
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 970 - 977
July 14-15, 2022 ©2022 Association for Computational Linguistics

FII UAIC at SemEval-2022 Task 6: iSarcasmEval - Intended
Sarcasm Detection in English and Arabic

Tudor Manoleasa
Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi, Romania

tudor.manoleasa@info.uaic.ro

Iustin Sandu
Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi, Romania

iustin.sandu@info.uaic.ro

Daniela Gifu
Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi, Romania

Institute of Computer Science, Romanian Academy - Iasi Branch
daniela.gifu@info.uaic.ro

Diana Trandabat
Faculty of Computer Science, Alexandru Ioan Cuza University of Iasi, Romania

diana.trandabat@info.uaic.ro

Abstract
The “iSarcasmEval - Intended Sarcasm Detec-
tion in English and Arabic” task at the Se-
mEval 2022 competition focuses on detecting
and rating the distinction between intended
and perceived sarcasm in the context of tex-
tual sarcasm detection, as well as the level of
irony contained in these texts. In the context
of SemEval, we present a binary classification
method which classifies the text as sarcastic
or non-sarcastic (task A, for English) based on
five classical machine learning approaches by
trying to train the models based on this dataset
solely (i.e., no other datasets have been used).
This process indicates low performance com-
pared to previously studied datasets, which in-
dicates that the previous ones might be biased.

1 Introduction

One of the most challenging tasks facing natural
language processing (NLP) is the automatic figura-
tive language detection (Gifu Daniela, Samson Mi-
hai, 2021), (C. Van Hee, E. Lefever, and V. Hoste,
2018), such as humor, sarcasm or irony. In gen-
eral, this way of expressing takes advantage of
linguistic elements in order to project complex and
explainable meanings. In this paper, we investigate
the binary classification models for figurative lan-
guage, as is sarcasm (Dan Alexandru and Daniela

Gı̂fu, 2020). In general, it is omnipresent on the
public space, being disruptive of computational sys-
tems that harness this data to perform tasks such
as opinion mining and sentiment analysis in elec-
tions (Gı̂fu, Daniela, 2010). The political actors
themselves introduce a specific language based on
sarcasm or irony, making their message analysis
very challenging (Reyes, Antonio and Rosso, Paolo
and Buscaldi, Davide, 2012). In order to identify
the figurative meaning of a specific message, it is
required to encode each sentence separately. The
research question guiding this paper is what are
the most efficient sarcasm detection algorithms?
We propose an approach based on three classi-
cal machine learning (ML) approaches by trying
to train the models based on this dataset solely
(i.e., no other datasets have been used). Further-
more, we experimented with architectures rang-
ing from Naı̈ve Bayes (multinomial, complement
and bernoulli variants), Support Vector Machines
(SVMs with linear, polynomial and RBF kernels) to
Logistic Regression which we tried to train using
only the dataset provided by the SemEval-2022
Task 6 competition (Ibrahim Abu Farha, Silviu
Oprea, Steven Wilson, and Walid Magdy, 2022).
The rest of the paper is organized as follows: sec-
tion 2 briefly presents studies related to sarcasm

970



detection, section 3 presents the dataset, the re-
quired pre-processing and plausible methods for
it, section 4 resumes the results of the conducted
experiments, with their interpretations, followed by
section 5 with the conclusions.

2 Related work

This topic is a widely researched subject in re-
cent years, evidenced in this competition at sev-
eral workshops (e.g., SemEval-2017 Task 4: Us-
ing Sarcasm Detection for Enhancing Sentiment
Classification and Quantification or SemEval-2018
Task 3: Irony Detection in English Tweets). Such
a competition is challenging, especially since the
problem of labeled data is time consuming and not
cheap. Moreover, the automatic sarcasm detection
depends on the annotation process, which always
introduce some biases to the data. For the binary
task, as in this case, there are many computational
models to solve it or to capture the (actual) sar-
casm or subcategories of it (John S. Leggitt and
Raymond W. Gibbs Jr. , 2000) (Silviu Oprea and
Walid Magdy, 2020). Thus, work on this topic
was never followed by high results, as this prob-
lem is still debatable and text classification even
for humans is very controversial and biased. It is
a task that can be considered as sentiment anal-
ysis for which most of the authors used LSTM
(Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio, 2014), (Zichao Yang, Diyi Yang, Chris
Dyer, Xiaodong He, Alex Smola, and Eduard Hovy,
2016) or CNN (Yi Tay, Anh Tuan Luu, Siu Che-
ung Hui, and Jian Su, 2018) and (Tao Shen, Tianyi
Zhou, Guodong Long, Jing Jiang, Shirui Pan, and
Chengqi Zhang, 2018). New approaches concen-
trate on using attention-based methods (Joshi et al.,
2017), in particular transformer architectures such
as BERT (Devlin, Jacob and Chang, Ming-Wei
and Lee, Kenton and Toutanova, Kristina, 2018),
RoBERTa, spanBERT (Amardeep Kumar, Vivek
Anand, 2020) etc. These transformers are pre-
trained on unlabeled data to be later fine-tuned for
a variety of tasks like single sentence classification,
sentence pair classification, etc. to understand role
of context for sarcasm detection. Here, we used
five machine learning approaches by trying to train
the models based on this dataset solely (i.e., no
other datasets have been used).

3 Dataset and Methods

This section is focused on two issues: Twitter
dataset in English and two types of methods for
classification task, both binary and multi-class. For
the first type, we mostly tried classical machine
learning approaches that resulted in satisfactory
outcomes when evaluated on the training set. On
the second one, a RNN with a few GRU layers
was the architectural choice. At this moment, the
results were modest, probably due to the lack of
to much data (it is empirically known that neural
networks require a high volume of data to work
properly)

3.1 Dataset

The dataset that this competition provided consists
of 3468 samples. Each sample is made of a short
tweet and 8 binary columns which specify whether
or not the text belongs to a certain class. The target
column in the binary classification case is ”sar-
castic” while the other 7 (sarcasm, irony, satire,
understatement, overstatement, rhetorical question,
ambiguity) compose the outputs for the multi-class
scenario. At a first glance, we can clearly see that
the data is heavily unbalanced. However, this is
pretty standard and conforms to the reality where,
for example, only a few people are sarcastic, ironic
or satirical and so on. Sure, data imputation meth-
ods could have been useful (for example, replacing
the words of each text with the corresponding syn-
onyms and adding the new texts to the dataset or
doing some sort of oversampling on the positive
label texts that are heavily lacking in examples) to
make the set a little bit bigger but we chose to just
stick to what was given! In the following picture
(Figure 1), you can see a bar-chart of how the out-
put column labels are distributed across the dataset.

One big inconvenience that we observed is the
presence of many 0s in the target columns. This is
difficult to solve since replacing nans with certain
labels is not tractable. In the end, we went forward
with the missing values. Before getting into the
proper implementation details, we want to present
an image of the overall architecture (Figure 2) so
that every step is clear right from the start. The
right arrows in the image define transitions from
one step to another. A step title is written inside
a cloud and the boxes under it are nothing but its
definitory operations.

971



Figure 1: Bar charts of the labels distribution. The Y
axis represents the counts for each value that the labels
take.

Figure 2: The architecture is made out of 4 parts. The
separation between them is made through arrows.

3.2 Methods

3.2.1 Pre-processing

Before talking about the machine learning models,
we will explain the pre-processing step that had
to be done in order to ”clear” the data. First, we
lowered all the training texts and tokenized them
into words. Since many compound words could
exist (e.g. ”state-of-the-art” or ”equality”; note that
these are not actual words from the set) the natural
thing to do is to split them by space. After that, for
each sample, we are left with lists of words only,
hence getting rid of the non alphanumeric words
is advisable (the punctuation marks do not add
any real value to our task). Another requirement
is the lemmatization of the words. We want the
root forms of our words in order not to consider
multiple derivations of the same word as different
(e.g. ”goes” should be the same with ”go”, ”going”
or ”gone” and so on). Now, as a final touch, we
eliminate the stopwords (the stopwords list is taken
from the corpus class of the nltk library) since they
don’t add any value to our models. We also built a
vocabulary which contains all the unique words of

the corpus and this will help us when constructing
the numerical representations. Given the processed
texts, we can start the well known one hot, doc-
term and tf-idf encodings. For each one of them,
we define a matrix where the rows represent the
indexes of the texts and the columns are nothing
but the words from our vocabulary. In the case
of one-hot representation, one cell is either 1 or
0, noting the apppearance of a word (column) in
the text (row). Alternatively, doc-term counts the
number of appearances of a word in a text while
tf-idf is built on top of doc-term and gives some
scores according to the frequencies of the terms.
All of these encodings were used with different
machine learning methods.

3.2.2 Classical Machine Learning
Approaches

As a first approach to classification we tried
bayesian methods. We chose them because they
are fast to build and have low variance. As another
plus, the performance is very good with both small
training sets, as well as big ones. Having a reputa-
tion as a bad estimator, but a decent classifier, we
decided that it’s a good starting point (please note
that the previous statements can be deducted from
the books (Tom M. Mitchell, 1997), the Bayesian
Learning Chapter and (Christopher Bishop, 2006),
the Graphical Models chapter). Throughout time,
NB has been the most used one when it comes to
NLP tasks and we thought that our numerical rep-
resentations could work very well on it. Bernoulli
Naı̈ve Bayes (BNB), Multinomial Naı̈ve Bayes
(MNB) and Complement Naı̈ve Bayes (CNB) are
the options we have through the scikit-learn library.
BNB deals with binary features, hence one-hot en-
coding is the only choice here. Multinomial Naı̈ve
Bayes works with word counts or word scores,
therefore doc-term and tf-idf representations are
the way to go in this direction. As a last resort, we
also tried a CNB because, according to the scikit
documentation (Complement Naive Bayes docu-
mentation of scikit), CNB is an adaptation of the
standard MNB algorithm that is particularly suited
for imbalanced data sets, just like ours. The inven-
tors of CNB show empirically that the parameter
estimates for CNB are more stable than those for
MNB. Further, CNB regularly outperforms MNB
(often by a considerable margin) on text classifi-
cation tasks (Jason D. M. Rennie, Lawrence Shih,
Jaime Teevan, David R. Karger). It is well known
that logistic regression is the discriminative corre-

972



spondent of Naı̈ve Bayes. Moreover, if the condi-
tional independence supposition of NB is true and
the amount of training data tends to infinite, the
2 models should give similar results. Therefore,
we tried to fit a logistic regression on our data to
check the previous statement (these statements are
based on the Generative and discriminative clas-
sifiers (Tom M. Mitchell) book chapter). Mov-
ing onto the next level, support vector machines
(SVMs) come into play. Considering that each nu-
merical representation has lots of features (words)
and only a few lines (samples), the dual form is
preferred, since the complexity is O(rows) (rows
are the number of samples). Besides this, we work
with the soft-margin SVM because it allows us to
avoid overfitting through the slack variable. When
it comes to kernels, we had 3 options. The first one
we chose is the linear kernel (a.k.a the ”no kernel”)
because in a very high dimensional space as ours,
it’s plausible to find a good separating hyperplane.
After that, we decided to try a polynomial kernel
as well. This one maps our data into a higher di-
mension, hoping to find a better suited hyperplane.
The degrees used were 2 and 3 and we compared
the results with the previous model. In the end,
the RBF kernel seemed to be the natural step for-
ward because it’s the only one that is guaranteed
to find a separating hyperplane by mapping the
features into an infinite dimensional space. The
hyper-parameters gamma and C (the weight of the
slack variables) were chosen with a randomized
grid search (no specific random seed, we just used
the scikit default option) with cross validation. In
other words, different values from 2 exponential
distributions have been generated to each hyper-
parameter and then, a SVM was applied. The one
that gave the best results at cross validation was
kept.

3.2.3 Deep Learning Approaches
Even though it was not the main target of the
project, we chose to take a closer look at the other
classes of the dataset and fit a neural network that
could be the starting point of some future work.
On the multi-class classification, as we’ve said, we
fitted a RNN. However, this was not a classic RNN,
since those lose to much early information. To me-
diate this problem, we thought that GRU hidden
layers (HL) are a good option. Moreover, due to
the lack of data, we had to stick to a number of 3
hidden layers only. Each one of them has 10 neu-
rons. The output layer is, of course, a 7 neurons

dense layer with softmax activation. To avoid over-
fitting, we also added a dropout of 10% on each
HL. When it comes to the input layer, the situation
is a bit different. Given that each text sample has
a different number of words, some padding had to
be done. Therefore, we calculated the length of
the longest words sequence sample and padded the
rest of the samples with 0 until we would obtain
that maximum length for each training observation.
The last requirement was a word2vec matrix where
the indexes represent a word and the columns are
the dimensions of our numerical mappings. This
number of dimensions was chosen by us to be 5
because we don’t have that many words. To speed
up the training process, a batch normalization layer
was used immediately after the input layer. The
results were not the best, as we will see in the next
section. We definitely needed more training data.

4 Results and Interpretations

We would like to make it clear that the results
have been obtained on the training set here, since
we didn’t have a test set available at the time we
were working on the project. Moreover, the results
should be viewed with caution since the models
have been trained on a small sized data set that has
not to many samples, hence not to many words. A
big problem arises: what do we do when the future
testing samples don’t contain words we’ve seen
before? To answer this, one could simply drop the
unseen words and focus on those seen only. Mov-
ing on, the main metrics we have used throughout
the project are: recall, precision, F-score, balanced
accuracy, accuracy and the ROC graph. It’s worth
noticing that the metrics have been evaluated on all
the numerical representations we have mentioned
before. We will start with the Naı̈ve Bayes algo-
rithms since these were the ones that surprisingly
produced the best results (Table 1).

Bear in mind that the results have obtained on a
multinomial variant with doc-term numerical repre-
sentation. We can clearly see that there is a dif-
ference between the accuracy and the balanced
accuracy of 8%. This is quite a big percentage,
but not as big as other models resulted. Of course,
the standard accuracy is not very relevant since the
data is imbalanced, hence one should pay attention
to the balanced accuracy more. When it comes
to precision and recall on the negative labels (i.e.,
the not sarcastic texts), the system is very precised.
Both a high sensitivity and high precision are what

973



you would normally want from a system. In other
words, the non-sarcastic texts are very well classi-
fied. On the positive labels, although not as big, the
rate on recall and precision maintains at a strong
above 80% percentage. Judging by the F-scores,
we are pleased with the result, however, as we’ve
said in the previous chapter, Naı̈ve Bayes is a good
classifier, but a bad estimator, so even though the
results are great, the independence supposition in
this case is very general and wide and tricks the
statistical principles. The results for the rest of the
other NB variants are given in Table 2 and Table 3.

Moving on to logistic regression, we can see that
the results are really far away from NB. Therefore,
we can definitely say that the Naı̈ve Bayes inde-
pendence supposition here is strongly untrue. We
can see that the recall on the positive labels is very
small, but the precision is almost close to 100%.
In other words, among all the texts that are posi-
tive in reality, only a small percentage of them are
classified as positive, but those that are predicted
positive, are done so with very high certainty. So,
we could say that someone who is interested in
getting a very precised sarcastic prediction should
choose this model. Also, an interesting observation
that we can draw from all the analysed algorithm
results is that a high recall on the positive class
leads to a high precision on the negative class and
alternatively a high precision on the positive class
leads to a high recall on the negative class (Table
4).

The support vector machines are the ones that
behaved the most poorly among the tried models.
This is somehow weird since most of the articles
out there indicate SVMs as the best option for bi-
nary classification in NLP when having little data.
As mentioned before, we tried different kernel vari-
ants, but nothing good came up, unfortunately.

The polynomial kernel seems to have given the
best results, but these are weak. Table 5 and Table 6
are associated to the linear and polynomial variants.
Judging by the F-scores and balanced accuracy,
we can easily conclude that the bayesian methods
are behaving way better. What we found to be
very curious is the fact that the randomized grid
search didn’t give any good SVM, even after 200
iterations and generous exponential distributions
for ”C” and ”gamma” hyper-parameters. For this
reason, we chose to skip showing the results for
the RBF kernel. In the end, we will look at the
ROC curve (Figure 9) that sums up all the models

Figure 3: ROC curve

that we fitted in our project. Again, the curve with
the highest area under it is the Multinomial Naı̈ve
Bayes one. The other curves just seem to overlap,
firmly bellow the best one!

5 Conclusion

For sarcasm classification task (binary or multi-
class), a small dataset is a really challenging. The
classical machine learning approaches we have pre-
sented so far cannot answer convenient to it. This
lack of data is a big downside because it means that
not many words are numerically encoded, hence
having the same vocabulary on a testing set is ab-
solutely mandatory. In practice, it is very rarely.
We may conclude that the best model is the Multi-
nomial Naı̈ve Bayes one, but again, it is not guar-
anteed that it has not overfitted the training data.
In the future, some more attention could be payed
to the neural network if data imputation is done
and the dataset reaches a reasonable number of
samples.

References
Amardeep Kumar, Vivek Anand. 2020. Transformers

on Sarcasm Detection with Context. Proceedings of
the Second Workshop on Figurative Language Pro-
cessing, pages 88–92.

C. Van Hee, E. Lefever, and V. Hoste. 2018. Exploring
the fine-grained analysis and automatic detection of
irony on Twitter. Lang Resources Evaluation Vol.
52, pages 707–731.

Christopher Bishop. 2006. Pattern Recognition and
Machine learning. Springer, New York.

Complement Naive Bayes documentation of
scikit. https://scikit-learn.org/
stable/modules/naive_bayes.html#
complement-naive-bayes.

974

https://scikit-learn.org/stable/modules/naive_bayes.html#complement-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html#complement-naive-bayes
https://scikit-learn.org/stable/modules/naive_bayes.html#complement-naive-bayes


Dan Alexandru and Daniela Gı̂fu. 2020. Tracing hu-
mor in Edited News Headlines. Ludic, Co-design
and Tools Supporting Smart Learning Ecosystems
and Smart Education, pages 187–196. Springer Sin-
gapore.

Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton
and Toutanova, Kristina. 2018. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. ICLR.

Gı̂fu, Daniela. 2010. The Discourse of the Written
Press and the Violence of Symbols. PhD thesis, Fac-
ulty of Philosophy and Political Studies,“Alexandru
Ioan Cuza” University of Iaşi.

Gifu Daniela, Samson Mihai. 2021. FII FUNNY at
SemEval-2021 Task 7: HaHackathon: Detecting
and rating Humor and Offense. Proceedings of
the 15th International Workshop on Semantic Eval-
uation, (SemEval-2021), ACL, Bangkok, Thailand,
pages 1226–1231, DOI: 10.18653/v1/2021.semeval-
1.174.

Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and
Walid Magdy. 2022. 2022. SemEval-2022 Task 6:
iSarcasmEval, Intended Sarcasm Detection in En-
glish and Arabic. Proceedings of the 16th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2022). Association for Computational Linguistics.

Jason D. M. Rennie, Lawrence Shih, Jaime Teevan,
David R. Karger. Tackling the Poor Assumptions
of Naive Bayes Text Classifiers. Massachusetts In-
stitute of Technology.

John S. Leggitt and Raymond W. Gibbs Jr. . 2000.
Emotional reactions to verbal irony.

Reyes, Antonio and Rosso, Paolo and Buscaldi, Davide.
2012. From humor recognition to irony detection:
The figurative language of social media. Data &
Knowledge Engineering, 74:1–12.

Silviu Oprea and Walid Magdy. 2020. The effect of so-
ciocultural variables on sarcasm communication on-
line. Proceedings of the 23rd ACM Conference on
Computer-Supported Cooperative Work and Social
Computing (CSCW).

Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang,
Shirui Pan, and Chengqi Zhang. 2018. Disan: Di-
rectional self-attention network for rnn/cnn-free lan-
guage understanding. AAAI.

Tom M. Mitchell. http://www.cs.cmu.edu/˜tom/
mlbook/NBayesLogReg.pdf.

Tom M. Mitchell. 1997. Machine Learning,. McGraw
Hill Education, New York.

Yi Tay, Anh Tuan Luu, Siu Cheung Hui, and Jian Su.
2018. Reasoning with sarcasm by reading in be-
tween. ACL, pages 1010–1020.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1480–1489.

975

http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf
http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf


Precision Recall F1-Score Support Overall
0 0.90 0.99 0.94 2601 -

1 0.97 0.66 0.78 867 -

balanced accuracy - - - 3468 0.8254

accuracy - - - 3468 0.9094

macro avg 0.93 0.83 0.86 3468 -

weighted avg 0.92 0.91 0.90 3468 -

Table 1: Multinomial NB with doc-term encoding

Precision Recall F1-Score Support Overall
0 0.89 0.99 0.94 2601 -

1 0.98 0.65 0.78 867 -

balanced accuracy - - - 3468 0.8208

accuracy - - - 3468 0.9077

macro avg 0.93 0.82 0.86 3468 -

weighted avg 0.91 0.91 0.90 3468 -

Table 2: Multinomial NB with one hot encoding

Precision Recall F1-Score Support Overall
0 0.76 1.00 0.87 2601 -

1 1.00 0.07 0.13 867 -

balanced accuracy - - - 3468 0.5340

accuracy - - - 3468 0.7670

macro avg 0.88 0.53 0.50 3468 -

weighted avg 0.82 0.77 0.68 3468 -

Table 3: Multinomial NB with tf-idf encoding

Precision Recall F1-Score Support Overall
0 0.96 1.00 0.98 2601 -

1 0.99 0.87 0.93 867 -

balanced accuracy - - - 3468 0.9323

accuracy - - - 3468 0.9653

macro avg 0.98 0.93 0.95 3468 -

weighted avg 0.97 0.97 0.96 3468 -

Table 4: Logistic Regression Results

Precision Recall F1-Score Support Overall
0 0.85 1.00 0.92 2601 -

1 1.00 0.49 0.66 867 -

balanced accuracy - - - 3468 0.7452

accuracy - - - 3468 0.8722

macro avg 0.93 0.75 0.79 3468 -

weighted avg 0.89 0.87 0.86 3468 -

Table 5: SVM with linear kernel results

976



Precision Recall F1-Score Support Overall
0 0.87 1.00 0.93 2601 -

1 1.00 0.54 0.70 867 -

balanced accuracy - - - 3468 0.7710

accuracy - - - 3468 0.8855

macro avg 0.93 0.77 0.82 3468 -

weighted avg 0.90 0.89 0.87 3468 -

Table 6: SVM with polynomial kernel results

977


