
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 862 - 870
July 14-15, 2022 ©2022 Association for Computational Linguistics

NULL at SemEval-2022 Task 6: Intended Sarcasm Detection Using
Stylistically Fused Contextualized Representation and Deep Learning

Mostafa Rahgouy
Department of Computer Science

Auburn University, Alabama, USA
mzr0108@auburn.edu

Hamed Babaei Giglou
Department of Computer Science
University of Tabriz, Tabriz, Iran

h.babaei98@ms.tabrizu.ac.ir

Taher Rahgooy
Department of Computer Science

University of West Florida, Florida, USA
trahgooy@students.uwf.edu

Cheryl D Seals
Department of Computer Science

Auburn University, Alabama, USA
sealscd@auburn.edu

Abstract
The intended sarcasm cannot be understood un-
til the listener observes that the text’s literal
meaning violates truthfulness. Consequently,
words and meanings play an essential role in
specifying sarcasm. Enriched feature extrac-
tion techniques were proposed to capture both
words and meanings in the contexts. Due to
the overlapping features in sarcastic and non-
sarcastic texts, a CNN model extracts local fea-
tures from the combined class-dependent sta-
tistical embedding of sarcastic texts with con-
textualized embedding. Another component
BiLSTM extracts long dependencies from com-
bined non-sarcastic statistical and contextual-
ized embeddings. This work combines a classi-
fier that uses the combined high-level features
of CNN and BiLSTM for sarcasm detection to
produce the final predictions. The experimen-
tal analysis presented in this paper shows the
effectiveness of the proposed method.

1 Introduction

Sarcasm detection is a specific case of sentiment
analysis where the focus is on detecting sarcasm in
text. Therefore, the task is to detect if a given text
is sarcastic or not. According to (Hacker, 2011),
sarcasm refers to the use of words that mean the
opposite of what you want to say, especially to in-
sult someone, show irritation, or provide humor.
However, (Oprea and Magdy, 2020; Wilson, 2006)
define sarcasm as a form of irony marked by a dis-
crepancy between the literal and intended meanings
of an utterance, through which the speaker usually
manifests a hostile, derogatory, or contemptuous
attitude. Generally, sarcasm tweets/texts are the
utterances of a positive statement with harmful in-
tent, and since the intent is hard to detect not only
for computers but also for humans, it has attracted

a considerable body of research in the natural lan-
guage processing field to study opinions given by
the users of online social media platforms such as
Twitter, Facebook, Reddit, and Instagram. In the
SemEval 2022 at Task 6: iSarcasmEval (Abu Farha
et al., 2022), the goal is to identify intended sar-
casm in both English and Arabic languages. This
task consists of 3 subtasks, and we will focus on
SubTask A defined as: SubTask A: Given a text,
determine whether it is sarcastic or non-sarcastic.

Since sarcasm is an utterance of a statement
with negative intent (e.g., He has the best taste
in music.”) and an admiring tone (e.g., ”She al-
ways makes dry jokes.”). We hypothesized that
contextualized representation might not be enough
to represent intent when considering the sentiment
analysis challenge. Therefore, we combined the
representation of stylistically statistical and con-
textualized word embeddings using deep neural
networks (DNNs) as a high-level feature extrac-
tor and classifier for the task. In this work, we
studied the effect of the combination of stylistic
and contextualized representation. The rest of the
article is organized as follows. We first describe
sarcasm studies in Section 2. Section 3 presents the
proposed methodology. Sections 4 and 5 describe
experimental setups and results. Moreover, in sec-
tion 6 we made the discussion. Finally, in section 7
we conclude the article.

2 Related Works

Sarcasm detection research has seen a significant
surge in interest in the past few years (Potamias
et al., 2020; González et al., 2020; Babanejad et al.,
2020; Gregory et al., 2020; Kumar et al., 2021;
Ahuja and Sharma, 2021). At early stages, most
works considered content as the only source for

862

identifying sarcasm (Yaghoobian et al., 2021). To
differentiate between sarcasm and non-sarcasm
handcrafted rules and features have been applied
(Veale and Hao, 2010; Bharti et al., 2015; Riloff
et al., 2013). For instance, (Barbieri et al., 2014)
used seven sets of lexical features to detect sarcasm
by its inner structure. Frequency and Structure (i.e.,
length, punctuation, emoticons) are two examples
of sarcasm features. However, the model based
on these stylistic features shows promising results
but lacks external knowledge (i.e., common sense).
Our proposed method incorporates stylistic fea-
tures with XLM-RoBERTa model to cope with the
limitations of prior methods. Most recently, domi-
nant approaches are Context-based, utilizing back-
ground knowledge and contextual dependencies as
prior knowledge about the event mentioned in a sar-
castic context (Li et al., 2020; Agrawal et al., 2020;
Potamias et al., 2020). (Wallace et al., 2014) pro-
vided empirical evidence that to make judgments
concerning ironic intent annotators require addi-
tional contextual information. Hazarika et al. is one
of a few works that tried to capture the stylometric
and personality features of the users and used user
embeddings to encode stylometric and personality
features of users combined by a content-based fea-
ture extractor (i.e., CNN)(Hazarika et al., 2018).
This sarcasm detection model shows promising re-
sults on a large Reddit corpus. The improvement
in results by this work inspired us to investigate
the effectiveness of incorporating content-based
features for SemEval-2022 Task 6: iSarcasmEval,
but the problem we faced was the lack of data as-
signed to each user. As a result, instead of a users’
unique features, we investigate the stylometric fea-
tures of each class. In other words, we tried to find
general styles of users who tried to write sarcastic
texts by finding the distribution of their frequent
words and other features provided in section 3. Re-
sults provided in section 5 empirically demonstrate
the effectiveness of this incorporation. The effec-
tiveness of transfer learning has given rise to a
diversity of approaches, methodology, and prac-
tice, and they are also gaining attention in Sarcasm
detection. BERT, RoBERTa, and XLNet are ex-
amples that deliver significant improvements. For
example, (Potamias et al., 2020) proposed Recur-
rent CNN RoBERTa (RCNN-RoBERTa), which
obtained %79 on the SARC dataset. Based on its
effectiveness and multilingualism, we utilized the
RoBERTa model for this research.

3 Model Description

In this section, we describe the details of our pro-
posed deep learning model. The goal is to pre-
dict whether the given text is sarcastic or non-
sarcastic. Figure 1 depicts an overview of our pro-
posed method.

First, preprocessing (Appendix A.1) is applied
to the raw texts. Next, character-based lower di-
mensionality statistical embedding (Char-LDSE)
(Rangel et al., 2017; Giglou et al., 2021) captures
the stylistic information about sarcastic and non-
sarcastic data in form of class-dependent features
based on the term frequency of tokens in sarcastic
and non-sarcastic classes. The calculated LDSE
features for sarcastic class in combination with
contextualized representation are fed into Convo-
lutional Neural Networks (CNNs) (LeCun et al.,
1999) to extract local information of the texts. In
another setting, the LDSE for non-sarcastic class
in combination with contextualized representation
is fed into Bidirectional Long Short-Term Memory
(BiLSTM) (Schuster and Paliwal, 1997) to learn
the long-dependent information in the texts. The
features from CNN and BiLSTM layers combined
for enhancing the feature extraction ability of the
model. Extracted high-level features are fed into
the classifier. In the following, we describe each
component elaborately.

3.1 Representation

Preprocessed texts are fed into Char-LDSE and
contextualized representations. Where it outputs
an embedding for models.

Char-LDSE: First, a character n-gram matrix with
TFIDF weight is created. Using TFIDF matrix
the LDSE weighted probability of terms per class
was obtained. As a result, P (sarcastic) and
P (non − sarcastic) embeddings are calculated
for sarcastic and non-sarcastic, respectively. The
union of n-grams with TFIDF weighing on the
training set is applied to achieve the input matrix of
LDSE. We utilized character-level n-grams features
with an n-gram range of (2, 3), and word-level uni-
grams features for building input matrix to LDSE.
For English character-level and word-level settings,
and for Arabic, the only character-level setting is
applied. As a result, we obtain the following ma-
trix:

863

0.03 0.97

0.957 0.043

... ...

0.6 0.4

LDSE

XLM-
RoBERTa

Model

XLM-
RoBERTa
Tokenizer

XLM-RoBERTa

XLM
-RoBERTa

CNN

BiLSTM

FC

Concatenate
Embeddings

XLM
-RoBERTa

CNN/BiLSTM
layers

Prediction

Concatenate
Features

Classifier Layer

TFIDF

Text
Preprocessing

Representation Feature Extraction ClassifierPreprocessing

Input Dataset

FC

Figure 1: Architecture of Proposed Model

M =

W11 ... W1n β(iSC0)
W21 ... W2n β(iSC0)
...

W(m−2)1 ... W(m−2)n β(iSC1)

W(m−1)1 ... W(m−1)n β(iSC1)

Wm1 Wmn β(iSC1)

Where each row in the matrix M represents a
intended Sarcasm (iS) iSi, each column represents
vocabulary term T and Wij represents its TFIDF
weight and β represents the assigned class (C1 -
sarcastic, C0 - non-sarcastic) of the iS text. Also,
m and n represent the number of the training set
and vocabulary size, respectively. To obtain the
class-dependent term T weight embedding LDSE
the following LDSE(T, c) formula has been cal-
culated:

LDSE(T, c) =

∑
is∈β(iSc)/c=β(iSc)

Wis,T∑
is∈β(iSc)

Wis,T

∀is ∈ iS, c ∈ {C0, C1}

Next, we calculated LDSE for each class for term
T :

Psarcastic = LDSE(T, c)

Pnon−sarcastic = LDSE(T, c)

At the end, using Psarcastic and Pnon−sarcastic we
extract the following representations:

feat(Psarcastic) , feat(Pnon−sarcastic)

Where feat(P) contains the set of features pre-
sented as followings:

feat(P) = {max,min, std, avg,Q1, ..., Q100}

Where feat(P) ∈ R104 is the class-dependent
LDSE features. Accordingly, max, min, std, and
avg are maximum, minimum, standard deviation,
and average of weights P , respectively. Moreover,
the {Q1, ..., Q100} is the Q-th quantile of P ’s.

Contextualized Embedding: The XLM-
RoBERTa (Conneau et al., 2020) is a pre-trained
language model with the Masked Language Mod-
eling (MLM) objective. The XLM-RoBERTa is a
multilingual version of RoBERTa (Liu et al., 2019),
which is pre-trained on 2.5TB of CommonCrawl
data containing 100 languages. The model learns
an inner representation of 100 languages that
can then be used to extract features useful for
downstream tasks. The function CE ∈ R768 is a
base version of contextualized XLM-RoBERTa
word embeddings. CE takes iS texts, uses
XLM-RoBERTa tokenizer and XLM-RoBERTa
model for word embedding generations.

CE(iS) := XLMRoBERTa(iS)

Concatenate Embeddings: In representations
combination, we took the following approach. For
CNN layer we combined feat(Psarcastic) with
CE(iS), and for BiLSTM layer we combined
feat(Pnon−sarcastic) with CE(iS). We obtained

864

the following equations.

f : feat(Psarcastic)⊕ CE(iS)→ Ecnn

f : feat(Pnon−sarcastic)⊕ CE(iS)→ Ebilstm

Where Ecnn, Ebilstm ∈ R872, which will be the
inputs of CNN and BiLSTM models in feature
extraction module.

3.2 Feature Extraction

The CNN is applied on Ecnn and BiLSTM is ap-
plied on Ebilstm to extraction high-level features.
Next, outputs of CNN and BiLSTM models are
concatenated as an input to the classifier.
CNN Feature Extractor: CNN is a feature extrac-
tion technique with strong adaptability and is good
at mining data local characteristics. Our CNN’s
has architecture as follows:

1. Two CNN layer with Conv2D : conv2d →
maxpooling1d→ activation scheme.

2. Concatenate output of the two CNN layers:
Outcnn = Conv2D1 ⊕ Conv2D2.

3. Dropout layer.

Where Outcnn ∈ R200 with output channel number
of 100 in both CNN layers. The first layer in CNN
uses a kernel size of (4, 872), padding of (2, 0),
and stride of 3. However, the second layer employs
a kernel size of (3, 872), padding of (1, 0), and
stride of 2. Next, for an activation function, the
Gaussian Error Linear Unit (GELU) (Hendrycks
and Gimpel, 2020) that nonlinearity weights inputs
by their percentile, rather than gates inputs by their
sign as in ReLUs (Agarap, 2019) is applied. It has
been used in most of the transformers.
BiLSTM Sequence Learner: For a better repre-
sentation of contextual information, single BiL-
STM layer was employed. The BiLSTM is com-
posed of two LSTM network that is capable of
reading input texts in both directions, forward and
backward. The forward LSTM processes infor-
mation from left to right, and backward LSTM
processes information vice versa and hidden state
can be shown as:

−→
h t = LSTM(Ebilstm,

−→
h t−1)

←−
h t = LSTM(Ebilstm,

←−
h t+1)

Next, output of BiLSTM can be summarized as fol-
lowing where the max-pooling is applied to output

ht to retrieves a maximum value of each feature in
the BiLSTM layer.

ht =
−→
h t ⊕

←−
h t

Outbilstm = MaxPool1d(ht)

Where Outbilstm ∈ R200.
Concatenate Features: As a final high-level fea-
ture, the Outcnn and Outbilstm outputs are concate-
nated as follows, Where Outcnn⊕bilstm ∈ R400.

Outcnn⊕bilstm = Outcnn ⊕Outbilstm

3.3 Classifier

The two fully connected layers use Outcnnbilstm
for classification objectives. The first layer takes
400 neurons as input and outputs 200 neurons.
Next, GELU activation is applied. Finally, the sec-
ond layer takes 200 neurons and outputs 2 neurons
(the prediction module).

4 Experimental Setup

Dataset: For sarcastic or non-sarcastic detection
tasks, the collected dataset where the sarcasm la-
bels for texts are provided by authors themselves,
thus eliminating labeling proxies. For hyperparam-
eter tuning and model selection we split the training
set into train and dev sets with a 10% split rate for
both English and Arabic languages. More infor-
mation about the datasets (train, dev, and test sets)
has been presented in Appendix A.2. The dataset
is highly imbalanced.
Training Setup: The preprocessing (Appendix
A.1) is applied to text, first. Next, using train
and dev sets we made hyperparameters tuning (Ap-
pendix A.3). Due to the imbalanced setting of
the data we made a data argumentation (Appendix
A.4) as one of our experiments. The experimental
design shows the positive effect of data augmen-
tation. More information about preprocessing, hy-
perparameter setting, and data augmentation are
described in the appendix section. As an evaluation
metric to this task (SubTask A of iSarcasmEval),
the main metrics for SubTask A is F1-score for the
sarcastic class.

5 Results

Main Quantitative Findings: The table 1 presents
the final results on the test set for English and Ara-
bic languages. The main quantitative findings are:

865

Language Accuracy Precision Recall F1-Score F1-Sarcastic FP FN Rank
English 0.6136 0.5290 0.5558 0.4992 0.2599 436 105 28
Arabic 0.6671 0.5835 0.6600 0.5667 0.3581 396 70 18

Table 1: Evaluation results on test set for SubTask A.

• For English, the proposed model achieved
28th place among 43 teams, and 18th place
among 32 teams for the Arabic.

• According to type I error (FP), the model
for both languages wrongly predicts the high
rate of non-sarcastic samples as sarcastic data.
Regarding this phenomenon, the task suffers
from type I error mostly.

• For the English language, among 200 sarcas-
tic samples model captures 95 samples cor-
rectly, however, for the Arabic language, 130
samples were predicted correctly as sarcas-
tic. About 65% TPR (True Positive Rate) of
sarcastic samples in Arabic, but 47.5% of sar-
castic samples in English were detected. It
shows the task is more sensitive in English
rather than Arabic.

Quantitative Analysis: We have used experimenta-
tions on the dev set to conclude the CNN-BiLSTM
model as a final system for intended sarcasm de-
tection at iSarcasmEval. The experiments are pre-
sented in Appendix A.5, and the table 6 shows
experimental results. The quantitive analysis is
presented as follows:

• The character-based n-gram with an n-gram
range of (2, 3) was implemented as a baseline
representation with logistic regression, linear
SVM, and multi-layer perceptron (MLP) as
baseline models. The experimental results
on both English and Arabic languages show
neural networks (MLP) are performing well
on this task.

• The experimentation of LDSE + MLP shows
that stylistic representations are promising,
but they are not enough.

• To find a candidate representation in combi-
nation with LDSE, as a performance booster,
the XLM-RoBERTa masked language model
is been considered. The XLM-RoBERTa +
MLP shows that contextualized representation
is very capable.

• The Combination + MLP model is combined
LDSE and XLM-RoBERTa representation.
The achieved result is promising for Arabic

but it is 2% higher for English, this shows
stylistic features in combination with contex-
tualized representation perform well. The
more complex model may boost the perfor-
mance.

• The Proposed Model (1) uses preprocessing
followed by the enriched representation with
CNN-BiLSTM model. It is more capable than
Combination + MLP model.

• Due to the unequal class distribution in the
dataset, we employed weights in the cross-
entropy loss function. The Proposed Model
(2) results show its positive effects.

• We experimented with data augmentation
techniques (Appendix A.4) and discovered
that due to the word importance in achieving
high-quality features for LDSE, data augmen-
tation works more considerably well for this
task (Proposed Model (2) + Aug model).

• The data augmentation probability shifts show
the effects of LDSE representations (table 4).
And considering Proposed Model (2) and Pro-
posed Model (2) + Aug, We can observe that
data augmentation affects mostly the stylis-
tic features and results in boosting the perfor-
mance. It represents that high-level feature
extraction from a multi-space domain such as
LDSE and XLM-RoBERTa play an important
role in sarcasm detection.

6 Discussion

Type-1 Error: In either language, non-sarcastic
samples are predicted wrongly as sarcastic. Type-
1 error is the major source of error. Analysis of
English FP samples indicated that most of the sam-
ples were in response to a post or reply to another
person and indeed, with no information about the
text context nor the writer profile, this indicates a
lack of primordial clues for sarcasm detection. To
make an improvement in reducing the error two
approaches can be taken. First, consider more in-
formation about the text context such as the tread
or post. Second, using a finer feature representa-
tion, since the lack of primordial clues leads to

866

low-quality features. Moreover, the analysis re-
vealed the following findings in the data which can
be taken into account to improve the results by re-
ducing the error (all of the findings come from the
analysis of 436 FP samples for the English test set).

• We have found that samples in the dataset may
be labeled wrongly as sarcasm so correcting
them may boost the performance (e.g ”10 dec
2021, 4:46 am, All in on $PYR (28,07$)” or

”pointing-downmedium-skin-tone-emoji this”)

• A few samples were in single words (e.g ”Rub-
bish”) which in a few cases such as ”pointing-
downmedium-skin-tone-emoji this” and ”Fol-
lowed” they didn’t convey any meaning, tack-
ling them in modelin could be more challeng-
ing since they don’t have enought information
for models.

• In a few cases preprocessing causes a low
quality text generation (e.g ”10 dec 2021,
4:46 am, All in on $PYR (28,07$)” will be
converted into ’dec am all in on” which is
less valuable for modeling).

• Sometimes, emojis make the text sarcasm, so
using them as features could be useful for
this task since most of the comments in FP
samples had emojis (almost 60% of them). In
the whole preprocessing we converted emojis
into texts, but in this way we thread the emojis
similar to text, however, threading them in a
different way may boost the performance.

Weighted Loss and TFIDF Data Augmentation
Improvements: According to table 6, and model
Proposed Model (2), adding weighted loss cross-
entropy increased results on the dev set by 1% in
English, and 2% in Arabic. Similar to weighted
loss cross-entropy, the model Proposed Model (2)
+Aug in table 6 shows TFIDF data augmentation
improved results on the dev set by 1% in English,
and 4% in Arabic. Overall, weighted loss cross-
entropy and TFIDF data augmentation together im-
proved results by 2% in English, and 6% in Arabic.
So using these techniques is promising in boosting
the sarcasm detection models.
Task Sensitiveness in Languages: We proposed a
class-dependent LDSE that considers character n-
grams in stylistic information calculations. Charac-
ter n-gram contains information on the more impor-
tant tokens and the less important ones as well. So

it captures the differences using token counts. How-
ever, The stress patterns of most Arabic dialects
are broadly similar and appear regularly. Changes
happen frequently in English, as word stress can
change the lexical variety and meaning of the word
(Watson et al., 2011). This affects both LDSE and
contextualized representation.

Because LDSE is doing a probability-based cal-
culation for tokens using a character n-gram matrix,
the similarity in dialects will lead to a high-quality
n-gram matrix in Arabic rather than English. Table
6 experimentation on the TFIDF matrix reveals this
fact precisely. Accordingly, as a result of changes
in the meaning, neural network feature extractors
may have found some variant features which leads
to misclassification (Type 1 error). The experimen-
tations with XLM-RoBERTa + MLP (table 6) show
that neural network models are performing better
on Arabic contextualized representation rather than
English. Experiments clearly show why this task
is more sensitive in the English language than in
Arabic.

7 Conclusion

This paper presented our approach for SemEval-
2022 Task 6: iSarcasmEval: Intended Sarcasm De-
tection In English and Arabic. We investigated this
problem by employing statistical and contextual-
ized representations with deep learning techniques.
We conducted the experimental and statistical anal-
ysis and presented the CNN-BiLSTM framework.
The proposed studies in this paper show that con-
sidering stylistic features with deep learning frame-
works is promising for intended sarcasm detection
in both English and Arabic languages.

References

Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and
Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Abien Fred Agarap. 2019. Deep learning using rectified
linear units (relu).

Ameeta Agrawal, Aijun An, and Manos Papagelis. 2020.
Leveraging transitions of emotions for sarcasm detec-
tion. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 1505–1508.

867

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375

Ravinder Ahuja and SC Sharma. 2021. Transformer-
based word embedding with cnn model to detect sar-
casm and irony. Arabian Journal for Science and
Engineering, pages 1–14.

Nastaran Babanejad, Heidar Davoudi, Aijun An, and
Manos Papagelis. 2020. Affective and contextual
embedding for sarcasm detection. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 225–243.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a novel
approach. In proceedings of the 5th workshop on
computational approaches to subjectivity, sentiment
and social media analysis, pages 50–58.

Santosh Kumar Bharti, Korra Sathya Babu, and San-
jay Kumar Jena. 2015. Parsing-based sarcasm senti-
ment recognition in twitter data. In 2015 IEEE/ACM
International Conference on Advances in Social Net-
works Analysis and Mining (ASONAM), pages 1373–
1380. IEEE.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

Hamed Babaei Giglou, Taher Rahgooy, Jafar Raz-
mara Mostafa Rahgouy, and Zahra Rahgooy. 2021.
Profiling Haters on Twitter using Statistical and
Contextualized Embeddings—Notebook for PAN at
CLEF 2021. In CLEF 2021 Labs and Workshops,
Notebook Papers. CEUR-WS.org.

José Ángel González, Lluı́s-F Hurtado, and Ferran
Pla. 2020. Transformer based contextualization of
pre-trained word embeddings for irony detection
in twitter. Information Processing & Management,
57(4):102262.

Hunter Gregory, Steven Li, Pouya Mohammadi, Natalie
Tarn, Rachel Draelos, and Cynthia Rudin. 2020. A
transformer approach to contextual sarcasm detection
in twitter. In Proceedings of the Second Workshop
on Figurative Language Processing, pages 270–275.

Hacker. 2011. Merriam-webster.com (8 may 2011).

Devamanyu Hazarika, Soujanya Poria, Sruthi Gorantla,
Erik Cambria, Roger Zimmermann, and Rada Mi-
halcea. 2018. Cascade: Contextual sarcasm detec-
tion in online discussion forums. arXiv preprint
arXiv:1805.06413.

Dan Hendrycks and Kevin Gimpel. 2020. Gaussian
error linear units (gelus).

Avinash Kumar, Vishnu Teja Narapareddy, Pran-
jal Gupta, Veerubhotla Aditya Srikanth, Lalita
Bhanu Murthy Neti, and Aruna Malapati. 2021. Ad-
versarial and auxiliary features-aware bert for sar-
casm detection. In 8th ACM IKDD CODS and 26th
COMAD, pages 163–170.

Yann LeCun, Patrick Haffner, Léon Bottou, and Yoshua
Bengio. 1999. Object recognition with gradient-
based learning. In Shape, Contour and Grouping
in Computer Vision, page 319, Berlin, Heidelberg.
Springer-Verlag.

Meimei Li, Chen Lang, Min Yu, Yue Lu, Chao Liu,
Jianguo Jiang, and Weiqing Huang. 2020. Scx-sd:
Semi-supervised method for contextual sarcasm de-
tection. In International Conference on Knowledge
Science, Engineering and Management, pages 288–
299. Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Silviu Oprea and Walid Magdy. 2020. isarcasm: A
dataset of intended sarcasm.

Rolandos Alexandros Potamias, Georgios Siolas, and
Andreas-Georgios Stafylopatis. 2020. A transformer-
based approach to irony and sarcasm detection.
Neural Computing and Applications, 32(23):17309–
17320.

Francisco Rangel, Marc Franco-Salvador, and Paolo
Rosso. 2017. A low dimensionality representation
for language variety identification.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalindra
De Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment
and negative situation. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 704–714.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

Tony Veale and Yanfen Hao. 2010. Detecting ironic
intent in creative comparisons. In ECAI 2010, pages
765–770. IOS Press.

Byron C Wallace, Laura Kertz, Eugene Charniak, et al.
2014. Humans require context to infer ironic intent
(so computers probably do, too). In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers),
pages 512–516.

Janet CE Watson et al. 2011. Word stress in arabic.

Deirdre Wilson. 2006. The pragmatics of verbal irony:
Echo or pretence? Lingua, 116(10):1722–1743. Lan-
guage in Mind: A Tribute to Neil Smith on the Occa-
sion of his Retirement.

Hamed Yaghoobian, Hamid R. Arabnia, and Khaled
Rasheed. 2021. Sarcasm detection: A comparative
study.

868

http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://ceur-ws.org/Vol-2936/paper-154.pdf
http://ceur-ws.org/Vol-2936/paper-154.pdf
http://ceur-ws.org/Vol-2936/paper-154.pdf
https://www.merriam-webster.com
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1911.03123
http://arxiv.org/abs/1911.03123
http://arxiv.org/abs/1705.10754
http://arxiv.org/abs/1705.10754
https://doi.org/10.1109/78.650093
https://doi.org/10.1109/78.650093
https://doi.org/https://doi.org/10.1016/j.lingua.2006.05.001
https://doi.org/https://doi.org/10.1016/j.lingua.2006.05.001
http://arxiv.org/abs/2107.02276
http://arxiv.org/abs/2107.02276

Dataset Sarcastic Non-Sarcastic Overall
English
Train 772 2349 3121
Dev 95 252 347
Test 200 1200 1400

Arabic
Train 678 2113 2791
Dev 67 244 311
Test 200 1200 1400

Table 2: English & Arabic dataset stats

A Appendices

A.1 Preprocessing
Text preprocessing is often the first step in the
pipeline of an NLP system. We consider the fol-
lowing preprocessing techniques to be applied to
an input text:

• Lowercasing
• Punctuation removal
• Special character removal
• Demojify1(converting emoji into texts)
• URL, #, @ removal
• Number removal

These preprocessing techniques were applied for
both English and Arabic languages.

A.2 Train, Dev, and Test Sets
Each text in the datasets has a label specifying its
sarcastic nature (sarcastic or non-sarcastic), pro-
vided by its author. The stats of the datasets are
presented in table 2.

A.3 Hyperparameter Setting
For training DNNs there are multiple hyperpa-
rameters to be fine tuned. Batch size, learning
rate, epoch, loss function, weight decay, dropout,
wighted loss, and optimizer. The hyperparameters
are described in the table 3 for both English and
Arabic languages.

A.4 Data Augmentation
Data augmentation is a way to generate synthetic
data for improving model performance without
manual effort. Since we are dealing with an im-
balanced binary classification problem and due to
the importance of terms likelihood in LDSE we
made a TFIDF data augmenter that learns the word

1https://pypi.org/project/demoji/

Parameter English Arabic
Batch Size 8 8

Learning Rate 0.001 0.001
Epoch 10 10

Loss Function CrossEntropy CrossEntropy
Weighted Loss Yes Yes

Optimizer Adam Adam
Weight Decay 1e-9 1e-8

Dropout 0.6 0.4

Table 3: Hyperparameter setting

English Arabic
Avg(Psarcastic) 0.244 0.148

Avg(Psarcastic)+Aug 0.327 0.213
Avg(Pnone−sarcastic) 0.756 0.852

Avg(Pnone−sarcastic)+Aug 0.673 0.787
LDSE tokens 17691 16941

LDSE tokens + Aug 17961 17073
sarcastic samples 772 678
synthetic samples 760 678

sarcastic samples + Aug 1532 1356
overall training data + Aug 3881 3469

Table 4: Data augmenter stats

preferences for samples in sarcastic class only, then
generates new synthetic samples. For generating
new samples we have followed the following steps:

1. Getting sarcastic samples from training data
for data augmentation.

2. Preprocessing selected samples.
3. Training TFIDF data augmenter using nlpaug

(Ma, 2019) a python library.
4. Augment sarcastic samples using data aug-

menter.
5. Generate new samples for sarcastic samples

only.

The overall stats of the data augmentation are
presented in the table 4. According to the mean
average probability of terms in sarcastic and non-
sarcastic, the data augmentation shifts the average
probabilities in both classes. Since we were us-
ing the same set of data for argumentation so we
observe the proper number of changes in tokens.
Samples from data augmenter for both languages
are presented in the table 5.

A.5 Experiments
The table 6 presents the experimental results for
hyperparameter tunings. According to the table

869

ORG mentally i m hiding in the walk in
AUG mentally hiding jewelry the watto in
ORG i love hour panic attacks
AUG love limited spoiling attacks
ORG �é�A�P AîD
	̄ H. Y 	J�K

�é�A�J. Ë @ 	àñJ
ªË@
AUG 	�P

B@ H. Qå	�

�� H. Y	J�K
�é�A�J. Ë @ 	àñJ
ªË@

ORG . . . ��ðY	JªÓ 	á�
g. @Q 	®Ë @ ñK. @ ø 	P ÉÓA«
AUG . . . èQ�
 	«ð 	á�
g. @Q 	®Ë @ ÕË Aª�JÓ ��mÌ'@ ÉÓA«

Table 5: Data augmentation samples (ORG: original
sample, AUG: augmented sample)

Model English Arabic
TFIDF + LR 0.16 0.56
TFIDF + LinearSVM 0.31 0.63
TFIDF + MLP 0.32 0.62
LDSE + MLP 0.27 0.58
XLM-RoBERTa + MLP 0.40 0.72
Combination + MLP 0.42 0.72
Proposed Model (1) 0.44 0.74
Proposed Model (2) 0.45 0.76
Proposed Model (2) + Aug 0.46 0.80

Table 6: Experimental results on dev set (F1-sarcastic is
reported)

6, Combination + MLP refers to LDSE + XLM-
RoBERTa Representation, Proposed Model (1) is
the CNN-BiLSTM model and preprocessing, Pro-
posed Model (2) is model with preprocessing, and
weighted loss cross-entropy. Proposed Model (2) +
Aug is a model with preprocessing, weighted loss
cross-entropy and TFIDF data augmentation.

870

