
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 978 - 986
July 14-15, 2022 ©2022 Association for Computational Linguistics

MarSan at SemEval-2022 Task 6: iSarcasm Detection via T5 and Sequence
Learners

Maryam Najafi1,∗, Ehsan Tavan1,∗
1 NLP Department, Part AI Research Center, Tehran, Iran
{maryam.najafi, ehsan.tavan}@partdp.ai

Abstract

The paper describes SemEval-2022’s shared
task "Intended Sarcasm Detection in English
and Arabic." This task includes English and
Arabic tweets with sarcasm and non-sarcasm
samples and irony speech labels. The first
two subtasks predict whether a text is sarcas-
tic and the ironic category the sarcasm sam-
ple belongs to. The third one is to find the
sarcastic sample from a sarcastic sample and
its non-sarcastic paraphrase. Deep neural net-
works have recently achieved highly compet-
itive performance in many tasks. Combining
deep learning with language models has also re-
sulted in acceptable accuracy. Inspired by this,
we propose a novel deep learning model on top
of language models. On top of T5, the architec-
ture uses an encoder module of the transformer,
followed by LSTM and attention to utilizing
past and future information, concentrating on
informative tokens. Due to the success of the
proposed model, we used the same architecture
with a few modifications to the output layer in
all three subtasks.

1 Introduction

Sarcasm is a sophisticated form of expression that
implicitly conveys the content of a sentence. Au-
tomated sarcasm detection focuses mainly on the
lexical, syntactic, and semantic levels of text analy-
sis Hazarika et al. (2018).

Natural language understanding(NLU), dialogue
systems, and text mining can benefit from sarcasm
detection. Arguably, the most challenging part of
sarcasm is its rarity, infrequency, difficulty in de-
tecting, and ambiguity in meaning. Sarcasm, for
instance, can imply a negative meaning with the
use of positive words. For example, "Taxes are
just the best, and I cannot wait to pay more

" a sarcastic sentence that uses positive words
but carries a negative meaning of "I dislike pay-
ing taxes." As a result, detecting sarcasm poses a

∗Equal contribution. Listing order is random.

challenging task due to the nature of sarcastic texts,
which are influenced by several factors, such as
context, region, and mentality.

A sarcasm detection algorithm goes beyond sen-
timent analysis, and instead of looking at sentiment
in a sample, it focuses on sarcasm. The purpose
of this field is to identify whether a given text is
sarcastic or not.

Recently, it has been shown that neural language
models trained on unstructured text can implic-
itly store and retrieve knowledge. Studies have re-
vealed that the Text-To-Text Transfer Transformer
(T5) architecture Raffel et al. (2019) can achieve
high performance for various NLP applications.
An essential step in creating NLP models is choos-
ing an appropriate embedding vector. In this re-
search, the T5 and Multilingual T5 (MT5) (Xue
et al., 2020) Encoder module for English and Ara-
bic was implemented, respectively. Our task is
comprised of three Subtasks:

• Subtask A: Predict the sarcastic nature (sar-
castic or non-sarcastic) of a sample.

• Subtask B: Determine which one of the irony
speech categories the sample belongs to.

• Subtask C: Given two samples, determine
which one is sarcastic.

There are insufficient instances in the dataset for
this task, particularly the low number of sarcastic
instances which make deep learning models unsuit-
able for extracting text features. Fine-tunning the
language model on two large open-source datasets
in English and Arabic is the key to solving this chal-
lenge. A fine-tuning step may provide the model
with valuable awareness of task context. For the
English task, the dataset of 4,484 tweets named
iSarcasm (Oprea and Magdy, 2019) was selected,
while for the Arabic task, the dataset of 10,547
tweets Farha and Magdy (2020) was chosen.

978



This research uses the t5 language model as a
word embedding layer to design the sarcasm detec-
tion model. After T5, the encoder module of the
transformer, the Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layer, and
scaled dot-product attention (Vaswani et al., 2017)
were implemented sequentially for extracting the
informative knowledge. Lastly, the model was fed
an output from max-pooling. The same model has
implemented all three subtasks, changing the input
and output layer types.

To participate in Task 6 of SemEval-2022
Abu Farha et al. (2022), we submitted the results
of 5 subtasks. The ranking of our model in subtask
A ranked 7th in English and 31st1 in Arabic. Our
model placed 9th out of 22 teams in subtask B. In
subtask C, our model placed 7th out of 16 teams
in English and 3rd out of 13 teams in Arabic. Our
code is available at GitHub2 for researchers.

The remaining of this paper is organized as fol-
lows: Section 2 reviews related work. Section 3
describes both tasks and provided dataset. Section
4 presents the theoretical background of the pro-
posed neural model. Implementation details are
provided in Section 5, while experiments and re-
sults are presented in Section 6. Section 7 presents
both quantitative and qualitative error analysis. Sec-
tion 8 contains paper conclusions.

2 Background

It is pointed out in Javdan et al. (2020) that sarcasm
can alter the meaning of a phrase, making opin-
ion analysis error-prone. Subsequently, a model
by BERT and aspect-based sentiment analysis is
employed to address the issue. Based on the con-
text dialogue sequence, this system can determine
whether a response is sarcastic or not, with an F1-
score of 0.73 on Twitter.

In Dadu and Pant (2020), as in Javdan et al.
(2020), the researcher used two Reddit and Twit-
ter datasets and applied Roberta-large to detect
sarcasm in both datasets. González-Ibánez et al.
(2011) investigates lexical (like uni-grams and
dictionary-based) and pragmatic (like positive or
negative emotions) features and compares the per-
formance of machine learning techniques and hu-
man judges.

1There was an error in submitting this subtask. In the
results section, we provide the true results of the proposed
model for subtask A .

2https://github.com/MarSanTeam/
Sarcasm_Detection

Since the meaning of sarcasm differs for each
individual and may lead to misunderstandings in
everyday communications, Hazarika et al. (2018)
claims that user embedding can encode the stylistic
and personality attributes of users, and combined
with Convolutional Neural Networks (CNNs) (Le-
Cun et al., 1999) that extracts localized information,
the results are reasonable.

Kumar et al. (2020) introduce a binary classifi-
cation deep learning model for sarcasm detection.
Kumar et al. use Bi-LSTM and Multi-Head Atten-
tion Mechanism to obtain sentence embedding and
classify input text with a softmax layer.

RoBERTa network architecture is utilized in
Potamias et al. (2020) to map words onto a rich
embedding space efficiently. To improve RoBERTa
performance and capture temporal reliance infor-
mation, use the RCNN network.

3 Task Description

Task 6 of SemEval-2022 presents a Sarcasm Detec-
tion dataset in English and Arabic.

Statistical information on the number of samples
in the train, dev, and test data is shown in Table 1.
Since there was no official dev set at the evaluation
phase, we randomly selected 10% of the dataset as
the dev data.

Dataset train dev test
Subtask A (English) 3121 347 1400
Subtask A (Arabic) 2792 310 1400

Subtask B 780 87 1400
Subtask C (English) 780 87 200
Subtask C (Arabic) 670 76 200

Table 1: Statistical information of datasets

A description of the subtasks is provided in the
following sections.

3.1 Subtask A

In this subtask, the model should determine the
sarcastic or non-sarcastic nature of the text. Arabic
and English texts can be submitted for this subtask.

Figure 1 shows the distribution of sarcastic and
non-sarcastic classes in subtask A. There is an im-
balance with this data, as only 25% of the samples
are categorized as sarcasm, making the training
process more challenging.

979

 https://github.com/MarSanTeam/Sarcasm_Detection
 https://github.com/MarSanTeam/Sarcasm_Detection


Figure 1: Label distribution in Subtask A

3.2 Subtask B

This subtask is a multi-label binary classification
task.

Ideally, the model should predict which category
of ironic speech (sarcasm, irony, satire, understate-
ment, overstatement, and rhetorical question) input
data falls into. In this subtask, all data is available
in English only.

Figure 2 illustrates how irony speech categories
(sarcasm, satire, understatement, overstatement,
and rhetorical questions) have been distributed. A
high percentage of samples are labeled sarcasm,
and the lowest, with 10 samples, is for understate-
ment.

Figure 2: Label distribution in Subtask B

3.3 Subtask C

As part of subtask C, a sarcastic text and its non-
sarcastic paraphrase is given to the model. The
proposed model should determine which one is
sarcastic.

In this Subtask, we have 867 samples in English
and 745 samples in Arabic.

4 System overview

Contextual features can be extracted very effi-
ciently with pre-trained language models. In NLP

tasks, T5 has proven to be an efficient encoder-
decoder framework. Using the encoder layers
within the T5 language model, we can fine-tune
pre-trained encoder-decoder T5 models efficiently
for classification and regression tasks. Pre-trained
models ease fine-tuning downstream tasks by re-
ducing the reliance on large task-specific training
datasets. Their results can be further enhanced if
other deep learning architectures, such as LSTM,
CNN, and attention, are applied on top of them
(Tavan et al., 2021).

The framework we developed uses the encoder
module of T5 and Transformer, Bi-LSTM layer,
and scaled dot-product attention to determine
whether a text is sarcastic. Also, we apply the
same architecture to subtasks B and C but make
some changes to the output and input layers, respec-
tively. The proposed model architecture is shown
in Figure3.

As part of subtasks A and B, the model gets
a sequence of S = {s1, s2, s3, ..., sN}, where sn
is the nth token of input text. In subtask C, the
inputs are sequence of P = {p1, p2, p3, ..., pI},
and Q = {q1, q2, q3, ..., qJ}, where pj is the jth
token of the first text and qI is the ith token of the
second. The input sequence S = {P,< /s >,Q}
are the final inputs for subtask C.

Subtask A estimates a sarcastic label based on
the probability distribution of Pr(y|S). Within sub-
task B, the model estimates the probability distri-
bution Pr(y|S) for each category of ironic speech.
Finally, subtask C estimates the probability distri-
bution Pr(y|P,Q), predicting whether P indicates
sarcasm or Q.

4.1 Word Representation

To obtain vector representations of input tokens,
the T5 encoder is used. As mentioned, this model
can obtain a contextualized embedding vector for
each token in the input text by fine-tuning the T5
encoder.

4.2 Encoder Architecture

The encoder module of the transformer and a Bi-
LSTM layer are used sequentially on top of the T5
encoder to extract the contextualized feature.

As a way to extract the relation between tokens,
the encoder architecture used in the transformer
Vaswani et al. (2017) employs a multi-head atten-
tion mechanism. This capability of multi-head at-
tention allows the model to extract relationships

980



between input tokens, which can help identify sar-
casm context.

Sarcasm detection can be enhanced by identify-
ing contradictions and long-term dependencies in

S1 S2 S3 Sn

T5 Encoder

Multi-Head
Attention

Add & Norm

Feed 
Forward

... 

LSTM

Add & Norm

LSTM

LSTM

LSTM

LSTM

LSTM

... LSTM

LSTM

Q

Scaled Dot Product

Softmax

Mask

Matmul

K V
W

VWK

W
Q

Max Pooling

Fully Connected Layer

Figure 3: proposed model

a sentence. This information can not be extracted
properly from the transformer encoder because of
its structure. The challenge can be tackled by using
the RNNs layer to extract temporal information and
long-term dependencies. Using a Bi-LSTM layer,
this can be done in long sequences. The output
vector of the encoder layer is calculated by con-
catenating the Bi-LSTM layer and the transformer
encoder output.

4.3 Attention Module
In Bi-LSTM networks, close words are more likely
to be correlated with the extracted attribute than
words located farther away. In order to extract rich
features, scaled dot-product attention assigns dif-
ferent weights to each token. Each token is given
a weight based on its importance and relation to
a class. Hence, attention can determine the rele-
vance and importance of tokens to identify the label
correctly. The scaled dot-product attention above
the encoder layer enables the model to capture the
importance and relationship between tokens regard-
less of their distance. The attention module consists
of the following components:

WQ
i ,WK

i ,W V
i ∈ Rdmodel×dk

Q = XWQ,K = XWK , V = XWV (1)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Among which WQ, WK , and WV are trainable
parameters. The input vector X is multiplied by
the matrices Q, K, and V in order to create three
matrices Q, K, and V . To prevent the dot-product
between Q and K from getting too large, the dot-
product between Q and K is divided by

√
dk.

4.4 Prediction Module
To accurately predict sarcasm in a text by utilizing
the most relevant and informative extracted fea-
tures, a fully connected layer with a tanh activity
function was first employed. The general represen-
tation is then obtained using a max-pooling layer
from the same dimensions of different tokens. The
max-pooling modules formulate in Equation 2.

Z = Max([h1, ..., hl]) (2)

Finally, to determine the probabilities of the la-
bels, the softmax classification method is used. The
module is a simple softmax classifier that gener-
ates probabilities of distributions based on input

981



features. A softmax classifier is used to predict a
label ŷ from a set of discrete classes(sarcastic or
not-sarcastic) for an input sequence S. The softmax
classifier takes R as input:

P (y | Z)=softmax(WR+b) (3)

ŷ = argmaxP (y | Z) (4)

We used six softmax layers to predict the label
of each input text in subtask B. The difference
between the implementation of the proposed model
in single label and multi-label is shown in Figure
4.

Softmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax Layer

Features extracted
from model

(a) Multi Label

Softmax Layer

Features extracted
from model

(b) Single Label

Figure 4: Outline of utput layer used in subtasks.

5 Experimental Setup

In this section, we first describe data pre-processing.
Following that, we discuss the implementation de-
tails.

Pre-processing Data analysis revealed some
samples containing URLs and user mentions. Due
to the possibility of these items confusing the
model in identifying the correct label, these items
were removed in the pre-processing phase. Tokens
such as punctuation and emojis were not removed
since they could be excellent indicators of sarcasm.

Implementation Details PyTorch was used to
implement the model, and we trained it on Nvidia
V100 GPUs. Each subtask’s hyper-parameters
were tuned using the development set. The AdamW
optimizer with the learning rate of 2e -5 is used to
train the network using the back-propagation algo-
rithm. A training method of early stopping with
the patience of 5 and monitoring validation loss of
sarcastic class in min mode is used. As for regular-
ization, we evaluate the effect of the dropout on the
transformer encoder and the Bi-LSTM layer; the
model has a better performance when the dropout
rate is set as 0.2, 0.3 respectively.

Each subtask has a batch size of 32. The number
of attention heads in the transformer encoder is

eight, and the hidden size in the Position-wise feed-
forward Layer is 2048. One layer of Bi-LSTM
with 128 LSTM units was used. Over the first fully
connected layer, we applied tanh, and the output
size of this layer was 256. In the case of data
imbalance, the cross-entropy loss can be used with
class weights. The maximum length used in T5
and MT5 tokenizers is 100. Other parameters are
randomly initialized.

6 Results

This section reviews the different baselines and
compares them with the proposed model. Due to
the success of language models in recent years, we
have evaluated different language models to select
the most appropriate language model.

Since there was no official test data at the eval-
uation phase, experiments were conducted on the
dev set to select the best architecture. Finally, the
performance of the models on the test data is also
evaluated.

6.1 Subtask A

Subtask A was evaluated on the F1-score of the
sarcastic class. Table 2 Shows the results for sub-
task A. As can be seen, BERT, T5, and RoBERTa
have been evaluated to determine the most appropri-
ate language model. The T5-large and MT5-large
achieve a score of 49.47% and 71.53%, respec-
tively, outperforming other language models. It
could be caused by the differences in objective
learning among the models. In addition, it is worth
noting that the BERT-based models predict masked
words from the vocabulary and are auto-encoding
models, while the T5 uses a text-to-text framework
for training, and it is an auto-regressive model.

Table 3 shows the results of implementing the
deep learning model. Since T5-large and MT5-
large performed well in the initial experiments,
they were subsequently used in subtask A. Adding
transformer encoders help increase the F1-score on
the sarcastic class in subtask A by capturing and
focusing the most informative data on top of the
language model. In English and Arabic, there was
an increase in the F1-score using the transformer
encoder due to the presence of multi-head attention
in the transformer and the ability of this module to
extract the dependencies.

Combining a Bi-LSTM layer results in a higher
F1-score. This increase is due to the ability of the
recurrent network to extract temporal information

982



Model Dev Test
sarcastic non-sarcastic sarcastic non-sarcastic

Subtask A (English)
T5-base 42.29 82.45 25.33 76.29
T5-large 49.47 81.05 32.85 75.89

BERT-base 45.89 76.55 31.40 73.40
RoBERTa-base 26.41 83.46 9.34 86.99
RoBERTa-large 39.64 85.92 25.12 88.59

Subtask A (Arabic)
MT5-base 67.88 89.64 29.12 56.85
MT5-large 71.53 87.23 31.89 65.33

MBERT-base 58.89 76.55 24.40 73.40
XLM-RoBERTa-base 58.70 89.80 29.16 63.32
XLM-RoBERTa-large 63.93 86.52 27.87 42.67

Table 2: subtask A: Evaluation result of Language models

Model Dev Test
sarcastic non-sarcastic sarcastic non-sarcastic

Subtask A (English)
T5-large + Transformer 52.41 81.36 33.68 75.26

T5-large + Transformer + Bi-LSTM 52.55 79.49 34.85 77.89
T5-large + Transformer + Bi-LSTM + Attention 55.11 84.48 40.31 84.53

T5-large + Transformer + Bi-LSTM + Attention + fc (ours) 57.18 87.43 42.51 83.76
ours + finetune T5 58.89 88.39 43.42(7) 84.31

Subtask A (Arabic)
MT5-large + Transformer 72.16 88.94 33.42 55.12

MT5-large + Transformer + Bi-LSTM 73.98 88.14 33.64 56.28
MT5-large + Transformer + Bi-LSTM + Attention 75.16 86.98 34.06 55.47

MT5-large + Transformer + Bi-LSTM + Attention + fc (ours) 75.87 90.34 31.88 53. 76
ours + finetune MT5 (Error in submission) 76.29 91.76 18.79(31) 34.38

ours + finetune MT5 (True result) 76.29 91.76 32.24 54. 43

Table 3: subtask A: Baseline results. Our rank is shown in parentheses.

and long-term dependencies. Next, adding scaled
dot-product attention improved the F1-score in En-
glish and Arabic, reaching 55.11% and 75.16%
on the sarcastic class, respectively. A scaled
dot-product attention module could improve the
model’s accuracy by detecting dependencies be-
tween words, which is mainly helpful in assisting
the Bi-LSTM architecture in identifying spatially
spaced apart words.

Finally, as mentioned before, we have also fine-
tuned T5 and MT5 on two large datasets in English
and Arabic, owing to the deficient number of sam-
ples. Using this method, the F1-scores obtained
in English and Arabic have reached 58.89% and
76.29%. An improvement in the F1-score can be
achieved by the task awareness of the language
model.

6.2 Subtask B

The results of different models for subtask B are
shown in Table 4. The evaluation metric in this
subtask is macro F1-score. As a result of the ex-
periments, it was found that RoBERTa achieves a
macro F1-score of 11.34% on test data, which is the

highest F1-score. Due to the nature of multi-label
binary classification, each of the six classes in this
subtask is classified by a separate classifier within
the same architecture as subtask A. Our T5-based
implemented model in the competition achieved
the rank of 9 and F1-score of 7.43%.

Model Dev Test
T5-base 12.41 2.41
T5-large 19.68 5.34
Bert-base 18.07 5.76

RoBERTa-base 22.01 11.34
RoBERTa-large 21.28 9.94

ours in competition 24.67 7.43(9)

Table 4: Subtask B: Evaluation result of Language mod-
els. Our rank is shown in parentheses.

6.3 Subtask C

Several experiments were performed to select the
most appropriate language model for subtask C.
Table 5 shows the results of implementing different
models on English and Arabic. For this subtask,
the evaluation metric is accuracy. Among the tested
language models, on dev, the T5 and MT5 reach
the highest accuracy among other language models.

983



For this reason, these models have been used in
subsequent experiments. The results of language
models are shown in Table 5.

Model Dev Test
Subtask C (English)

T5-base 92.24 72.57
T5-large 90.95 69.43
Bert-base 77.01 68.18

RoBERTa-base 82.75 68.86
RoBERTa-large 49.42 47.27

Subtask C (Arabic)
MT5-base 53.33 52.75
MT5-large 88.19 78.64
MBert-base 80.64 69.83

XLM-RoBERTa-base 45.12 49.73
XLM-RoBERTa-large 45.33 50.16

Table 5: Subtask C: Evaluation result of Language mod-
els

In Table 6, the model that was developed in
this research is implemented, and the results are
shown. To compete in English, the T5-large lan-
guage model and its combination with the proposed
deep network architecture have been used and we
have reached an accuracy of 76.50%, 87.50% in
English and Arabic, respectively.

Model Dev Test
Subtask C (English)

T5-base + Transformer 93.10 73.86
T5-base + Transformer + 94.25 76.64Bi-LSTM
T5-base + Transformer + 95.34 77.13Bi-LSTM + Attention
T5-base + Transformer +

92.55 79.32Bi-LSTM + Attention + fc
(ours)

T5-Larg + Transformer +
93.10 76.50(9)Bi-LSTM + Attention + fc

(ours in competition)
Subtask C (Arabic)

MT5-large + Transformer 88.99 81.38
MT5-large + Transformer 91.25 83.18+ Bi-LSTM

MT5-large + Transformer + 92.34 86.32Bi-LSTM + Attention
MT5-large + Transformer +

96.55 87.50(3)Bi-LSTM + Attention + fc
(ours in competition)

Table 6: Subtask C: Proposed model result. Our rank is
shown in parentheses.

7 Error And Performance Analysis

In this section, we analyze the performance of sev-
eral components of our system. This section will
examine our model’s ability to correctly label sam-
ples in sarcastic or non-sarcastic contexts.

7.1 Subtask A

There are 1400 samples in the English test set.
The model correctly identified 924 samples as non-
sarcasm, which means True Negative (TN), and
correctly identified 132 samples as sarcasm, known
as True Positive(TP). Despite this, 68 sarcasm sam-
ples were incorrectly predicted as non-sarcasm, re-
sulting in False Negatives(FN). Lastly, the False
Positive(FP) value is very high. There were 276
input samples in this case that were incorrectly
predicted as sarcasm samples. According to the
results, since about 75% of the data is the negative
sample, Data imbalance leads to an FP error rate of
about 276 among all predictions.

Error analysis Some samples of post-evaluation
on the model’s output were examined, in Table 7.
According to studies, the most significant effect on
the accurate prediction of sarcasm samples is ob-
tained from sentiment and emoji in samples (Type
A, B). According to the implemented architecture,
the model is more robust for long samples. How-
ever, in very short samples (Type C), weaknesses
in the estimation are observed.

In addition to analyzing the strengths of the
model and the factors that affected them, this sec-
tion also examined its weaknesses in predicting
the sample and the factors that affected them. As
mentioned, a major reason is the short length of the
input sample. Another reason could be the pres-
ence of misspellings (Type D) in the data and the
unfamiliarity of the model with the incorrect word.
A major reason for the error in estimation can be
found in the absence of sentiment and emotion in
the text and the fact that the sample is completely
based on "human knowledge" (Type E).

As a result, the model has weaknesses in short,
humane, and emotionless examples.

7.2 Subtask B

Detailed model results on test data for each label
are presented in Table 8. Since the dataset only
included one sample of the "understatement" class,
the model could not correctly identify the sample’s
label. The "overstatement" class contains only ten
samples, and due to its scarcity and complexity, the
model could not predict any of these, so the F1-
score on the "understatement" and "overstatement"
classes is 0.

Among the remaining 4 classes, the recall value
is much higher than the precision of the model,
which indicates that the model performed well at

984



Sample Prediction type
Type A: Emoji

Love it when someone with no mask chooses to sit next to me on the bus... TP
Weathers wonderful today! TP

Type B: Sentiment
Wow the Prime Minister is so good at the telling the truth TP

You on your best behaviour is me on my worst TP
It makes me feel a lot safer knowing the MET Police don’t investigate crimes after they happen. TP

Yeah, feeding children sweets before bedtime is an awesome way of getting lots of sleep TP
I swear stupid people were put on this earth to test my anger management skills TP

Type C: Short samples
Proof of unjustified victimisation! FP

Rubbish FP
Type D: Misspellings

if you listen carefully, you can hear me not carig FP
Type E: Human Speech

Masks work, that’s why we don’t have to wear them in pubs but do in shops! FP
Boris Johnson is a great leader and all his team stick to the covid rules rules FP

I was waiting at the bus stop when the driver pulled up and said you waiting for a bus? FPI said no mate im waiting for a plane. He drove off.

Table 7: subtask A: Result analysis

Class Number of samples TP FP FN TN Precision Recall F1-Score
sarcasm 180 102 748 78 472 12.00 56.67 19.81(19)

irony 20 13 365 7 1015 3.44 65.00 6.53(8)
satire 49 7 135 42 1216 4.93 14.29 7.33(5)

understatement 1 0 10 1 1389 0 0 0(3)
overstatement 10 0 203 10 1187 0 0 0(6)

rhetorical-question 11 9 145 2 1244 5.84 81.82 10.91(3)

Table 8: Subtask B: Error analysis. Our rank is shown in parentheses.

identifying samples that belong to each class. The
precision value is very low, which indicates that
a significant number of positive predictions are
incorrectly categorized as positive.

7.3 Subtask C
Table 9 provides detailed information results for
English test data. According to the three evalua-
tion metrics, the model performed well in distin-
guishing sarcasm samples from non-sarcasm para-
phrases.

We have decided not to explain further in this
section due to the model’s acceptable performance
and space limitation.

Sarcasm-id Precision Recall F1-Score
0 79.82 81.31 80.56
1 78.02 76.34 77.17

Table 9: Subtask C: Error analysis

8 Conclusion

We implement a novel deep learning approach
based on language models. The last hidden state of
T5 is used as an embedding layer in this architec-
ture. On top of this layer, a bidirectional LSTM is

used to extract future and past contexts as represen-
tations of the input text. LSTM output is processed
using an attention mechanism, which focuses more
on the valuable tokens to predict.

The main challenge in this study was that there
were not enough samples in the dataset. To solve
this, we fine-tuned the T5 language model with
other large open-source datasets to have a language
model that had a pre-awareness of the task and a
higher accuracy. This fine-tuned language model
was then used as an embedding representation in
our deep architecture.

To evaluate the performance of the developed
model and find the best language model, many
experiments were conducted. The experimental
results show that the T5 language model covers a
reasonable range of results and is most appropriate
for our architecture.

The same architecture was used in all three sub-
tasks, as mentioned earlier. Due to the multi-label
nature of subtask B, six separate classifiers were
used instead of one to produce the output. We
identified specific sarcasm challenges through er-
ror analysis, creating immediate future tasks.

As a final point, our architecture has already

985



been created for English and Arabic, but it could
be easily extended to other languages.

References
Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and

Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Tanvi Dadu and Kartikey Pant. 2020. Sarcasm detec-
tion using context separators in online discourse. In
Proceedings of the Second Workshop on Figurative
Language Processing, pages 51–55.

Ibrahim Abu Farha and Walid Magdy. 2020. From
arabic sentiment analysis to sarcasm detection: The
arsarcasm dataset. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 32–39.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
581–586.

Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla,
Erik Cambria, Roger Zimmermann, and Rada Mi-
halcea. 2018. Cascade: Contextual sarcasm detec-
tion in online discussion forums. arXiv preprint
arXiv:1805.06413.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Soroush Javdan, Behrouz Minaei-Bidgoli, et al. 2020.
Applying transformers and aspect-based sentiment
analysis approaches on sarcasm detection. In Pro-
ceedings of the Second Workshop on Figurative Lan-
guage Processing, pages 67–71.

Avinash Kumar, Vishnu Teja Narapareddy, Veerub-
hotla Aditya Srikanth, Aruna Malapati, and Lalita
Bhanu Murthy Neti. 2020. Sarcasm detection using
multi-head attention based bidirectional lstm. Ieee
Access, 8:6388–6397.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua
Bengio. 1999. Object recognition with gradient-
based learning. In Shape, contour and grouping in
computer vision, pages 319–345. Springer.

Silviu Oprea and Walid Magdy. 2019. isarcasm:
A dataset of intended sarcasm. arXiv preprint
arXiv:1911.03123.

Rolandos Alexandros Potamias, Georgios Siolas,
and Andreas-Georgios Stafylopatis. 2020. A

transformer-based approach to irony and sarcasm
detection. Neural Computing and Applications,
32(23):17309–17320.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Ehsan Tavan, Ali Rahmati, Maryam Najafi, and Saeed
Bibak. 2021. Bert-dre: Bert with deep recursive en-
coder for natural language sentence matching. arXiv
preprint arXiv:2111.02188.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

986


