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Abstract

In the context of the Multimedia Automatic
Misogyny Identification (MAMI) competition
2022, we developed a framework for extract-
ing lexical-semantic features from text and
combine them with semantic descriptions of
images, together with image content represen-
tation. We enriched the text modality descrip-
tion by incorporating word representations for
each object present within the images. Im-
ages and text are then described at two lev-
els of detail, globally and locally, using stan-
dard dimensionality reduction techniques for
images in order to obtain 4 embeddings for
each meme. These embeddings are finally con-
catenated and passed to a classifier. Our results
overcome the baseline by 4%, falling behind
the best performance by 12% for Sub-task B.

1 Introduction

The Multimedia Automatic Misogyny Identifica-
tion (MAMI) competition (Fersini et al., 2022) con-
sists in the identification of misogynous memes,
taking advantage of both text and images available
as source of information. The task was organized
around two main sub-tasks. Sub-task A: a basic
task about misogynous meme identification, where
a meme should be categorized either as misogy-
nous or not misogynous; Sub-task B: an advanced
task, where the type of misogyny should be rec-
ognized among potential overlapping categories

such as stereotype, shaming, objectification, and
violence.

In this paper, we present a proposed solution for
Sub-task B only, which consists of a framework
for extracting lexical-semantic features from text
and combine them with semantic descriptions of
images, together with image content representation.
We propose to use a pre-trained BERT model (De-
vlin et al., 2019) as lexical feature enhancer, and to
use a vision-language model (Zhang et al., 2021)
as visual descriptor.

The rest of this paper is organized as follows. We
introduce our multimodal framework in Section 2.
In Section 3 we present and discuss our results. We
conclude the paper in Section 4.

2 Methods

Fig. 1 shows a diagram of the method that we pro-
pose to describe memes using both visual and text
inputs. It is known that local descriptors can pro-
vide rich representations, as they can extract fine
details from local areas within documents (Lowe,
2004). Therefore, we compute two types of descrip-
tion for each modality -visual or text-. Namely,
global and local descriptors, and then concatenate
the resulting four descriptors into a single vector
that we use for classification.

More specifically, we relied on transfer learning
coupled with fine tuning procedures, in which one
pre-trained model was further adjusted for each of
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the four input modalities, and for the five classes
problem presented by the MAMI competition.

2.1 Image descriptors

We describe images at two levels of detail. First
globally using a pre-trained CNN, and also lo-
cally by detecting and describing individual objects
within the images.

2.1.1 Global descriptors
In order to generate a global visual description
of the image, we use the InceptionV3 (Szegedy
et al., 2016) network pretrained on ImageNet (Rus-
sakovsky et al., 2015) to perform a fine tuning on
the MAMI dataset. The classification head is re-
placed with a global average pooling, a dropout
layer, and 4 dense layers with weights randomly
initialized. The first three dense layers have 1024,
512, and 64 units. The last dense layer has five
units with sigmoid activations.

To train the network, first the convolutional basis
is frozen and the parameters of the classification
head are optimized for ten epochs using a learning
rate of 1e−3. Next, all parameters are unfrozen and
retrained with a smaller learning rate (1e−5). The
training is stopped by using the regularization strat-
egy of Early Stopping to avoid overfitting. Once
the training process is completed, a 64-vector of
floating-point values is generated for each image.
This descriptor is obtained in inference mode from
the output of the penultimate dense layer.

2.1.2 Local descriptors
We detect and describe each of the objects con-
tained in the images by means of the pre-trained
VinVL model (ResNeXt-152 C4 architecture)
(Zhang et al., 2021). VinVL was pre-trained on
four public datasets specialized in object localiza-
tion, so it considers up to 1848 object categories
and 524 attribute categories (nouns and adjectives
respectively).

This stage generates a feature vector of length
2048 for each object within the image. More pre-
cisely, this step produces a matrix of varying length
according to the number of objects detected in an
image, where each component is a fixed-length vec-
tor of size 2048. We post-process this matrix using
Principal Component Analysis (PCA) on both of
its axes, and recovering the eighth principal com-
ponents for each axis. This is, we identify features
corresponding to the eighth most relevant objects in
a given image, as well as those corresponding to the

eighth most relevant variables describing each ob-
ject representation, both of them in an orthogonal
space of PCA that is independent across images.

This PCA processing results in a 64-D represen-
tation of the visual features for all object detected
within an image.

2.2 Text representations

Analogous to the image processing stage, we also
describe the meme’s text transcriptions at two lev-
els of granularity. First, generating an embedding
for the whole sentence, and then incorporating in-
dividual word representations.

2.2.1 Contextual embeddings
We generated a global sentence embedding for each
meme transcription. This was performed using
a pre-trained BERT model (Devlin et al., 2019).
Namely, the small uncased BERT “L-4 H-512 A-
8” for English language (Turc et al., 2019). This
model was used up to the layer that produces its
so-called pooled output, which provides a sentence
embedding vector of 512 elements. We connected
such output to a classification multi-layer percep-
tron (MLP) for fine tuning the model.

The classification MLP, added to BERT for fine
tuning, consists of two fully-connected hidden lay-
ers of 512 and 64 perceptrons, and a final 5 units
layer that performs multi-class multi-label classifi-
cation for the five possible labels defined for this
challenge. Both hidden layers contain ‘swish’ acti-
vation functions, while the output layer implements
‘sigmoid’ non-linearities to ensure that it outputs
values bounded between 0 and 1. We chose ‘swish’
as activation function to obtain a smooth transi-
tion between the positive and negative sides of the
response space of the non-linear projection (Ra-
machandran et al., 2017). Dropout layers with rate
equal to 0.1 were added in between fully-connected
layers.

We performed fine tuning of this model on the
training set of the MAMI challenge. First, warming
up only on the added MLP during 8 epochs. Then,
on the full model during 8 more epochs. Both
training stages made use of the Adam optimizer
(Kingma and Ba, 2014), the first one with initial
learning rate of 3e−3 and the latter with 3e−5.

2.2.2 Enhanced vocabulary representations
We enriched the text modality description by in-
corporating word representations for each object
present within the images. To this end, we relied on
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Figure 1: Architecture proposed

the pre-trained VinVL model (Zhang et al., 2021),
which is used to segment objects, and provides a
list of nouns and adjectives for each segmented
object. Some examples of words generated in this
stage are: woman, man, red, blue, thin, tall, etc.

This process produces as many lists as there are
objects detected within the image. We concate-
nated all individual words discovered for the same
image into a single vector. Then, we used this vec-
tor of nouns and adjectives to train a classification
network with the same architecture and process as
the one explained in sec. 2.2.1, i.e., the architecture
and training process are repeated on a different set
of parameters.

2.3 Classifier

After the individual training of each of the mod-
els described through sections 2.2 and 2.1, we used
them in inference mode to process their correspond-
ing inputs, and obtained their respective outputs up
to their next-to-last layers. This step produces a
64-D vector for each of the four models.

By concatenating these four representations into
a single vector, we produced a multi-modal feature
vector of length 256. This resulting vector is used
as input for a final MLP classification model, which
consists of nine fully-connected layers as shown in
Fig. 2.

This final model also uses ‘swish’ activation
functions for all hidden layers, and the ‘sigmoid’
activation function for its output layer. As shown
in Fig. 2, this model is organized in four blocks,

each of which is composed by: a regularization pro-
cess plus two consecutive fully-connected layers.
Regularizers are either dropout or batch normaliza-
tion. Dropout regularizers use a dropout rate of 0.3.
Similarly to the previous individual models, this
one also uses an output layer of five perceptrons
corresponding to each of the five possible classes
in the classification task.

2.4 Training

The final classification model was trained using bi-
nary cross entropy as loss function, and the Adam
optimizer (Kingma and Ba, 2014) with default pa-
rameters as implemented in tensorflow: learning
rate η = 0.001, decay for the smoothing of first and
second order moments β1 = 0.9 and β2 = 0.999,
and minimum tolerance ε = 1e−7. We trained this
model during 50 epochs with batches of size 64.

We decided to stop training at 50 epoch, as we
observed after several attempts that the loss func-
tion has consistently converged by then, for both
training and validations sets, i.e., no overfitting was
observed.

3 Results and discussion

Table 1 shows the accuracy obtained by our model
during training and validation, as well as the F1
score obtained on the test set as reported by the
server of the MAMI challenge. These scores are
presented for Task B (multi-class - multi-label clas-
sification) and for three models: the baseline as
reported by the organizers of the challenge; our
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Figure 2: Classification MLP that processes the merged
multi-modal feature descriptor.

proposed model; and the best model submitted to
the leader board of the competition.

Model Training Validation Test (F1)
Baseline − − 0.621
Ours 0.937 0.895 0.646
Best − − 0.731

Table 1: Performance on Sub-task B from the base-
line model, our proposed model, and the top model
reported on the leader board. Columns Training and
Validation report accuracy, while column Test reports
the F1 score.

Fig. 3 shows the confusion matrices produced by
our model on the instances of the MAMI challenge,
computed on the joined training and validation sets.
We show five confusion matrices because the cate-
gories are not mutually exclusive. Each of the ma-
trices contains true negatives [0,0], false positives
[0,1], false negatives [1,0], and true positives [1,1].
In all cases, the accuracy is greater than 0.90, with
the “misogynous” class having the highest score
(0.97) and the stereotyped class the lowest (0.90).
Using the F1 measure, the “shaming” and “vio-
lence” (the most unbalanced) classes have the worst
performance with 0.68 and 0.71 respectively. This
situation is due to the small number of true positive
instances in these two classes, which might bias the
model towards the prediction of the negative label.
Meanwhile, the “misogynous”, “stereotype” and
“objectification” (the most balanced) classes have a
similar performance with an F1 score above 0.82.
Moreover, the classes with the lowest performance,
have a proportionally much lower number of train-
ing examples. This fact limits the fine tuning of the
model parameters in the overall training process.

Fig. 4 visualizes the ROC curve, which repre-
sents the rate of true positives versus the rate of
false positives. As in the confusion matrices, it can
be observed that the best performance is obtained
in the class “misogynous”, while the worst occurs
with the classes “shaming” and “violence”.

4 Conclusions

In this paper, we proposed a framework for extract-
ing lexical-semantic features from text and com-
bine them with semantic descriptions of images in
the context of the Multimedia Automatic Misogyny
Identification (MAMI) competition 2022. Our re-
sults overcame the baseline by 4%, but fell behind
the best performance by 12% for Sub-task B. Our
model’s performance could be explained by the un-
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(a) Misogynous. (b) Shaming.

(c) Stereotype. (d) Objectification.

(e) Violence.

Figure 3: Confusion matrices for the 5 classes in the
challenge.

Figure 4: ROC curve for the five classes in the MAMI
challenge: “misogynous”, “shaming”, “stereotype”,
“objectification”, and “violence”. “Shaming” and “vi-
olence” curves are overlapped.

balanced classes and low number of examples, and,
therefore, is limited in this sense, achieving a per-
formance below 0.9 and around 0.7, for accuracy
and F1 measure, respectively. Still, for balanced
classes we obtained a performance above 0.9 and
0.8, in terms of accuracy and F1 score respectively.
As future work we propose three alternatives: 1) To
fine tune the classification threshold of the sigmoid
output layer of the model, independently for each
class, i.e., not all classes need to have 0.5 as clas-

sification threshold; 2) Optimize the loss function
directly on the F1 score; and, 3) Weight the con-
tribution of each class in the overall loss function
during backpropagation.
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