim-
ulation evaluation are consistent, confirming that
SL-SOLOIST enables effective self-learning after
deployment by learning from interactions.

4.3 Results of Setting II – Task Definition
Extensions

Setup. We follow the domain extension exper-
iment setting in Lipton et al. (2018) to assess
the ability of SL-SOLOIST to quickly handle
task definition extensions. We extend existing
Restaurant, denoted as Restaurant-Ext,
with additional functions by introducing 4
new slots, i.e., [restaurant_dish], [value_price],
[start_time], [end_time] in added dialog turns (in
Appendix G), and corresponding values for each
DB entry (in Appendix H). The first slot is about
the restaurant’s signature dish, and the last three
are related to delivery service. We leverage Con-
versational Learner (CL) (Shukla et al., 2020), a
practical machine teaching tool, to visualize and
select dialogs for constructing training examples
on the Restaurant-Ext domain by providing
corrections and introducing new slots. Finally,
10 examples are obtained through machine teach-
ing for training, 50 for validating and 50 for test-
ing. We fine-tune the dialog model SOLOISTS
and the previously trained reward model8, using
10 corrected dialogs, resulting the agent denoted
as SOLOISTS+TEACH. Then, SOLOISTS+TEACH

is deployed to converse with real human to col-
lect 20 real (unlabeled) human-bot dialog logs,
which are then used to refine itself, resulting in SL-
SOLOIST+TEACH. To better show the effective-

8The reward model used for obtaining SL-SOLOIST in the
Table 2. It is trained with 5 labeled dialogs in the train set.
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Model Restaurant

SR w/o g SR w/ g Under. Appr. Turns

SOLOISTS 31.82 29.54 3.86 4.13 10.00
SOLOIST-OA 33.42 30.86 3.89 4.12 9.97
SL-SOLOIST 43.10 36.21 3.97 4.13 9.89

Table 5: Human evaluation results. SR w/o g: Success
rate without grounding, SR w/ g: Success rate with
grounding, Under.: Understanding score, Appr.: Appro-
priateness score.

ness of the reward model in SL-AGENT, we also
report the result of SOLOIST-TH+TEACH, which is
refined using the turn-level human feedback score.

Results. The evaluation results are presented
in Table 4. We observe that SOLOISTS has
zero success rate, which is predictable as it does
not have any knowledge of the new functions.
SOLOISTS+TEACH outperforms the baseline by
17 points in terms of Combined score, which ex-
hibits the effectiveness of machine teaching for
handling new functions. SL-SOLOIST+TEACH

lifts the Combined score by approximately 7
points, achieving comparable performance with
SOLOIST-TH+TEACH. The results show that SL-
SOLOIST+TEACH can adapt to new tasks and con-
tinually improve itself by automatically learning
from the interactions, revealing, with minimum
annotations from machine teaching, SL-AGENT

enables flexible adaptations to new functions.

4.4 Interactive Human Evaluation
Setup. We conduct human evaluations to evalu-
ate the performance of SOLOISTS, SOLOIST-OA,
SL-SOLOIST interacting with human users, fol-
lowing the evaluation protocol in DSTC9 track 1
challenge (Gunasekara et al., 2020), with 100 Turk-
ers involved and 100 dialogs gathered for analysis,
respectively.

Results. The human evaluation results on
Restaurant domain are presented in Table 5.
The results show that SL-SOLOIST outperforms
SOLOISTS, SOLOIST-OA over all the metrics,
which are consistent with the automatic evalua-
tion results. The significant improvement on two
success rate metrics, especially success rate with
grounding, verifies the effectiveness of the reward
model in SL-AGENT for refining the dialog agent
after deployment without additional human anno-
tations, as it more adequately reflects the system’s
capability of completing tasks in real scenarios.
Two interactive examples are in Appendix F.

Reward model Restaurant

Inform Success BLEU Combined

GPT-2 67.00 41.50 9.30 63.55
BERT 68.00 42.50 9.55 64.80
BERT-Large 66.00 44.00 11.09 66.09
RoBERTa 72.00 45.00 9.23 67.73
RoBERTa-Large 69.50 46.50 10.20 68.20
SL-SOLOIST 75.00 44.50 10.60 70.35

Table 6: Ablation study results on using different PLMs
for reward models. (Difference in mean is significant
with p<0.01 based on Combined.)

4.5 Ablation Study
Impact of different PLMs for reward models.
We conduct ablation studies on Restaurant do-
main to analyze the influence of choosing different
PLMs and multi-task training objective on the re-
ward model. We choose several popular PLMs in-
cluding BERT (Devlin et al., 2018) and RoBERTa
(Liu et al., 2019). Note that all the models share
the same pre-training and fine-tuning procedure,
except that BERT and RoBERTa are trained with
quality prediction task while SL-SOLOIST is op-
timized using multi-task learning. We show in
Table 6 that RoBERTa performs better than BERT.
GPT-2 (on which SL-SOLOIST is built) trained
with single quality prediction task, yields signifi-
cantly worse performance than other methods. We
speculate that bidirectional Transformer encoder
enables BERT and RoBERTa to capture richer con-
text information. SL-SOLOIST achieves consistent
performance improvements over all the metrics,
showing the effectiveness of multi-task learning for
the reward model.

5 Conclusion

In this paper, we propose a new research problem
i.e., how to enable task bots to automatically adapt
themselves to changing environments by learning
from interactions with minimum or zero human
annotations. In addition, we propose SL-AGENT,
a novel self-learning framework. We verify its ef-
fectiveness on automatically adapting to changing
environments on four dialog tasks by learning from
the unlabeled human-bot dialog logs via reinforce-
ment learning with an incorporated pre-trained re-
ward model. As for future work, there are more
ways that a task bot could learn to improve itself,
e.g., during machine teaching, human experts could
provide not only correct labels but also feedback in
natural language. We leave the theme of effective
machine teaching to future work.
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6 Ethical Considerations

During the collection, annotation and evaluation
procedure of the human-bot dialog logs, all in-
volved Amazon Mechanic Turkers and human an-
notators have been informed of the research pur-
pose in advance, and any of their privacy will not
be disclosed or violated during the research period.
All other used datasets are open-sourced datasets.
In summary, we abide by all research ethics.
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Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. Pomdp-based statistical spo-
ken dialog systems: A review. Proceedings of the
IEEE, 101(5):1160–1179.

Yichi Zhang, Zhijian Ou, and Zhou Yu. 2020. Task-
oriented dialog systems that consider multiple appro-
priate responses under the same context. In Proceed-
ings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 9604–9611.

A RL Refining Algorithm

Algorithm 1 Self-learning-based RL refining
framework.
Input:

Training examples D in the form of dialog
turns;
Trained agent with dialog model pθD(x) and
reward model pθR(x).

Output:
Refined agent with updated dialog model pθ∗

D
.

1: while not converged do
2: Randomly sample a dialog turn, i.e. token

sequences of dialog history s;
3: Run dialog model pθD on dialog history

x = (s) to generate belief state b̂;
4: Retrieve DB state ĉ from a database using

generated belief state b̂;
5: Sample corresponding response r based on

dialog history s, belief state b̂ and DB state
ĉ;

6: Use the reward model to predict the quality
of the belief state and response with reward
score,
R(s, b̂, ĉ, r);

7: Calculate the loss according to Equation 3;
8: Update the parameters of the dialog model,

θD ← θD + α∇θDLθD .
9: end while

B Implementation Details

Figure 3: Illustration of the training example, i.e., the
processed dialog turn in the training data.

To construct training examples as shown in Fig-
ure 3, we tokenize the dialog turn sequence us-
ing byte pair encodings (Sennrich et al., 2015) and
delexicalize responses by replacing slot values with
corresponding special slot tokens (Lei et al., 2018).
We conduct experiments with several Transformer-
based models and GPT-2 (Radford et al., 2019)
(enhanced with auxiliary generation tasks) shows
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better performance than others. Therefore, we im-
plement proposed reward model based on Hugging-
face Pytorch Transformer (Wolf et al., 2020) using
GPT-2-117M. We pre-train reward model for 10
epochs using Schema dataset (Rastogi et al., 2019),
which contains 22,825 dialogs in 17 domains. The
reward model is pre-trained on two 24G Nvidia P40
with a mini-batch of 8 and learning rate of 5e-5, us-
ing Adam optimizer (Kingma and Ba, 2014), where
the training examples are truncated or padded to
the max length of 500.

We fine-tune the pre-trained reward model and
dialog model (i.e., pre-trained SOLOIST) for 20
epochs with limited number of labeled task-specific
dialogs for new tasks. During refinement, top-p is
selected as 0.5 for all models. We perform gradient
clipping with the max norm as 1 for learning model
parameters, with the batch size as 1 and learning
rate as 5e-6. The dialog model is refined on a single
24G Nvidia P40 until converging on the validation
set. During testing, Nucleus filtering is also used
for decoding with top-p as 0.5.

C Experimental Details

To demonstrate the effectiveness of SL-AGENT,
we use SOLOIST as the dialog model to compare
the performance of different methods, since ex-
isting state-of-the-art task-oriented dialog models
share similar input-output pairs and training objec-
tives as SOLOIST. (We report the results in mean
of 5 runs with 5 different seeds.) (i) To obtain
SOLOISTS, we implement the synthetic dialog con-
struction method by exhausting DB values. For
each dialog turn of the 5 labeled dialogs, we ran-
domly sample five DB values from the database
to replace the original slot values. (ii) To obtain
SOLOIST+PARG, we use the Transformer-based
machine translation checkpoints (English-German,
German-English) (Edunov et al., 2018) to generate
10 paraphrased user utterances for each dialog turn
of the 5 labeled dialogs (based on the empirical
analysis of translation quality). Then we use these
annotated data (with paraphrased user utterances)
to train SOLOISTS for obtaining SOLOIST+PARG.
(iii) To obtain SOLOIST-OA, we use the method de-
scribed in Section 8 to construct successful dialogs
and failed dialogs. For successful dialogs, we use
the original 5 labeled dialogs, and the dialogs con-
taining paraphrased user utterances. To construct
the failed dialogs, we randomly select 2-3 dialog
turns in each dialog and corrupt responses accord-

Model Restaurant

Inform Success BLEU Combined

SOLOISTS 62.50 41.50 7.33 59.33
SL-SOLOIST 75.00 44.50 10.60 70.35
SL-SOLOIST+20 75.00 52.00 11.89 75.39

Table 7: End-to-end evaluation results of Policy
Improvement in the Restaurant domain. SL-
SOLOIST+20 refer to continually refining with 20 real
(unlabeled) human-bot dialogs based on SL-SOLOIST
(reported in Table 2).

ing to the negative example construction method in
Section 3.3. Then we use these annotated dialogs
to train the session-level reward model of (Su et al.,
2016). When testing the performance in the sim-
ulated setting, we refine the SOLOISTS with fully
correct dialogs and dialogs containing corrupted re-
sponses. To achieve better performance, we largely
query for session-level human feedback score in
both simulated setting and real-scenario setting.

D Simulated Human-Bot Corpora
Construction

The unlabeled simulated human-bot corpora is con-
structed as follows: (i) we remove belief state an-
notations; (ii) we add negative examples by cor-
rupting responses according to the negative exam-
ple construction method in Section 3.3. We will
release the simulated human-bot corpora for repro-
ducible research. Note that directly replacing the
belief states and responses with the generated ones
is trivial. However, such approach cannot imitate
realistic human-bot interactions. As the user ut-
terances are strictly fixed, “users cannot react to
the agent responses accordingly and appropriately”.
Therefore, we also conduct experiments through
conversing with real users in the real-scenario set-
ting and demonstrate the results in Table 3. Further-
more, building a user simulator is inapplicable in
our changing environment setting. (i) It is difficult
to build reliable user simulators. Building agenda-
based user simulators requires sophisticated human
expertise for designing rules. (ii) Building model-
based user simulators requires sufficient labeled
data. Furthermore, model-based user simulators
merely imitate expert behaviors in the training cor-
pus, cannot provide user behaviors that are unseen
from task bots.
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Figure 4: Two interactive examples. (a) An interactive
example between user and SOLOISTS. (b) An interactive
example between user and SL-SOLOIST.

E Policy Improvement

Policy Improvement Setup. To demonstrate the
effectiveness of SL-AGENT for continually learn-
ing from collected human-bot dialog logs, we de-
ploy SL-SOLOIST online and recruit human users
to converse with it to achieve the assigned user
goal. We collect 20 real human-bot dialog logs
to refine SL-SOLOIST, resulting in the agent SL-
SOLOIST+20. (When refining the SL-SOLOIST,
we do not use the knowledge about the user’s goal.
The response quality is judged by the reward model
in SL-SOLOIST.)

Policy Improvement Results. The evaluation re-
sults on Restaurant are shown in Table 7. We
observe that SL-SOLOIST+20 refined with 20 real
(unlabeled) human-bot dialogs outperforms SL-
SOLOIST by approximately 5 points in terms of
Combined score. We conclude that SL-SOLOIST

enables continual self-learning after deployment by
automatically learning from interactions.

F Interactive Example

Figure 4 depicts two interactive examples where
the same user interacts with SOLOISTS and SL-
SOLOIST to complete the same task. We observe
that, in the first four dialog turns, the two agents
has the same performance and both correctly rec-
ommend a satisfied restaurant. However, as shown
in Figure 4 (a), when user queries about the phone
number (“what’s the number?”) in the fifth turn,
SOLOISTS fails to understand user’s intent and
generates incoherent response, still trying to pro-
vide recommendation. The user has to continually

query about phone number in the following con-
secutive turns. As demonstrated in Figure 4 (b),
SL-SOLOIST correctly provides the phone number,
when user first queries about it. Comparing the
two examples, we show that SL-AGENT enables
adapting to unseen user behaviors in an automatic
way.

G An Example of Task Definition
Extensions

Figure 5 depicts an example of task definition ex-
tensions.

Figure 5: An example of task definition extensions.
Task bots need learn to provide information about the
extended delivery service in additional dialog turns (in
Red) as user requirements evolve.

H An Example of Restaurant-Ext
DB Entry

An example of Restaurant-Ext DB entry is
shown in Figure 6.

I Item Examples of the Input Dialog Turn
Sequence

J Negative Example Construction
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Figure 6: An example of Restaurant-Ext DB en-
try. Newly added DB information about the extended
function is in the red square.
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Figure 7: Item examples of the input dialog turn sequence for SOLOIST, cited from (Peng et al., 2020a).

Figure 8: The summarized 5 types of dialog turns that have inappropriate or incoherent responses. (a) Dialog history
(top). (b) 5 types of the inappropriate or incoherent responses (bottom).


