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Abstract

The multilingual complex named entity recog-
nition task of SemEval2020 required partici-
pants to detect semantically ambiguous and
complex entities in 11 languages. In order to
participate in this competition, a deep learning
model is being used with the T5 text-to-text lan-
guage model and its multilingual version, MT5,
along with the transformer’s encoder module.
The subtoken check has also been introduced,
resulting in a 4% increase in the model F1-
score in English. We also examined the use of
the BPEmb model for converting input tokens
to representation vectors in this research. A
performance evaluation of the proposed entity
detection model is presented at the end of this
paper. Six different scenarios were defined, and
the proposed model was evaluated in each sce-
nario within the English development set. Our
model is also evaluated in other languages.

1 Introduction

Named Entity Recognition (NER) is a key com-
ponent of Natural Language Processing (NLP) as-
signed to identify regions of text that contain refer-
ences to entities. It is the process of identifying the
informative part of data or applicable labels from
unstructured data. In NER, data is gathered from
unstructured data such as emails, blogs, newspa-
pers, tweets, etc., to extract meaningful informa-
tion.

To put it another way, the term NER refers to
identifying token spans of entities mentioned in
the text and classifying them into a set of predeter-
mined categories. The system finds entities from
unstructured data and organizes them into multiple
categories. As an extension of NLP, the field of
NER can be considered as Information Extraction
(IE).

For NLP, IEs are among the trending fields
and play an essential role in the following tasks:

∗Equal contribution. Listing order is random.

Find and understand limited relevant parts of texts,
Gather information from many pieces of text, and
Produce the unified representation of all the rel-
evant information. The NER problem falls into
a general class of NLP problems called sequence
tagging. Part of Speech (POS) tagging and chunk-
ing are sequence tagging NLP tasks in addition to
NER. It is possible to detect NER in three ways:
flat NER, nested NER, and discontinuous NER.
Nested NER has overlapping in the span of text
Yan et al. (2021). Most approaches only target
flat entities, ignoring nested structures common in
many scenarios. It is challenging to identify spans
as well as types of named entities in text Lample
et al. (2016). So to find the best architecture, we
implement a transformer-based language model in
this research. NLP has significantly benefited from
transfer learning in recent years. Transfer learning
gains power and effectiveness from pre-training
on large, unlabeled text datasets. The model can
then be fine-tuned to a smaller labeled dataset, re-
sulting in better performance. Many models have
achieved success in this field, including the Text-To-
Text Transfer Transformer (T5) Raffel et al. (2019).
The T5 is a pre-trained encoder-decoder language
model that employs the "text-to-text" format to
accomplish all types of NLP work, including gen-
eration, translation, and summarization tasks.

In SemEval-2022 task 11 Malmasi et al. (2022b),
a multilingual complex NER is provided. Lan-
guages presented in Malmasi et al. (2022a) are
Bangla, German, English, Spanish, Farsi, Hindi,
Korean, Dutch, Russian, Turkish, and Chinese.
Since this dataset contains words from different
languages, it is challenging to choose an appropri-
ate word representation for converting them into
their corresponding vectors. The multilingual na-
ture of this task necessitated the selection of the
multilingual variant of Google’s T5 model named
MT5 Xue et al. (2020) that had already been trained
on a database of more than 101 languages and con-
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tained up to 13 billion parameters. In this paper,
MT5 is used as the main Embedding.

We evaluated the proposed model using the En-
glish test set and achieved the F1-score of 71.45%
as part of this competition. In our next step, we
considered this model in other subtasks, and our
rank varied from 9 to 21 depending on which sub-
task we evaluated. Our code is available at GitHub1

for researchers.
The contributions of this paper are summarized

as follows. Section 2 introduces previous attempts
in the NER. In Section 3, information about the
task and datasets is presented. We then offer a deep
learning framework for recognizing named entities
in Section 4. Section 5 details the experimental
setup, while Section 6 presents the results of the
experiments. Section 7 presents both quantitative
and qualitative error analysis. We conclude our
paper in Section 8.

2 Background

The NER field has undergone enormous changes in
recent years Meng et al. (2021) Fetahu et al. (2021).
As mentioned before, NER is the process of iden-
tifying relevant objects such as persons, products,
genes, place, organization, etc., that are mentioned
in the string of the text, sentence, or paragraph.
NER typically forms the basis of other tasks such
as event detection from news, online shopping cus-
tomer service, knowledge graph construction, and
biological analysis Bokharaeian et al. (2017).

Yu et al. (2020) stated that since NER tags are
nested, it uses the graph-based dependency pars-
ing method and examines eight separate corpora
to achieve State-of-the-art for all. The embedding
layer in this article was composed of BERT, fast-
text, and character embedding. There is widespread
usage of CRF in the field of NER. CRF is used
for the first time in Collobert et al. (2011) for the
NER. The representation of the sample in this re-
search was obtained by Convolutional Neural Net-
work(CNN). After that, many articles used CRF
in various languages and combined it with other
methods, such as Part Of Speech Tagging(POS),
Long Short-Term Memory(LSTM), Embeddings
from Language Models(ELMo), etc.Lample et al.
(2016); Alves-Pinto et al. (2022); Rajan and Sal-
gaonkar (2022); Ma and Hovy (2016); Huang et al.
(2015). Peters et al. (2018) which is known as

1https://github.com/MarSanTeam/
Complex_NER_SemEval

ELMo, extends LSTM-CRF and leverages pre-
trained word-level language models for better
context-aware representations. Peters et al. (2018)
focuses on introducing and defining a Bidirectional
language model that is tested on numerous NLP
tasks in 2018. The accuracy of this research of
NER with the language model and CRF layer was
93.42%.

To resolve ambiguity in NER tags, Straková
et al. (2019) encoded nested entities in a sequence
(seq2seq) and prepared an LSTM-CRF-based
model. By incorporating pre-trained character-
level language models into Flair Akbik et al. (2019),
researcher presented contextualized representa-
tions. The following year, Akbik et al. extended
this model to incorporate dataset-level word embed-
dings, dynamically aggregating embeddings and
implementing pooling to extract a global word rep-
resentation from all instances Akbik et al. (2018).

Word representations and character representa-
tions are used in Ma and Hovy (2016), an end-to-
end system designed using LSTM, CNN, and CRF.
This idea has been implemented on the Penn Tree-
bank WSJ corpus Marcus et al. (1999) for POS
and CoNLL 2003 Sang and De Meulder (2003)
for NER datasets. A CNN has been used in this
research to extract the character-level representa-
tion of words, with its output then being input
into LSTMs, followed by a CRF layer. There is
another extension to CRF known as hybrid semi-
Markov conditional random fields (HSCRFs) is
explained in Ye and Ling (2018) by contributing
word-level labels in the building of SCRFs Laf-
ferty et al. (2001). The purpose of using word-level
tags to derive segment scores is to obtain segment
scores.

To solve different sequence tagging models with
a CRF inference, Yang and Zhang (2018) imple-
mented NCRF++ with three steps: a character se-
quence layer, a word sequence layer, and an in-
ference layer. RodrigoAgerri et al. presented a
multilingual NER system that combines many fea-
tures to cluster based on local information Agerri
and Rigau (2016). Results from standard task eval-
uation data such as CoNLL for English, Spanish,
and Dutch were reposted.

According to Wang et al. (2020), contextualized
language models can produce better results when
different embeddings are combined. This paper
presents a framework for generating and scoring
the output of embedded combinations using rein-
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forcement learning, which achieves the best ac-
curacy in 6 different fields and 21 large datasets.
According to Wang et al. (2020), contextualized
language models can produce better results when
different embeddings are combined. By rewarding
model scores for better concatenations of embed-
dings, can propose Automated Concatenation of
Embeddings to find better concatenations of em-
beddings for structured prediction tasks.

Majumder et al. (2022) considers the issue of
informal data, whose unstructured and incomplete
nature makes the process more challenging. To
solve the mentioned challenge, Bi-LSTM based
architecture for informal tweets in Hindi and En-
glish was implemented. There is more than one
way to do it in this field. Finding the part of the text
containing entity information, classifying and iden-
tifying the right entity, and applying that entity to
the appropriate part of the text are just some ways.
Generating tags is one other way to implement
them. As mentioned in Yan et al. (2021), Hang
Yan et al. propose that they use a novel and simple
Bidirectional Auto-Regressive Transformer(BART)
sequence-to-sequence (Seq2Seq) framework that
uses a pointer mechanism Vinyals et al. (2015) to
generate the entity sequence directly.

Another approach in NER, which is mentioned
in Islam et al. (2022), consists of using an attention
mechanism to minimize the problem of detecting
redundant and inessential data and ignoring them
entirely. Combining semantic, glyph, and phonetic
features to improve the expression ability of Chi-
nese character embedding, Li and Meng (2021)
proposes an architecture based on Fusion Embed-
ding for the Chinese language.

There is also a paper for the Chinese language
entitled Jia et al. (2020) that identifies entities from
Chinese social media texts, using uncertain infor-
mation from word segmentation. Researchers have
proposed that interactions between spans of tokens
can help determine discontinuous mentions and
have developed a transition-based model with a
generic neural encoding to be able to detect discon-
tinuous mentions Khan et al. (2020).

A model of bidirectional transformers is pre-
sented in Yamada et al. (2020), which produces a
contextualized representation of words and tokens.
BERT’s masked language model is used as pre-
trained word embeddings. As a result, Yamada et al.
present advancement in attention known as entity-
aware self-attention mechanisms and achieve state-

of-the-art in five benchmarks that include: Open
Entity (entity typing), TACRED (relation classifica-
tion), CoNLL-2003 (NER), ReCoRD (cloze-style
question answering), and SQuAD 1.1 (extractive
question answering). Since carelessness or a lack
of background knowledge of annotators might lead
to model performance errors, some research has
been conducted to identify and solve these issues.
Wang et al. (2019) provides a framework for finding
human errors in NER annotations. Following the
correction of labels in the test set, they re-evaluated
state models in NER, claiming that the results were
more accurate than the original test set. This pa-
per’s main idea is cross weighs, which accommo-
dates label mistakes during training and then trains
a more robust NER model.

Wang et al. (2021) finds the external context of
input sentences by retrieving relevant sentences.
The process of selecting the top similar text in-
volves re-ranking retrieved samples according to
their semantic relevance to the input sentence. As a
result, the inputs are the concatenation of input sen-
tences and external contexts. Both input types are
used to implement Cooperative Learning (CL), and
different representations are encouraged to produce
similar contextual representations or output label
distributions. Results on eight other NER datasets
achieve state-of-the-art results. But one drawback
of this method is that there are no document-level
contexts in practice.

3 Task Description

Our investigation aims to comparatively study
MultiCoNER-2022 datasets that have been con-
sidered individually for complex NER systems in
11 languages. Under short and low-context set-
tings, the task detects semantically ambiguous and
complex entities.

Languages presented in MultiCoNER-2022 are:
English, Spanish, Dutch, Russian, Turkish, Korean,
Farsi, German, Chinese, Hindi, and Bangla. The
number of instances for each language varies be-
tween 150k to 500k. There are 15300 train data
and 800 validation data for each language.

This dataset is labeled with the following tags:
PER: Person, LOC: Location, GRP: Group, CORP:
Corporation, PROD: Product, CW: Creative Work.
There is detailed information of datasets illustrated
in Table 1.

The datasets used in this task include sentences
labeled with the IOB format. Using this format,
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Languages LOC PER PROD GRP CW CORP
Span Token Span Token Span Token Span Token Span Token Span Token

English 4799 7550 5397 11538 2923 4723 3571 10038 3752 9782 3111 6222
Spanish 4968 7204 4706 9999 3040 4404 3226 7993 3690 8734 2898 5208
Dutch 5529 6767 4408 9369 2935 3572 3306 7204 3340 7142 2813 4544

Russian 5529 6767 4408 9369 2935 3572 3306 7204 3340 7142 2813 1731
Turkish 5804 6862 4414 8446 3184 4392 3568 6649 3574 7715 2761 4420
Korean 6299 6837 4536 7171 3082 4165 3530 5525 3883 3665 3313 1370
Farsi 5683 8720 4272 8613 2955 4496 3199 7676 3694 7528 2991 5382

German 4778 6566 5288 11230 2961 3898 3509 5878 3507 9054 3083 6210
Chinese 6986 28762 2225 14048 4854 16084 713 3200 5248 18817 3805 18069
Hindi 2614 4218 2418 5254 3077 2295 2843 8664 2304 5896 2700 5617

Bangla 2351 3804 2606 5738 3188 5152 2405 6653 2157 5001 2598 5299
Code-Mixed 325 493 296 680 316 560 248 677 298 755 294 653

Table 1: Distribution of spans and tokens for each entity

tokens that are not a part of an entity are tagged as
’O’, the first token of an entity is represented by the
’B’ tag, while the rest of the entity’s tokens are rep-
resented by an ’I’ tag. The entity category precedes
both a hyphen and the "B" and "I" tags. Therefore,
NER is a task that labels tokens according to their
text, which is multi-class token classification.

4 System overview

In this section, we will introduce our proposed
NER framework. The proposed framework consists
of three parts:

1. Word Representation Module

2. Feature extraction Module

3. Prediction Module

The proposed architecture takes the token se-
quence S = {s1, s2, s3, ..., sn}, and predicts entity
sequence O = {o1, o2, o3, ..., on} as output. Fig-
ure 1 is an illustration of the proposed architecture.

4.1 Word Representation Module
In light of the multilingual nature of the SemEval
NER task, the T5 language model was applied to
convert tokens into their representation vector. In
the word representation module, the last hidden
state of the T5-large encoder is chosen to learn the
k-dimensional (1024 here) representation for input
tokens. The T5 uses SentencePiece encoding and
assigns named entity tags to its extracted tokens.
Tokens extracted from T5 are always equal to or
greater than main tokens. Each token thus becomes
one or more subtokens. The label of the first subto-
ken corresponds to the label of the first token, while
the other subtokens have the label X.

Subtoken Check A key consideration is that
each token becomes one or more subtokens. To

provide better training, a feature called subtoken
check is used. This feature checks whether the
input token is tokenized into the subtoken or not.
After tokenizing the tokens, the first subtoken of
each token has a value of 1, and the rest have a
value of 0. Hence, the T5 encoder takes two input
sequences of the same length; one is the subtoken
index, and the other is the subtoken check index.
After adding this feature and improving the results,
it was found that in token-based tasks such as NER,
the existence of this feature is extremely helpful
for managing subtokens.

Byte-pair Embeddings The Byte-pair Embed-
dings(BPEmb) Heinzerling and Strube (2017) con-
sists of pre-trained subword embeddings in 275 lan-
guages. BPEmb is a variable-length encoding that
views the text as a sequence of symbols, iteratively
merging the pair with the highest frequency into
a new symbol. It provides a mechanism for prop-
erly tokenizing input sequences so that unknown
tokens can prepare appropriate representations by
using subtokens. To predict the named entity tag
for the input sequences, we concatenate the output
vector of the BPEmb model with the output vector
of the feature extraction layer since fine-tuning of
the model is not possible during training.

4.2 Feature Extraction Layer

Since the goal of NER is to predict the entity label
of each token, an awareness of the semantic de-
pendencies between tokens can be extremely help-
ful. The which uses the multi-encoder architecture
Vaswani et al. (2017), which uses the multi-head
self-attention mechanism, is one of the most suit-
able deep learning architectures for extracting re-
lation between tokens. There are two sublayers in
this encoder module. The first sublayer is a multi-
head self-attention mechanism, while the second is
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Figure 1: Proposed multilingual NER architecture

a position-wise fully connected feed-forward net-
work. This architecture uses residual connections
around each of the two sublayers followed by layer
normalization. A multi-head attention module com-
prises several scaled dot-product attention used in
parallel. In scaled dot-product attention, the in-
put consists of three matrices Q, K, and V. The
scaled dot-product attention is calculated using the
following formula.

WQ
i ,WK

i ,W V
i ∈ Rdmodel×dk

Q = XWQ,K = XWK , V = XWV (1)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The attention module has three trainable parame-
ters, WQ, WK , and WV . The three matrices Q, K,
V are constructed by multiplying the input vector
X by the corresponding matrices WQ, WK , WV .
Consequently, the dot product between Q and K is
divided by

√
dk in order to prevent the dot product

from becoming too large.

4.3 Prediction Layer

The vector obtained in the feature extraction Layer
is given to a fully connected layer to predict the
named entity label of the input sequence. For the
input sequence S = s1, s2, ..., sn the output se-
quence O = o1, o2. . . , on is predicted.

5 Experimental setup

We implemented the model in PyTorch and trained
it on Nvidia V100 GPUs. The AdamW optimizer
with a learning rate of 2e-5 is used to train the net-
work. Our training method includes early stopping,
which ensures the validation loss reduction with
patience of 10 epochs. The training batch size is
set to 32, and the dropout rate is 0.2. Transformer
encoders have eight attention heads, and position-
wise feed-forward layers have 2048 hidden sizes.
In both T5 and MT5 tokenizers, the max length
varies between 100 and 250 characters according
to the evaluated language. The hyper-parameters
of each subtask were tuned with the dev set. All
other parameters are initialized randomly.

6 Results

Several experiments have been conducted to de-
velop the most appropriate model for NER. Exper-
iments with the English dataset can be found in
Table 2. Due to the success of T5 in this study, this
language model has been used to compute the word
representation vectors. According to Table 2, using
the T5 can improve F1-score by 4% compared to
MultiCoNER Baseline that uses XLM-RoBERTa.

We have attempted to improve the language
model results by adding deep learning architec-
tures and textual features Tavan et al. (2021). We
evaluated LSTM and Transformer architecture on
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top of the T5 and found that using the transformer
improved the F1-score further than LSTM. After
various experiments, it was found that the use of
BPEmb could not improve the F1-score of the
model.

Models Train Dev Test
MultiCoNER Baseline - 77.60 -

T5 94.40 81.92 65.99
T5 + LSTM 96.40 82.20 67.54

T5 + Transformer 89.09 82.91 67.63
T5 + Transformer + 90.12 82.36 67.22subtoken + bpemb

T5 + subtoken + 97.32 86.73 71.45Transformer (ours)

Table 2: Experiments with English dataset

According to Table 2, the proposed model has
achieved the F1-score of 86.73% and 71.45%, on
the dev and test dataset for English, respectively,
which is the highest F1-score among the other ex-
periments. Figure 2 Compares the F1-score of
different deep learning architecture.

Figure 2: Compares the F1-score of deep learning archi-
tectures.

The results of the proposed model on the test
dataset, as well as its ranking in the competition,
are shown in Table 3. According to these results,
Chinese, Hindi, and Bangla have lower F1-scores
than other languages like German, Dutch, and En-
glish due to their language complexity.

The results of proposed model for the different
entities are shown in Table 4. According to Table
4, the "PER" entity has reached the highest F1-
score among other entities in all languages. Except
for Russian, Turkish and Chinese, "CW" has the
lowest F1-score in all other languages. As a result,
the proposed model is weaker in identifying the
"CW" entity than other entities.

7 Error Analysis

Several scenarios could occur when comparing the
golden standard annotation with the output of a

Language Precision Recall F1-score
English (17) 71.11 71.91 71.45
Spanish (11) 68.65 68.71 68.30
Dutch (10) 71.18 71.98 71.13

Russian (10) 66.83 68.44 67.49
Turkish (10) 60.22 62.70 61.09
Korean (14) 61.13 63.92 62.26

Farsi (9) 61.80 63.06 62.14
German (12) 73.10 73.60 72.12
Chinese (19) 60.15 57.10 56.64
Hindi (12) 56.39 57.01 56.31

Bangla (11) 56.48 53.77 54.22
Multilingual (14) 69.38 70.47 69.28
Code-Mixed (21) 67.36 67.41 67.03

Table 3: Precision, Recall and F1-score on test dataset
in all languages. The rank of the proposed model in
each language is shown in parentheses.

NER system Nejadgholi et al. (2020):
Scenario 1, Complete True Positive:

An entity is predicted by the NER model correctly.
Scenario 2, Complete False Positive:

An entity is predicted by the NER model but is not
annotated in the hand-labeled text.

Scenario 3, Complete False Negative:
The model does not predict a hand-labeled entity.

Scenario 4, Wrong label, Right Span:
A hand-labeled entity and a predicted one have the
same span but different tags.

Scenario 5, Right label, overlapping spans:
A hand-labeled entity and a predicted one have
overlapping spans and the same tags.

Scenario 6, Wrong label, overlapping spans:
A hand-labeled entity and a predicted one have
overlapping spans but different tags.

The output of the proposed model on the English
dev dataset has been evaluated on six scenarios in
Table 5. From Table 5, 96.20% of "PER" entities
are in Scenario 1, and the most significant propor-
tion of Complete True Positives are related to this
entity. Approximately 17% of "PROD" entities are
in Scenario 2, higher than other entities. "PROD"
actually has the highest Complete False Positive
value among all entities. The "CW" has the greatest
number of entities in Scenario 3 and the highest pro-
portion of Complete False Negatives among other
entities.

Scenario 4 includes 6.21% of "CORP" entities.
Scenario 5 has the most significant number of enti-
ties compared to other scenarios, having 6.12 per-
cent of the "PROD" entities. The "CORP" also has
the highest number of entities in Scenario 6. Table
6 shows examples of the English test samples that
are categorized in different scenarios.
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Language LOC PER PROD GRP CW CORP
English 72.23 86.71 70.09 67.62 62.32 69.70
Spanish 66.95 84.77 63.50 63.89 61.31 69.40
Dutch 68.64 86.77 69.32 67.44 65.18 69.44

Russian 69.67 74.88 66.50 61.11 62.56 70.24
Turkish 64.29 70.76 63.83 52.31 54.93 60.44
Korean 71.48 68.32 59.81 60.13 50.12 63.72
Farsi 68.46 71.29 62.86 64.75 46.13 59.33

German 74.61 87.13 71.97 69.70 63.82 71.51
Chinese 67.93 57.59 64.38 34.08 51.95 63.93
Hindi 60.81 62.85 54.19 57.72 41.74 60.54

Bangla 57.04 67.26 51.12 64.63 33.03 52.22
Multilingual 74.19 81.11 63.96 63.61 63.33 69.49
Code-Mixed 72.98 78.99 68.81 59.50 58.52 63.39

Table 4: F1-score in English test dataset for each entity

Entity Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
LOC 215 (91.88%) 17 (7.26%) 8 (3.41%) 2 (0.85%) 5 (2.13%) 4 (1.7%)
PER 279 (96.20%) 9 (3.1%) 1 (0.34%) 4 (1.37%) 1 (0.34%) 5 (1.72%)

PROD 117 (79.59%) 25 (17.0%) 18 (12.24%) 1 (0.68%) 9 (6.12%) 2 (1.36%)
GRP 168 (88.42%) 5 (2.63%) 3 (1.57%) 9 (4.73%) 2 (1.05%) 9 (4.73%)
CW 134 (76.13%) 22 (12.5%) 22 (12.5%) 7 (3.97%) 5 (2.84%) 8 (4.54%)

CORP 155 (80.31%) 7 (3.62%) 3 (1.55%) 12 (6.21%) 8 (4.14%) 15 (7.77%)

Table 5: Results of different scenario in English dev dataset.

Scenario 1

============================== HUMMAN ANOTATION ==============================

in 1841, he established a production of whale oil .
============================== MODEL PREDICTION ================================

in 1841, he established a production of whale oil .

Scenario 2

============================== HUMMAN ANOTATION ==============================

these desktop application launchers work with microsoft windows operating systems only.
============================== MODEL PREDICTION ================================

these desktop application launchers work with microsoft windows operating systems only.

Scenario 3

============================== HUMMAN ANOTATION ==============================

upper head lug joins the head tube and top tube
============================== MODEL PREDICTION ================================
upper head lug joins the head tube and top tube

Scenario 4

============================== HUMMAN ANOTATION ==============================

the caps were jointly designed by major league baseball and the new era cap company .
============================== MODEL PREDICTION ================================

the caps were jointly designed by major league baseball and the new era cap company .

Scenario 5

============================== HUMMAN ANOTATION ==============================

molten chocolate and a piece of a chocolate bar
============================== MODEL PREDICTION ================================

molten chocolate and a piece of a chocolate bar

Scenario 6

============================== HUMMAN ANOTATION ==============================

he was also the inventor of the nerf football.
============================== MODEL PREDICTION ================================

he was also the inventor of the nerf football .

Table 6: Example of different scenario in English dev dataset.
PROD CW CORP GRP

8 Conclusion

This paper proposes a model that uses an encoder
module of transformers in the top of the hidden
state of the T5 to process the extracted features to
obtain the most important feature representations.

Many experiments were conducted to evaluate the
model’s performance and find the best language
model. The experiments prove that our architecture
is most compatible with the T5 language model
and does cover a reasonable range of results. Since
this dataset is multilingual, the MT5 embedding
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module was selected.
The model’s accuracy is confirmed by an in-

depth analysis of the provided datasets. Accord-
ingly, the same architecture was used in all other
sub-tasks. Error analysis enabled us to identify spe-
cific NER challenges, creating immediate future
tasks. We plan to apply more robust deep architec-
tures to multilingual datasets as part of our future
work.

References
Rodrigo Agerri and German Rigau. 2016. Robust mul-

tilingual named entity recognition with shallow semi-
supervised features. Artificial Intelligence, 238:63–
82.

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.
2019. Pooled contextualized embeddings for named
entity recognition. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 724–728.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.
Contextual string embeddings for sequence labeling.
In Proceedings of the 27th international conference
on computational linguistics, pages 1638–1649.

Ana Alves-Pinto, Christoph Demus, Michael Spranger,
Dirk Labudde, and Eleanor Hobley. 2022. Iterative
named entity recognition with conditional random
fields. Applied Sciences, 12(1):330.

Behrouz Bokharaeian, Alberto Diaz, Nasrin Taghizadeh,
Hamidreza Chitsaz, and Ramyar Chavoshinejad.
2017. Snpphena: a corpus for extracting ranked
associations of single-nucleotide polymorphisms and
phenotypes from literature. Journal of biomedical
semantics, 8(1):1–13.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of machine learning research,
12(ARTICLE):2493–2537.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer Enhanced Named
Entity Recognition for Code-Mixed Web Queries. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1677–1681.

Benjamin Heinzerling and Michael Strube. 2017.
Bpemb: Tokenization-free pre-trained subword
embeddings in 275 languages. arXiv preprint
arXiv:1710.02187.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Tanvir Islam, Sakila Mahbin Zinat, Shamima Sukhi,
and MF Mridha. 2022. A comprehensive study on
attention-based ner. In International Conference on
Innovative Computing and Communications, pages
665–681. Springer.

Shengbin Jia, Ling Ding, Xiaojun Chen, Yang Xiang,
et al. 2020. Incorporating uncertain segmentation
information into chinese ner for social media text.
arXiv preprint arXiv:2004.06384.

Muhammad Raza Khan, Morteza Ziyadi, and Mo-
hamed AbdelHady. 2020. Mt-bioner: Multi-task
learning for biomedical named entity recognition us-
ing deep bidirectional transformers. arXiv preprint
arXiv:2001.08904.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Jiatong Li and Kui Meng. 2021. Mfe-ner: Multi-feature
fusion embedding for chinese named entity recogni-
tion. arXiv preprint arXiv:2109.07877.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Amit Majumder, Apurba Paul, and Abhishek Banerjee.
2022. Deep learning-based approach using word and
character embedding for named entity recognition
from hindi-english tweets. In Applications of Net-
works, Sensors and Autonomous Systems Analytics,
pages 237–243. Springer.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022a. MultiCoNER: a
Large-scale Multilingual dataset for Complex Named
Entity Recognition.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022b. SemEval-2022
Task 11: Multilingual Complex Named Entity Recog-
nition (MultiCoNER). In Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022). Association for Computational Lin-
guistics.

Mitchell P Marcus, Beatrice Santorini, Mary Ann
Marcinkiewicz, and Ann Taylor. 1999. Treebank-
3. Linguistic Data Consortium, Philadelphia, 14.

Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin
Malmasi. 2021. GEMNET: Effective gated gazetteer
representations for recognizing complex entities in
low-context input. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1499–1512.

1646



Isar Nejadgholi, Kathleen C Fraser, and Berry De Bruijn.
2020. Extensive error analysis and a learning-based
evaluation of medical entity recognition systems
to approximate user experience. arXiv preprint
arXiv:2006.05281.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Annie Rajan and Ambuja Salgaonkar. 2022. Named
entity recognizer for konkani text. In ICT with Intel-
ligent Applications, pages 687–702. Springer.

Erik F Sang and Fien De Meulder. 2003. Introduction
to the conll-2003 shared task: Language-independent
named entity recognition. arXiv preprint cs/0306050.

Jana Straková, Milan Straka, and Jan Hajič. 2019. Neu-
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