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Abstract

This work presents an ensemble system based
on various uni-modal and bi-modal model ar-
chitectures developed for the SemEval 2022
Task 5: MAMI-Multimedia Automatic Misog-
yny Identification. The challenge organizers
provide an English meme dataset to develop
and train systems for identifying and classify-
ing misogynous memes. More precisely, the
competition is separated into two sub-tasks:
sub-task A asks for a binary decision as to
whether a meme expresses misogyny, while
sub-task B is to classify misogynous memes
into the potentially overlapping sub-categories
of stereotype, shaming, objectification, and vio-
lence. For our submission, we implement a new
model fusion network and employ an ensem-
ble learning approach for better performance.
With this structure, we achieve a 0.755 macro-
average F1-score (11th) in sub-task A and a
0.709 weighted-average F1-score (10th) in sub-
task B. 1

1 Introduction

Hate speech against women remains rampant de-
spite many efforts at education, prevention and
blocking. Misogyny takes place online and offline.
Especially on social media platforms, misogyny
appears in different forms and has serious implica-
tions (Chetty and Alathur, 2018). Currently, auto-
mated detection and filtering seem to be the most
effective way to prevent hate speech online. How-
ever, over the past few years, the rising popularity
of memes brought misogyny to a new multi-modal
form, which may be more likely to go viral due
to their often surprising combinations of text and
image that may strike viewers as funny and hence,
as eminently shareable.

The multi-modality of memes also makes auto-
matic detection more challenging. Some memes

1Code available at: https://github.com/
rub-ksv/SemEval-Task5-MAMI.

express their hatred implicitly or through juxtaposi-
tion, so they may even appear harmless when con-
sidering the text or the image in isolation. SemEval-
5 2022 Multimedia Automatic Misogyny Identifica-
tion (MAMI) (Fersini et al., 2022) aims to identify
and classify English misogynous memes.

In recent years, the Transformer model (Vaswani
et al., 2017) has been widely used in natural lan-
guage processing (NLP) and image processing.
Transfer learning (Torrey and Shavlik, 2010) with
a pre-trained Transformer model can save training
resources and increase efficiency with less training
data (Wang et al., 2020).

Therefore, in this work, we consider transfer
learning to customize three uni-modal models
based on the Transformer model: i) fine-tuning
a pre-trained RoBERTa model for classification
(BERTC) (Liu et al., 2019); ii) training a graph
convolutional attention network (GCAN) using
the pre-trained RoBERTa model for word embed-
ding; iii) fine-tuning a pre-trained image model,
the Vision Transformer (ViT) (Dosovitskiy et al.,
2020). Based on these three uni-modal models,
four bi-modal models are trained through our pro-
posed model fusion network, namely BERTC-
ViT, GCAN-ViT, BERTC-GCAN, and BERTC-
GCAN-ViT. All models are evaluated with 10-fold
cross-validation. The macro-average and weighted-
average F1-scores are employed as the metrics for
the sub-tasks. Ultimately, the ensemble strategy is
applied on both the dataset- and the model-level
(detailed in Section 3.3) for better performance.

The remainder of the paper is structured as fol-
lows: Section 2 introduces the MAMI challenge
and related solutions to the task. Our ensemble
model is described in Section 3, followed by the
experimental setup in Section 4. Finally, our results
are shown and conclusions are drawn in Sections 5
and 6.

626

https://github.com/rub-ksv/SemEval-Task5-MAMI
https://github.com/rub-ksv/SemEval-Task5-MAMI


2 Background

The MAMI dataset contains 10,000 memes as the
training and 1,000 memes as the test set; all of
these are given together with the text transcription
as obtained through optical character recognition
(OCR). The reference labels are obtained by man-
ual annotation via a crowdsourcing platform.

The challenge is composed of two sub-tasks:
Sub-task A represents a binary classification task
and focuses on the identification of misogynous
memes, so each meme should be classified as not
misogynous (noMis) or misogynous (Mis). Sub-
task B, in contrast, presents a multi-label classifi-
cation task, where the misogynous memes should
be grouped further, into four potentially overlap-
ping categories. The dataset class distribution is
illustrated in Table 1.

Table 1: MAMI-22 dataset class distribution. Mis:
misogynous; Shm: shaming; Ste: stereotype; Obj: ob-
jectification; Vio: violence.

Sets Mis Shm Ste Obj Vio

training set 5000 1274 2810 2202 953
test set 500 146 350 348 153

Since the provided dataset contains two modali-
ties (namely, images and texts), an automated ap-
proach requires integrating the information from
the images with the textual information. However,
the OCR-based transcriptions are quite error prone,
while the images are often hard to recognize for au-
tomatic systems, due, among other reasons, to over-
laid text and to the popularity of further changes,
such as the composition of multiple sub-images.
Consequently, it is challenging to identify the per-
tinent information of the respective modalities, in
order to merge it into a joint classification decision.

Some researchers have already worked on meme
datasets. For example, (Sabat et al., 2019) created
a hateful memes database, using the BERT model
to extract a contextual text representation and the
VGG-16 convolutional neural network (Simonyan
and Zisserman, 2014) for image features. Then,
text and image representations are concatenated to
obtain a multi-modal representation. Facebook also
organized a challenge for the identification of hate-
ful memes in 2020 (Kiela et al., 2020). The winner
of this challenge adopted an ensemble system with
four different visual-linguistic transformer archi-
tectures (Zhu, 2020).

The Transformer model has shown excellent per-
formance in many tasks, and it also shows promis-
ing results in the above studies, based on its use of
the attention mechanism to extract the contextual
information within a text. However, its ability to
capture global information about the vocabulary of
a language remains limited (Lu et al., 2020), and
we hypothesize that this is even more of an issue in
the task at hand, due to the very short texts in the
given challenge.

For this reason, we combine a Transformer
model with a graph convolutional network
(GCN) (Yao et al., 2019), which may help to ad-
dress this issue. GCNs can be understood as a
generalization of CNNs, where the data has graph
structure and locality is defined by the connectiv-
ity of the graph. As input, a GCN receives fea-
tures that connect to a set of nodes. From layer
to layer, the features of a node are updated as
weighted combinations of its neighbors' features.
In our case, the graph is defined as follows: There
is a node for every word in the vocabulary and
for every document. The collection of nodes is
V = {D1, D2 · · ·DnD ,W1,W2, · · ·Wnw}, where
Di and Wi indicate the document and word nodes,
respectively. nD is the number of documents and
nW is the number of unique words in the cor-
pus. The edges between word nodes are weighted
with the word co-occurrence, the edges between
document-word pairs are weighted with the term
frequency-inverse document frequency (TF-IDF).

A fixed-size sliding window with step size 1 is
used to gather the word co-occurrence information
through the entire dataset. The point-wise mutual
information (PMI) is employed to measure the re-
lationship between the words i and j as follows:

PMI(i, j) = log p(i,j)
p(i)p(j) ,

p(i, j) = N(i,j)
N ,

p(i) = N(i)
N ,

(1)

where N(i) counts the sliding windows in the train-
ing set that contain word i, N(i, j) is the number of
sliding windows that carry both words i and j, and
N is the total number of sliding windows in the cor-
pus. As described in (Yao et al., 2019), a positive
PMI value indicates a high semantic correlation of
words in corpus and vice versa.

The adjacency matrix A of the graph is then
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computed elementwise, as follows:

Ai,j =





PMI(i, j) i, j are word nodes, PMI(i, j) > 0;

nD < i, j ⩽ nD + nW

TF-IDFi,j document node i and word node j;

i ⩽ nD;nD < j ⩽ nD + nW

1 i = j

0 otherwise
(2)

Since the graph is undirected, the adjacency ma-
trix is symmetric. Finally, the adjacency matrix
is normalized by

∼
A= D− 1

2 AD− 1
2 , where D is the

degree matrix of A. The normalized adjacency ma-
trix

∼
A is used to weight the graph node features,

cf. Section 3.1. A PyTorch implementation based
on Text-GCN (Yao et al., 2019), as provided on
GitHub2, was used for the implementation.

3 System Overview

In this section, we specify our uni- and bi-modal
models.
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Figure 1: Uni-modal models, where LS is the sequence
length, which depends on the RoBERTa tokenizer.

Figure 1 depicts the three uni-modal models
BERTC (1a), GCAN (1b), and ViT (1c), which
form the basis of our further experiments. The
bi-modal models are constructed based on trained
uni-modal models and our proposed model fusion
network, which is further detailed in Section 3.2.
Finally, we apply soft and hard voting ensembles
on the trained candidate models.

3.1 Uni-modal models
As illustrated in Figure 1, every uni-modal model
has two outputs: the classification probabilities

2https://github.com/codeKgu/Text-GCN

pi and the classification features fi. All classifier
blocks in our models have the following, identi-
cal structure: a fully connected layer reduces the
feature dimension to half the input dimension, fol-
lowed by a ReLU activation and a dropout layer.
Ultimately, an output layer projects the features to
the output dimension n, and a sigmoid function
squashes the range of the output vector compo-
nents to (0, 1), allowing for an interpretation as a
vector of label probabilities, with possible overlap
in categories.

BERTC: We fine-tune a pre-trained large
RoBERTa language model (roberta-large)
for classification. The text input is encoded by the
RoBERTa model with the embedding dimension
1024. The Pooler layer returns the first classifica-
tion token [cls] embedding fBERTC and feeds it
into the classifier to obtain the probabilities pBERTC.

GCAN: Again, a pre-trained RoBERTa model ex-
tracts contextual text information. Each token is
considered as a word node and each meme is a
document node. Thus the word node representa-
tion is given by the corresponding RoBERTa word
embedding vector. We denote the input embedding
sequence of document k as xk = [xk1, xk2, · · · xkLS

],
where xki , i ∈ {1, . . . ,LS} is a 1024-dimensional
embedding vector of the i-th token. As depicted
in Figure 1b, xk is an LS×1024 matrix. The first
classification token [cls] embedding represents
the document classification information. Thus, we
use the document-word co-occurrence information
TF-IDF as the edge weights for the [cls] em-
bedding. All other token embeddings are weighted
with the word co-occurrence information PMI.

For each document k, we extract its specific adja-
cency matrix

∼
Ak from the complete adjacency ma-

trix
∼
A by reducing it to rows and columns of all the

document and word nodes (i and j in Equation 2)
that are present in this document. The extracted
document adjacency matrix

∼
Ak is an LS × LS ma-

trix.

The GCAN block in Figure 1b adopts the multi-
head self-attention mechanism in 3 successive
GCAN layers to embed the node representations.
The queries Q, keys K and values V are identical
and set to the respective layer input. The first layer
input is given by the RoBERTa word embeddings
xk of the input text. The attention of head j is
obtained by
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αj = softmax




(
WQ

j QT
)T (

WK
j KT

)
√
dk




(
WV

j VT
)T

(3)

where W∗
j are learned parameters for the queries

Q, keys K, and values V, respectively. A super-
script T denotes the transpose; dk = datt

h , datt is
the attention dimension and h is the number of at-
tention heads. Having computed the multi-head
self-attention, each attention head output is multi-
plied by the document adjacency matrix

∼
Ak

∼
αj =

∼
Akαj . (4)

Equation 5 describes the output α of the GCAN
layer: The weighted outcomes all heads are con-
catenated (concat), and a fully connected layer
(FC) projects the representation to the attention
dimension. Inspired by (Veličković et al., 2017), in-
stead of concatenating the weighted attention head
outputs, we employ averaging (avg) to fuse these
weighted outputs in the last GCAN layer. A fully
connected layer again projects the final representa-
tion to the attention dimension. Thus, after the
GCAN block, the text representation is still an
LS×1024 matrix. The document classification fea-
ture vector fGCAN is obtained by summing all node
representations.

α =





FC
(

concat
(∼
α1, · · · ∼αh

))
not in last layer

FC
(

avg
(∼
α1, · · · ∼αh

))
in last layer

(5)

ViT: To extract the visual contextual infor-
mation, we utilize the pre-trained ViT model
vit-large-patch16-224 to encode the in-
put image. For this purpose, the input image is
split into fixed-size patches, and a linear projec-
tion of the flattened patches is used to obtain the
patch embedding vectors. The Transformer en-
coder transforms the embedding vectors. Finally,
the embedding fViT of the first classification token,
[cls], is fed to the classifier to obtain the predic-
tion probabilities pViT.

3.2 Bi-modal models
Figure 2 shows our fusion model structure.

Each model Mi has two outputs: the vector of its
classification probabilities pi and the classification
features fi. We concatenate the model classifica-
tion probabilities and features as a multi-modal
representation to make the final decision.

Two fusion strategies—stream-weighting-based
decision fusion and representation fusion—are con-
sidered. The weight predictor and the classifier in
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SigmoidClassifier

w
p sw

p rf

p f

p

+

0.5

0.5

1

Figure 2: Fusion model structure

Figure 2 both have the same structure as the classi-
fier block in Figure 1. The weight predictor output
dimension is the number m of candidate models
for fusion. The stream weighting probability psw
is obtained through a weighted combination of the
class probability vectors of all uni-modal model
outcome probabilities, i.e.

psw =
∑

i

pi · wi. (6)

The classifier output dimension is the same as the
number of classes n. A sigmoid function computes
the representation fusion probabilities prf from the
combined multi-modal representation. Finally, we
average the stream weighting and the representa-
tion fusion probabilities. The following model com-
binations are attempted, where Mi, i ∈ {1, 2, 3} is
the i-th pre-trained uni-modal model.

Bi-modal model M1 M2 M3

BERTC-ViT BERTC ViT -
GCAN-ViT GCAN ViT -

BERTC-GCAN BERTC GCAN -
BERTC-GCAN-ViT BERTC GCAN ViT

3.3 Ensemble learning

Having established a number of possible uni-modal
and bi-modal models, we now combine these
trained models into ensembles. It has been re-
ported in many studies that ensemble learning can
enhance performance in comparison to single learn-
ers (Onan et al., 2016; Zhu, 2020; Gomes et al.,
2017). Therefore, we consider soft and hard voting
ensemble approaches.

We use the Python sklearn package3 for 10-
fold cross-validation. Thus, each model structure

3https://github.com/scikit-learn/
scikit-learn

629

https://github.com/scikit-learn/scikit-learn
https://github.com/scikit-learn/scikit-learn


was trained ten times with different inner test sets.
Finally, these ten models are used to evaluate the
official test set and deliver ten predictions for ev-
ery sample. The soft voting ensemble method is
implemented as follows: pMi

, the ensemble proba-
bilities that are used in the overall class decisions,
are computed via

pMi
=

9∑

j=0

wj
Mi

· pjMi
. (7)

Here, pjMi
denotes the probabilities of model Mi in

the j-th fold. The weights wj
Mi

are computed by

wj
Mi

=
F1jMi∑
f F1fMi

. (8)

F1jMi
corresponds with the best F1-score of model

Mi over all epochs, computed on the inner test set
in fold j. This soft voting ensemble, using the same
model structure, but with the multiple outcomes
from 10-fold cross-validation, is referred to as a
dataset-level ensemble in the following.

The second type of ensemble—the model-level
ensemble—is constructed from the dataset-level
ensemble results of each model. We use a hard vot-
ing strategy with seven candidate models (BERTC,
GCAN, ViT, BERTC-ViT, GCAN-ViT, BERTC-
GCAN, and BERTC-GCAN-ViT). In this approach,
we set the final prediction for a data point to one,
if at least half of the considered models vote one,
making it a simple majority-voting strategy.

4 Experimental Setup

In the following, we describe our data processing
and training pipeline in more detail.

4.1 Data pre-processing

The challenge dataset provides a transcription text
stream that was obtained via OCR. Via image cap-
tioning, we derive a second text stream that con-
tains a description of the image in a few words.

For the OCR text, we first use the Python ftfy
package4 to fix the garbled sequences that result
from unexpected encodings (the mojibake) like
"à¶´à¶§à·". Next, all "@", "#" symbols and website
addresses are removed from the text. The emojis
are converted to text form by the Python emoji

4https://github.com/rspeer/python-ftfy

package5. Finally, we remove non-English charac-
ters and convert the text to lowercase.

For image captioning, we utilize a pre-trained
encoder-decoder attention model (Xu et al., 2016)6.
Although the translation from image to text is not
very accurate, most likely owing to issues like the
overlaid meme text, it was nonetheless beneficial
for our classification task. We found that the de-
scription becomes more precise, when we split the
memes into their constituent sub-images where ap-
plicable. In that case, the image caption is extracted
over every sub-image as well as the entire meme.
Finally, the image captions are combined with the
word "and" and then concatenated with the OCR
text, separated by ". ". With this rule, the final text
of the meme in Figure 3 is: "mgo ci aindo make
make me sandwich!!. a couple of baseball players
standing next to each other and a woman holding
a sign in front of a sign and a woman standing next
to a group of people."

(a) a woman hold-
ing a sign in front
of a sign

(b) a couple of
baseball players
standing next to
each other

(c) a woman stand-
ing next to a group
of people

Figure 3: In (a) and (b), we see "sub-images" and corre-
sponding captions. (c) shows the meme and its caption
(when not considering the sub-image structure).

We use the entire meme as the image input for
ViT. All memes are first resized to 256×256 and
center-cropped to 224×224 dimensions. The ViT
model uses all 3 RGB channels, so we retain the
RGB structure, thus the input image dimension
is 3×224×224. We regularize the entire image
database to range 0 to 1, then normalize each indi-
vidual image to have zero mean and unit variance.

4.2 Loss function

We decided to use the binary cross-entropy (BCE)
loss for both subtasks.

Due to the imbalance in the class distributions
(see Table 1), in sub-task B, we weighted the class-

5https://github.com/carpedm20/emoji
6https://github.com/sgrvinod/

a-PyTorch-Tutorial-to-Image-Captioning
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specific loss terms by their support as follows:

wc =

NoS
NoS(c)∑
c′

NoS
NoS(c′)

, c ∈ [Shm,Ste,Obj,Vio] (9)

where NoS is the total number of samples in the
training set and NoS(c) represents the number of
true instances for class c. The loss is then computed
through the weighted combination of the single
BCE terms:

L1 =
∑

c

wc · BCE(pBc , yBc ). (10)

Here, pBc represents the system’s output probability
of class c and yBc is the binary ground truth for
sub-task B.

Additionally, we employ a teacher forcing loss to
connect both subtasks. The idea is that an instance
should be identified as misogynous and possibly
grouped into sub-categories simultaneously. The
teacher forcing loss is defined as:

L2 = ∥pA − yA∥, (11)

where the system’s output probability for sub-task
A is determined as:

pA = max
(
pB

Shm
, pB

Ste
, pB

Obj
, pB

Vio

)
. (12)

The final loss is computed by

L = 0.7 · L1 + 0.3 · L2. (13)

4.3 Model training
All models are trained using the PyTorch li-
brary (Paszke et al., 2019) for 50 epochs. The
AdamW optimizer (Loshchilov and Hutter, 2017)
is used for backpropagation, using a linear learning
rate scheduler with a warm-up to adapt the learning
rate during the first four epochs in the training stage.
The dropout rate is 0.5. The RoBERTa model pa-
rameters in the BERTC and the GCAN model are
optimized separately.

In our GCAN model, the adjacency matrix is
computed with a sliding window of length 10. An 8-
head self-attention is applied over 3 GCAN layers
with an attention dimension of 1024.

For all uni-modal models, the batch size is 16
and the initial learning rate is 2 · 10−5. The
RoBERTa and ViT block parameters in Figure 1 are
also fine-tuned. The bi-modal models are trained
based on the pre-trained uni-modal models. Here,

we choose the batch size as 32, the initial learning
rate is 5 · 10−6. As the RoBERTa and ViT block
parameters in Figure 1 are already updated dur-
ing the uni-modal training stage, we froze these
parameters in bi-modal re-training.

To avoid overfitting, we adopt early stopping to
exit the training process when the computed F1-
score on the inner test set does not increase over 4
epochs. Inspired by (Huang et al., 2017), we finally
averaged those two epoch-wise model parameters,
which had the highest validation F1-score during
the training stage.

The models have the same structure for sub-tasks
A and B. The only differences are that in sub-task
A, the classifier output dimension n is 1, and the
BCE is used as the loss function (Setup A), whereas
in sub-task B, the classifier output dimension n
equals 4 and training uses the weighted BCE with
teacher forcing (Equation 13) as the loss function
(Setup B). All models are trained using NVIDIA’s
Volta-based DGX-1 multi-GPU system, using 3
Tesla V100 GPUs with 32 GB memory each.

5 Results

In summary, we investigated two configurations,
displayed in Table 2. Setup A represents the binary
classification for sub-task A, resulting in an output
dimension n = 1. Setup B additionally deals with
the multi-label classification of sub-task B, return-
ing an output of dimension n = 4. All results are
evaluated on the official test set.

Setup Task Dimension Loss

Setup A sub-task A n = 1 BCE

Setup B sub-tasks A/B n = 4
Weighted BCE &

Teacher Forcing

Table 2: Summary of the considered configurations.

5.1 Results for Setup A (Sub-task A)

In the first stage, we trained three different uni-
modal models (i.e., BERTC, GCAN, and ViT). In
the second stage, we optimized the bi-modal mod-
els (i.e., BERTC-ViT, GCAN-ViT, BERTC-GCAN,
and BERTC-GCAN-ViT). The evaluation results
in terms of the macro-average F1-score are dis-
played in Figure 4 and Table 3, showing the per-
formance in identifying misogynous memes. To
assess the statistical significance of performance
differences, we applied a 10-fold cross validation
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and computed the Mann-Whitney-U test (Mann
and Whitney, 1947).

BERTC GCAN ViT BERTC- 
 ViT

GCAN- 
 ViT

BERTC- 
 GCAN

BERTC- 
 GCAN- 

 ViT
Models

0.58

0.60

0.62

0.64

0.66

0.68

0.70

F1
-s

co
re

ns
**

ns
**

*
**

Figure 4: Macro-average F1-scores for sub-task A based
on 10-fold cross validation. Asterisks indicate a statisti-
cally significant difference, where ** denotes 1e-04 < p
<= 1e-03, * corresponds to 1e-02 < p <= 5e-02, and ns
indicates results where p > 5e-02.

As we can see, the text-only models (BERTC
and GCAN) generally show a superior performance
compared to the image-only model (ViT). The re-
sults in Figure 4 clearly indicate robust perfor-
mance for our bi-modal models. They are more
accurate and robust. In summary, the GCAN-ViT
model yields the best results w.r.t. the reported
median F1-score.

Model Ensemble Model Ensemble

BERTC 0.663 GCAN-ViT 0.707
GCAN 0.674 BERTC-GCAN 0.677

ViT 0.619
BERTC-

GCAN-ViT
0.689

BERTC-ViT 0.697 - -

Table 3: Macro-average F1-scores of soft voting ensem-
bles for sub-task A.

Table 3 lists the averaged F1-scores for soft vot-
ing ensembles, obtained by combining all learned
models from the 10-fold cross-validations. The re-
sults show that our GCAN-ViT model outperforms

all other models, achieving an F1-score of 0.707.

5.2 Results for Setup B (Sub-tasks A/B)

Next, we addressed sub-task B, i.e. to classify the
misogynous memes into four, potentially overlap-
ping, categories. Similar to Setup A, we trained the
same uni- and bi-modal models, but incorporating
a different loss (see Table 2). For sub-task B, the
weighted-average F1-score is applied. The results
are presented in Figure 5.

Interestingly, the models optimized for sub-task
B also perform better for sub-task A. In this case,
we set the estimated label "misogynous" to 1 if at
least one of the labels for "shaming", "stereotype",
"objectification", or "violence" is 1.

Figure 5a depicts the sub-task A results while
Figure 5b shows the corresponding performance
for sub-task B. Again, we see that the bi-modal
model GCAN-ViT outperforms all other models.

In addition, Tables 4 and 5 show the results for
soft and hard voting ensembles. By comparing
Table 4 with Table 3 (both tables represent soft
voting results), we observe significantly improved
F1-scores for Setup B.

Model Sub-task A Sub-task B

BERTC 0.714 0.684
GCAN 0.725 0.695

ViT 0.666 0.641
BERTC-ViT 0.746 0.692
GCAN-ViT 0.758 0.704

BERTC-GCAN 0.724 0.696
BERTC-GCAN-ViT 0.755 0.704

Table 4: F1-scores of soft voting ensembles for Setup B
(sub-tasks A and B).

Combination Sub-task A Sub-task B

Three uni-modal models 0.728 0.698
Four bi-modal models 0.752 0.709

All seven models 0.755 0.706
Oracle model combination 0.762 0.716

Table 5: Model-level hard voting ensemble performance
with Setup B for sub-task A and B.

As a last experiment, we applied hard voting
on the ensembles. Again, sub-task A results are
derived from sub-task B.
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BERTC GCAN ViT BERTC- 
 ViT

GCAN- 
 ViT

BERTC- 
 GCAN

BERTC- 
 GCAN- 

 ViT
Models

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

F1
-s

co
re

*
**

ns
**

**
**

(b) Results for sub-task B.

Figure 5: Performance for Setup B. The notation is defined in Figure 4.

Table 5 shows the results of different combina-
tions. Generally, the combination of the four bi-
modal models in the 2nd row outperforms a com-
bination of three uni-modal models in the 1st row.
If we combine all uni- and bi-modal models (3rd
row), the F1-score is 0.755 for sub-task A, and
0.706 for sub-task B.

The results in bold print represent our submitted
approaches for both sub-tasks, showing an F1-score
of 0.755 for sub-task A and 0.709 for sub-task B.

After the challenge ended, we again evaluated
all possible subset combinations of the seven can-
didate models. The followed combinations give
the best achievable results by knowing the official
test set reference labels: ViT, BERTC-GCAN-ViT,
BERTC-ViT, GCAN-ViT achieves an F1-score of
0.762 for sub-task A, while an ensemble consisting
of BERTC-ViT and BERTC-GCAN-ViT yields an
F1-score 0.716 on sub-task B. These results are
shown for comparison in the final row of Table 5
as oracle results.

6 Conclusion

This paper presents our ensemble-based approach
to address two sub-tasks of the SemEval-2022
MAMI competition. The challenge aims to iden-
tify misogynous memes and classify them into—
potentially overlapping—categories. We train dif-

ferent text models, an image model, and via our
proposed fusion network, we combine these in a
number of different bi-modal models.

Among the uni-modal systems, all text mod-
els show a far better performance than the image
model. As expected, our proposed graph convolu-
tional attention network (GCAN), which also con-
siders the graph structure of the input data while
using pre-trained RoBERTa word embeddings as
node features, consistently outperforms the pre-
trained RoBERTa model.

The proposed fusion network further improves
the performance by combining the ideas of stream-
weighting and representation fusion. We addi-
tionally adopt 10-fold cross-validation and use a
dataset-level soft voting ensemble to obtain better
and more robust results. Finally, our model-level
hard voting ensemble integrates the soft voting en-
semble predictions of our best uni- and bi-modal
models. Our experiments indicate that this layered
ensemble approach can significantly improve the
model accuracy. Ultimately, our submitted system
results in an F1-score of 0.755 for sub-task A and
0.709 for sub-task B.

Overall, we believe that the identification of
misogyny in memes is best addressed through bi-
modal recognition, considering both textual and
image information. Concerning the text-based clas-
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sification, we found a graph convolutional attention
neural network to be beneficial as an integrative
model for Transformer embeddings. This helps
in the text classification, when the documents are
short, as for the given meme classification task.

To cope with the bi-modality of the task at hand,
we have implemented a range of systems for in-
tegrating the information from both streams. An
idea that proved to be effective here was that of
bringing together the strengths of early fusion and
decision fusion in a joint framework. This allowed
us to dynamically adjust the contributions of the
two modalities through dynamic stream weighting,
while still being able to combine information at the
feature level across the streams, thanks to the repre-
sentation fusion branch of our bi-modal systems.
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