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Abstract

This paper describes our system, which placed
third in the Multilingual Track (subtask 11),
fourth in the Code-Mixed Track (subtask 12),
and seventh in the Chinese Track (subtask 9)
in the SemEval 2022 Task 11: MultiCoNER
Multilingual Complex Named Entity Recog-
nition. Our system’s key contributions are as
follows: 1) For multilingual NER tasks, we of-
fer an unified framework with which one can
easily execute single-language or multilingual
NER tasks, 2) for low-resource code-mixed
NER task, one can easily enhance his or her
dataset through implementing several simple
data augmentation methods and 3) for Chinese
tasks, we propose a model that can capture
Chinese lexical semantic, lexical border, and
lexical graph structural information. Finally,
our system achieves macro-f1 scores of 77.66,
84.35, and 74.00 on subtasks 11, 12, and 9,
respectively, during the testing phase.

1 Introduction

SemEval 2022 Task 11: MultiCoNER Multilin-
gual Complex Named Entity Recognition(Malmasi
et al., 2022b) focuses on extracting semantically
ambiguous complex named entities(Meng et al.,
2021) in short, low-context and code-mixed(Fetahu
et al., 2021) scenarios. The domain adaptabil-
ity capacity of the system is in high demand for
this shared task, which contains 13 tracks in En-
glish, Spanish, Dutch, Russian, Turkish, Korean,
Farsi, German, Chinese, Hindi, Bangla, multi-
language, and code-mixed. Among them, multi-
language, and code-mixed tracks are in the mixed
language, while the other tracks are in the single
language. The difference between multi-language
track and code-mixed track is that the corpus of
multi-language track is multilingual, but the words
in each sentence are in a single language, while the
corpus of code-mixed track is a corpus in which the
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words or phrases in each sentence may be from dif-
ferent languages, for example the sentence I Liebe
Sie (I love you) consists of English, French and Ger-
man. Furthermore, the datasets offered by the or-
ganizers , which may mainly from Wikipedia, web
questions and user queries, comprise data from 11
languages, with each language containing around
15,000 training samples and 800 development (dev)
samples(Malmasi et al., 2022a). The corpus con-
tains a total of six entity categories, namely loca-
tion (LOC), person (PER), product (PROD), group
(GRP), corporation (CORP) and creative works
(CW). The main contributions of our system are
as follows: 1) we propose a unified framework for
multilingual NER tasks, using which one can easily
perform monolingual or multilingual NER tasks;
2) for low-resource code-mixed NER tasks, we pro-
vide several simple and effective data augmentation
methods to easily increase the amount of data; 3)
for Chinese tasks, we propose a model that captures
Chinese lexical semantics, lexical boundaries and
lexical graph structure information in a model.

2 Related work

Named Entity Recognition (NER)—a classic and
fundamental task that aims to extract named enti-
ties from a sentence—plays an important role in a
variety of downstream tasks in the field of NLP,
including relation extraction (Zhong and Chen,
2021), knowledge graph construction (Bosselut
et al., 2019), question answering (Diefenbach et al.,
2018) and so on. For a long time, the develop-
ment of NER was slow, especially before the rise
of neural networks, and NER mostly used statisti-
cal machine learning methods like HMM(Morwal
et al., 2012) and CRF(Konkol and Konopík, 2013).
Although these methods were effective at the time,
they were still stretched for complex scenarios. Af-
ter the rise of neural networks, especially structured
networks such as RNNs(Sherstinsky, 2020) and
CNNs(LeCun et al., 1998), NER has been greatly
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developed, and the accuracy has been greatly im-
proved compared with traditional statistical learn-
ing methods. There are also methods that combine
neural networks with traditional statistical learn-
ing methods, such as BiLSTM+CRF(Chen et al.,
2017). Although these methods take NER to an-
other higher level, they also have certain problems.
For example, RNNs cannot model bi-directionally
context, and then there is the inability of RNNs to
capture long-term dependencies, and though CNNs
can model bi-directionally, but due to the size of
convolutional kernels, they can only model local
contextual information at the same time and cannot
capture global contextual information. Recently,
self-training pre-training models on large-scale cor-
pus such as BERT(Kenton and Toutanova) and its
variant versions have greatly improved the accuracy
of NER tasks and effectively solved the problem
that RNNs cannot capture long-range dependencies
as well as dynamic contexts. From statistical mod-
els like HMM and CRF to deep learning models
like CNN, RNN, and transformer-based pre-trained
models, the accuracy of NER tasks is increasing
and has reached commercial levels in many scenar-
ios(Yadav and Bethard, 2018). Despite its remark-
able progress, NER still faces some challenges(Ma
et al., 2020), such as the problem of discontin-
ued and nested named entities(Yan et al., 2021),
the challenge of cross-domain and cross-lingual
transfer learning(Mueller et al., 2020), the lack of
lexicon information when using sub-character tok-
enization strategy and word boundary information
of Chinese NER tasks(Zhang and Yang, 2018), and
the ambiguity of named entities(Meng et al., 2021)
under different semantic circumstance.

3 System overview

Figure 1 depicts our system’s overall architecture
and technological process. As we can see, the
unified framework allows us to complete all of the
subtasks.

3.1 Backbone encoder

We selected XLM-RoBERT-large (Conneau et al.,
2020) as our backbone encoder to establish frame-
work unity and make full use of data from different
tracks to realize language transfer. XLM-RoBERTa
is a multilingual version of RoBERTa that has been
pre-trained on 2.5TB of data in 100 languages. The
large version has 24 transformer layers, 16 self-
attention heads per layer, and a hidden size of 1024.

Figure 1: The architecture and procedures of our system

3.2 Training procedures

We take multiple steps to fine tune our system,
including full data fine-tuning stage, track spe-
cific fine-tuning stage, model ensemble stage and
pseudo label fine-tuning stage.

3.2.1 Full data fine-tuning stage
As the first step of our system, we fine tune our
model with data from all languages provided by
official. At this stage, we hope that the model can
learn the distribution of datasets and capture the
named entity information from the total data, which
will aid our model in transferring to those data on
specific tracks. To improve the model’s cognitive
ability and stability, we implemented the following
set of training skills.
Data Augmentation:We did not simply feed the
data into our model, but enhanced data firstly
in a simple way—concatenating sentences ran-
domly, including bisent-uni—concatenating two
sentences from the same language randomly into
a new sentence, bisent-mix—concatenating two
sentences from different language randomly into
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a new sentence, mulsent-uni—concatenating sev-
eral sentences from the same language randomly
into a new sentence with a length of no more than
512 and mulsent-mix—concatenating several sen-
tences from different language randomly into a new
sentence with a length of no more than 512.
Adversarial Training: Considering that the deep
neural networks are vulnerable to adversarial ex-
amples, we adopt FGM(Miyato et al., 2017),
PGD(Mądry et al., 2017) and FreeLB(Zhu et al.,
2019) adversarial training techniques to keep our
model tolerant of adversarial examples and more
robust. These methods create adversarial exam-
ples by adding a small perturbation to input that
maximizes the loss. The formulation of adversarial
training can be drew below,

min
θ

E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
(1)

where δ is a small perturbation. The inner maxi-
mization can be solved by projected gradient ascent
and the outer minimization can be solved by gra-
dient descent. PGD and FreeLB are the improved
version of FGM, both of which are devoted to find
a more reasonable perturbation.

3.2.2 Track specific fine-tuning stage
At this stage, we use different methods to fine tune
according to the specific track.
Track 9 - Chinese (ZH): Track 9 is devoted to
the recognition of Chinese named entities. There
are significant differences between Chinese and
Indo-European languages like English, German,
and Spanish. For example, there is no word bound-
ary in the Chinese lexicon, however Chinese word
semantic and boundary information is useful for
NER. Therefore, after the fine-tuning at the first
stage, we utilize some techniques to improve our
model’s ability to understand Chinese. In particular,
we incorporate LEBERT(Liu et al., 2021) and Co-
Graph4NER(Sui et al., 2019) into our framework to
improve our model’s understanding of Chinese lex-
icon boundaries and semantics. It is worth noting
that, we did not directly implement these methods;
instead, we drew lessons from the ideas presented
in these two papers and appropriately transformed
the structures mentioned in these two papers to ap-
ply to our system.
LERoBERTa: LERoBERTa is our modified ver-
sion of LEBERT that integrates lexicon information
into the specific layers of the pre-training model
to obtain word-related information via a structure

called Lexicon Adapter. The specific structure of
Lexicon Adapter is shown in Figure 2,

Figure 2: Structure of Lexicon Adapter. This structure
pays bilinear attention to characters and vocabulary at
the same time, weights vocabulary features into vectors,
and then adds them to the input character level vector,
and then performs layer normalization.

Because the original LEBERT paper is applied
to BERT, it is not consistent with our framework.
In order to apply it to our framework, we con-
verted it to LERoBERTa, which differs slightly
from LEBERT.
LERoBERTa-GCN4NER: LERoBERTa does not
fully utilize the graph relation of containing, tran-
sition, and lattice between words and characters
because it only integrates information from the bot-
tom encoding layer. An assumption is that the char-
acters in the sentence can capture the boundaries
and semantic information of self-matched lexical
words using the containing graph (C-graph), the
transition graph (T-graph) can assist the charac-
ter in capturing the semantic information of the
nearest contextual lexical words implicitly, and the
lattice graph (L-graph) can capture some informa-
tion of self-matched lexical words explicitly. So,
we make some improvements to CoGraph4NER,
called GCN4NER, to make full use of the graph
relation and thus improve the model’s ability to
capture Chinese lexicons. GCN4NER is a mod-
ified version of CoGraph4NER that replaces the
LSTM encoder with LERoBERTa to conform to
our algorithm framework and replaces the GAT
module with GCN to improve calculation speed.
The overall system of LERoBERTa-GCN4NER is
shown in Figure 3,
Track 12 - Multilingual: Track 12 focuses on
multilingual named entity recognition and the dif-
ficulty with this track is that it contains multiple
languages, each with its own syntax. So the model
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Figure 3: Main architecture of LERoBERTa-
GCN4NER. Characters of "Tom left Los Angeles Air-
port" are encoded by LERoberta and then the hidden
vectors and vectors of lexicons are inputted into the
GCN module, the outputs of which will then be fused
by weighted summation in fusion layer. Finally, the
decoding layer assigns a label to each character.

must learn multiple language characteristics con-
currently. It is difficult for participants to analyze
the model’s bad cases because they are not familiar
to every language. At this stage, we not only use
R-Drop(Wu et al., 2021) but also utilize shared fea-
ture extractors and private feature extractors(Chen
et al., 2019), considering the fact that there are dif-
ferences in grammar and common characteristics
in semantics of texts in different languages.
R-Drop: Since deep neural networks are very
prone to overfitting, the Dropout method randomly
discards some neurons in each layer to avoid
overfitting during training. Based on this idea,
researchers improve dropout method, called R-
Drop. Given a training sample D = {xi, yi}, i =
1, · · · , n, for each sample , it goes through the for-
ward feedback of two different sub-networks to get
two predicted probabilities P1 and P2. Although
the two sub-networks come from the same model,
they are not exactly the same because Dropout ran-
domly discards some neurons, and P1 is not equal
to P2.
Shared Feature Extractor and Private Feature
Extractor: We leveraged the ideas of the pa-
per(Chen et al., 2019) and modified the model in
combination with datasets offered by the official.
With this method, our model can learn general and
specific characteristics between different language

which may improve model’s comprehension.

The shared feature extractor consists of a shared
feature learner and a language discriminator. The
shared feature learner extracts general features
from different languages, and then inputs them
into the language discriminator to judge which lan-
guage these features belongs to. When the lan-
guage discriminator is unable to determine which
language the current text belongs to, it signifies that
the shared feature learner has learnt the common-
alities between the languages, hence fulfilling the
goal of perplexing the language discriminator.
There are differences in grammar and meaning of
texts in different languages, so the model of this
scheme also designs a private feature extractor. The
private feature extractor performs feature extraction
on the word vector output by backbone encoder,
and then outputs it to the multilayer perceptron
(MLP) of each language. The MLP of each lan-
guage extracts the exclusive language features in
the text, and then splices the output of each lan-
guage.
Track 13 - Code-Mixed: Track 13 is a track dedi-
cated to code-mixed data. The prevalence of code-
mixed text is fast increasing on social media plat-
forms such as Twitter. The code-mixed task is
difficult because it introduces a large number of
unseen constructions as a result of merging the lex-
icon and syntax of two or more languages, and the
available data is insufficient in comparison to the
other sub-tasks. Therefore, after fine-tuning at the
first state, we utilized data augmentation(Dai and
Adel, 2020) to supplement the training data in this
task. When the labeled datasets are insufficient,
data augmentation is a frequently used strategy for
enhancing generalization. However, the NER task
is concerned with sequence labeling at the token
level, and the majority of data augmentation meth-
ods at the sentence level may compromise label
integrity. We used Mention replacement (MR)
and Shuffle within segments (SiS) techniques to
resolve the issue. MR is a data augmentation ap-
proach that replaces the position of entities in the
original sentence with other entities of the same
category while keeping the non-entity part of the
sentence unchanged. And SiS is a data enhance-
ment method that keeps the order of words of enti-
ties in the original sentence unchanged and disrupts
the order of words in the non-entity part.
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3.3 Model ensemble stage

Model Ensemble is a method for integrating multi-
ple trained models in order to improve the system’s
generalization ability in test datasets(Allen-Zhu
and Li, 2020). Model ensemble can be achieved
in a variety of ways, including voting, averaging,
stacking, and confidence blending. Voting is one of
them, and it is a simple yet effective method, so we
use it in our system. We trained several models for
each track based on different hyper parameters and
then predicted test datasets to get corresponding
results. We then voted for the final result based on
these intermediate results.

3.4 Pseudo label fine-tuning stage

Pseudo labelling is a type of semi-supervised learn-
ing in which the model trained by labelled data is
used to generate pseudo labels for an unlabelled
dataset(Lee et al., 2013). We then put both the orig-
inal labelled dataset and a portion of the unlabelled
dataset with pseudo labels into our models for fi-
nal training during the pseudo label fine-tuning
stage. Voting is how we generate pseudo labels.
We choose sentences that can be consistently pre-
dicted by all models generated in the model en-
semble stage as training samples with reasonable
pseudo-labels.

4 Experimental setup

In this session, we are going to describe the imple-
mentation details of our system.
Dataset and word embeddings: Train and dev
datasets we used are provided by official and we
don’t use test dataset before testing phase because
it was not available. Besides, experiments at model
ensemble stage and pseudo label fine-tuning stage
are carried on test dataset.Since LERoBERTa and
GCN4NER techniques require word embedding
and considering the lack of embedding of relevant
words in the pre-trained model XLM-RoBERTa,
we use word embedding sgns.merge.word † trained
by skip-gram.
Processing and hyper parameters: Limited by
the length of the paper, we will only briefly intro-
duce our main processing and part of hyper param-
eters, with which our system can reach the best re-
sult. Learning rate was set to 1×10−6, warming up
proportion to 0.06, drop out rate to 0.2, batch size

†https://drive.google.com/file/d/1Zh9ZCEu8_eSQ-
qkYVQufQDNKPC4mtEKR/view.

to 32, epoch to 30, random seed to 42 and the num-
ber of voting models to 7. Augmentation method
for full data fine-tuning stage was mulsent-uni, de-
coder strategy was softmax and adversarial training
method was PGD with ϵ = 1.0, α = 0.1,K = 3.
For more details, please check the Appendix A.
Through out our system we almost only use soft-
max as our decoder strategy because we have found
CRF has no effect on improving the scores com-
pared to softmax but consumes more computing
resources and storage space. So, we drop CRF strat-
egy. One plausible explanation for this is that pre-
trained models have already caught the relations
between tokens which may not be well captured
by non-pretrained models. We selected the best
epoch and the best hyper parameters using perfor-
mance (measured in terms of macro-f1 score) on
corresponding dev dataset.

5 Results

In this section, we will report our main experiment
and provide an analysis of the results. Unless other-
wise specified, the hyper parameters in our experi-
ments are configured in accordance with Section 3.
Full data fine-tuning stage: Table 1 displays
the results of experiments performed with the fol-
lowing parameters: FGM with ϵ = 0.8, PGD
with ϵ = 1, α = 0.1,K = 3 and FreeLB with
adv_lr = 0.3,mag = 0.05,K = 3. These hyper
parameters are the best that we have found.

As we can see from Table 1, three tracks have
an improvement in the mulsent-uni data augmenta-
tion method where Chinese(ZH) and Multilingual
tracks improve nearly 0.5 percent and Mix-Code
tack increases 1.2 percent to 77.19. What’s more,
all adversarial training techniques we employed
in our system make a great improvement in Chi-
nese(ZH) and Multilingual track, but nearly have
no effect on Mix-Code track. However, when we
adopt mulsent-uni and PGD simultaneously, scores
are surprisingly high, 88.46 for ZH-Chinese, 86.93
for Multilingual and 78.21 for Mix-Code and this
checkpoint is our best checkpoint at full data fine-
tuning stage which will continue to be used at track
specific fine-tuning stage.

Chinese (ZH) track fine-tuning: As for
Chinese (ZH) track, we employ LERoBERTa,
GCN4NER and LERoBERTa-GCN4NER for fine-
tuning. Table 2 demonstrates that, LEBERT gets
the lowest score without our full data fine-tuning
stage and our modified version, LERoBERTa,
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Table 1: Marco-f1 scores(%) on dev dataset under different methods at full data fine-tuning stage

methods Chinese(ZH) Multilingual Mix-Code

\ \ 86.31 85.82 75.93

data augmentation

bisent-uni 86.20 86.02 77.01
mulsent-uni 86.06 86.06 77.19
bisent-mix 85.27 86.01 74.67

mulsent-mix 86.50 85.91 74.43

adversarial training
FGM 86.85 86.85 75.54
PGD 87.37 86.33 75.96

FreeLB 86.81 86.14 75.88

methods ensemble mulsent-uni+PGD 88.02 86.93 78.21

GCN4NER and LERoBERTa-GCN4NER have a
positive effect on improving macro-f1 score. We
can prove our hypothesis that LERoBERTa only
integrates the information of words from the bot-
tom encoding layer, and that it does not make
full use of the graph relation of containing, tran-
sition, and lattice between words and characters,
by observing the differences in results between our
modified models. As a result, LERoBERTa just
climbs by 0.18 percent. Similar to GCN4NER,
it may just consider character graph relationships
while ignoring lexical semantic information. So,
GCN4NER increases by 0.32 percent. When these
two approaches are combined, we discover that
LERoBERTa-GCN4NER improves by 1%, giving
it the highest score on the dev dataset in our system.

Multilingual track fine-tuning: This experi-
ment continually use the best checkpoint from full
data fine-tuning stage . We try R-Drop technique
and private feature extractor and shared feature
extractor (PFE-SFE) method to improve the perfor-
mance of our model on this track. In the R-Drop
experiment, we use the average method for the KL
divergence, and set coefficient parameter α to 0.1
and it obtains a marco-f1 score of 87.15 on the dev
dataset which means that this method has a good ef-
fect on multilingual tasks. What‘s more, we adopt
PFE-SFE method and the marco-f1 score achieve
87.21 in our experiment.

It can be seen from Table 3 that both R-Drop and
PFE-SFE have improved macro f1 score compared
to the baseline model, R-Drop is 0.22% higher than
the baseline, and PFE-SFE is 0.28% higher than
the baseline. It can be seen that both methods have
certain effects. When we combine R-Drop with
PFE-SFE, the macro-f1 value reaches 87.42, which

is 0.49% higher than the baseline.
Mix-Code track fine-tuning: As for Mix-Code

track, we used mention replacement (MR) and shuf-
fle within segments (SiS) techniques to resolve the
insufficiency issue of mix-code data and increase
the generalization ability of our model on this track.
We not only utilize the parameter setting at full data
fine-tuning stage, but also employ the best check-
point at full data fine-tuning stage.

As shown in Table 4, all of the data augmenta-
tion techniques we utilized increase macro-f1 over
the baseline value when no augmentation is ap-
plied. The MR technique enables the model to get
a more accurate representation of entity knowledge
and entity boundary information based on external
knowledge. Additionally, by changing the order of
the sequences, the SiS technique enables the model
to learn a more robust position embedding.And the
result in bold is our best score on the leaderboard
before testing phase.

Model ensemble stage: At this stage, test data
is available and we choose the top-7 models based
on marco-f1 score under 7 sets of different parame-
ters to vote on the final results. For details, please
check the Appendix B. The second row in Table
5 shows the best results predicted singly by our
chosen models. As we can see from Table 5, model
ensemble has a positive effect. Before the number
of models increases to 7, scores increase as the
number of models increases but the growth rate
slows down which means more models will have
little effect even negative effect.

Pseudo labeling fine-tuning stage: After model
ensemble stage, we select 7 models with the highest
f1 values on the development set to make predic-
tions on the test set, and choose the results that all
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Table 2: Marco-f1 scores(%) on dev dataset under different models at Chinese (ZH) track fine-tuning stage

Models XLM-RoBERTa LEBERT LERoBERTa GCN4NER LERoBERTa-GCN4NER

Chinese(ZH) 88.46 86.02 88.62 88.78 89.4

Table 3: Marco-f1 scores(%) on on dev dataset under different methods at multilingual track fine-tuning stage

methods \ R-Drop PFE-SFE R-Drop+PFE-SFE

Multilingual 86.93 87.15 87.21 87.42

Table 4: Marco-F1 scores(%) on dev dataset under dif-
ferent data augmentation strategies at code-mixed fine-
tuning stage

Data Augmentation Methods Mix-Code

\ 79.8

Mention replacement (MR) 82.0

Shuffle within segments (SiS) 81.1

MR + SiS 82.2

Table 5: Macro-F1 scores(%) on test dataset under dif-
ferent number of models at model ensemble stage(N
denotes the number of models)

N Chinese(ZH) Multilingual Mix-Code

1 67.71 73.18 80.32

3 69.42 73.86 82.43

5 69.73 74.32 82.75

7 68.20 73.67 81.53

seven models predict consistently as the pseudo-
labeled data and then we put them together with
train dataset for fine-tuning at this stage. We con-
tinually use the best checkpoint of LERoBERTa-
GCN4NER to fine tune on the Chinese(ZH) track
and same as the Multilingual track and Code-mixed
track. In addition, the hyperparameters remain the
same as in the previous phase. The results we ob-
tained are as shown in Table 6. Obvious as the
effect is, macro-f1 scores increases 5.22 points on
the Chinese(ZH) track, 4.04 points on the Multi-
lingual track and 3.59 points on the Code-mixed
track.

Table 6: Macro-F1 scores(%) on test dataset at pseudo
labeling fine-tuning stage

pseudo Chinese(ZH) Multilingual Mix-Code

% 67.71 72.87 80.32

! 72.93 76.91 83.91

Next, same as model ensemble stage we choose
7 sets of different parameters to train on the pseudo
label dataset and get 7 sets of checkpoints. For
more details about these models, please check the
Appendix A. The results are shown in Table 7.
As we can see, the results are similar to those at
model ensemble stage. Macro-f1 scores also have
an improvement but the increments are less than
before.The value in bold is our result in the final
ranking.

Table 7: Macro-F1 scores(%) on test dataset under dif-
ferent number of models at pseudo labeling fine-tuning
stage (N denotes the number of models)

N Chinese(ZH) Multilingual Mix-Code

1 72.93 76.91 83.91

3 73.60 77.37 84.29

5 74.00 77.66 84.35

7 73.25 77.32 84.02

6 Conclusion

In this paper, we have introduce our system step by
step which can be regarded as an universal frame-
work for multilingual NER task. Besides, we pro-
posed a graph-based model to make up for the lack
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of understanding capacity of Chinese lexicon. Ade-
quate ablation experiments shows that our methods
work for this task. In future efforts, we plan to
further improve our system to better handle polyse-
mous scenarios.
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Appendix

A Hyper parameters setting

In these tables, T, C and L under graph parameter
denote T-graph, C-graph and L-graph respectively
which means we use one or all of these three graph
in our LERoBERTa-GCN4NER model.

Table 8: Scope of each hyper parameters that we have
tried in our experiments

parameters scope
learning rate 5× 10−6, {1, 3, 5} × 10−5

warming up rate { 0.06, 0.1 }
seed { 42, 100, 200, 2022 }

batch size { 8, 16, 32 }
epoch { 30, 50 }

FGM(ϵ) { 0.1, 0.3, 0.5, 0.8, 1 }
PGD(ϵ) { 0.1, 0.3, 0.5, 0.8, 1 }
PGD(α) { 0.3, 1 }
PGD(K) { 1, 2, 3, 5 }

FreeLB(adv_lr) { {1, 3, 5} × 10−5 }
FreeLB(mag) { 0.05, 0.1, 0.5 }
FreeLB(K) { 1, 2, 3, 5 }
R-Drop(α) { 0.01, 0.05, 0.2, 0.5 }

GCN4NER(graph) { T+C+L, T, C, L }

B Macro-f1 scores(%) predicted singly by
different models under different
parameters
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Table 9: Macro-f1 scores(%) predicted by every single model under different parameters on Chinese(ZH) test
dataset at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze PGD graph

1 67.71 1× 10−5 0.06 32 + T+C+L

2 67.56 5× 10−6 0.1 32 + T+C+L

3 67.68 1× 10−5 0.06 16 + T+C+L

4 67.43 1× 10−5 0.06 32 - T+C+L

5 67.35 1× 10−5 0.06 32 + T

6 67.32 1× 10−5 0.06 32 + C

7 67.21 1× 10−5 0.06 32 + L

Table 10: Macro-f1 scores(%) predicted by every single model under different parameters on Chinese(ZH) test
dataset at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze PGD graph

1 72.56 1× 10−5 0.06 32 + T+C+L

2 72.89 5× 10−6 0.1 32 + T+C+L

3 72.93 1× 10−5 0.06 16 + T+C+L

4 72.53 1× 10−5 0.06 32 - T+C+L

5 72.58 1× 10−5 0.06 32 + T

6 72.42 1× 10−5 0.06 32 + C

7 72.33 1× 10−5 0.06 32 + L

Table 11: Macro-f1 scores(%) predicted by every single model under different parameters on multilingual test
dataset at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze PFE-SFE R-Drop(α)

1 72.32 5× 10−6 0.06 16 + 0.05

2 73.18 5× 10−6 0.06 16 + 0.1

3 72.86 5× 10−6 0.06 16 + 0.2

4 72.64 1× 10−5 0.06 16 + 0.1

5 72.12 5× 10−6 0.06 16 - 0.1

6 73.01 5× 10−6 0.1 16 + 0.1

7 73.09 5× 10−6 0.06 32 + 0.1
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Table 12: Macro-f1 scores(%) predicted by every single model under different parameters on multilingual test
dataset at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze PFE-SFE R-Drop(α)

1 76.43 5× 10−6 0.06 16 + 0.05

2 76.91 5× 10−6 0.06 16 + 0.1

3 76.74 5× 10−6 0.06 16 + 0.2

4 76.18 1× 10−5 0.06 16 + 0.1

5 75.96 5× 10−6 0.06 16 - 0.1

6 76.63 5× 10−6 0.1 16 + 0.1

7 76.78 5× 10−6 0.06 32 + 0.1

Table 13: Macro-f1 scores(%) predicted by every single model under different parameters on mix-code test dataset
at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze data augment decoder

1 80.32 1× 10−6 0.06 32 MR + SiS crf

2 80.21 1× 10−6 0.06 32 MR + SiS crf

3 79.84 1× 10−5 0.06 32 MR + SiS softmax

4 80.09 1× 10−6 0.1 32 MR + SiS softmax

5 79.94 1× 10−6 0.06 32 MR crf

6 80.11 5× 10−6 0.06 16 MR crf

7 79.75 1× 10−6 0.06 32 MR softmax

Table 14: Macro-f1 scores(%) predicted by every single model under different parameters on mix-code test dataset
at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze data augment decoder

1 83.91 1× 10−6 0.06 32 MR + SiS crf

2 83.38 1× 10−6 0.06 32 MR + SiS crf

3 83.40 1× 10−5 0.06 32 MR + SiS softmax

4 83.55 1× 10−6 0.1 32 MR + SiS softmax

5 83.00 1× 10−6 0.06 32 MR crf

6 83.70 5× 10−6 0.06 16 MR crf

7 83.50 1× 10−6 0.06 32 MR softmax
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