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Abstract

We investigate the task of complex NER for
the English language. The task is non-trivial
due to the semantic ambiguity of the textual
structure and the rarity of occurrence of such
entities in the prevalent literature. Using pre-
trained language models such as BERT, we
obtain a competitive performance on this task.
We qualitatively analyze the performance of
multiple architectures for this task. All our
models are able to outperform the baseline by a
significant margin. Our best performing model
beats the baseline F1-score by over 9%.

1 Introduction

The Named Entity Recognition (NER) task aims
to detect entities from unstructured text and clas-
sify them into predefined categories. Although
the task of NER has been investigated adequately
by previous research work (Mansouri et al., 2008;
Nadeau and Sekine, 2007; Lample et al., 2016a;
Florian et al., 2003; Ritter et al., 2011), the de-
tection of named entities in open-domain settings
is non-trivial. Moreover, the introduction of addi-
tional layers of complexity, in the form of semantic
ambiguity and a lower amount of contextual avail-
ability, poses further challenges. For example, in a
low-context and semantically ambiguous sentence
such as Let us play Among Us, the token sequence
Among Us, can refer to a common phrase or a pop-
ular video game, and hence be categorized as a
Creative Work (CW).

Recently, deep learning models have gained pop-
ularity for NER (Yadav and Bethard, 2019; Li et al.,
2020; Habibi et al., 2017). However, these ap-
proaches are data-intensive and become ineffective
when there is a lack of labeled data. To foster re-
search in this area, (Malmasi et al., 2022b) has
introduced the SemEval MultiCoNER shared task
that deals with multilingual complex named en-
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tity recognition. This task in based on the com-
plex NER, search query and code-mixing NER
challenges introduced by Meng et al. (2021) and
Fetahu et al. (2021). The baseline introduced
by the organizers for this MultiCoNER challenge
is a pre-trained XLM-RoBERTa model (Conneau
et al., 2019) that was further fine-tuned on the task-
specific training dataset.

This paper describes our approach to tackle com-
plex NER task for the English language using state-
of-the-art deep learning models and introduces a
simple neural network architecture that builds on
top of pre-trained language models. We compare
multiple architectures on the validation and test set
of the shared task. All our models outperform the
baseline by a significant margin. Through our ex-
periments, we discover that leveraging transformer
models based on attention mechanism (Vaswani
et al., 2017) results in better performance even
in low context and ambiguous settings. The
code is available at https://github.com/
AmitPandey-Research/Complex_NER

We describe the prior research work done with
respect to both general and low-resource NER tasks
in Section 2. We provide the formal task descrip-
tion in Section 3, the dataset details in Section 4,
the method and the model architecture in Section
5. We provide details about the experimental im-
plementation in Section 6. We discuss the results
obtained and error analysis in Sections 7 and 8 re-
spectively, and finally, we conclude the paper in
Section 9.

2 Related Work

A widely used benchmark for NER was the CoNLL
2003 shared task. It contained annotated newswire
text from the Reuters RCV1 corpus. Previous re-
searchers (Baevski et al., 2019) had used BiLSTM
models with attention to predict named entities on
this dataset. (Ma and Hovy, 2016) used a BiLSTM-
CNN-CRF to predict the named entities.
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Sequence labeling for Named Entity Recog-
nition: Recent approaches have aimed at utilizing
deep learning techniques for training NER models.
However, these techniques require a large amount
of token-level labeled data for NER tasks. Anno-
tation for such kinds of labeled datasets can be
expensive, time-consuming, and laborious. The
datasets introduced in this task encompass a large
number of low-resource and complex NER entities.

Recent work on NER in scientific documents
has been concentrated around detecting biomedi-
cal named entities (Kocaman and Talby, 2020) or
scientific entities like tasks, methods and datasets
(Luan et al., 2018; Jain et al., 2020; Mesbah et al.,
2018).

NER has been traditonally modelled as a se-
quence labelling task, using CRF (Lafferty et al.,
2001) to classify the labels. Recent approaches
have used deep learning based models (Li et al.,
2018). These approaches are data intensive
in nature. To tackle the label scarcity prob-
lem, methods like Distant Supervision (Wang
et al., 2020; Liang et al., 2020; Hedderich et al.,
2021), Active Learning (Goldberg et al., 2017),
Reinforcement Learning-based Distant Supervi-
sion (Nooralahzadeh et al., 2019; Yang et al., 2018)
have been proposed.

3 Task Description

The objective of this shared task is to build com-
plex Named Entity Recognition systems. The task
presents a unique challenge in the form of detect-
ing the entities in semantically ambiguous and
low-context settings. Moreover, the shared task
also tests the generalization capability and domain
adaptability of the proposed systems by testing the
system over additional (low-context) datasets con-
taining questions and short search queries, such as
Google Search queries.

Label Description
PER Person
LOC Location
GRP Group

CORP Corporation
PROD Product

CW Creative Work

Table 1: Entity types in the label space

For this task, given an input sentence (an ar-
bitrary sequence of tokens), the systems have to

identify the B-I-O format (Ramshaw and Marcus,
1999) (short for beginning, inside, outside) tags for
6 NER entity classes: Person, Product, Location,
Group, Corporation, and Creative Work. The de-
scription attributed to each class label is described
in Table 1.

4 Dataset

The MultiCoNER dataset (Malmasi et al., 2022a)
consists of labeled complex Named Entities (NE).
For the monolingual track, the participants have to
train a model that works for a single language. For
training and validation purposes, train and dev sets
are provided with labeled entities. The monolin-
gual model trained needs to be used for the predic-
tion of named entities in the test set that consists of
more than 150K instances. The labels from the test
set are not provided directly. In this system descrip-
tion for the monolingual track, we have considered
the English NER dataset for our task. The dataset
follows a BIO tagging scheme, and there are six
entity types in the label space. The statistics for
the English dataset in the monolingual track for the
train and dev set are provided in Table 2.

Train Dev
# sentences 15300 800

Table 2: Total sentences in English monolingual track

5 System Overview

This section describes our approach to designing a
system to solve the problem of classifying the to-
kens (words) of a given sentence into one of the six
NE categories. We also briefly describe features of
the BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) model
employed in our system.

We designed three architectures based on pre-
trained language model BERT: 1) BERT+Linear,
2) BERT+CRF, and 3) BERT+BiLSTM+CRF. A
detailed explanation of these architectures is as
follows:

5.1 BERT+Linear
We model this task as a multiclass classification
problem. The first step to finding labels for the
entities is to find dense vector representations of
the tokens in the given sentence.

Instead of using static pre-trained word embed-
dings, such as Word2Vec (Mikolov et al., 2013)
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Figure 1: BERT-Linear architecture

and GloVe (Pennington et al., 2014) that rely only
on static global representations of word vectors, we
employ BERT-based context-aware representations
(BERT embeddings) that leverage the full context
of the entire sentence.

This helps in extracting more information for the
task of NER that is highly dependent on the inter-
token relationship. BERT learns the representations
for the tokens in the given text by jointly consid-
ering both the left and right context of the tokens
at each layer (Devlin et al., 2019). To better learn
the inter-token dependencies, BERT leverages the
attention mechanism with multiple attention heads
that focus on different aspects of a token’s relation
to other tokens. For an ith token xi among a se-
quence of tokens x = (x1, x2, x3, ..., xm), we ob-
tain a low-dimensional BERT embedding, x̃i ∈ Rd

where d is the embedding dimension.
We pass this BERT token embedding to a dense

classifier that consists of two fully connected layers.
This classifier layer maps the BERT embeddings
to lower dimension logit vectors x̃i ∈ Rk, where
k is the total number of labels. The logits are then
passed to the softmax normalization function. The
softmax generates a probability distribution across
all labels for each token, which is then used to
predict the most probable label. The system archi-
tecture details are shown in Figure 1.

5.2 BERT+CRF

We use a pre-trained BERT model to obtain the to-
ken embeddings. These embeddings are passed to
a token-level classifier followed by a Linear-Chain
CRF. The CRF learns the transfer rules between
adjacent entity labels and returns likelihood for a se-
quence of labels. More formally: 1) For a sequence

of tokens x = (x1, x2, x3, ..., xm), where xi is the
ith token among the sequence of tokens, we ob-
tain a low-dimensional dense embedding, x̃i ∈ Rd

where d is the embedding dimension. 2) This em-
bedding is mapped to a lower dimensional space
x̃i ∈ Rk where k is the total number of labels. 3)
The output emission scores from the linear layer
are obtained as P ∈ Rm×k, where m is the num-
ber of tokens. These scores are passed to the CRF
layer, whose parameters are A ∈ Rk+2×k+2. Each
element Aij signifies the transition score from the
ith label to the jth label. The 2 additional states in
A are the start and the end state of a sequence. For
a series of tokens x = (x1, x2, x3, ..., xm), we ob-
tain a series of predictions y = (y1, y2, y3, ..., ym).
As described in (Lample et al., 2016b), the score
of the entire sequence is defined as :

s(x, y) =
m∑

i=0

Ayi,yi+1 +
m∑

i=1

Pi,yi

The model is trained to maximize the log proba-
bility of the correct label sequence:

log(p(y|x)) = s(x, y)− log(
∑

ỹ∈YX

es(x,ỹ))

where YX are all possible label sequences.

5.3 BERT+BiLSTM+CRF
We use a pre-trained BERT model to obtain the con-
textual token embeddings for the input sentence.
These BERT embeddings are passed to the BiL-
STM layer, where the BiLSTM layer captures the
information into a hidden state representation. This
representation is passed to a CRF layer that obtains
the probability distributions across the sequences
of labels. Specifically, the fine-tuned BERT lan-
guage model is used to map the tokens in each
sentence to a distributed representation. This is
used as the word embedding layer for the BiL-
STM+CRF model. The BiLSTM+CRF layer is
used to sequence label the sentence, and the pre-
dicted labels are obtained. The supervised learn-
ing algorithm iterates to improve its predicted la-
bel accuracy over every iteration. More formally,
the process can be described as follows : 1) The
target sentence comprising of m tokens, is repre-
sented as x = (x1, x2, x3, ..., xm), where xi rep-
resents the ith token of the entire target sentence.
2) xi is mapped to a low dimensional dense vector,
x̃i ∈ Rd using the pretrained BERT embeddings,
where d is the dimension of dense embedding. 3)
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BERT+Linear BERT+CRF BERT+BiLSTM+CRF
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9304 0.9145 0.9224 0.903 0.9145 0.9087 0.9025 0.9103 0.9064
PER 0.9659 0.9759 0.9708 0.936 0.9586 0.9472 0.8882 0.9586 0.9221

PROD 0.7365 0.8367 0.7834 0.7785 0.7891 0.7838 0.7372 0.7823 0.7591
GRP 0.8923 0.9158 0.9039 0.8341 0.9000 0.8658 0.8466 0.8421 0.8443
CW 0.7955 0.7955 0.7955 0.7963 0.733 0.7633 0.7353 0.7102 0.7225

CORP 0.893 0.8653 0.8789 0.8877 0.8601 0.8737 0.8837 0.7876 0.8329
Average 0.8689 0.8839 0.8758 0.8559 0.8592 0.8571 0.8322 0.8318 0.8312

Table 3: Results of our models on validation dataset

Prec Rec F1
Baseline System 0.773 0.780 0.776
BERT + CRF 0.855 0.859 0.857
BERT+BiLSTM+CRF 0.832 0.831 0.831
BERT + Linear 0.868 0.883 0.875

Table 4: Comparison of model performances with base-
line on validation dataset

BERT+Linear
Class Label Prec Rec F1

LOC 0.7292 0.7614 0.7449
PER 0.8776 0.8922 0.8848

PROD 0.7079 0.6460 0.6755
GRP 0.7699 0.6600 0.7107
CW 0.5527 0.6299 0.5888

CORP 0.7253 0.6759 0.6998
Average 0.7271 0.7109 0.7174

Table 5: Performance of model on test dataset

The sequence of vectors is taken as an input to
the BiLSTM in each time step, and the forward
hidden states

−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hm) and the

backward hidden states
←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hm)

are concatenated to form the combined hidden state
representation h = [

−→
hf ,
←−
hb]. 4) The combined hid-

den state representation h ∈ Rm×n, where n is the
total size of BiLSTM, is reduced to a k dimensions
using a linear layer, where k is the number of labels
to distribute the probabilities across. 4) Finally, the
CRF layer is used to obtain the probability of label
sequence.

6 Implementation Details

We implement all our transformer-based models
using Pytorch and Huggingface library. We imple-
ment 3 models: 1) BERT+Linear, 2) BERT+CRF,
and 3) BERT+BiLSTM+CRF. We also experiment

with feature engineering by concatenating label
encoded Part-of-Speech (POS) tags to the token
embeddings. We use a dropout from 0.2 to 0.5 in
all models and find that a dropout probability of
0.3 gives the best results throughout.

In the BERT+Linear model, we use two fully
connected dense linear layers as a classifier on top
of the BERT embedding layer. We add a softmax
layer to obtain the probability distribution across all
the labels. For the BERT+Linear model, we run our
experiments across 1-20 epochs. We find that the
model starts to overfit after 10 epochs, and the best
results are obtained after 5 epochs of training. We
further experiment with BERT-base (12 attention
heads) and BERT-large (16 attention heads).

For BERT+CRF and BERT+BiLSTM+CRF, we
experiment across 1-100 epochs. We find that the
models give the most optimal result at the 20th
epoch, after which they start to overfit. We use
a learning rate of 1e−6 for all the models. We
validate the results of all models using our dev set
and then use the best performing model for final
evaluation on the blind test set.

7 Results

We compare the performance of our models in the
validation set against the baseline. We use the best
performing model for the final submission in the
evaluation phase. We provide details of the per-
formance of the best performing model over the
blind test dataset provided in the evaluation phase.
We provide a detailed comparison of the perfor-
mance of our models across all the class labels in
the validation dataset in Table 3. Table 3 shows
that the simple BERT+Linear model (0.8758 F1
score) consistently performs better across all the la-
bels (except for PROD) as compared to other larger
models. We attribute this to the limited number of
samples in the training dataset. The lack of a suffi-
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cient number of training samples limits the ability
of larger models to generalize properly over the
entire training set.

Also, it can be observed from Table 4 that all
the 3 models outperform the baseline by a signifi-
cant margin. BERT+CRF, BERT+BiLSTM+CRF,
BERT+Linear advances the baseline by around 8%,
6%, and 9% respectively. Table 5 shows the per-
formance of our BERT+Linear model on the blind
test set. Our best performing model ranks 9th on
the validation dataset and 15th on the final blind
test set. Moreover, through our experiments, we
find that the BERT-large offers a significant boost
in performance over BERT-base, due to the larger
number of attention heads.

8 Error Analysis

We perform error analysis for all 3 different model
performances on the validation dataset. We find
that for all 3 models, each model has the greatest
difficulty in accurately predicting the CW (Creative
Work) label. This can be attributed to the higher de-
gree of ambiguity when it comes to CW named en-
tities, as these often share a similar type of textual
structure as regular non-named entity text tokens.
It can be inferred that all 3 models are memorizing
entity names from the training data to some ex-
tent. It is most prevalent in BERT+BiLSTM+CRF
model, as we can see that it has the least amount
of prediction accuracy among other models. This
is consistent with our reasoning that heavier mod-
els tend to overfit the dataset faster. Hence, we
deduce that named entity memorization can be at-
tributed to a type of overfitting behavior by the
model in question when the training data is scarce.
The BERT+Linear model, which is the lightest
model with the least amount of trainable param-
eters among all 3, is found to be significantly less
prone to memorize entity names.

Furthermore, upon qualitative analysis, we find
that our models often have difficulty in recognizing
longer named entities (entities comprising of 5 or
more tokens). This can be attributed to the lack of
occurrence of such entities in the training dataset.
The models are majorly exposed to shorter length
entity spans across the training set. Due to the
lack of exposure of the models to adequate training
instances of longer spans, the models are often
unable to predict such longer entity spans.

It is also worth noting that an increase in the
number of attention heads in the BERT layer helps

in substantial improvement in the accuracy. As
discussed, this can be attributed to better learning
of the context with the help of attention mechanism.
We conclude that the larger number of attention
heads are able to classify longer entity spans with
greater accuracy.

9 Conclusion and Future Work

We experiment with 3 model architectures for a
novel dataset introduced for the shared task of
detection of complex NER. Our best performing
model comprises of a simple linear classifier on top
of fine-tuned BERT-based language model. We find
that this simple approach performs competitively
as compared to its heavier counterparts. Upon anal-
ysis, we attribute this observation to the scarcity
of labeled training data. BERT+Linear model is
able to optimally avoid overfitting to a larger ex-
tent and hence performs better than other heavier
models. We find that our simpler model ranks in
the top 10 in the validation phase and outperforms
numerous teams in the final evaluation phase. For
future work, we aim to utilize other data augmen-
tation techniques and distant supervision to create
clean silver labels in order to increase our train-
ing instances. We believe that this would help us
leverage larger models for training purposes.
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