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Abstract

This paper details our implementations for find-
ing Patronizing and Condescending Language
in texts, as part of the SemEval Workshop Task
4. We have used a variety of methods from
simple machine learning algorithms applied on
bag of words, all the way to BERT models, in
order to solve the binary classification and the
multi-label multi-class classification.

1 Introduction

The Patronizing and Condescending Language De-
tection Task (Pérez-Almendros et al., 2022) is
based on the paper Don’t Patronize Me! (P’erez-
Almendros et al., 2020), which is an annotated
Dataset with Patronizing and Condescending Lan-
guage Towards Vulnerable Communities.

The aim of this task is to identify PCL, and to
categorize the language used to express it, specifi-
cally when referring to communities identified as
being vulnerable to unfair treatment in the media.

Participants were provided with sentences in con-
text (paragraphs), extracted from news articles, in
which one or several predefined vulnerable com-
munities are mentioned. The challenge is divided
into two subtasks.

1. Subtask 1: Binary classification. Given a para-
graph, a system must predict whether or not it
contains any form of PCL.

2. Subtask 2: Given a paragraph, a system must
identify which PCL categories express the
condescension. The PCL taxonomy was de-
fined based on previous works on PCL (i.e.
Unbalanced power relations, Shallow solution,
Presupposition, Authority voice, Metaphor,
Compassion, The poorer, the merrier. )

2 Background

The dataset used for this SemEval 2022 task was
Don’t Patronize Me! (P’erez-Almendros et al.,

2020), which contains a suite of sentences that men-
tion some vulnerable communities and published
in media in a lot of English speaking countries.
The paragraphs were manually annotated to show
1) whether the text contains any kind of PCL, and
2) if it contains PCL, what linguistic techniques
(categories) are used to express the condescension.
The paragraphs, according to (P’erez-Almendros
et al., 2020), were extracted from News on Web
(NoW) corpus (Davies, 2013), being annotated by
three expert annotators, with backgrounds in com-
munication, media and data science.

The dataset for subtask 1 (binary classification)
contained a number of 10.636 paragraphs and 2.792
instances were used for the categories classification
subtask.

In Figure 1, it can be seen that for the first sub-
task, there are almost 1000 texts that contain PCL.
This means that the dataset is highly imbalanced
and this problem needs to be addressed.

Figure 1: Classes Distribution for Binary Classification
problem (Subtask 1)

For task 2, the paragraphs from task 1 are split
according to the type of PCL speech category into
sentences, resulting in 950 samples.

3 System Overview

1. Subtask 1 (Binary Classification)

Because the dataset was very imbalanced, we
tried different approaches in order to make it
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balanced:

• Adding a class weight to the models used.
In this approach, we computed a metric
in which we obtained a class weight ac-
cording to the imbalance of the dataset.
Through this method, we gave some dif-
ferent weights to both the majority and
minority classes. This whole process had
the purpose to penalize the miss classi-
fication made by the minority class by
setting a higher class weight and at the
same time, reducing the weight for the
majority class.

• Using oversampling methods and spe-
cial ensemble techniques. In this ap-
proach, we used methods like SMOTE
(Synthetic Minority Over-sampling Tech-
nique) (Chawla et al., 2002), Adasyn
(Adaptive Synthetic) (He et al., 2008),
SVM-SMOTE (Mathew et al., 2015) and
SPE (Self-Paced Ensemble) (Liu et al.,
2020) that performs strictly balanced
under-sampling in each iteration, being
very efficient computationally.

• Augmenting the data. Because we notice
so little data for label 1, we decided to
collect hate speech datasets from Kag-
gle1 and add the positive texts into our
dataset in order to balance the classes fre-
quency, obtaining a total of 6372 from
795 initial texts with label 1. We will
notice in the results section that this col-
lection and generation of new dataset did
not provide good results.

The dataset was preprocessed. The prepro-
cessing consisted in: clearing the special char-
acters, lowercasing, tokenization, stopwords
removal, removing the words shorter than 3
characters. Then, the resulted (and clean)
dataset was split into two preprocessed types:
lemmatized cleaned dataset and stemmed
cleaned dataset. These two datasets were gen-
erated in order to make some comparison be-
tween those two techniques and to see which
provided the best results.

To extract features from text, we have used TF-
IDF (Sammut and Webb, 2010), Keras Tok-
enizer2, Word2Vec with Skip-Gram (Mikolov

1Hate Speech datasets
2Tokenizer method brought by Keras

et al., 2013) and, finally, Bert Tokenizer pro-
vided by Hugging Face (Wolf et al., 2019).

We have also used a variety of models such as
Neural Networks with 3 dense layers, Long
Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) with 64 and 128 neu-
rons with dropout of 0.1 as well, basic Ma-
chine Learning algorithms like Logistic Re-
gression, Random Forest, Support Vector Ma-
chines as XGBoost. In the end, we decided
to try BERT embeddings and a BERT classifi-
cation model, BertForSequenceClassification
3, that contains a single linear classification
layer on top and that provided the best results
after all of the other approaches.

Another approach, called "Text shards" made
use of the subtask related to multi-class classi-
fication as well. For an average text that con-
tains PCL, only some small pieces of them
are actually PCL and the rest of the text are
not. The assumption is that this confuses the
model, because a combination of PCL and
non-PCL is labeled as PCL. To address this,
the following approach is used:

• negative examples are left as they are
• each positive example is replaced with

the actual pieces of PCL inside it that we
can get from the categories file

• the positive examples obtained this way
are added with the negative examples to
obtain a training dataset

• all the sentences are cleaned of charac-
ters that are not letters and the words in
each sentence are lemmatized

• a Tensorflow Hub pretrained model
called Universal Sentence Encoder (Cer
et al., 2018) is trained on it

• for each text that we want to predict, we
first use the model on the whole text to
get an initial label

• a window (of the size of the average
length of a cleaned PCL fragment * 2) is
slided through the text and the model is
used to predict that particular substring.
If it is labeled as PCL, then we consider
the whole text as PCL.

2. Subtask 2 (Multi-label Multi-class Classifica-
tion)

3Bert for Sequence Classification
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Considering the fact that the vocabulary of
the is English is large, we have tried to lever-
age the power of pretrained language mod-
els. Therefore we have chosen 3 BERT-based
models which were pretrained for hate speech
detection and sentiment analysis. The BERT
models also provided a tokenizer which split
the sentences into tokens and appended the re-
quired tokens. The BERT models are used
from the transformers library (Wolf et al.,
2019).

• BERT (Devlin et al., 2018) Uncased
• BERT Multilingual Uncased
• BERT HateXplain (Mathew et al., 2020):

This model was trained to classify text
as Hate speech, Offensive or Normal. It
was trained on Gab, Twitter and Humain
Rationale;

• Distil BERT : This model is a version of
Distilled BERT finetuned on the Twitter
dataset;

• Distil BERT Multilingual Cased (Sanh
et al., 2019)

• Distill RoBERTa : This model is a ver-
sion of Distilled RoBERTa finetuned on
the Twitter dataset;

In the paper describing the dataset (P’erez-
Almendros et al., 2020), the authors group the
categories into 3 General categories.

(a) The saviour: Unbalanced power relations
and Shallow relations

(b) The Expert: Presupposition and Author-
ity voice

(c) The Poet: Compassion, Metaphor and
The poorer the merrier

From this idea, we tried to train the models to
predict those 3 categories, and save the hidden
features to a fixed latent space. Then these
learned features can be used when training the
model to predict the required 7 sub-classes.

Along with those BERT-based model, we
also tried to implement models based on
Word2Vec (Mikolov et al., 2013) (trained on
"Google News") and Machine Learning algo-
rithms based on TF-IDF and BOW:

• LSTM Word2Vec Embeddings (Staude-
meyer and Morris, 2019)

• BiLSTM Word2Vec Embeddings
(Huang et al., 2015)

• RNN Word2Vec Embeddings (Sherstin-
sky, 2020)

• SVM TF-IDF
• RandomForest TF-IDF

We also dabbled with the thought of training
our own Word2Vec, in order to create a model
specialized on hate speech. However we de-
cided against this idea, due to the lack of us-
able datasets and the computational resources
required for this task.

4 Results

1. Subtask 1 (Binary Classification)

Since we experimented with various tech-
niques and approaches, we decided to split
the results based on the experiments made.

(a) Deep Learning / Machine Learning for
Imbalanced and Oversampled dataset
In table 1, we can notice the results pro-
vided by classical Machine Learning al-
gorithms and 3-layer Neural Networks
(512, 256 and 128 layers with ReLU ac-
tivation and using class weight for pro-
viding accurate performance in terms of
data imbalance) on 4 types of datasets:
the original dataset (without proceeding
to class balance, but using class weights
for controlling the class weights), Ran-
dom Forest with Self-Paced Ensemble
Bootstrap technique (SPE), SMOTE and
SVM-SMOTE.
Logistic Regression gave solid results
on all variations of the datasets, provid-
ing an f1_score of 0.35 on lemmatized
dataset and 0.38 on stemmed validation
dataset. Neural Networks provided as
well good results, but did not manage to
obtain the performance of Logistic Re-
gression. We could infer from the tables
that Logistic Regression gave the best
performance on stemmed dataset.

(b) Keras Tokenizer & Word2Vec Embed-
dings + LSTM neural network
Another experiment that we conducted
was the use of Keras Tokenizer and
Word2Vec in order to extract the embed-
dings from the texts. We then applied
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Approach \ Dataset Simple SPE SMOTE SVM-SMOTE
Neural Networks 0.27 - 0.2823 0.3187
Logistic Regression 0.34 - 0.35 0.35
Random Forest 0.067 0.31 0.19 0.16
Support Vector Machines 0.27 - 0.10 0.14
XGBoost 0.15 - 0.23 0.24

(a) Results on Imbalanced and Oversampled Lemmatized dataset
Approach \ Dataset Simple SPE SMOTE SVM-SMOTE
Neural Networks 0.2698 - 0.289 0.3166
Logistic Regression 0.35 - 0.38 0.37
Random Forest 0.038 0.31 0.21 0.13
Support Vector Machines 0.27 - 0.14 0.20
XGBoost 0.17 - 0.23 0.24

(b) Results on Imbalanced and Oversampled Stemmed dataset

Table 1: Results on Imbalanced and Oversampled Lemmatized & Stemmed dataset. The results are in terms of
f1_score.

Approach \ Dataset Augmented dataset
Neural Networks 0.2155
Logistic Regression 0.23
U.S.E. + 2 dense layers 0.2316

Table 2: Results on Augmented dataset.

two LSTM models: one with 64 neurons
and the other one with 128 neurons.
The results of these two models on both
Lemmatized & Stemmed datasets with
two variations of created embeddings
(Keras Tokenizer and Word2Vec) are pro-
vided in table 3. LSTM with 64 neu-
rons provided best results on the datasets
that were using the default Tokenizer
from Keras, with an f1_score of almost
27% on Lemmatized dataset and 32&
on Stemmed dataset. Word2Vec did not
seem to provide good results in combina-
tion with LSTM networks.

(c) Data augmentation
As we discussed in the previous sec-
tion, we augmented the data by using the
positive texts from different hate speech
datasets from Kaggle and adding to our
dataset. We then applied TF-IDF vec-
torizer with 5000 features and fed the
embeddings into a 3-layer Neural Net-
work (512, 256 and 128 neurons) and to
a Logistic Regression model. Another
method used was Universal Sentence En-
coder (U.S.E. annotated in table) + 2
dense layers of 128 and 64 neurons.
The results are present in table 2. We can
infer that the third method provided the

best results, but still insufficient to reach
the level and performance of Logistic
Regression from (a).

(d) BERT Transformers + BertForSequence-
Classification
For Bert Transformers, we obtained a
performance of 0.5074, the best result
provided among all of the other models
and techniques. This performance was
obtained by using Bert Tokenizer for en-
coding the entire texts, calculating the
class weight and providing it to a BERT-
base-uncased model with AdamW as op-
timizer (learning rate of 2e − 5) and 3
epochs for training. The total training
time took 2 hours.

(e) Text shards
For "Text shards" approach, we obtained
an F1 score of 0.3117.

Overall, for the first subtask, we obtained the
best performance using BERT Transformers
and fine-tuning a BERT model with an F1
score of 0.5074. The second best-performing
algorithm was, surprisingly, Logistic Regres-
sion, that provided 0.38 on SMOTE oversam-
pled dataset.

2. Subtask 2 (Multi-label Multi-class Classifica-
tion)

(a) BERT models approach for classification
across 7 classes. Table 4a shows that
the model was able to learn only two of
the classes. The best model, DistilBERT,
obtains F1 score of 0.34.
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Approach \ Dataset Keras Tokenizer Word2Vec
LSTM (64 neurons) 0.2693 0.2109
LSTM (128 neurons) 0.2317 0.2308

(a) Results on Lemmatized dataset with class weight
Approach \ Dataset Keras Tokenizer Word2Vec
LSTM (64 neurons) 0.3213 0.2093
LSTM (128 neurons) 0.2789 0.2412

(b) Results on Stemmed dataset with class weight

Table 3: Results on Lemmatized & Stemmed datasets using Keras Tokenizer and Word2Vec as word embeddings.
The results are in terms of f1_score.

Model \ Class Unb Sha Pre Aut Met Com Mer Mean
BERT 0.82 0.0 0.0 0.0 0.0 0.0 0.64 0.21
DistilRoBERTa 0.83 0.0 0.0 0.0 0.0 0.0 0.59 0.20
DistilBERT 0.82 0.0 0.0 0.0 0.66 0.08 0.0 0.34

(a) Results of transformers trained directly on 7 classes
Model \ Sub-classes Expert Aut Pre Saviour Sha Unb Poet Com Mer Met Mean
BERT 0.44 0.0 0.0 0.85 0.0 0.84 0.69 0.0 0.0 0.59 0.20
DistilRoBERTa 0.54 0.0 0.0 0.85 0.0 0.84 0.69 0.11 0.0 0.65 0.22
DistilBERT 0.42 0.0 0.40 0.75 0.0 0.81 0.61 0.0 0.0 0.67 0.26
DistilBERTMLC 0.36 0.0 0.0 0.86 0.0 0.83 0.60 0.0 0.0 0.52 0.19

(b) Results of transformers that were trained on 3 general classes, then finetuned for the desired 7 classes

Table 4: Transformer Results

(b) The general class approach is detailed
in table 4b, where the general classes
are italicized. It shows that the general
classes were learned, but when using
the pretrained models and fine-tuning on
the specific classes, some of previously
learned features are lost. The best results
it obtained yet again by the DistilBERT
model with an F1 score of .26.

5 Conclusion

In this paper, we presented our solution to the prob-
lem posed by SemEval 2022 Task 4: Patronizing
and Condescending Language Detection. We ap-
plied various methods, including the application
of Word Embedings (Bag of Words, Word2Vec,
BERT), tokenization, oversampling/undersampling
of the datasets.

In the binary classification problem, the ap-
proach that gave the best result on the validation
dataset was BERT transformers combined with
BERT for Sequence Classification, obtaining 0.50
as F1 score, followed by Logistic Regression ap-
plied on stemmed SMOTE dataset with a perfor-
mance of 0.38.

In the multi classification multi label task, the
number of labels proved to be a challenge. The

results overall are low and the models were only
able to learn only a few classes. The general class
approach also proved to be inefficient. Perhaps a
more suitable approach would be to build more
complex models and use models that do not rely
on specific pretrained approaches.

Some recommendations for future work could
be to have a better approach and introduce more
linguistic insight in the approach.
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