
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 748 - 755
July 14-15, 2022 ©2022 Association for Computational Linguistics

YNU-HPCC at SemEval-2022 Task 5: Multi-Modal and Multi-label
Emotion Classification Based on LXMERT

Chao Han, Jin Wang and Xuejie Zhang
School of Information Science and Engineering

Yunnan University
Kunming, China

hc_super@mail.ynu.edu.cn, {wangjin, xjzhang}@ynu.edu.cn

Abstract

This paper describes our system used in the
SemEval-2022 Task5 Multimedia Automatic
Misogyny Identification (MAMI). This task is
to use the provided text-image pairs to clas-
sify emotions. In this paper, We propose
a multi-label emotion classification model
based on pre-trained LXMERT. We use Faster-
RCNN to extract visual representation and
utilize LXMERT’s cross-attention for multi-
modal alignment. Then we use the Bilinear-
interaction layer to fuse these features. Our
experimental results surpass the F1 score of
baseline. For Sub-task A, our F1 score is 0.662
and Sub-task B’s F1 score is 0.633. The code
of this study is available on GitHub1.

1 Introduction

In social networks, meme is mainly used to ex-
press the emotion of netizen. It usually consists
of text and images. But at the same time, memes
also convey some negative emotions, such as neg-
ative comments about women. SemEval-2022
Task5: Multimedia Automatic Misogyny Identi-
fication (MAMI) (Fersini et al., 2022) focuses on
identifying whether meme conveys negative emo-
tions towards women.

• Sub-task A: a basic task about misogynous
meme identification, where a meme should
be categorized either as misogynous or not
misogynous;

• Sub-task B: an advanced task, where the type
of misogyny should be recognized among po-
tential overlapping categories such as stereo-
type, shaming, objectification, and violence.

Since the Transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) models were pro-
posed, researchers have begun to work on image

1https://github.com/HC-super/
SemEval-2022-Task-5

and text multi-modality work in recent years, in
addition to using one modality such as only im-
age or text. Nowadays, for multimodal models,
they can be divided into two categories, single-
stream model and dual-stream model. In the
single-stream model, language information and vi-
sion information are fused at the beginning and
directly input into the encoder. Some represen-
tative single-stream models include ImageBERT
(Qi et al., 2020), Unicoder VL (Li et al., 2020),
VL-BERT (Su et al., 2020), VisualBERT (Li et al.,
2019), etc. In the dual-stream model, in addition
to the LXMERT, we will introduce below, there
were ViLBert (Lu et al., 2019) and UNIMO (Li
et al., 2021), etc.

As for emotion recognition, in previous tasks,
there are also emotion classification tasks based
on multi-modal graphics and text, such as Zhu
et al. (2021) used text-CNN and ALBERT to Iden-
tify the persuasion skills of Meme. Peng et al.
(2020) used the adversarial learning of sentiment
word representations for sentiment analysis. A
tree-structured regional CNN-LSTM (Wang et al.,
2020) and dynamic routing in a tree-structured
LSTM (Wang et al., 2019) were used for dimen-
sional sentiment analysis. In previous SemEval
competitions, Tian et al. (2021) extracted hetero-
geneous visual representations (i.e., face features,
OCR features, and multimodal representations)
and explored various multimodal fusion strategies
to combine the textual and visual representations.
In addition, in multimodal analysis combining im-
ages and text, Yuan et al. (2020) proposed a par-
allel channel ensemble model combining BERT
embedding, BiLSTM, attention and CNN, and
ResNet for sentiment analysis of memes.

The main difficulty of multi-modality is how to
extract the two modalities’ features and express
the semantics more accurately, which involves the
representation of multi-modality, the alignment
between multi-modality, and the fusion of multi-
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Figure 1: Overview of the proposed model specifically shows the general structure of Faster R-CNN and the details
of the embedders.

modality. For the multi-modal task of text and im-
age, the previous practice is to input the text and
image into two different pre-training models for
processing the text and image modalities respec-
tively, and then concatenate the output features
and predict the emotion. However, this method
lacks the processing of the alignment relationship
between modalities. The proposed model consid-
ers the above three problems in the multi-modality
field. Inspired by LXMERT, we use it as the main
framework of our model. We use Faster R-CNN
(Ren et al., 2017) to extract image RoI features and
their position. For texts, we use BERT to extract
text embedding. Then our system uses LXMERT
(Tan and Bansal, 2019) to deal with the multi-
modal alignment of text and image. After when
two modalities are processed by LXMERT, we
use the learnable integration mechanism Bilinear-
interaction layer to fuse these features.

The remainder of this paper is organized as fol-
lows. In section 2, we described LXMERT and our
fusion method in detail. The experimental results
are presented in section 3. Finally, a conclusion is
drawn in section 4.

2 System Overview

Task A and Task B are very similar in model struc-
ture except for the output layer. Therefore, we in-

troduce the model we proposed as a whole. This
model can be divided into four parts. They are the
embedding layer for image and text preprocess-
ing, the encoder for multi-modal presentation and
alignment, the feature fusion layer, and the final
output layer. The proposed model is as shown in
Figure 2.

2.1 Embedding
For images, LXMERT does not simply use a con-
volutional neural network to output feature map
but uses (Anderson et al., 2018) to extract objects
from images. The image processing of LXMERT
is similar to text processing inspired by BERT.
The specific idea is to use Faster R-CNN to select
36 RoI (region of interest) boxes with high confi-
dence for each image and use these boxes as the
features of the image. Similar to the text process-
ing of BERT, the model also considers the position
of each box and embeds the corresponding posi-
tion. 36 objects are extracted by Faster R-CNN as
{o1, . . . , o36}. fj is the 2048 dimension RoI fea-
tures of oj , and pj is its position. As is shown in
figure 2, the processing of these variables is as fol-
lows:

f̂j = LayerNorm (WFfj + bF)

p̂j = LayerNorm (WPpj + bP)

vj =
(
f̂j + p̂j

)
/2

(1)
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Figure 2: Overview of the proposed model, which specifically shows the details of the encoders and fusion layer.
‘Self’ and ‘Cross’ represent self-attention sub-layers and cross-attention sub-layers, respectively. ‘FF’ denotes a
feed-forward sub-layer.

where WF and WP are the trainable weights of
fully connected layer in matrix format. Moreover,
bF and bP are the bias of the layer. f̂j and p̂j are
the output of the layer-normalization.

For the text, sentences are converted into tokens
whose length is equal to the length of scent accord-
ing to the practice of WordPiece tokenizer (Wu
et al., 2016). For instance, when the length of the
sentence is n, the word tokens are {w1, ..., wn}.
Then wordwi and its index i (the absolute position
of wi) are projected to vectors by embedding sub-
layers.The specific structure of embedder is shown
in Figure 1. Then added to the index-aware word
embedding:

ŵi = WordEmbed (wi)

ûi = IdxEmbed (i)

hi = LayerNorm (ŵi + ûi)

(2)

The specific structure of embedder is shown in
Figure 1.

2.2 Attention layer

In this subsection, we will give a brief description
of the attention mechanism. The principle of the
attention mechanism is to give a request vector x
and its context vector yj , then, calculate the corre-
lation between x and each yj , and get a correlation
score. The correlation score used in LXMERT is
the dot product of vector x and vector yj . After
calculating the scores of all relevant context vec-
tors yj for x, LXMERT uses softmax to convert
each score into a probability αj to obtain the at-

tention distribution.

aj = score (x, yj)

αj = exp (aj) /
∑

k

exp (ak)
(3)

AttX→Y (x, {yj}) =
∑

j

αjyj (4)

The output of the layer is the weighted sum of all
probabilities with yi.

The self-attention layer in LXMERT is imple-
mented in a similar way to the attention layer, ex-
cept that the query vector x in self-attention comes
from the context-dependent vector yi.

2.3 Encoder
The processing of image modality and text modal-
ity is shown in Figure 2. After embedding two
modalities, LXMERT uses the two transformer
single-modality encoders. One is a text encoder
and another is an image encoder. Each layer in a
single-modality encoder contains a self-attention
(‘Self’) sub-layer and a feed-forward (‘FF’) sub-
layer, where the feed-forward sub-layer is further
composed of two fully-connected sub-layers. We
take NL and NR layers in the language encoder
and the object-relationship encoder, respectively.
We add a residual connection and layer normal-
ization (annotated by the ‘+’ sign in Figure 2)
after each sub-layer as in Transformer (Vaswani
et al., 2017). The features processed by a single-
modality encoder will be first sent to another en-
coder called the cross-modality layer. Its main
function is to align the features of the two modal-
ities. The bi-directional cross-attention sublayer
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Emotion category Number of label ‘1’ Overall proportion
misogynous 5000 50.00%

shaming 1274 12.74%
stereotype 2810 28.10%

objectification 2202 22.02%
violence 953 9.53%

Table 1: Training dataset label analysis.

contains two unidirectional cross-attention sub-
layers, one from image to text and the other from
text to the image. LXMERT stacks them Nx

times, the input of k-th layer is the output of the
previous(k − 1)-th layer. Similarly, the query and
context vectors are the outputs of the (k − 1)-th
layer. The method of processing the text features
hk−1i and the image features vk−1j in unidirectional
cross-attention sub-layers is as follows:

ĥk
i = CrossAttL→R

(
hk−1
i ,

{
vk−1
1 , . . . , vk−1

m

})

v̂kj = CrossAttR→L

(
vk−1
j ,

{
hk−1
1 , . . . , hk−1

n

}) (5)

where ĥki and v̂kj are the output of the cross-
attenton layer.

Then LXMERT further inputs the features pro-
cessed by the cross-modality sublayer to the self-
attention sublayer. This method aimed to further
construct the internal connection of each modality
after alignment. The specific treatment is:

h̃k
i = Self AttL→L

(
ĥk
i ,
{
ĥk
1 , . . . , ĥ

k
n

})

ṽkj = Self AttR→R

(
v̂kj ,
{
v̂k1 , . . . , v̂

k
m

}) (6)

ĥki , v̂kj then processed by self-attention to h̃ki and
ṽkj , which will be further input to an ‘FF’ sublayer,
connected through a residual, and input to the nor-
malization to obtain the final output hki , vkj . For
each text in the data, the model will generate a
Pooler output. We use the Pooler of each sentence
as the output of the text modality.

2.4 Fusion
The method of this layer is inspired by Sina’s
paper FiBiNET by Huang et al. (2019). After
LXMERT outputs two modality features, we need
to further process its output. The dimension of
image features is 36 × 768, while the dimen-
sion of text features is 768. To better integrate
the two modalities, we flatten the image features
and change its dimension to 768 through a feed-
forward layer. Then, each modality will be nor-
malized through layer normalization. Then, the

Image features

  =

W
Text features Fusion  features

Figure 3: Bilinear-interactive layer.

features of each modality are sent to the Bilinear-
interactive layer.

The idea of the Bilinear-interactive layer is as
shown in Figure 3. We establish a k-order square
matrixW , which is trainable. To fuse the informa-
tion of various modalities, 768-dimensional image
features will first inner product with W . Then, for
text features, we use Hadamard product to multi-
ply the previous matrix. We finally use the dropout
layer to improve the generalization ability of the
model.

2.5 Output layer
• Sub-task A: this task is a binary classification

task, so in the output layer, we use a shape
of 768 × 1 full connection layer and use sig-
moid as the activation function to process the
results.

• Sub-task B: this task is a multi-label classi-
fication task. Therefore, in the output layer,
we use a full connection layer whose shape
is 768 × 5. Since each label classification
is equivalent to binary classification, we use
sigmoid as the activation function to process
the results during output.

3 Experiments and Evaluation

3.1 Dataset
The task organizer provided 10000 pieces of data
for training, including meme images with image
serial numbers and text descriptions correspond-
ing to the image. In the training dataset, there
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are 10000 images and an excel table to record the
text corresponding to the images and supervise the
learning of the corresponding labels.

When analyzing the data, we found that differ-
ent labels account for different proportions in the
number of their respective classifications. For the
misogynous tag, both 0 and 1 categories account
for 50%, so the data sample tag is more balanced
for a supervision task. However, for the other four
labels such as sharing, the proportion of label 1 is
only 12.74%. Among 10000 samples, the label of
violence accounts for only 9.53%. Table 1 shows
the proportion of each label in the training dataset.
As shown in Table 1, we find that the proportion of
labels of different categories is very different, and
there is data imbalance. This will make the model
have a strong learning effect on a large classifica-
tion label and easy to classify. However, for the
low proportion of classification tags, it is difficult
to learn and classify.

Based on this, we use Focal loss by (He et al.,
2016) as the loss function of our model.

3.2 Experimental configuration
Our model is based on TensorFlow platform ver-
sion 2.5.0. The main model adopts LXMERT from
the Hugging Face transformers toolkit. We first
useUNC-NLP/LXMERT-base-uncased tokenizer-
Fast to process our text to embeddings, and we
also use UNC-NLP/LXMERT-base-uncased pre-
trained model as our base model LXMERT’s pre-
trained model. The Adam optimizer (Kingma and
Ba, 2015) was used to update all trainable param-
eters. The Hyper-parameters configuration used in
the model is shown in Table 2: We use Faster R-
CNN to extract features of images, which is based
on the paper by (Anderson et al., 2018). In this
task, we use an open-source docker image airsplay
/ bottom-up attention and use a Faster R-CNN pre-
training model based on ResNet101 to extract 36
RoI feature boxes and their corresponding posi-
tion.

3.3 Evaluation Metrics
Sub-task A Systems will be evaluated using
macro-average F1-score. In particular, for each
class label (i.e. misogynous and not misogy-
nous) the corresponding F1-score will be com-
puted, and the final score will be estimated as the
arithmetic mean of the two F1-score. Sub-task B
Systems will be evaluated using weighted-average
F1-score. In particular, the F1-score will be com-

Adam Optimizer config Value
Learning rate 5e-5
epsilon 1e-8
Focal loss config Value
alpha 0.25
gamma 3
batch size 16
epoch 20

Table 2: Hyper-parameters config.

Figure 4: The ablation experiment of the Focal loss for
different hyperparameter

puted for each label and then their average will be
weighted by support, i.e, the number of true in-
stances for each label.

precision =
TP

TP + FP

recall =
TP

TP + FN

(7)

TP is the number of true positives classified by the
model. FN is the number of false negatives classi-
fied by the model. FP is the number of false posi-
tives classified by the model.

F1-score =
2× precision × recall

precision + recall
(8)

F1-score is the harmonic average of recall and pre-
cision.

3.4 Hyperparametric selection
In this section, we mainly introduce the hyperpara-
metric selection of focal loss of the model. We
adjust the two hyperparameters γ and α of Focal
loss and train the model. In the training dataset,
we randomly take 90 % data for the training model
and the remaining 10 % as the test dataset to test
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Model Task A F1-score Task B F1-score
Only image(Base line) 0.639 N/A
Only text(Base line) 0.640 N/A

Only ELECTRA N/A 0.5454
Only ResNet N/A 0.4581

ELECRTA and ResNet with concatenate N/A 0.4816
ELECRTA and and ResNet with Fusion N/A 0.5041

Image and Text(Base line) 0.650 0.621
LXMERT without Fusion 0.655 0.629
LXMERT with Fusion 0.662 0.633

Table 3: Performance comparison of different models. As shown in the table, our proposed model achieves the
best results.

the performance of the model. The loss function
focal loss is modified based on the standard cross-
entropy loss.

This function can reduce the easy-to-classify
samples so that the model can more focus on the
samples that are difficult to classify in training. pt
in cross-entropy loss function reflects the recogni-
tion ability of the model to this sample (i.e. how
well the knowledge is mastered). We define pt is:

pt =

{
p if y = 1

1− p otherwise
(9)

The smaller the pt is, the more difficult it is to
classify, so contribution should be improved to the
loss function when calculating the loss. Therefore,
the specific method of Focal loss is to multiply a
weight with pt before the entropy loss function.
α is balancing factor,α ∈ [0, 1], γ is modulating
factor, γ ∈ [0, 5]. The Focal loss is as:

Focal_loss(pt) = −α(1− pt)γlog(pt) (10)

Thus, when α = 1, gamma = 0, focal loss
is similar to the cross-entropy loss function. By
changing the values of γ and α, we found that
when α = 0.25 and γ = 3, for sub-task B, the
weighted F1 score of our model reached 0.662 and
0.633. See Figure 4.

3.5 Model comparison

We compare our model to a baseline and a model
that combines two pre-trained models based on
ELECTRA (Clark et al., 2020) and ResNet-101
(Ren et al., 2017) in this section. ELECTRA deals
with text modality and ResNet is used to deal with
image modality. The methods of feature fusion are
compared with the Bilinear-interactive layer and

concatenate layer using direct concatenate. The
specific task is based on sub-task B. See Table 3
for details.

4 Conclusion

In this task, we design an image and text
multi-modality model based on LXMERT for
multi-modality representation and alignment, and
modality fusion based on the Bilinear-interaction
layer. Compared with the traditional method
of stitching two pre-training models for each
modality then concatenating two features to pre-
dict emotion, this model considers the representa-
tion, alignment, and fusion of multi-modality, and
achieves better results than the baseline method.

At the same time, we found that after adding
the Bilinear-interaction layer, the performance of
the model is better than using only feature con-
catenate. See Table 3. Meanwhile, when an-
alyzing the data, we found that the background
of the meme graph and some characters in the
graph were not used as the target input model by
Faster R-CNN, which may affect the accuracy of
the model. Meanwhile, the size of the meme im-
age is too small to include multiple targets, and
the target is relatively single, which may affect the
performance of the model.
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