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Abstract

This paper presents the results and main find-
ings of our system on SemEval-2022 Task
3 Presupposed Taxonomies: Evaluating Neu-
ral Network Semantics (PreTENS)1. This task
aims at semantic competence with specific at-
tention on the evaluation of language mod-
els, which is a task with respect to the recog-
nition of appropriate taxonomic relations be-
tween two nominal arguments. Two sub-tasks
including binary classification and regression
are designed for the evaluation. For the clas-
sification sub-task, we adopt the DeBERTa-
v3 pre-trained model for fine-tuning datasets
of different languages. Due to the small size
of the training datasets of the regression sub-
task, we transfer the knowledge of classifica-
tion model (i.e., model parameters) to the re-
gression task. The experimental results show
that the proposed method achieves the best
results on both sub-tasks. Meanwhile, we
also report negative results of multiple training
strategies for further discussion. All the ex-
perimental codes are open-sourced at https:
//github.com/WENGSYX/Semeval.

1 Introduction

In order to dive into the capability of the current
language models (Bengio et al., 2000; Howard
and Ruder, 2018), we take part in and apply the
pre-training language model on the SemEval-2022
Tasks 3: the Presupposed Taxonomies: Evaluating
Neural Network Semantics (PreTENS) (Zamparelli
et al., 2022). To evaluate the model performance
comprehensively, two sub-tasks are designed in
this PreTENS task:

Sub-task 1) Binary classification task2, which
consists in predicting the acceptability label as-
signed to each sentence of the test set. For example,
“I like trees, and in particular birches” is acceptable

∗These authors contribute equally to this work.
1https://sites.google.com/view/semeval2022-pretens/
2https://codalab.lisn.upsaclay.fr/competitions/1292

while “ I like oaks, and in particular trees” is unac-
ceptable, so they are labeled 1 and 0, respectively.

Sub-task 2) Regression sub-task3, which con-
sists in predicting the average score assigned by
human annotators on a seven-point Likert scale
(Joshi et al., 2015) with respect to the subset of
data evaluated via crowdsourcing. For example,“I
like governors, an interesting type of politician” is
more acceptable than “I like politicians, an interest-
ing type of farmer”, so the former will also have a
higher score (6.16) than the latter (1.42).

It is noted that both sub-tasks comprise datasets
in 3 languages: English, Italian, French, where
French and Italian are slightly adapted translations
of the English dataset. For each sub-task, every
sample is formed as the arguments A and B, e.g.,
comparatives (I like A more than B), exemplifica-
tions (I like A, and in particular B), generalizations
(I like A, and B in general), and others, where the
argument nouns are taken from various semantic
categories.

The most similar tasks are the Natural Language
Inference (MacCartney, 2009; Bowman et al.,
2015; Conneau et al., 2017) and Taxonomy Ex-
pansion & Enrichment (Zhang et al., 2018; Shen
et al., 2018; Yu et al., 2020), where the former re-
quires the model to differentiate the relationship
between a premise sentence and a hypothetical sen-
tence, while the latter shall identify the relationship
between different concepts. There are many power-
ful language models for accomplishing these tasks
(Devlin et al., 2018; He et al., 2020), and well-
formed semantic representations can be obtained
for the downstream tasks. However, it is a chal-
lenge for the model to decide the acceptance of the
given sentence, as the semantic meaning is hard
to be distinguished. Moreover, the performance of
downstream tasks when fine-tuning is limited by
the size of the training dataset (Xie et al., 2020).

To solve the above problems, we propose a
3https://codalab.lisn.upsaclay.fr/competitions/1290

239

https://github.com/WENGSYX/Semeval
https://github.com/WENGSYX/Semeval


method that applies DeBERTa to lexical-level pre-
supposed relation taxonomy with knowledge trans-
fer. Specifically, the powerful DeBERTa-v3 pre-
trained model (He et al., 2021) is fine-tuned with
datasets of different languages in the classification
task. For the regression task, due to the limited size
of the training datasets, we fine-tune the trained
model of the classification task in the regression
task. As a result, the proposed method achieves
a global top score of 94.173 in sub-task 1 and a
global top score of 0.802 in sub-task 2. Our method
wins on two sub-tasks. In addition, we present the
negative results of multiple training strategies when
fine-tuning and provide further discussions.

2 Main method

In this section, we will elaborate on the main meth-
ods for the two sub-tasks of the PreTENS task. The
training strategies are included at the end of this
section.

2.1 Sub-task 1 - Binary classification using
DeBERTa
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Figure 1: Main structure of the method in sub-task 1.

Sub-task 1 is a classic classification task, where
two acceptability labels are required to be classified.
We adopt the DeBERTa-v3 (He et al., 2021) model
for processing this binary classification, where the
main method structure is shown in Figure 1. The
given sentence is separated into tokens and then
sent to the pre-trained model as the input. To ob-
tain the complete meaning of the whole sentence,
we take the output embedding of each token to be
averaged by the averaged pooling layer. The binary

classification task is designed by sending the aver-
aged encoding into the fully connected layer with
dropout.

2.2 Sub-task 2 - Regression with knowledge
transferring
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Figure 2: Main structure of the method in sub-task 2.

Sub-task 2 is a regression task, where a seven-
point Likert-scale which ranges from 1 (not at all
acceptable) to 7 (completely acceptable) is used to
perform the regression. There is a subset of 1,533
sentences of the entire dataset for this regression
task, where the total number is relatively small. It
is a wise choice to transfer the knowledge from the
pre-trained model of sub-task 1 into the regression
task. The reason is that the fine-tuned model of
sub-task 1 learns quite a few patterns of sentence
acceptance that come from the extra knowledge. As
shown in Figure 2, the DeBERTa-v3 model trained
in sub-task 1 is designed to perform the regression
task. The fully connected layer with dropout for
obtaining the output logits is used for the regression
task.

2.3 Multiple training strategies

In this section, we will introduce some training
strategies used in the competition, which includes
data augmentation with translation, adversarial
training and child-tuning training.

2.3.1 Data augmentation with translation
When fine-tuning the English datasets, we translate
the training sample of the Italian and the French to
English one by one based on the M2M-1.2B model
(Ott et al., 2019; Fan et al., 2020). It is a process
that provides more useful datasets from the same
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Example Sample Label
Classification I like trees, and in particular birches 1

I like oaks, and in particular trees 0

Regression I like politicians, an interesting type of farmer 1.42
I like governors, an interesting type of politician 6.16

Table 1: The dataset sample example.

resources. As a result, the DeBERTa model fine-
tuned the datasets in English may achieve better
results.

2.3.2 Adversarial training
The common method in adversarial training is the
Fast Gradient Method (FGM). The idea of the FGM
(Miyato et al., 2016) is straightforward4. The loss
is to increase the gradient so that we can take

∆x = ε∇xL(x, y; θ) (1)

where x represents the input, y represents the label,
θ is the model parameter, L(x, y; θ) is the loss of
a single sample, ∆x is the anti-disturbance. To
prevent ∆x from being too large, it is usually nec-
essary to standardize∇xL(x, y; θ). The more com-
mon way is

∆x = ε
∇xL(x, y; θ)

‖∇xL(x, y; θ)‖ . (2)

2.3.3 Child-tuning training
We use the Child-tuning (Xu et al., 2021) for fine-
tuning the pre-trained model and only update the
parameters of the Child network through gradients
mask. For the two sub-tasks, the task-independent
algorithm is used. In the process of fine-tuning,
the gradients mask is obtained by sampling from
the Bernoulli distribution (Chen and Liu, 1997) in
each step of iterative update, which is equivalent to
randomly dividing a part of the network parameters
when updating. The equation of the above steps is
shown as follows

wt+1 = wt − η
∂L (wt)

∂wt
�Mt

M t ∼ Bernoulli (pF ) .

(3)

3 Experimental setup

3.1 Data description
The PreTENS dataset not only needs to judge
the classification relationship between two nouns

4https://spaces.ac.cn/archives/72

Datasets Classification Task Regression Task
Language Train Test Train Test

English 5837 14560 524 1009
French 5837 14560 524 1009
Italian 5837 14560 524 1009

Table 2: Number statistics of task dataset samples.

(Wang et al., 2017), but also needs to identify
whether the two nouns are in line with the actual
situation in the artificially constructed natural sen-
tences. The argument nouns are taken from 30
semantic categories (e.g., dogs, birds, mammals,
cars, motorcycles...).

Specifically, PreTENS is articulated into the two
following sub-tasks. The classification task re-
quires judging the acceptability of the samples. The
training set and test set contain 5838 and 14556
samples. Regression Sub-task obtains scores from
1 (not at all acceptable) to 7 (completely accept-
able) through human crowdsourcing, which could
be affected by usability considerations, argument
order, and other factors. The data set of the regres-
sion sub-task is a small amount, 524 sentences will
be provided for the training set and 1,009 for the
test set. The example of two sub-task datasets is
shown in Table 1, and the number statistics of each
sub-task is shown in Table 2.

3.2 Evaluation metrics

For classification tasks, the official evaluation in-
dicators include precision, recall, macro F1, and
global score. The global score is the average value
of macro F1.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2PrecisionRecall

Precision+Recall
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MacroF1 =

∑n
i=1 F1i
n

Global =
F1(En) + F1(Fr) + F1(It))

3

where n means that the higher the total number of
categories, accuracy, recall rate, and macro F1. The
higher F1 the method, the better the performance.5

For regression, it is mainly evaluated by MSE,
RMSE and Spearman correlation (rho) (Wissler,
1905).

MSE =
1

n
Σn
i=1

(Ri −Qi

σi

)2

RMSE =
√
MSE

RHO = 1− 6
∑n

i=1(Ri −Qi)
2

n(n2 − 1)

where the paired values of two variables are ranked
from small to large (or from large to small). Ri

represents the rank of xi, Qi represents the rank of
yi, and Ri - Qi is the difference between the ranks
of xi and yi.

3.3 Baselines introduction

3.3.1 Binary classification sub-task
N-gram method The original baseline provided
by the organizers is based on the n-grams (Broder
et al., 1997), where n=3. A Linear Support Vector
(Tang, 2013) classifier using n-grams (set to 3) as
input features is used for the binary classification.
mDeBERTa model The mDeBERTa (He et al.,
2021) is a multilingual version of DeBERTa (He
et al., 2020) which uses the same structure as De-
BERTa and was trained with CC100 multilingual
data (Wenzek et al., 2020; Conneau et al., 2020).
The mDeBERTa model comes with 12 layers and
a hidden size of 768. It has 86M backbone param-
eters with a vocabulary containing 250K tokens
which introduce 190M parameters in the Embed-
ding layer. This model was trained using the 2.5T
CC100 data as XLM-R (Conneau et al., 2019).

3.3.2 Regression sub-task
N-gram method This method is provided by the
organizers, where it uses a Linear Support Vector
regressor with the 3-grams features is provided for
the regression sub-task.

5Below is the specific meaning of the formula. TP: The
prediction is correct and the sample is correct. FP: The predic-
tion is wrong and the sample is correct. FN: The prediction is
correct and the sample is wrong.

mDeBERTa model We adopt the mDeBERTa (He
et al., 2021) for processing the sub-task 2. The
architecture of this method is the same as Figure
2, where the linear layer over in the mDeBERTa
is initialized before fine-tuning. A clamped step
is performed for obtaining the final results of the
regression.

3.4 Implementation details

We train the model based on the PyTorch (Paszke
et al., 2019) and use the hugging-face (Wolf et al.,
2020) framework. During training, we employ the
AdamW optimizer (Loshchilov and Hutter, 2017).
The default learning rate is set to 1e-5 with the
warm-up (He et al., 2016). Four RTX3090 GPUs
are implemented for all experiments. There are
some variants of the DeBERTa-v3 model, i.e., base
and large model. We adopt DeBERTa-v3-large
models as our backbone, where the batch size is
set to 24, and the max length of input is set to 64.
We train our backbone for 6 epochs, and save the
model parameters at the end of each round. We test
the saved checkpoints in the evaluation phase, and
select the highest score as the experimental result.

For the sub-task 1, we will implement the overall
training (by mixing the datasets in different lan-
guages for training), and separate training (to fine-
tune in one language and expand to the others), and
conduct experiments on the training strategies such
as FGM, data augmentation with translation and
Child-tuning.

For the sub-task 2, we map the result of [1,7] in
the label space to the minimum value of [0,1]. The
results of the regression model are clamped so that
the minimum value is 0 and the maximum value is
1. Moreover, we will compare the performance of
models which use knowledge transfer or not.

4 Results and discussions

In this section, we studied the experimental results
of the two sub-tasks and the impact of different
strategies on the results, and further discussed the
comparison with other participants to prove the
effectiveness of the method. Finally, Studies ana-
lyze the deviation of language model and the future
research direction.

4.1 Experimental results

4.1.1 Classification sub-task
Model Selection We first carry out experiments on
three different models when fine-tuning, namely
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Experimental Items English French Italian
Method Global Precision Recall macro F1 Precision Recall macro F1 Precision Recall macro F1
N-gram 72.34 64.19 85.64 73.38 65.07 89.92 75.50 55.71 87.73 68.15

mDeBERTa 88.58 83.33 95.30 88.92 82.72 93.33 87.71 83.38 95.67 89.11
DeBERTa-v3-base 72.88 75.66 69.91 75.03 83.60 75.18 81.16 58.60 69.02 62.45
DeBERTa-v3-large 92.90 88.10 95.83 91.94 92.31 93.89 93.42 93.11 93.48 93.35

DeBERTa-v3-large in English 92.24 96.18 98.57 97.48 84.38 97.14 90.19 82.36 97.11 89.06
DeBERTa-v3-large in French 89.33 85.12 96.35 90.36 85.23 86.79 86.67 88.03 93.58 90.98
DeBERTa-v3-large in Italian 91.78 96.88 89.20 93.50 92.80 82.75 88.72 94.22 91.06 93.12

DeBERTa-v3-large in En. and Fr. 93.21 92.18 96.73 94.59 95.34 92.26 94.21 92.31 87.95 90.82
DeBERTa-v3-large + FGM 88.32 83.72 97.61 89.93 81.11 96.09 87.62 80.85 96.05 87.42

DeBERTa-v3-large + Translation 92.75 92.93 96.66 94.96 88.25 94.06 91.30 89.04 94.67 92.00
DeBERTa-v3-large + Child-tuning 94.41 91.57 97.74 94.70 93.26 94.93 94.37 92.84 94.99 94.18

Ours 95.34 96.18 98.57 97.48 93.26 94.93 94.37 92.84 94.99 94.18

Table 3: Main experimental results of the sub-task1. From top to bottom, the first four lines are the comparison
between different pre-training models, and then the best model DeBERTa-large is selected as the subsequent
fine-tuning model. The four lines in the middle represent the way to use separate or overall datasets for training, not
all data sets. The last three lines are some training strategies used for fine-tuning. We chose the highest score of all
experiments under different data sets as “Ours” “Global Score”.

Experimental Items Original Fine-Tuned
Method Global Score RHO(EN)RHO(FR) RHO(IT) Global Score RHO(EN) RHO(FR) RHO(IT)
N-gram 0.309 0.265 0.317 0.344 / / / /

mDeBERTa 0.430 0.412 0.350 0.529 0.720(+0.290)0.670(+0.258)0.783(+0.433)0.708(+0.179)
DeBERTa-v3-base 0.108 0.216 -0.018 0.124 0.275(+0.167)0.266(+0.050)0.232(+0.250)0.326(+0.202)
DeBERTa-v3-large 0.429 0.426 0.344 0.516 0.815(+0.386)0.759(+0.333)0.849(+0.505)0.837(+0.321)

Table 4: Main experimental results of the sub-task2.

mDeBERTa, DeBERTa-v3-base, DeBERTa-v3-
large. It can be found in the Figure 3 that
the DeBERTa-v3-large model beats the N-gram
method and surpass mDeBERTa in French and Ital-
ian. It shows that the larger model can bring im-
provements in the classification task.
Datasets Choosing We are more curious about the
generalization ability of the DeBERTa model to
fine-tune one language and then transfer to other
languages. As a result, we fine-tune the datasets
of separate and overall training in different lan-
guages. Although the performance by fine-tuning a
single language is not satisfactory, it can be better
than overall training. It is because there will be
large gaps between different languages, and forced
dataset mixing will reduce the final performance.
Training strategies After that, we compare some
commonly used training strategies and the experi-
mental results in this task, including FGM, trans-
lation, and Child-tuning. The performance of the
FGM is not good, which indicates that the task pays
more attention to the semantic features at the lex-
ical level than the semantic features of sentences.
All languages are translated into English, even bet-

ter than using the original language. We believe
that this is because the error accumulation caused
by inaccurate translation will interfere with the se-
mantic representation information. The result of
Child-tuning is positive, which shows that the catas-
trophic forgetting problem of the model can be al-
leviated by eliminating some unimportant weights
in the large model.

4.1.2 Regression sub-task
In our experiments of sub-task 2 shown in the Fig-
ure 4, we select three different methods for the
experiments and compare them with the same ex-
perimental settings. The “Original” is the original
pre-training model, the “Fine-Tuned” represents
the model that is fine-tuned by sub-task1 and re-
initialized the linear layer. The experimental re-
sults of three different methods show that the per-
formance of the model can be greatly improved
through knowledge transfer.

4.2 Official results

As shown in Table 5 and Table 6, our method
achieved first place in subtask 1and subtask 2 and
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Experimental Items English French Italian
System Global Precision Recall macro F1 Precision Recall macro F1 Precision Recall macro F1

Ours(LingJing) 94.173 97.65 96.34 96.988 93.15 92.48 92.817 91.68 93.77 92.714
YingluLi 92.310 93.29 91.89 92.582 93.34 91.77 92.546 92.94 90.69 91.802

injySarhanUU 91.247 90.54 95.26 92.839 85.83 93.14 89.335 92.69 90.47 91.567
piano 90.842 97.72 96.15 96.926 78.85 96.51 86.792 84.86 93.14 88.807

csecudsg 90.714 89.21 93.26 91.189 88.87 91.84 90.334 90.32 90.92 90.620
holdon 89.686 92.66 96.05 94.325 81.25 94.89 87.541 80.81 94.67 87.193

Table 5: System comparison on the three datasets of binary classification sub-task.

System Global Score RHO(EN) RHO(FR) RHO(IT)
Ours(LingJing) 0.802 (1) 0.758 (1) 0.841 (1) 0.807 (1)

qiaoxiaosong 0.757 (2) 0.706 (2) 0.805 (2) 0.759 (2)
huawei_zhangmin 0.669 (3) 0.636 (3) 0.740 (3) 0.631 (3)

injySarhanUU 0.221 (5) 0.478 (4) -0.062 (16) 0.246 (5)
daydayemo 0.206 (6) 0.212 (8) 0.284 (5) 0.121 (9)

aidenqiu 0.205 (7) 0.211 (9) 0.284 (6) 0.121 (9)
Baseline 0.309 (4) 0.265 (6) 0.317 (4) 0.344 (4)

Table 6: System comparison on the three datasets of regression sub-task.
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Figure 3: Case study in the sub-task1.

was substantially ahead of second place. Specif-
ically, we earned first place in English, French
and Italian in the subtask one classification task,
with macroF1 values of 96.988%, 92.817% and
92.714%, respectively. Our global score of
94.173% was 1.863% above second place. For
the Subtask 2 regression task, we also came first in
English, French and Italian, with RHO scores of
0.758, 0.841 and 0.807, respectively. Our global
rank score of Subtask 2 was 0.802, 0.045 above the
second-place score.

4.3 Case studies
We counted and analyzed the mispredicted sam-
ples, and the distribution of error types is shown
in Figures 3 and 4. For subtask 1, we select all the
predicted error data for statistics. For subtask 2, we
chose the top 100 samples with the most significant
difference from the ground truth as the analysis
object.

21

21
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Distribution of the top 100 samples types most 
different from the ground truth in subtask 2

comparatives particular ingeneral butnot unlike other

Figure 4: Case study in the sub-task2.

As we can see from Figure 3, the most mispre-
dicted type in the classification task was “gener-
ally", with 57%, followed by“type" with 18% and
“unlike" with 16%. Our analysis suggests that the
reason for the incorrect predictions may be that
“generally" sentences are less frequent in common
usage and that our model did not have a large
enough corpus of similar samples in the previous
pre-training phase, thus leading to incorrect predic-
tions.

From Figure 4, we can see that the top 100 data
types with the greatest difference from the ground
truth on the regression task are more evenly dis-
tributed, which means that the model migration is
effective for subtask 2.

5 Conclusion

In this paper, we introduce the submitted system to
the Semeval-22 task3 PreTENS. Based on the pre-
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training DeBERTa-v3, we carry out a simple and
effective classification method in sub-task 1 and
apply the method of knowledge transferring to sub-
task 2. The proposed systems have won first place
on both sub-tasks. The experimental results show
that our proposed method has better performance
than other methods. In addition, we also conducted
a number of comparative experiments to further
explore the difficulties of the PreTENS task. In
the future, we will try to explore more effective
methods to perform better semantic taxonomies.
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