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Abstract
Structured Sentiment Analysis is the task of
extracting sentiment tuples in a graph struc-
ture commonly from review texts. We adapt
the Aspect-Based Sentiment Analysis pointer
network BARTABSA to model this tuple ex-
traction as a sequence prediction task and ex-
tend their output grammar to account for the
increased complexity of Structured Sentiment
Analysis. To predict structured sentiment tu-
ples in languages other than English we swap
BART for a multilingual mT5 and introduce
a novel Output Length Regularization to mit-
igate overfitting to common target sequence
lengths, thereby improving the performance
of the model by up to 70%. We evaluate our
approach on seven datasets in five languages
including a zero shot crosslingual setting.

1 Introduction

The goal of sentiment analysis is to understand
a writer’s opinions expressed in a text. In recent
years, this topic became of particular research inter-
est since with the advent of social media platforms,
users were encouraged to share their opinions about
a wide range of subjects with the world. For exam-
ple, websites like Yelp collect and share opinions
about restaurant visits and various online retail-
ers allow customers to publish their reviews about
items in their assortment. Consequently, various
text corpora emerged that made it feasible to apply
machine learning based approaches to this task (Ya-
dav and Vishwakarma, 2020).

Sentiment analysis can be approached with var-
ious degrees of granularity. It is possible to only
classify the overall polarity of a sentence as pos-
itive or negative, or a more precise intermediate
value (Nguyen et al., 2020; Devlin et al., 2019).

Furthermore, the sentiment can be predicted in
a more fine-grained manner, like with regard to
the various targets addressed in the sentence. This
can be of particular interest if the writer is ambigu-
ous in their review and no overall sentiment label

can be assigned to a sentence. For example, a cus-
tomer might describe the service or the interior of a
restaurant as unpleasant but the food itself as good.
This can be extended to more complex sentence
structures, taking into account not only the aspects
or the sentiment, but also its holder (i.e. who is
expressing the sentiment) or the opinion term itself,
e.g. (Yan et al., 2021; Mukherjee et al., 2021).

In this paper, we work on the challenge described
by Barnes et al. (2022). Here, the goal is to extract
an arbitrary number of opinion tuples from a text.
Each tuple can consist of a holder, a target, a sen-
timent expression, and a polarity. However, it is
also possible that some of these mentioned enti-
ties are not present in a certain tuple. Moreover, a
sentence may include no sentiment and hence no
tuples should be extracted.

The challenge spans data from five different lan-
guages, namely English, Spanish, Catalan, Basque,
and Norwegian and two different subtasks. First,
there is the monolingual setting in which you are
allowed to train on all sentiment data, including
those in the language that is subsequently used to
test the model’s capability of extracting sentiment.
Moreover, in the crosslingual setting the models
are tested on Spanish, Catalan and Basque senti-
ment data while being trained on any of the other
languages. It was also allowed to train on Span-
ish, Catalan and Basque data as long as it does
not contain any annotated sentiment information.
This makes the crosslingual structured sentiment
analysis task a zero shot setting.

Our approach is based on BARTABSA (Yan
et al., 2021), who leverage a pointer network to pre-
dict sentiment tuples (aspect, opinion, sentiment)
by representing them using a custom output gram-
mar. They extend a BART model with a pointer
generator network which is thus able to predict
token indices from the input sequence as output.

Our contributions are as follows: (i) we intro-
duce a new, flexible grammar to model structured
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sentiment graphs as a pointer sequence, (ii) we
explore mT5 as base model allowing us to make
cross-lingual predictions, (iii) we introduce a new
length regularizer to prevent overfitting to common
sequence lengths.

2 Preliminaries

2.1 BART & mT5

BART (Lewis et al., 2020) is a sequence-to-
sequence model built using transformer (Vaswani
et al., 2017) neural networks. In its default configu-
ration BART consists of 6 encoder and 6 decoder
transformer layers. BART is trained as a denois-
ing autoencoder. Hence, the input to its encoder
are sentences which are noised using five differ-
ent methods like masking or permutation of tokens.
Consequently, the decoder is trained to restore the
original sentence like defined in Equation 1.

mT5 (Xue et al., 2021; Raffel et al., 2020) is
another sequence-to-sequence model based on the
transformer architecture. It is trained on 101 lan-
guages at the same time using the span corruption
objective and at time of publication achieved state
of the art on many multi-lingual benchmarks. Its
training corpus includes all languages used in this
challenge (section 1).

2.2 BARTABSA

We model the Structured-Sentiment Analysis task
as a seq2seq-task by adopting the framework intro-
duced in BARTABSA. It encodes sentiment tuples
(section 1) as a sequence of token indices (pointers)
and special tokens.

2.2.1 Output Grammar

In BARTABSA, the target sequence consists of
tuples with a fixed size of five:

. . . ,asi , a
e
i , o

s
i , o

e
i , s

p
i , . . .

which allows them to express the ith aspect term
(a) and its opinion term (o) in an input sentence by
their respective starts and ende integer token-index
in the input token sequence, as well as the senti-
ment polarity class sp associated with this combina-
tion of aspect and opinion terms. Sequences struc-
tured like this can be unambiguously converted to
aspect-based sentiment tuples as they occur in fixed
sequence lengths of five: four token indices and
one sentiment class.

2.2.2 Model
Sequences of this output grammar can be predicted
by the model by pointing to the tokens in the input
sequence in this fixed order and finally complet-
ing the triplet of aspect, opinion and sentiment by
predicting the associated sentiment class.

Thus, the task is modelled as an auto-regressive
decoding task where the probability of the next
output token P (Y |X) depends on both the input
X as well as the previously decoded tokens Y<t.
For a sequence of length m the decoding process
is hence given as

P (Y |X) =
m∏

t=1

P (yt|X,Y<t) (1)

Usually, the decoding is stopped as soon as the
End-Of-Sequence token EOS is predicted.

An architecture to generate such output was
introduced as BARTABSA (Yan et al., 2021).
BARTABSA is based on BART (Lewis et al., 2020)
and uses a pretrained BART encoder to encode the
input sentence. Hence, given an input sequence of
n tokens s = [x1, . . . , xn], BARTABSA first ap-
plies the encoder to obtain the input representation

He = BARTEncoder(s) (2)

with He ∈ Rn×d (d denotes the embedding size).
Since the goal of BARTABSA is to predict in-

dices to tokens in the input sequence, its decoder
is augmented with a pointing mechanism (Vinyals
et al., 2015) to generate these indices (Yan et al.,
2021) instead of tokens from a vocabulary (see
Equation 5 – 8). To be able to predict l additional
sentiment class labels C, they are concatenated to
the input and treated as tokens of the input sen-
tence. However, to train and inference the neural
network in an auto-regressive manner, i.e. feeding
the previous output back into the decoder, the yet
generated pointers must be mapped back to their
indexed tokens first using the following mapping:

ŷt =

{
Xyt if yt ∈ X

Cyt−n if yt is an index of a class label
(3)

The BART decoder is then applied to the mapped
pointers:

hdt = BARTDecoder(He; Ŷ<t) (4)

Using hdt , the distribution for pointing to the input
sequence is then calculated as:

Ee = BARTTokenEmbed(X) (5)
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Cd = BARTTokenEmbed(C) (6)

BARTTokenEmbed is a shared embedding layer
which is used to embed both the tokens from the
input sequence X as well as the class labels C.

H̄e = α MLP(He) + (1− α)Ee (7)

Finally, the embedded input sequence is concate-
nated with the embedded class labels. The pointing
distribution is then given as the softmax over the
concantenated sequence multiplied with the hidden
representation hdt obtained from the BART decoder:

Pt = softmax([H̄e;Cd]hdt )

= P (yt|X,Y<t)
(8)

where Ee, He, H̄e ∈ Rn×d, Cd ∈ Rl×d, Pt ∈
Rn+l. Teacher forcing (Williams and Zipser, 1989)
is used during training together with negative log-
likelihood as optimization criterion.

3 Methodology

Our approach to predicting sentiment graphs on the
given datasets is grounded on BARTABSA (2.2).
We adopt and extend their framework to not only
be able to predict aspect-based sentiment but also
structured sentiment. For this we introduce a new
output grammar which is able to model and repre-
sent the sentiment tuples as required for this task.

We adapt their sequential pointer representation
for Triplet Extraction (aspect, opinion, sentiment)
to the task at hand.

3.1 Extensions to the Output Grammar
We extend the expressive power of their output
grammar in several ways to account for the in-
creased target complexity of the structured sen-
timent task: Each entity (can be a or o for Triplet
Extraction) for structured sentiment analysis can. . .

• be optional

• consist of arbitrarily many discontiguous parts

• be “source”/“holder” of the sentiment

Defining such an enhanced output grammar which
can model these properties enables us to unambigu-
ously represent the sentiment tuples required for
the structured sentiment task. In the following we
adapt the notion of BARTABSA from “aspect term”
to the sentiment target and “opinion term” to the
polar expression.

3.1.1 Entity Absence
First we account for optional absence of entities
by introducing a special token for each type of
entity indicating the begin of its respective entity.
This prevents ambiguity if an entity is absent and
transforms the previous example from subsubsec-
tion 2.2.1 to the following sequence:

. . . ,TGTBEG, t
s
i , t

e
i ,EXPBEG, e

s
i , e

e
i , s

p
i , . . .

where XYZBEG is the unique class token for each
entity type indicating the begin of entity XYZ, ti
and ei are integers referring to token positions in
the input sequence and spi is the sentiment class
token (see Figure 1 for example). This way if, e.g.,
there is no target term to be predicted for the ith

sentiment tuple the sequence becomes

. . . ,EXPBEG, e
s
i , e

e
i , s

p
i , . . .

and thereby stays unambiguous as it is still well
defined that the tokens between esi and eei resemble
the expression term and not the missing target term.
This can be clearly interpreted although esi and eei
are the first two predicted indices of the ith sen-
timent tuple which were allocated to target entity
indices before.

3.1.2 Entity Splitting
Second we allow for split entities as described
in subsection 4.3 by further extending the output
grammar. After every begin-of-entity special token
(XYZBEG) we do not only allow for a single starts

and ende index tuple but arbitrarily many such tu-
ples. Therefore a two-part target term in the ith

triplet is represented like this:

. . . ,TGTBEG, t
s1
i , te1i , ts2i , te2i ,EXPBEG, e

s
i , . . .

In this syntax the first part of the ith target term
can be found between ts1i and te1i and the second
part between ts2i and te2i (see Figure 1 for exam-
ple). Every entity can be modeled by arbitrarily
many such pointer tuples and due to the special to-
kens (XYZBEG) indicating transitions between the
predicted entities the association between pointer
indices and entity type stays unambiguous.

3.1.3 Sentiment Source
Last we enable the prediction of the sentiment
holder or source. Given the previous modifications
to the output grammar this can be easily achieved
by introducing a new special token HOLBEG.
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I ‘ m definitely going there again whenever I get a chance.
1    2       3            4        5       6           7        8  9 10    11

polarity: positive

𝐵𝑂𝑆, 𝑇𝐺𝑇!"# , 5, 5, 𝐸𝑋𝑃!"# , 3,4,6,6, 𝐻𝑂𝐿!"# , 1,1, 𝑃𝑂𝑆, 𝐸𝑂𝑆

sentiment graph

input sentence
token indices

sentiment graph
represented as seq

Figure 1: Exemplary input sentence, its associated sen-
timent graph (target, expression, holder, sentiment) as
well as the sentiment graph modeled using our grammar.

3.1.4 Constructing the Output Grammar
Combining all our extensions to the output gram-
mar introduced above we are able to unambigu-
ously represent structured sentiment tuples in a
sentence as a sequence consisting of pointers and
special tokens.

First we sort all sentiment tuples per sentence
ascending by their token index in the input sen-
tence. For this we only look at the index of the start
token of each entity. We first sort the tuples by the
start index of the target term, if they are equal by
their expression term and lastly on equality we fall
back to their holder term. This is done the same
way in BARTABSA and PASTE as it is shown that
predicting the sentiment tuples of a sentence in
a strict order boosts the performance of the final
model (Yan et al., 2021; Mukherjee et al., 2021).

A sentiment graph for an input sentence is mod-
elled as follows using our output grammar (exam-
ple in Figure 1): After the BOS-token we encode
the sentiment tuples in the order described above.
First if the ith sentiment tuple contains an target
term we insert an TGTBEG-token followed by a
sequence of tuples of start (tsi ) and end (tei ) indices,
one for every discontiguous part of the target term.
We repeat this for the expression and holder terms
of the sentiment tuple. The representation of the
ith sentiment tuple is completed by its sentiment
polarity token (pos, neu, neg). This process is
repeated for every sentiment tuple of the input sen-
tence. After the last sentiment polarity token the
output sequence is closed with an EOS-token.

If a sentence has no sentiment tuples it is repre-
sented by the empty sequence [BOS,EOS].

3.2 Output Length Regularizer

Predicting the structured sentiment graph for an in-
put sentence using our above (3.1.4) defined output
grammar is naturally very sensitive to the place-
ment of the EOS-token. If our model predicts the
EOS-token e.g. only a single token too early the last

sentiment tuple — consisting of target, expression,
holder and sentiment class — becomes incomplete
as it lacks at least the sentiment class for the entire
tuple. Therefore it can no longer be correctly inter-
preted or converted to the sentiment graph structure.
A missplaced EOS-token can lead us to miss an en-
tire sentiment tuple or even more if the EOS-token
is off by more than the length of a tuple.

During our experiments we noticed some models
being prone to overfitting to common positions of
the EOS-token (also see Newman et al. (2020)) in
the train set (5.1). When analysing the predictions
of such a model during training we found that often
the EOS-token was predicted not only at the correct
location in the sequence, but also once more, ear-
lier at the most-common EOS-token position in the
train set. Usually this is right after the BOS-token.
As we convert the output sequence to the sentiment
graph up to the first EOS-token (3.1.4) this results
in an empty graph. Such an incorrect sequence
consisting of an otherwise correctly predicted sen-
timent unit with a target and an expression exem-
plarily looks like this:

[BOS,EOS], tsi , t
o
i ,EXPBEG, e

s
i , e

e
i , s

p
i , EOS

In this case the TGTBEG-token got erroneously
replaced by an overfitted EOS-token, thereby stop-
ping the output sequence early — as indicated by
the gray font. As can be clearly deducted from
Figure 1 such a token replacement would result
in an empty sequence and thereby no extracted
sentiment graph. We cannot just ignore/fix such
a misplaced EOS-token automatically because we
cannot decide whether such an error occurred at all
or which begin-of-entity (XYZBEG) got replaced
by the first EOS.

Therefore we have to prevent these errors from
occurring in the first place. To encourage the model
to predict the EOS-token at the correct location
only, we extended the loss function to make it more
sensitive to the placement of the EOS-token.

We realize this by introducing an additional loss
component LRE . The predictions ŷ of our model
during training have the shape Rs×t̂, where t̂ and
s is the length of the prediction P and source se-
quence S respectively, as we predict t target indices
pointing to tokens in the source sequence of length
s (including special tokens).

Now, along every column j ∈ 1 . . . t̂ of ŷ we
calculate the softmax to decide the token proba-
bility distribution at prediction step j. From this
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matrix we now extract the row o = ŷi ∈ Rt̂,
i ∈ 1 . . . s corresponding to the EOS-token. Then,
softmax(o) at position j represents the probabil-
ity that the j-th token in the target sequence is an
EOS-token over all positions in the target sequence.

We calculate the cross entropy between this re-
sulting vector o and the correct position for the
EOS-token in the target sequence.This loss addi-
tion penalizes high-probabilities for EOS-tokens in
the wrong locations:

LRE(y, ŷ) = CE(t, softmax(ŷi)) (9)

where t is the length of the target sequence y —
thereby the correct position of the EOS-token —
and i is the vocabulary index of EOS.

We add our Output Length Regularization to the
Cross Entropy loss:

L(y, ŷ) = CE(y, ŷ) + LRE(y, ŷ) (10)

4 Experiments

We base our model on two different but re-
lated architectures depending on the subtask.
For both tasks, we build a model similar to
BARTABSA (Yan et al., 2021)1 consisting of a
transformer encoder-decoder model augmented
with a pointer layer for predicting indices in the
input sequence.

We always train for 75 epochs and select the best
model based on the best performance on the valida-
tion set. This strategy is in line with BARTABSA
but we increased the maximum number of epochs
from 50 to 75 as we found in preliminary exper-
iments that mT5 sometimes was able to improve
slightly on the validation set beyond 50 epochs. If
we train on multiple datasets at the same time we
also validate on a concatenation of their respec-
tive validation sets. We finetune the models once
with and once without the Output Length Regu-
larization (3.2). We select model dependent learn-
ing rates, learning rate schedules and optimizers
as suggested in their respective original papers or
BARTABSA. Therefore we finetune BART models
using Adam with a peak learningrate of 5e−5 in
a triangular learning rate schedule and mT5 using
AdaFactor with a constant learningrate schedule
and a learningrate of 0.001.

The results are evaluated using the Sentiment
Graph F1 introduced by Barnes et al. (2021). For

1For our experiments we reuse their codebase making use
of torch, transformers and fastNLP.

this metric they calculate the true positives by av-
eraging the overlap for exact token-level matches
between predicted and gold spans over all three
entities. To obtain precision and recall they now
divide the number of correctly predicted tokens
by the total number of predicted tokens and gold
tokens respectively.

4.1 Subtask 1: Monolingual

For the monolingual task we divide between En-
glish and non-English datasets. For the English
datasets we select a pretrained monolingual En-
glish BART model as our transformer architecture
as suggested in BARTABSA. As there are no BART
models publicly available for all non-English lan-
guages from our datasets, we choose a pretrained
mT5 model for those instead which was pretrained
on 101 languages including all languages present
in our datasets. We do not train a separate mT5 for
every single dataset or language since finetuning
mT5 on small datasets lead to significant instabili-
ties during training (5.1) which we counteract by
concatenating all datasets available to us.

We compare our approach against the baselines
provided by the task organizers2. They provide a se-
quence labelling approach which consists of three
separate BiLSTM models, one each for extracting
the holders, targets, and expressions followed by
another BiLSTM-based relation prediction model.
On top of the concatenation of these three outputs
a classification task is trained to predict whether
two predicted elements are related or not. The sec-
ond baseline is a graph parsing model described
by Barnes et al. (2021). It works by modelling the
sentiment tuples as dependency graphs and then
predicting those using the neural dependency parser
introduced by Dozat and Manning (2018).

4.2 Subtask 2: Crosslingual

In the crosslingual setting it is important for our
model to be able to generalize and transfer well
between languages. Therefore we once again se-
lect mT5 as our basemodel and train it on English
and Norwegian at the same time as these are the
only languages available for training in this setting.
We train on both available languages at the same
time since we expect this to improve generalization
between languages.

2https://github.com/jerbarnes/
semeval22_structured_sentiment
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4.3 Datasets
The datasets provided for this challenge can
be split into five languages: English (darm-
stadt (Toprak et al., 2010), mpqa (Wiebe et al.,
2005), opener (Agerri et al., 2013)), Spanish
(opener), Catalan (multibooked (Barnes et al.,
2018)), Basque (multibooked) and Norwegian
(norec (Øvrelid et al., 2020)). All datasets are struc-
tured identically consisting of a source sentence
and its annotated sentiment graphs, which are rep-
resented by their sentiment tuples (target, expres-
sion, holder, polarity) as introduced in section 1.
Additional complexity is added by the fact that ev-
ery sentiment tuple entity can be either completely
missing or even consist of arbitrarily many discon-
tiguous parts as described in subsubsection 3.1.4:
e.g. in “[. . . ] have degraded the image of the Uni-
versity severely” the opinion term consists of two
parts: “degraded” and “severly”.

4.4 Dataset Sampling
During preliminary experiments we observed sta-
bility problems while finetuning mT5 (5.1) which
we were only able to mitigate by training on the
concatenation of different datasets and sampling
the training dataset. We were able to address this in-
stability by undersampling the training set in such a
way that at most one fifth of the training set consists
of empty samples. We implemented this sampling
by first ensuring this ratio for all datasets separately
and concatenating them afterwards. We kept this
sampling strategy for all experiments using mT5
except when training only on the concatenation of
the English datasets where we found that a maxi-
mum of one fourth empty samples achieved better
results on the validation set.

We ran the same experiments with BART and
found it to be not nearly as susceptible to a sam-
pling strategy compared to mT5. Nevertheless we
found that BART is able to gain small improve-
ments on the validation set only when training on
the concatenation of all English datasets without
Output Length Regulatization while sampling the
training datasets such that at most half of the sam-
ples are empty. So we sampled the training dataset
only in this specific case when finetuning BART.

5 Results & Evaluation

5.1 Training Instability of mT5
While finetuning mT5 on our datasets during pre-
liminary runs we noticed that the model is not only

Figure 2: Comparison of two representative English
validation set sentiment-F1 curves for BART and mT5
during training. The models got evaluated in each of the
75 training epochs.

generally very unstable during training but also that
the resulting performance is very sensitive to dif-
ferent dataset splits. When training on individual
training datasets including all samples the model
was not able to achieve sentiment-F1-scores above
5% on the validation set. For this it did not matter
whether we included the Output Length Regulariza-
tion (3.2) or not. We only managed to achieve com-
petitive results using mT5 after we significantly
undersampled the empty sentiment tuples in the
dataset as described in subsection 4.4. We believe
this to be already first signs of EOS-token location
overfitting (3.2) as all empty samples are repre-
sented by the sequence [BOS,EOS].

Training instabilities of mT5 become evident
when looking at the F1-scores on the validation set
during training as representatively plotted in Fig-
ure 2 (green). For comparison we rerun the same
setup using BART (blue). While the training loss of
the mT5-models descends during training without
large jumps or spikes the F1-score on the validation
set oscillates heavily. Although all mT5-models
we trained contained such frequent and huge jumps
in the F1-score, there became no common pattern
apparent between different runs. Even the slightest
change e.g. different dataset sampling can result in
a completely different F1-score curve on the vali-
dation set. At the same time the loss during train-
ing on the same dataset remained smooth. This is
not surprising given the fact that a wrongly placed
EOS-token can invalidate the entire prediction as
described in subsection 3.2, while in comparison
according to the cross entropy loss a higher proba-
bility for the EOS-token at the e.g. second position
only slightly decreases the measured performance.
In other words the final evaluation metric is way
more sensitive to the placement of the EOS-token
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Table 1: Submitted results for the monolingual subtask
as described in subsection 4.1.

ours baselines

dataset
m

od
el

sent-F1 place
seq.
label

graph
parser

opener_en

B
A

R
T

0.651 12 0.33 0.52
mpqa 0.338 11 0.02 0.12

ds_uni 0.417 6 0.06 0.20

average 0.469 — 0.14 0.28

opener_es

m
T

5

0.504 17 0.24 0.50
norec 0.280 18 0.20 0.36

multib_ca 0.517 16 0.34 0.52
multib_eu 0.439 18 0.37 0.55

average 0.435 — 0.29 0.64

overall avg 0.449 16 0.22 0.40

than the training objective. This is the core issue
we are addressing by introducing the additional
loss component (3.2). We did not observe a similar
phenomenon during training of any BART model.

5.2 Subtask 1: Monolingual

As we approached the monolingual setting using
two different base-models we also analyse them
separately. Overall for this monolingual subtask
we placed 16th out of 31 teams on the leaderboard
at the time the challenge ended.

For mT5 we report the results for finetuning on
all datasets on all languages at the same time using
our Output Length Regularization, as training mT5
became slightly more stable on a larger dataset.

For the English results we finetune BART with
our Output Length Regularization only on the re-
spective dataset the model was tested on except
when testing on the darmstadt dataset. For darm-
stadt we trained BART on a combination of all
English datasets and without Output Length Regu-
larization. If we train only on the darmstadt dataset
itself and with Output Length Regularization like
for the other datasets, we achieve an F1-score of
only 0.389. We chose this strategy for all BART
runs in general and the darmstadt dataset in spe-
cific as it resulted in the highest scores on the re-
spective validation datasets. The results for the
other datasets when training BART on all english
datasets at the same time is included in Table 2.

In Table 1 we report our performance on the

Table 2: Comparison of a single BART and a single
mT5 trained on all English datasets at the same time.

sent-F1

dataset BART mT5

opener_en 0.493 0.471
mpqa 0.326 0.159

darmstadt_uni 0.365 0.218

average 0.395 0.283

monolingual task and compare it against the base-
lines provided by the task organizers. On English
datasets using BART we achieved in general a con-
siderably higher placement (6,11,12) than our over
all placement (16) and are able to comfortably beat
the employed baselines (subsection 4.1). This indi-
cates that our method works comparatively better
using BART as base model than mT5 (16, 17, 18,
18) where our approach consistently beats the se-
quence labelling approach but matches the perfor-
mance of the graph parser only on some datasets.

5.2.1 BART vs. mT5 Performance
To further evaluate this presumed performance dis-
crepancy between BART and mT5 we compare our
approach using both base models on the English
datasets as this is the only language both models
have in common. We train both models using the
Output Length Regularization and only differing
by their respective optimal sampling strategy as
laid out in subsection 4.4. For a fair comparison we
train both models on all datasets at the same time
as a larger dataset reduces training instabilities of
mT5 (5.1). The results are visible in Table 2.

We find the performance to be drastically drop-
ping overall when we switch from a BART to an
mT5 model. The overall validation loss for both
models in every epoch is reported in Figure 2. We
assume this drop is hugely driven by the training
instabilities (5.1) we observed, although we also
suspect the differences in pretraining (2.1) to lead
to this discrepancy. This explains our compara-
tively better placement in Table 1 when we are able
to use BART instead of mT5 to solve the task.

5.2.2 Ablation: Output Length Regularization
In order to evaluate how well our novel Output
Length Regularization (3.2) is able to improve
model performance we finetune a separate BART
for every English dataset once with and once with-
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Table 3: Comparison of performance for models trained
with and without length regularization. BART models
were trained on the dataset they are tested on while mT5
models were trained on all languages at the same time.

sent-F1

model dataset w/ lenreg w/o lenreg

BART
opener_en 0.651 0.635

mpqa 0.338 0.320
darmstadt_uni 0.389 0.320

average 0.459 0.425

mT5

opener_es 0.504 0.410
norec 0.280 0.251

multibooked_ca 0.517 0.374
multibooked_eu 0.439 0.353

average 0.435 0.347

overall average 0.449 0.367

Table 4: Average number of predicted sentiment tuples
per sentence compared to actual average number of
sentiment tuples per sentence in the testset.

lenreg

dataset w/ w/o testset

B
A

R
T opener_en 1.77 1.88 1.73

mpqa 0.21 0.29 0.24
darmstadt_uni 0.31 0.47 0.41

m
T

5

opener_es 2.02 1.49 2.33
norec 1.28 0.77 0.97

multibooked_ca 1.39 1.00 1.56
multibooked_eu 1.19 0.76 1.43

out length regularization. We repeat this setup for
mT5 but train a single common mT5 on all datasets
together as we found mT5 to be more stable during
training with increasing dataset sizes.

We compare the results in Table 3. It is apparent
that for all runs for both base models on all datasets
and languages the sentiment F1 score improves
when adding our length regularization. Therefore
we conclude that our Output Length Regulariza-
tion (3.2) does indeed help the model learn where
to place the EOS-token and thereby decide how
many sentiment tuples are present in the sentence.
This results in better predictions for this task espe-
cially for the mT5 model.

Originally we introduced the Output Length Reg-
ularization to fix an overfitted EOS-token at the

Table 5: Performance of BART per dataset (columns)
when finetuning only on a single dataset (rows). All
models trained with Output Length Regularization.

op_en mpqa ds_uni

opener_en 0.651 0.007 0.195
mpqa 0.008 0.338 0.050

darmstadt_uni 0.300 0.005 0.389

all English 0.493 0.326 0.365

second position for the mT5 model as exemplarily
indicated by the colors in subsection 3.2. This led
the mT5 model to predict too few (commonly zero)
sentiment tuples. When analysing the differences
in length of the output sequences (see Table 4) we
found that for the mT5 model it consistently in-
creased the number of sentiment tuples predicted
by the model and thereby almost always moves the
average number of predicted tuples per sentence
closer to the average number of sentiment tuples
present in the dataset splits. Only for norec the
average number of predicted tuples on the testset
overshoots the average number of sentiment tuples
on the testset.

5.2.3 Crossdomain Performance

The crosslingual subtask of this challenge primarily
evaluates how well a model is able to generalize
between different languages and different domains
at the same time. We also analyze the performance
of our BART model when we change only the tar-
get domain by crossdomain zero shot evaluating on
a different english dataset. Therefore we finetune
a separate BART model with Output Length Reg-
ularization on each of the three English datasets
separately and then use each model to predict all
other English datasets.

In Table 5 we find BART to be able to generalize
between darmstadt_uni and opener_en albeit this
comes at the cost of a significant performance loss
in both directions. Meanwhile mpqa does not seem
to be similar enough to either of the other two En-
glish datasets for the model to output meaningful
crossdomain predictions. This can be explained as
both darmstadt_uni and opener_en datasets consist
of reviews of universities and hotels respectively,
while mpqa is a dataset focused around political
opinion expression. It is likely that the model ben-
efits from the more similar phrasing used in both
review datasets compared to political opinions.

1320



Table 6: Submitted results for the crosslingual subtask
as described in subsection 4.2. We finetuned mT5 with
Output Length Regularization on all datasets at once.

dataset sent-F1 place

opener_es 0.315 14
multibooked_ca 0.259 15
multibooked_eu 0.243 14

average 0.272 15

Table 7: Comparison of an mT5 trained with and with-
out Output Length Regularization (3.2).

sent-F1

dataset w/ lenreg w/o lenreg

opener_es 0.315 0.245
multibooked_ca 0.259 0.105
multibooked_eu 0.243 0.131

average 0.272 0.160

5.3 Subtask 2: Crosslingual

For the crosslingual task (Table 6) we predict struc-
tured sentiment tuples in Spanish, Catalan and
Basque without prior training on any sentiment
annotations in any of these languages. We again
finetune an mT5, but for this subtask on all lan-
guages at once which are not in the set of target
languages: English & Norwegian. Training on a
larger dataset consisting of multiple languages not
only stabilizes training but also possibly helps the
model to generalize between languages to predict
structured sentiment in unseen languages. Com-
pared to the monolingual subtask where mT5 was
trained using sentiment annotations in the target
languages (Table 1), here mT5 loses on average
over 40% of performance in this zero shot crosslin-
gual setting. Therefore we are able to show that
despite a significant performance loss pointer pre-
diction models are able to zero shot generalize be-
tween languages and domains at the same time.

5.3.1 Ablation: Output Length Regularization
Again we evaluate our Output Length Regulariza-
tion by finetuning two mT5 on all English and Nor-
wegian datasets at the same time, once with and
once without Output Length Regularization. We
find the same results as already described in 5.2.2:
Output Length Regularization is able to improve
the zero shot crosslingual generalization signifi-

cantly as can be found in Table 7. Finetuning mT5
for pointer prediction using this length regulariza-
tion increases the performance by 70% averaged
over all target datasets.

6 Related Works

The PASTE framework (Mukherjee et al., 2021)
also uses pointer networks to solve the task of
aspect-based sentiment analysis. Instead of Trans-
formers, they use an LSTM (Hochreiter and
Schmidhuber, 1997) as decoder and two additional
Bi-LSTMs as pointer networks — one for pointing
to aspect and opinion term each.

Peng et al. (2020) propose an approach to ex-
tract opinion triplets from text in a generative man-
ner without using pointers. However, their output
grammar is also less flexible meaning that all of the
entities (target, aspect, and sentiment) have to be
present in each triple. They also introduced one of
the data sets used to train BARTABSA and PASTE.

Apart from structured sentiment analysis, pointer
networks were also successfully applied to vari-
ous further NLP tasks where it is beneficial to di-
rectly transfer parts of the input sequence to the out-
put. This includes automatic summarization (See
et al., 2017; Enarvi et al., 2020) and entity extrac-
tion (Nayak and Ng, 2020).

7 Conclusion

In this work, we adapted BARTABSA, a pointer
network based on BART, for the task of structured
sentiment analysis. In particular, we introduced a
new output grammar which is able to model the
increased complexity of this task by taking into
account new entity types, split entities and missing
entities in sentiment tuples.

We also experimented replacing BART with an
mT5 network to allow for input sequences in lan-
guages other than English. We found that using the
approach of BARTABSA it is possible to swap out
BART for another base model but in the case of
mT5 this comes with a significant performance hit
which we suspect is mainly driven by training insta-
bilities we encountered. Moreover, we introduced
a output length regularizer to reduce overfitting to
common sequence output lengths from the trainset.
We found this to be very beneficial consistently on
all data sets and to increase relative performance
by up to 70%.
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