@inproceedings{xu-etal-2022-hfl,
title = "{HFL} at {S}em{E}val-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity",
author = "Xu, Zihang and
Yang, Ziqing and
Cui, Yiming and
Chen, Zhigang",
editor = "Emerson, Guy and
Schluter, Natalie and
Stanovsky, Gabriel and
Kumar, Ritesh and
Palmer, Alexis and
Schneider, Nathan and
Singh, Siddharth and
Ratan, Shyam",
booktitle = "Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.semeval-1.157/",
doi = "10.18653/v1/2022.semeval-1.157",
pages = "1114--1120",
abstract = "This paper describes our system designed for SemEval-2022 Task 8: Multilingual News Article Similarity. We proposed a linguistics-inspired model trained with a few task-specific strategies. The main techniques of our system are: 1) data augmentation, 2) multi-label loss, 3) adapted R-Drop, 4) samples reconstruction with the head-tail combination. We also present a brief analysis of some negative methods like two-tower architecture. Our system ranked 1st on the leaderboard while achieving a Pearson{'}s Correlation Coefficient of 0.818 on the official evaluation set."
}
Markdown (Informal)
[HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with Data Augmentation for Multilingual News Similarity](https://preview.aclanthology.org/fix-sig-urls/2022.semeval-1.157/) (Xu et al., SemEval 2022)
ACL