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Abstract

We propose a pair of deep learning models,
which employ unsupervised pretraining, atten-
tion mechanisms and contrastive learning for
representation learning from dictionary defini-
tions, and definition modeling from such rep-
resentations. Our systems, the Transformers
for Learning Dictionaries and Representations
(TLDR), were submitted to the SemEval 2022
Task 1: Comparing Dictionaries and Word Em-
beddings (CODWOE), where they officially
ranked first on the definition modeling sub-
task, and achieved competitive performance on
the reverse dictionary subtask. In this paper
we describe our methodology and analyse our
system design hypotheses.

1 Introduction

Dictionaries are some of the linguistically richest
resources available for a language, in addition to
being extremely clean and unbiased in comparison
to most naturally occurring language data, which
is noisy and shows domain specific bias based on
its source. Thus, there has been considerable in-
terest towards using NLP models to harness this
knowledge, especially for low-resource languages.
Broadly there are two sets of approaches towards
the same - the first is to use dictionaries for repre-
sentation learning and using these representations
for transfer learning in other tasks, such as in the
work by Bosc and Vincent (2018) where they use
an LSTM based auto-encoder to learn rich rep-
resentations from dictionary definitions such that
the definitions can also be generated back from
the representations. Tissier et al. (2017) also used
dictionary definitions to build sets of ‘strong’ and
‘weak’ pairs of words to get improved word repre-
sentations with greater interpretability by moving
words which show a stronger semantic-relatedness
closer together in the embedding space.

† Authors contribute equally to this work.

The second approach has been to move in the op-
posite direction, such as in the work by Chang and
Chen (2019) where the authors try to map contextu-
alized word representations to their dictionary defi-
nitions in an effort towards word-sense disambigua-
tion. This has been further explored by Noraset
et al. (2016), where they use an RNN based lan-
guage model to generate definitions for representa-
tions. Recent work by Bevilacqua et al. (2020) im-
proves upon this by leveraging pre-trained encoder-
decoder models like BART (Lewis et al., 2019) in
order to generate the definitions of words. These
pre-trained language models, significantly outper-
form the RNN based models. The ability to gen-
erate definitions for representations makes these
contextual representations of words explainable.

NLP has advanced leaps and bounds within the
past decade, with a major push coming from the
advent and utilization of transfer learning via rep-
resentation learning techniques such as Word2Vec
(Mikolov et al., 2013a) and ELMO (Peters et al.,
2018). The more recent methods to employ trans-
fer learning use large pretrained language models,
such as BERT (Devlin et al., 2019) and XLM (Con-
neau et al., 2020). These models are jointly used
with unsupervised training objectives such as MLM
and Causal-LM, to transform natural language into
information rich meaning representations which
are then used for many different downstream tasks.
We aim to replicate the same in our experiments to
give a better prior for the model, before it learns to
generate desired representations.

One of the characteristics common to all the lan-
guage models mentioned above is that they are all
based on transformers. Transformers use the multi-
headed attention and self-attention mechanisms to
learn extremely effective language representations.
Transformers also scale well since unlike their pre-
decessors, the RNNs, they process information in
parallel and thus are much faster.

For SemEval 2022’s Task 1, Comparing Dictio-
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naries and Word Embeddings (Mickus et al., 2022),
the participants were asked to design systems for
the following two subtasks;

1. Subtask 1: Reconstruct SGNS (Mikolov
et al., 2013b), character and ELECTRA (Clark
et al., 2020) embeddings from their dictionary
glosses.

2. Subtask 2: Reconstruct the dictionary glosses
from their SGNS, character and ELECTRA
embeddings.

The subtasks are called the Reverse Dictionary
and Definition Modeling subtasks respectively. The
first subtask is evaluated on the Mean Squared Er-
ror (MSE), Cosine Similarity and Cosine Ranking
between the generated representations and the gold
representations. The second subtask is evaluated on
Mover score, Sense level BLEU score (S-BLEU)
and Lemma level BLEU score (L-BLEU).

In this system description paper we detail our
model architectures, training, evaluation and test-
ing methodologies, and try to analyse our hypothe-
ses and their impact on the final scores. For the
reverse dictionary subtask we designed a simple
BERT-like model, pretrained it on the MLM ob-
jective, and finetuned it for the subtask on a com-
bination of cosine embedding loss and MSE loss,
alongside negative sampling of the dataset to add
a contrastive loss to the overall objective function.
For the definition modeling subtask we designed a
model based on transformer decoders for natural
language generation, with masked self-attention
over the inputs in addition to multi-head attention
over the representations from the three embeddings
spaces. We submitted our systems for evaluation
over English data and our systems demonstrated
very good performance in the contest itself, with
the definition model system outperforming all other
submissions and taking first place, and the the re-
verse dictionary system achieving the fifth, sixth
and seventh place on the character, ELECTRA and
SGNS targets respectively. Lastly, we also show
some post-contest improvements on the reverse dic-
tionary system. The code for our experiments has
been open sourced and is available on GitHub.1

2 Subtask 1: Reverse Dictionary

2.1 Data Preprocessing
We maintain the data splits provided by the task
organizers (43608 training samples, 6375 dev sam-

1https://www.github.com/IamAdiSri/tldr-semeval22

ples and 6221 test samples) with each sample con-
taining the dictionary gloss and its SGNS, character
and ELECTRA representations. All models were
trained on the training split, with the best model
picked from evaluation over the dev split.

The dictionary glosses were lower-cased and
stripped of all whitespace characters except those
essential to maintaining word boundaries for to-
kenization. We also padded and truncated all se-
quences to a maximum sequence length of 256
tokens.

For contrastive learning we performed negative
sampling to augment each gloss-embedding pair
with three other embeddings from the same seman-
tic space and the same data split.

2.2 System Overview

We designed our system around three hypotheses
- firstly, using pretraining would work better than
starting from scratch since it would give the model
a good prior for the downstream tasks (transfer
learning). Secondly, training individual models for
each representation would outperform training a
single multitask model, as the representations do
not reside in a common semantic space. Thirdly,
optimizing over a combination of losses for each
of the metrics that we’re being evaluated upon, i.e.
MSE loss for MSE, Cosine Embedding (CE) loss
for cosine similarity, contrastive loss for cosine-
rank, would work better than using any of them
individually.
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Gloss Sequence
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Output Vector
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Figure 1: System architecture for the Reverse Dictionary
subtask.

The foundation of our representation learner is
based on the DistilBert (Sanh et al., 2019) archi-
tecture and comprises of a stack of 6 transformer
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encoders, with 12 attention heads each, hidden di-
mension of 3072 and embedding dimension of 768.

We start by pretraining the model via unsuper-
vised masked-language-modeling (Devlin et al.,
2018) over only the texts from the dictionary
glosses in the task dataset. Individual instances
of this pretrained model are then appended with a
linear layer of dimension 256 to project outputs in
the required dimensions, and fine-tuned for each
semantic space, optimized over the following loss
function;

L = e− log(p0) ∗ MSE(ϕ(g), vp) +

e− log(p1) ∗ CE(ϕ(g), vp) +

e− log(p2) ∗ CL(ϕ(g), vn0, vn1, vn2)

(1)

where, ϕ(g) is the sentence embedding for a
gloss g, vp is the true (or positive) embedding, vn0,
vn1 and vn2 are the negative samples and p0, p1 and
p2 are trainable parameters for weighting the dif-
ferent loss functions. MSE and CE are the Mean
Squared Error and Cosine Embedding Loss re-
spectively, which function as the reconstruction
loss between the generated representation and true
representation. Lastly, CL is the Contrastive Loss
between the generated representations and the false
representations from negative sampling. The equa-
tions for the three are given below;

MSE(a, b) =
1

d

d∑

i=0

(ai − bi)
2 (2)

CE(a, b) = 1− a.b

|a||b| (3)

CL(p, n0, n1, n2) =
2∑

i=0

1− CE(p, ni) (4)

where a, b, p and n are all vectors of size d.

2.3 Experimental Setup
We used Pytorch (Paszke et al., 2019) and the Hug-
gingFace (Wolf et al., 2019) library to write our ex-
periments in Python. Though the HuggingFace li-
brary does provide ready-to-go pretrained language
models, they were not used in our experiments or
submissions. We did however use a ready-made
pretrained tokenizer from the library to tokenize
our texts.2 This was permitted by the organizers

2https://huggingface.co/distilbert-base-uncased

and we believed would be a significant advantage
over training a new tokenizer from scratch, consid-
ering that the dataset is rather small and homoge-
neous in its linguistic variation. All models were
trained on Nvidia’s GTX-1080 Ti and RTX-2080
Ti GPUs.

We pretrained our model on the unsupervised
MLM objective, with a learning rate (LR) of 5e−5,
masking probability of 0.15, and an effective batch
size of 64 samples. For fine-tuning we use an LR of
5e− 3 with a linear LR scheduler and an effective
batch size of 64 samples per batch. Any remaining
hyperparameters were left as their default values.
We selected the language model that attained the
lowest perplexity score (55.25) over the dev split.

For models that were multitask trained, instead
of a single output layer (as shown in figure 1) we
have three output layers (one for projecting into
each semantic space), all receiving the same output
vector from the transformer encoders below them.

While finetuning we train all models for 50
epochs in total, and select a model for each se-
mantic space and metric based on the epoch that
attains the best score over the dev split. The same
model is used for producing results over the test
split.

2.4 Results and Analysis
The experiments here were designed with the intent
to evaluate the three modeling hypotheses outlined
at the beginning of section 2.2, with tests on pre-
training, mutitasking and the objective function.
The results for these experiments are given in ta-
bles 1, 3 and 4.

Repr. Metric Pretrained RndInit.

sgns mse 0.8990793 0.8987827
sgns cos 0.1805207 0.1799421
sgns rnk 0.5004269 0.5004292

char mse 0.1465276 0.1454727
char cos 0.7897581 0.7916019
char rnk 0.5004282 0.5004290

electra mse 1.5150244 1.3510013
electra cos 0.8452746 0.8455241
electra rnk 0.5000801 0.5000807

Table 1: Comparison between using pretraining versus
starting from a randomly initialized model.

As we can see from table 1, there is no signif-
icant difference (mostly under 1e − 4) between
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Repr. MSE CSim. Rank PreTr. MltTsk. Objs.

sgns 558.96838 0.18531 0.50043 CE
sgns 0.89953 0.17866 0.50043 ✓ ✓ MSE, CE, CL

char. 125.12206 0.79565 0.50043 CE
char. 0.14337 0.79560 0.50043 ✓ ✓ MSE, CE, CL

electra 49.98565 0.84564 0.50008 CE
electra 1.34014 0.84563 0.50008 ✓ ✓ MSE, CE, CL

Table 2: Best submissions on the Reverse Dictionary leaderboard.

finetuning a pretrained model versus training the
model from scratch. We did however notice that
our pretrained models seemed to converge in fewer
epochs than when the models were trained from
scratch, indicating that the pretraining did have
some positive effect.

Repr. Metric Individual Multitask

sgns mse 0.8984921 0.8990793
sgns cos 0.1786035 0.1805207
sgns rnk 0.5004290 0.5004269

char mse 0.1431219 0.1465276
char cos 0.7955332 0.7897581
char rnk 0.5004292 0.5004282

electra mse 1.3292400 1.5150244
electra cos 0.8451633 0.8452746
electra rnk 0.5000672 0.5000801

Table 3: Comparison between individual models for
each semantic space versus a single multitask model.

Table 3 displays the results of our tests compar-
ing a single multitask model for all three semantic
spaces versus training individual models for each.
Again the results are quite inconclusive whether
one reliably outperforms the other, however con-
sidering differences of over 1e− 3 to be significant
(as they affect the leaderboard rankings) we can
see that individual models outperform multitask
models on a greater number of metrics.

Finally, from the ablation tests in table 4 we can
clearly see that while optimizing over the combi-
nation of losses or MSE alone gives comparable
scores, optimizing over CE loss alone causes the
MSE score to worsen manyfold. This seems to
imply that MSE contributes significantly more than
CE and CL losses to the performance of the models.
The scores also demonstrate that tuning over MSE
tends to improve the MSE metric, while tuning

over CE improves the cosine similarity, agreeing
with our hypothesis about the same. Contrary to
our expectations however, we can also observe that
adding contrastive learning by negative sampling
does not improve the cosine-ranking by much.

3 Subtask 2: Definition Modeling
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Figure 2: System architecture for the definition model-
ing subtask.

3.1 Data Preprocessing

The dictionary glosses were first normalized for
punctuation and then tokenized using the Moses
scripts (Koehn et al., 2007). We then learn a sub-
word tokenizer on the training data, in order to cre-
ate a fixed vocabulary of subwords. The Moses to-
kenized sentences were used to learn Byte Pair En-
codings (BPE) with a vocabulary size of 10,000 us-
ing the subword-nmt library (Sennrich et al., 2016).
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Repr. Metric All Losses Only MSE Only CE

sgns mse 0.8991734 0.8956623 694685.50
sgns cos 0.1787637 0.1547712 0.1852663
sgns rnk 0.5004290 0.5004290 0.5004290

char mse 0.1430358 0.6462155 169896.47
char cos 0.7955229 0.3045915 0.7955511
char rnk 0.5004290 0.5004294 0.5004290

electra mse 1.3285819 3.5256984 82728.45
electra cos 0.8451307 0.0650083 0.8453690
electra rnk 0.5000807 0.5000807 0.5000808

Table 4: Ablation tests on the reverse dictionary objective function.

3.2 System Overview
The definition modeling problem is posed as one
of text generation, generating the definition D∗
of a word w∗ autoregressively, given the seman-
tic representation of the word in the form a vector
v∗. Therefore, we maximise the likelihood of the
definition D∗ = {w0, w1, .., wn}, where wi corre-
sponds to the ith word of the definition, given the
vector v∗.

P (D∗/v∗) =
n∏

i=0

P (wi/w0, ..wi−1, v∗) (5)

The definition modeling architecture that has
been used in this system is a transformer de-
coder, whose output softmax layer approximates
the above likelihood.

In a vanilla transformer-seq2seq architecture
(Vaswani et al., 2017), the decoder in the self-
attention layer projects the decoder states into three
matrices called Query (Q), Key (K) and Value (V )
and using the below equation, attention values are
computed.

Attn.(Q,K, V ) = Softmax
(
Q ·KT

√
d

)
· V (6)

This is followed by a cross-attention layer where
the decoder attends to the encoder states by pro-
jecting the encoder states as the Keys, Values and
using the decoder states as the Queries.

In our model, since the input vectors are not in
the same space as the decoder embeddings, a linear
layer is used to learn a projection between them.
The output of this layer is then projected into the
Key (K) and Value (V ) matrices which are used

along with the decoder self-attention outputs to
compute the cross attention values.

f = linear(vsgns ⊕ vchar ⊕ velectra) (7)

where vsgns, vchar, velectra represent the SGNS,
character, ELECTRA vectors respectively and ⊕
denotes concatenation.

K = f ·WK

V = f ·W V

Q = o ·WQ

(8)

where WK , W V are the matrices learnt to
project the output of linear layer (f ) to Key, Value
matrices and WQ is the matrix to project the output
of the decoder self-attention layer o to the Query
matrix.

3.3 Experimental Setup

The experiments for the defmod subtask were car-
ried out using the Fairseq framework (Ott et al.,
2019) in Python. All the models were trained on
Nvidia GTX 1080 Ti GPUs.

The transformer decoder model consists of 3
decoder layers, with each layers consisting of 8
attention heads and an embedding dimension of
512 with the input and the output embeddings of the
decoder being tied. The model is trained using label
smoothed cross entropy loss with label smoothing
of 0.2. A learning rate of 5e-4 using an inverse
square root scheduler with a weight decay of 0.0001
was used to optimize over a batch size of 4096
tokens.

The model was trained for over 50 epochs and
the checkpoint with the least validation perplexity
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Word Gloss Predicted Gloss

farming
A farming operation ; a farm , or
instance of farming on a piece of land .

The act or process of producing food

hazard
The chance of suffering harm ; danger , peril ,
risk of loss .

Something that causes trouble or
destruction

hardware Equipment . Of or relating to a computer system

transition
The process of change from one form , state ,
style or place to another .

The act or process of converting

hastily In a hasty manner ; quickly or hurriedly In a hurried manner

chesty Not dry ; involving the coughing of phlegm .
Of, pertaining to, or characteristic of a
dove

Solarian Of or relating to the Solar System . Of or pertaining to the planet Mars.

valid Well grounded or justifiable , pertinent . Not able to be true.

alt-left The extreme or radical left of the political spectrum .
A member of the United States of the
United States of the United States of the
United States of the United States.

Table 5: Examples of generated glosses.

was selected to generate definitions for the test set
using beam search with a beam size of 10.

3.4 Results and Analysis

The ablation study results in table 6 shows the im-
pact of each vector, namely SGNS, char and ELEC-
TRA, against the best performing model where
features were extracted using a concatenation of all
three.

Repr. Mover Score S-BLEU L-BLEU

All 0.12847 0.03278 0.04250
Electra 0.11008 0.02957 0.03629
Char 0.10403 0.02884 0.03643
SGNS 0.03622 0.01743 0.02114

Table 6: DefMod scores using all vs individual repre-
sentations

We can clearly see that the ELECTRA repre-
sentations outperform char and SGNS, with the
SGNS vectors falling significantly behind on all
three metrics. It can also be observed that by con-
catenating all three representations and extracting
useful features using attention significantly boosts
performance. This allows one to infer that char and
SGNS vectors do contain semantic information that
ELECTRA does not.

The submission utilizing all representations out-

performed all other submissions in the defmod sub-
task and ranked first for English.

3.4.1 Observations Post Dataset Release

After the passing of the task deadline, the orga-
nizers released the full dataset, complete with all
annotations. With this data we were able to make
further observations about our model by comparing
the generated glosses to the actual glosses in the
dataset. A few examples are shown in table 5. Ex-
amples marked in red indicate wrong or irrelevant
definitions, and the ones marked in green describe
the relevant ones.

From the generated glosses in green, we can
see that the model shows a remarkably good map-
ping between the words and their representations,
and makes close approximations of their meanings
when generating glosses. In the example of farm-
ing, we can see that the model is able to correctly
associate the act of farming with that of producing
food. The words hazard and transition are also
correctly associated with trouble (danger) and con-
version (change) respectively, demonstrating that
the model is able to recall similar concepts. The
model shows good language proficiency as well,
with syntactically correct utterances.

In case of words like hardware, which have mul-
tiple meanings, we can see that the model outputs
one of the secondary definitions that it has learnt
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from the dataset. From this, we can infer that in
the absence of appropriate context (i.e. how the
word is being used in a sentence), the model has
difficulty in disambiguating the word’s meaning,
although it still recognizes the word and picks one
of the correct definitions.

Finally, the model tends to learn definition tem-
plates from the training data, such as “Of, pertain-
ing to" or “Of or relating", that it reuses during
generation. As a result of being a sequence to se-
quence model, it also occasionally exhibits degen-
erate repetition, as seen in the “alt-left" example.

4 Conclusion

In this paper, we explored a variety of approaches
towards dictionary definitions and embeddings gen-
eration, especially under the constraint of being
unable to use external monolingual data. We have
analyzed the effectiveness of each of these methods,
performing ablation studies showing the impact
that various objective functions like MSE, cosine
embedding loss and contrastive loss have in recon-
structing representations from text, and coming
up with an attention mechanism utilizing all the
provided representations to generate definitions to
produce exceptional results.

As part of future work, we plan to explore the
performance of our models in multilingual settings.
We would also use test the performance of these
models against pre-trained language models like
BART, BERT etc. to gauge the impact language
model pre-trainig since we did not have enough
monolingual data in the tasks to train them. Finally,
we plan to experiment with a joint training mech-
anism where instead of training on each subtask
independently, the models can inform and improve
each other by collaboratively learning both the sub-
tasks.
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