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Abstract

Dialogue generation is a challenging problem
because it not only requires us to model the
context in a conversation but also to exploit
it to generate a coherent and fluent utterance.
This paper, aiming for a specific topic of this
field, proposes an adversarial training based
framework for utterance-level dialogue genera-
tion. Technically, we train an encoder-decoder
generator simultaneously with a discriminative
classifier that make the utterance approximate
to the state-aware inputs. Experiments on Mul-
tiWoZ 2.0 and MultiWoZ 2.1 datasets show that
our method achieves advanced improvements
on both automatic and human evaluations, and
on the effectiveness of our framework facing
low-resource. We further explore the effect of
fine-grained augmentations for downstream dia-
logue state tracking (DST) tasks. Experimental
results demonstrate the high-quality data gener-
ated by our proposed framework improves the
performance over state-of-the-art models.

1 Introduction

Task-oriented dialogue systems (Young et al., 2013;
Williams et al., 2016; Wu et al., 2020; Su et al.,
2021) are designed to assist user in completing
daily tasks, which involve reasoning over multi-
ple dialogue turns. User goals expressed during
conversation are important for the dialogue system
and often encoded as a compact set of dialogue
states, which is often expressed as a collection of
slot-value pairs.

Nowadays generative conversational models are
drawing an increasing amount of interest and be-
coming a more popular trend of task-oriented dia-
logue generation. Most existing generative conver-
sational models (Shang et al., 2015; Vinyals and
Le, 2015; Li et al., 2016; Yao, 2015; Luan et al.,
2016; Zhang et al., 2019b) predict the next dia-
logue utterance given the dialogue history using the
maximum likelihood estimation (MLE) objective,

[Sys] There are many options! Would you like to narrow 
your search by type of food? 

[Usr]  I would like to eat Chinese food at 18:00.

[State] <restaurant, food, Chinese> <restaurant, 
time, 18:00

book 
>
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Figure 1: Dialogue generation via MLE training.

considering conversation history to learn to gen-
erate responses via optimizing the query-response
pairs, as illustrated in Figure 1. Despite its suc-
cess, this over-simplified training objective leads
to problems: when generating dialogue responses
from these models by iteratively sampling the next
token, we do not have much control over attributes
of the output text, such as the topic, the style, the
sentiment, etc.

Solutions to these problems require answering
a fundamental question: how to steer a powerful
unconditioned dialogue model to generate content
with desired attributes? Some existing studies have
tackled this problem to control responses by using
extended labels, however, these models still had
some limitations (Wen et al., 2015; Li et al., 2016;
Zhao et al., 2017; Huang et al., 2018; Zhou et al.,
2018). One crucial issue was that they do not have
explicit dialogue state guiding to guarantee that a
controllable generation has a discriminability for a
given condition.

Inspired by the success of adversarial training
in computer vision (Denton et al., 2015) and natu-
ral language generation (Li et al., 2017), we delve
into the challenge and propose our approach for
state-aware dialogue generation with adversarial
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[Sys] There are many options! Would you like to narrow 
your search by type of food? [State] <restaurant, food, 
Chinese> <restaurant, book time, 18:00>

[Ref Usr] It needs to serve Chinese food and I would 
like a reservation for 18:00.

Decoder

Encoder

[Hyp Usr] I want to eat Chinese food at 18:00.

Reward
Prob(of real data)

Figure 2: An overview of state-aware adversarial training. Different flow directions are marked with obviously
distinguished arrows, blue and purple represent the training process of generator and discriminator, respectively.
There are two cycles. The blue cycle is for generator learning, updating the model parameters of generator. The
purple cycle is for discriminator learning, updating the discriminator model of periodic epoch. The learning of
generator and discriminator is conducted in an alternate manner. Best viewed in color.

training. We focus on controlling the utterances
by using dialogue state labels as conditions. We
extend a framework of the generative adversarial
network (Yu et al., 2017) for the task of generat-
ing conditional utterances on the basis of actual
dialogue state constraints, alternatively training be-
tween a generator and a discriminator. The experi-
mental results show that our proposed method has
higher controllability for state-aware dialogue even
though it has higher or comparable naturalness to
existing methods, and improves the discriminabil-
ity of generation. Furthermore, we investigate the
effectiveness of our approach via downstream di-
alogue state tracking (DST) tasks. Experimental
results demonstrate the high-quality data generated
by our proposed framework improves the perfor-
mance over state-of-the-art models.

The contributions of this paper are summarized
as follows:

• We propose a novel adversarial training based
framework for utterance-level dialogue gen-
eration, which generates more coherence and
fluency utterances.

• For the downstream DST task, the high-
quality data generated by our proposed frame-
work improves the performance over state-of-

the-art models.

• To our best knowledge, this is the first study
of state-aware utterance generation via adver-
sarial training with promising results.

2 Approach

In this section, we introduce the utterance-level
dialogue generation of adversarial training. As
shown in Figure 2, our framework consists of two
main components: a generator and a discriminator.
Different from the traditional generative dialogue
model trained by MLE, we view the process of ut-
terance generation as a sequence of actions that are
taken according to a policy defined by the genera-
tor here. It generates controllable utterances based
on input conditions, and the discriminator judges
the quality of the utterances generated by the gen-
erator, feeding the reward back to the generator
through policy gradient. The learning of generator
and discriminator is carried out alternately.

2.1 Task Formulation
Let’s denote a sequence of dialogue turns as a ma-
trix XT = [R1, U1, . . . , RT , UT ] , where U is the
user utterance, R represents the system response
and T denotes the number of turns. At each turn,
user’s goal can be regarded as a certain number
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of domain-slot-value pairs (e.g., (restaurant-area,
west)). The dialogue state tracking task is to track
the value for each slot over Xt (1 ≤ t ≤ T). Be-
lief states can be considered at two granularities:
turn-level (St) and dialogue-level (Bt). St denotes
the information introduced in the t-th turn and Bt

represents the accumulated information from the
first turn to the t-th turn. The task we focus on
is to generate a user utterance Ut conditioned on
the turn-level dialogue state St and corresponding
system response Rt.

2.2 State-Aware Adversarial Training

To generate more human-like user utterances, we
propose using adversarial training for generation:
the generator is guided by the discriminator to pro-
duce utterances that are indistinguishable from the
original dialogues and consistent with the belief
state condition. The discriminator is trained on
the dataset consisting of the utterances of origi-
nal dialogues and the utterances generated by the
generator. The learning of generator and discrimi-
nator is conducted in an alternate manner, which is
detailed in Algorithm 1.
Generator

The generator G defines the policy that generates
a user utterance Ut from a given dialogue history
Rt and a turn-level user goal St. It takes a form
similar to SEQ2SEQ models, which consists of an
encoder and a decoder. In this paper, the GRU-
based and the T5-based generators are employed
to approximate P (Ut|Rt, St), where the concatena-
tion of Rt and St is used as input to the encoder and
Ut is set to be the target sequence to be generated
by the decoder.
Discriminator

The discriminator D is a binary classifier that
aims to determine whether the user utterance is
generated or from the original dataset. In order to
make sense of belief state condition, the concate-
nation of turn-level belief state and user utterance
is used as input to the discriminator. We follow
the setting in SeqGAN to have CNN as the back-
bone model for the discriminator. First, the input
sequence is represented as [Ut]

⊕
[St], where each

token is represented as a k-dimensional token em-
bedding and

⊕
is the concatenation operator to

build the input matrix. Second, a kernel applies a
convolutional operation to a window size of words
to produce a new feature map and a max-over-time
pooling operation works. Finally the output vector

of a fully connected layer is fed to a 2-class sigmoid
activation, returning the probability of the input ut-
terance generated by generator or come from the
original dialogue.

Algorithm 1 State-aware adversarial training
Input: A dialogue dataset C ={ R, U , S }.
Output: The parameters θ of G; The parameters ϕ
of D.

1: Randomly initialize θ and ϕ;
2: Pre-train G using cross-entropy loss on C;
3: Generate user utterances using the pre-trained

G;
4: Pre-train D using generated user utterances as

negative samples and utterances from original
dialogue as positive samples;

5: for each epoch do
6: for each generator step do
7: Generate a user utterance

U
′
1:L=(u

′
1,. . . ,u

′
L) using the current G,

where L denotes the number of tokens;
8: for t in 1 : L do
9: Compute R

u
′
l

by Eq. (1);
10: end for
11: Update θ according to Eq. (3);
12: end for
13: for each discriminator step do
14: Sample <R, U , S> from the dataset C;
15: Concatenate S and U as a positive sam-

ple;
16: Generate U

′
using the current G;

17: Concatenate S and U
′

as a negative sam-
ple;

18: Update ϕ according to Eq. (4);
19: end for
20: end for
21: return θ and ϕ;

Adversarial Training
We cast the state-aware utterance generation

as a reinforcement learning problem that back-
propagate the error computed by the discriminator
to the generator via the policy gradient algorithm.
The generator can be seen as an agent whose pa-
rameters θ define a policy. At each time step, it
takes an action by generating a token and gets a
reward value from the discriminator by employing
Monte-Carlo search. The estimated probability of
being real by D is used to calculate the reward:
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Rul
= Dϕ(U1:l|S), (1)

where ul is the l-th token in U, Rul
represents the

reward of token ul and ϕ is the parameters of D.
The goal of the generator is minimize the nega-

tive expected reward of generated utterance using
the REINFORCE algorithm (Williams, 1992):

JG(θ) = −EU∼G[Dϕ(U |S)], (2)

where U ∼ G represents the utterance U is gener-
ated from G and θ is the parameters of G.

With the likelihood ratio trick (Williams, 1992),
the gradient of θ can be derived as:

∇JG(θ) = −EU∼G[Dϕ(U |S)] · ∇ logGθ(U |S)
≈ −Dϕ(U |S) · ∇ logGθ(U |S),

(3)
The goal of the discriminator is to distinguish

whether a user utterance is from original dialogue
or generated by the generator. It computes the
probability that the user utterance is from original
dialogue given the turn-level belief state. Therefore,
its objective function is to minimize classification
error rate:

min
ϕ

− EU∼ground−truth logDϕ(U |S)

−EU∼G log(1−Dϕ(U |S)),
(4)

where Dϕ(U |S) is the probability of U that it
comes from original dialogue, U ∼ ground −
truth represents the utterance U is from the golden
label.

3 Experiments and Analysis

3.1 Dataset
We take MultiWOZ 2.0 and MultiWOZ 2.1 as
datasets for the experiments. MultiWOZ1 series
dataset is a fully-labeled collection of human-
human written conversations spanning over multi-
ple domains and topics. It contains 8438 multi-turn
dialogues with on average 13.7 turns per dialogue.
It has 30 (domain, slot) pairs and over 4,500 slot
values. Compared to MultiWOZ 2.0, MultiWOZ
2.1 has fixed the noisy state annotations and com-
bined user dialogue acts as well as multiple slot
descriptions per dialogue state slot into the new
version. To date, these two datasets are recognized
as the most widely used benchmark datasets in the
field of dialogue systems.

1https://github.com/budzianowski/multiwoz/tree/master/data

3.2 Implementation Details

For a fair comparison, we introduce tow instan-
tiations for the proposed framework, denoted as
GRU-based and T5-based, respectively.

GRU-based: The generator is an encoder-
decoder text generation model consists of simple
GRU network, and the network structure of the dis-
criminator is CNN. The optimizer for the generator
and discriminator is Adam (Kingma and Ba, 2014).
The learning rates are 1e-3 and 1e-4 respectively.
In the adversarial training phase, the parameters of
the 5 epoch discriminators are updated after each
update of the parameters of the generator.

T5-based: The generator is an encoder-decoder
implementation on the basis of T5, which is a
pre-trained model composed of transformers, and
the network structure of the discriminator is CNN.
The optimizer for generator and discriminator is
AdamW (Loshchilov and Hutter, 2018). The learn-
ing rates are 2e-5 and 5e-5, respectively. In the
adversarial training phase, the parameters of the 4
epoch discriminators are updated after each update
of the parameters of the generator.

We implement all the benchmarks using Pytorch
on servers equipped with Nvidia Tesla V100 GPUs,
each with 32GB memory. Source codes of our
work in this paper will be open-sourced on Github
as soon as we clean our code.

3.3 Main Results and Evaluation

Automatic Evaluation
We measure the quality of generated utterances

by BLEU scores (Papineni et al., 2002) and BERT-
score (Zhang et al., 2019a). In this experiment, only
the utterances of each turn of original dialogues are
used as reference sentences for the calculation of
BLEU instead of the entire dataset as reference
sentences. This is because the generated utterance
from the dialogue model only need to be relevant
to the turn-level state and input utterance, not the
full dataset.

Tables 1 are experiments on the full dataset.
GRU-based and T5-based represent the results of
training with MLE, +GAN represents the results
of using adversarial training (ADV). From Table
1 we can see our adapted models surpass original
MLE up to 1.09% in BLEU-5, indicating the effec-
tiveness of the added adversarial training process.
GRU-based+GAN and T5-based+GAN exceed cor-
responding MLE-baselines with the same trending,
respectively. Based on our proposed framework,
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Model MutilWOZ2.0 MutilWOZ2.1
BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score

GRU-based 23.41% 16.43% 11.82% 8.70% 88.33% 25.30% 17.82% 12.54% 8.99% 88.63%
+GAN 24.37% 17.03% 12.15% 8.66% 88.35% 26.38% 18.98% 13.64% 10.08% 88.83%

T5-based 25.43% 19.55% 15.39% 12.35% 89.17% 25.92% 19.95% 15.70% 12.58% 90.11%
+GAN 25.46% 19.58% 15.42% 12.39% 89.18% 26.31% 20.23% 15.87% 12.65% 90.12%

Table 1: Automatic evaluation of two models trained by MLE and adversarial training on full datasets.

Model MutilWOZ2.0 MutilWOZ2.1
BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score BLEU-2 BLEU-3 BLEU-4 BLEU-5 BERT-Score

GRU-based 17.20% 11.11% 7.52% 5.18% 87.09% 17.20% 11.11% 7.52% 5.18% 87.09%
+GAN 17.77% 11.69% 7.95% 5.46% 87.28% 17.77% 11.69% 7.95% 5.46% 87.28%

T5-based 21.43% 15.39% 11.42% 8.66% 88.11% 23.71% 17.48% 13.00% 9.87% 88.53%
+GAN 21.45% 15.67% 11.76% 8.92% 88.16% 23.98% 17.72% 13.22% 10.03% 88.55%

Table 2: Automatic evaluation of two models trained by MLE and adversarial training in low-resource scenario.

Table 1 shows that the effectiveness of ADV is
consistent in two datasets of different metrics.

In order to further explore the performance of
our framework in the case of low-resource scenario,
100 instances of full dialogues are randomly se-
lected from the training dataset, and 50 instances of
complete dialogues are randomly selected from the
validation dataset. Tables 2 shows the performance
of two models on MultiWOZ 2.0 and MultiWOZ
2.1 under low-resource settings. Predictably, vari-
ous degrees of performance degradation occurs, es-
pecially on GRU-based model. On the other hand,
the improvement under the same setting demon-
strates the effectiveness of our framework facing
low-resource.

Combining the experimental results of the above
different settings, it can be observed that both the
BLEU score and BERT-score of the results after
adversarial training are better than MLE training.
Human Evaluation

We evaluate the generated data from two per-
spectives: statement fluency and turn-level belief
state correctness. The statement fluency indicates
whether the generated sentence is fluent and human-
likely. The turn-level belief state correctness evalu-
ates whether <Rt, U

′
t> is consistent with S′

t.
There are two corresponding evaluation metrics,

Sentence fluency and Slot accuracy. (1) Sentence
fluency represents whether the generated sentence
conforms to the natural expression of human be-
ings and is suitable as an answer to a question.
(2) Slot accuracy represents whether the generated
utterance contains the dialogue state of the input
utterance.

Randomly select 100 instances generated by the
models and invite 3 experts to evaluate the data for
human evaluation. Table 3 shows human evalua-

Sentence Fluency
Slot accuracy

Mean score (1-5) ≥ 3(%)
USER 4.59 96.30% 80.70%
MLE 4.00 87.70% 53.30%
ADV 4.16 92.00% 64.00%

Table 3: Human evaluation of GRU-based generator.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences.

Sentence Fluency
Slot accuracy

Mean score (1-5) ≥ 3(%)
USER 4.78 100.00% 71.23%
MLE 4.70 98.67% 76.50%
ADV 4.81 98.67% 79.73%

Table 4: Human evaluation of T5-based generator.

tion results for naturalness and controllability of
GRU-based generator in MultiWOZ 2.0 dataset.
Regarding the naturalness, models used adversar-
ial learning produced a more acceptable utterance
to the dialogue context. At the same time, the
adversarial-explicit model achieved the best per-
formance among the compared ones in terms of
the controllability. A same trend occurs in the
evaluation of T5-based one: the results show that
ADV outperforms the MLE on almost all metrics
and even strengthens the performance of human
reference. Notably, the performance of T5-based
generator even outperforms the results of the orig-
inal data (corresponding USER line) in Table 4.
In the original MultiWOZ dataset, there are label-
missing errors for dialogue states. Specifically, the
turn-level belief state is not reflected in the user
utterance fully. Through data inspection, we find
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that the T5-based generator corrects the errors in
the original dataset. This situation shows that the
model can well use the belief state as a condition
to generate the corresponding user utterance.

Experimental results demonstrate that our ap-
proach produces more interactive, relevant, and
fluent utterances than standard SEQ2SEQ models
trained using the MLE objective function. Beyond
this, evaluation details for automatic and human
ways are shown in the appendix.

3.4 Downstream Results
In this section, we conduct experiments on a suite
of downstream DST tasks and present the results
of applying utterance-level dialogue generation on
DST data augmentation. The learning of dialogue
state tracker is detailed in Algorithm 2. Here data
augmentation is to generate a new user utterance
U ′
t conditioned on a modified S′

t derived from orig-
inal turn-level belief state St. The modification
strategy uses the value substitution method (Li
et al., 2021). To overcome the de-generation and
over-generation phenomenons, a data filter F is
employed to filtering the generated candidates (Li
et al., 2021). Then a novel sequence of dialogue
turns X ′

t=[R1,U1,...,Rt,U ′
t] is formed by replac-

ing the original user utterance Ut with U ′
t , and B′

t

which is induced by Bt based on the difference be-
tween St and S′

t is the dialogue-level belief states
of X ′

t. We use the resulting set of <X ′
t,B

′
t> to

do DST data augmentation. In the following, two
known typical DST models are selected for further
experiments.

• TRADE: TRAnsferable Dialogue statE gen-
erator (TRADE) (Wu et al., 2019) generates
dialogue states from utterances using a copy
mechanism, facilitating knowledge transfer
between domains. The prominent difference
from previous one-domain DST models is that
TRADE is based on a generation approach in-
stead of a close-set classification approach.

• TripPy: TripPy (Heck et al., 2020) presents a
new SOTA approach which makes use of vari-
ous copy mechanisms to fill slots with values
to avoid the use of value picklists altogether.
This model has no need to maintain a list of
candidate values. Instead, all values are ex-
tracted from the dialogue context on-the-fly.

We train each DST model on the mixing of
MultiWOZ 2.0 training data and augmented data.

Algorithm 2 The DST data augmentation
Input: A dialogue dataset C, the randomly
initialized Generator G, data filter F , belief state
modification strategy π, the dialogue state tracker
with parameters ρ.
Output: Trained tracker.

1: Train G using Algorithm 1 on dataset C;
2: Train F with cross-entropy loss on dataset C;
3: Modify turn-level belief state from St to S

′
t

according to π;
4: Obtain new data C ′ according to S

′
t by the

trained G;
5: Obtain new data C

′
F by filtering de-generation

and over-generation data;
6: Train the tracker on C+C

′
F , update ρ;

7: Save the tracker with ρ;

Trained DST models are then evaluated on origi-
nal test set. Results are shown in Table 5. Both
training with augmentation of TRADE and TripPy
outperform the original models. The joint goal
accuracy improves to 49.76% and 59.09% respec-
tively, and TripPy reaches the state-of-the-art per-
formance on MultiWOZ 2.0 dateset. This shows
the effectiveness of our adversarial utterance-level
dialogue generation for DST data augmentation.

Model Joint Goal Accuracy(%)
TRADE 48.62
+ Augmentation 49.76
TripPy 58.01
+ Augmentation 59.09

Table 5: Joint goal accuracy results on MultiWOZ 2.0.

3.5 Analysis and Discussion

Case study from Table 6 has displayed three typical
errors in our experiments of dialogue generation
tasks: (1) The slot value is wrong. (2) The slot is
missing. (3) The slot type is wrong. Specifically,
System+State stands for inputs, and USER repre-
sents references. Last two columns are the output
results of MLE training and ADV training. The
results show that the above-mentioned errors can
be alleviated via our proposed framework, and the
model after adversarial training can better adapt
to the input conditions in the dialogue, achieving
more appropriate utterance-level dialogue genera-
tion.
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System+State USER MLE ADV

system: tr0275
will leave at 13:29
and arrive by 14:07 .
would you like to
buy tickets ? state:
train book people 3

yes , could you
make a booking
for 3 people ?

yes , i ’ll need the
train for 7 people .
can you book the
reference number ?

yes , i need book
for 3 people please .

system: i love
the fez club , their
phone number is
01223519224 .can i
help you with
anything else today ?
state: train
destination
ely , train day
Thursday

i would love some
information on a
train to get me
to ely on thursday .

i also i also need
a train to train
leaving on thursday.
(miss ely)

i also need a
train to ely to
leave on thursday.

system: would
you like me to book
it for you ? state:
train book people 7

yes , for 7 people .
yes , please .
i need 7 tickets .

yes , please book
it for 7 people .

Table 6: Case study. System+State stands for inputs, and USER represents references. Last two columns are
the output results of MLE and ADV. The black-lined font is the dialogue state of the current turn. We expect the
generated utterances exactly correspond to the inputs. The red font are typical errors generated by MLE model.

Model Confusion matrix Acc(%)

Real
Pre. N P

MLE N 594 32 97.12
P 4 622

Real
Pre. N P

ADV N 397 229 81.39
P 4 622

Table 7: Confusion matrix for MLE and ADV. The
results show that the pre-trained discriminator will mis-
judge the fake text after adversarial training.

To analyze the results quantitatively, we verify
the effectiveness of utilizing adversarial training
under the control variable method, that is, a same
pre-trained discriminator is applied for both gen-
erators. We use the pre-trained discriminator to
evaluate the utterances generated by the model of
adversarial training (real text) and the utterances of
original dialogues (fake text) as shown in Figure 3.

Table 7 shows the confusion matrix of predicting

Figure 3: Contrast experiment for the quality judgment
of generated utterances by two models.

results via discriminator’s classification, where neg-
ative samples (N) represent utterances generated by
the generator and positive samples (P) represent ut-
terances of original dialogues. The accuracy (Acc)
is calculated as follow:
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(a) Visualization of MLE. (b) Visualization of ADV.

Figure 4: Feature visualization of generative spaces for
two models’ comparison.

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where TP and TN represent the number of cor-
rect predictions for real text and generated text,
respectively. FP and FN represent the number
of incorrect predictions for real text and generated
text, respectively.

It can be seen the text generated by adversarial
training makes it more difficult for the pre-trained
discriminator to distinguish the authenticity of the
inputs. The results further support this point of
view can be seen in the confusion matrix. Com-
paring MLE model and ADV model, the discrimi-
nator’s judgment result for real samples maintains,
but the judgment on generated text differs. It can be
confirmed the accuracy’s drop of the discriminator
is affected by the decline in the generator’s ability
to judge more realistic generated samples.

In order to present the classification results more
intuitively, dimensionality reduction of the features
after the convolutional layer in the discriminator
is visualized using the t-SNE algorithm (Van der
Maaten and Hinton, 2008). The visual features are
shown in the Figure 4. The red dots represent the
real text, and the blue dots represent the generated
text. Comparing (a) and (b), it can be observed that
boundary becomes unrecognizable and overlapping
after adversarial training, which adds a layer of
complexity to the discriminator and brings new
challenges.

4 Related Work

The idea of generative adversarial networks (Good-
fellow et al., 2014) has enjoyed great success in
computer vision (Radford et al., 2015; Chen et al.,
2016; Brock et al., 2018; Karras et al., 2020). Train-

ing is formalized as a game in which the genera-
tive model is trained to generate outputs to fool
the discriminator; the technique has been success-
fully applied to image generation. However, to the
best of our knowledge, this idea has not achieved
comparable success in NLP. This is due to the
fact that unlike in vision, text generation is dis-
crete, which makes the error outputted from the
discriminator hard to back-propagate to the gener-
ator. Some recent work has begun to address this
issue: Lamb et al. (2016) propose providing the
discriminator with the intermediate hidden vectors
of the generator rather than its sequence outputs.
Such a strategy makes the system differentiable and
achieves promising results in tasks like character-
level language modeling and handwriting genera-
tion. Yu et al. (2017) use policy gradient reinforce-
ment learning to back-propagate the error from the
discriminator, showing improvement in multiple
generation tasks such as poem generation, speech
language generation and music generation. Outside
of sequence generation, Chen et al. (2018) apply
the idea of adversarial training to sentiment analy-
sis and Zhang et al. (2017) apply the idea to domain
adaptation tasks. Cui et al. (2019) proposed Dual
Adversarial Learning (DAL), which uses adversar-
ial learning to mimic human judges and guides the
system to generate natural responses. To improve
the diversity of responses, Xu et al. (2018) pro-
posed a Diversity-Promoting Generative Adversar-
ial Network (DP-GAN). This method encourages
the generation of highly diverse texts by assign-
ing low rewards to repeated texts and high rewards
to new texts, and a new discriminator structure is
proposed to determine repeated texts.

Our work is related to recent work that formal-
izes sequence generation as an action-taking prob-
lem in reinforcement learning (Sutton and Barto,
2018). Ranzato et al. (2015) train RNN decoders in
a SEQ2SEQ model using policy gradient to obtain
competitive machine translation results. Bahdanau
et al. (2016) take this a step further by training an
actor-critic RL model for machine translation. Also
related is recent work (Shen et al., 2015; Wiseman
and Rush, 2016) to address the issues of exposure
bias and loss evaluation mismatch in neural trans-
lation.

5 Conclusion

In this paper, we address the difficulty of utterance-
level dialogue generation by proposing an adver-
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sarial training based framework that can generate
high-quality data to improve the downstream DST
performance. Specifically, our method leverages an
encoder-decoder framework in terms of an adver-
sarial training paradigm, while taking advantage of
dialogue state-aware semantic representation from
the reinforced generator to construct the discrimi-
nator. The two-stage training process delivers more
adversarial-balance for both after iterative interac-
tions. Experimental results on MultiWoZ 2.0 and
MultiWoZ 2.1 datasets demonstrate that the pro-
posed framework significantly improves the per-
formance over the state-of-the-art models. Future
work includes more exploration into the design of
generator-discriminator architect and improvement
of more dialogue tasks.

Limitations

Our work pioneers in the adversarial training based
framework for utterance-level dialogue generation,
which trains an encoder-decoder generator simulta-
neously with a discriminative classifier that make
the utterance approximate to the state-aware inputs.
However, our paper may have following omissions
and inadequacies.

• Our focused task is limited in turn-level belief
state. DST of dialogue-level is beyond the
scope of this article. We believe this situation
will meet new challenges and we will explore
more in the next work.

• The policy gradient reinforcement learning
algorithm is used to optimizing the genera-
tor during adversarial training process, which
slows down the training speed of T5-based
generator.

• Though we list case study in our paper, we
believe it needs more rethinking and compari-
son work into the internal mechanism in the
future.
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A BERT-Scroe

Experimental Setup : We randomly selected 100
samples from the data set to obtain the results of
MLE and ADV. Furthermore, respectively calculate
samples with USER’s text the similarity degree.
After 100 Bert-Scores were calculated, the average
was calculated.The result are reported below:

Method BERT-score
MLE 89.18%
ADV 89.67%

Table 8: Random sampling of 100 samples of BERT-
score results

In order to prevent uneven distribution, the test
data were divided into 10 groups and the BERT-
score of the mean MLE model and ADV model are
calculated respectively. The main results are shown
below:

Figure 5: An overview of bert-score.

According to the Figure 5, the average Bert-
score of group 2 is higher than that of ADV, and
the similarity of the texts generated by ADV model
is higher than that generated by MLE model in the
other 9 groups, which proves the effectiveness of
the algorithm.

B Human evaluation

Table 9 and Table 10 represent the experimental
details statement fluency, and the conditions of
slot value, contained for the human evaluation of
the GRU-based model, respectively. Table 11 and
Table 12 represent the same experimental details
for the T5-based model, respectively.

Statement Fluency
USER MLE ADV

average

value
≥3(%)

average

value
≥3(%)

average

value
≥3(%)

expert1 4.81 96% 4.12 81% 4.49 87%
expert2 4.38 97% 3.79 86% 3.92 94%
expert3 4.57 96% 4.09 96% 4.06 95%
average 4.59 96.30% 4 87.70% 4.16 92%

Table 9: Statement fluency experiment with GRU
model.A total of 3 experts participated in the evaluation.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences

The conditions of slot value contained
USER MLE ADV

Contain
/Part /No

Acc
Contain
/Part /No

Acc
Contain
/Part /No

Acc

expert1 79/12/9 79% 53/28/19 53% 64/19/17 64%
expert2 82/11/7 82% 53/26/21 53% 66/20/14 66%
expert3 81/13/6 81% 54/31/15 54% 62/23/15 62%
average - 80.70% - 53.30% - 64%

Table 10: The conditions of slot value contained with
GRU-based model.Contain, Part, and No respectively
represent whether the answer of the dialogue is fully
contained, partially contained, or not containing the
dialogue state. Accuracy is only calculated for cases
where the dialogue state is completely contained.

Statement Fluency
USER MLE ADV

average

value
≥3(%)

average

value
≥3(%)

average

value
≥3(%)

expert1 4.84 100% 4.49 98% 4.71 98%
expert2 4.8 100% 4.71 98% 4.75 98%
expert3 4.71 100% 4.9 100% 4.98 100%
average 4.78 100.00% 4.70 98.67% 4.81 98.67%

Table 11: Statement fluency experiment with T5-based
model. A total of 3 experts participated in the evaluation.
Sentences are scored on a scale of 1 to 5. The average
value represents the average score, and ≥3(%) repre-
sents the proportion of the sentence evaluation score
greater than or equal to three points in all sentences.
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The conditions of slot value contained
USER MLE ADV

Contain
/Part /No

Acc
Contain
/Part /No

Acc
Contain
/Part /No

Acc

expert1 36/12/3 70.6% 39/8/4 76.5% 40/7/4 78.4%
expert2 37/10/4 72.5% 39/8/4 76.5% 41/6/4 80.4%
expert3 36/12/3 70.6% 39/9/3 76.5% 41/6/4 80.4%
average – 71.23% – 76.5% – 79.73%

Table 12: The conditions of slot value contained with
T5-based model.Contain, Part, and No respectively rep-
resent whether the answer of the dialogue is fully con-
tained, partially contained, or not containing the dia-
logue state. Accuracy is only calculated for cases where
the dialogue state is completely contained.
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