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Abstract

Logical structure recovery in scientific articles
associates text with a semantic section of the ar-
ticle. Although previous work has disregarded
the surrounding context of a line, we model this
important information by employing line-level
attention on top of a transformer-based scien-
tific document processing pipeline. With the
addition of loss function engineering and data
augmentation techniques with semi-supervised
learning, our method improves classification
performance by 10% compared to a recent state-
of-the-art model. Our parsimonious, text-only
method achieves a performance comparable to
that of other works that use rich document fea-
tures such as font and spatial position, using
less data without sacrificing performance, re-
sulting in a lightweight training pipeline.

1 Introduction

Logical structure recovery in scientific document
processing (SDP) provides fundamental informa-
tion about scientific documents. The logical struc-
ture of a document is “the hierarchy of logical la-
bels that indicates the construction of the document”
(Mao et al., 2003; Luong et al., 2010). Recovering
the logical structure gives insight into the structure
of a long scientific document and aids further SDP
tasks such as abstractive summarization, metadata
extraction, and information extraction, etc.

Logical structure recovery classifies the lines of
a scientific document into predefined semantic cat-
egories that represent its role in the document (cf.
Table 1). Previous work considered this classifica-
tion in isolation, without considering the context of
the line (Ramesh Kashyap and Kan, 2020). Some
works have tried to alleviate this problem by pro-
viding better context by including feature-rich in-
formation such as font type, text position (Luong
et al., 2010; Rahman and Finin, 2019). However,
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we have to rely on external systems (such as Op-
tical Character Recognition, OCR) to obtain such
features, which makes the process cumbersome and
error-prone. Can we obtain similar performance
on logical structure recovery without relying on
feature-rich information?

We answer this challenge by creating a parsi-
monious but robust model that operates on purely
textual data without incorporating such features.
Instead, we rely on better context modeling of sur-
rounding lines, identifying the continuity of logical
structure of the document, and making use of abun-
dant unlabeled data.

First, we consider multiple lines of marginally
breaked text as context (cross-line context) and use
attention (Yang et al., 2016; Beltagy et al., 2020)
on top of transformer models (Vaswani et al., 2017;
Devlin et al., 2019) to obtain context-sensitive sen-
tence embeddings of lines. Second, we employ
semi-supervised learning (Xie et al., 2020; Sohn
et al., 2020) over the abundance of unlabeled data
to address the lack of labeled data in the recovery
of logical structures. Lastly, we employ elements
of loss engineering from recent semi-supervised
learning frameworks such as UDA (Xie et al., 2020)
without the use of unlabeled data to increase perfor-
mance under a supervised training regime to deploy
a lightweight training pipeline.

Although only plain text is used for training, our
model achieves results close to the current state-
of-the-art (SOTA) compared to models based on
rich text features. Furthermore, we show that semi-
supervised learning helps improve SOTA for logical
structure recovery by 10% on macro-F1.

2 Related Work

Aside from the text of scientific papers, previous
work extracts rich text information — such as font
size, font style, paragraphing — as rich text infor-
mation is a primary factor in discerning the log-
ical structure of a document (Rahman and Finin,
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Table 1: Sample Logical Structure Classification

2019). For example, SectLabel (Luong et al., 2010)
extracts rich text information from scientific docu-
ments using OCR, then subsequently applying Con-
ditional Random Fields (CRF; Lafferty et al. 2001)
to classify the extracted text into predetermined
labels. Tao et al. (2014) extends this approach fur-
ther, combining the usage of spatial measures, type-
setting, and minimal text patterns with contextual
meaning into a 2D CRF model for classification.
Koreeda and Manning (2021)’s work involves us-
ing remnant visual cues extracted from text data
including line breaks, indentation, and text align-
ment to augment logical structure extraction while
using random forest as their primary model.

Other work focus on the usage of layout itself
to discern such logical structures, utilizing deep
object detection models such as R-CNN models
(Ren et al., 2015; He et al., 2017; Cai and Vascon-
celos, 2018) to capture logical structures, taking
“screenshots” of the PDF document as input. Lay-
outLM models (Xu et al., 2020, 2021; Huang et al.,
2022) combine object detection models with tex-
tual transformers (Vaswani et al., 2017) along with
positional embeddings of logical structures on the
page to form multimodal models, while Document
Image Transformers (DiT; Li et al. 2022) use Vi-
sion Transformers (ViT; Dosovitskiy et al. 2021)
as backbone models for further image-based detec-
tions of the logical structures.

Although rich text information is usually incor-
porated, there are models, such as the SciWING
toolkit (Ramesh Kashyap and Kan, 2020), for log-
ical structure recovery that operate only on plain
text. Our work is in line with such lightweight text-
only methods, which benefit from the simple and
streamlined input without redundant metadata. In
contrast to SciWING’s simple text representation
for each line, we aim to incorporate richer textual
information from the cross-line context and make
use of abundant unlabeled data available.

3 Contextual Model Construction

We attempt the task of logical structure classifica-
tion, as proposed by Luong et al. (2010), and label
each line in scientific papers to represent its logical
structure. We address this task in a purely textual
method, employing modern NLP model architec-
tures and training techniques to achieve our goal
of creating a more lightweight and streamlined ap-
proach. We consider this task as a line-based classi-
fication problem as we want to preserve the notion
of margin breaks without having to include layout
or spatial information. Given a document Dn of
length n, we have the following:

Dn = {ℓ1, ℓ2, . . . , ℓn}, (1)

where ℓi refers to the ith line extracted by a PDF
text extractor. Our objective is to construct a model
M that classifies each line ℓi into one of 23 prede-
fined categories C defined by Luong et al. (2010)1.

3.1 Baseline Model
We use Ramesh Kashyap and Kan (2020)’s logical
structure classification model from the SciWING
toolkit as a baseline, as the toolkit takes only pure
text data as input. SciWING’s model produces
contextual sentence embeddings for each line in-
dividually via ELMo (Peters et al., 2018) and biL-
STMs (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005) for linear classification.

3.2 Line-Level Attention
In contrast to the baseline, we propose a model
that considers the context of neighboring lines, as

1Luong et al. (2010) classify each document line into the
following 23 classes: address, affiliation, author,
bodyText, category, construct, copyright,
email, equation, figure, figureCaption,
footnote, keyword, listItem, note, page,
reference, sectionHeader, subsectionHeader,
subsubsectionHeader, table, tableCaption,
and title.
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Figure 1: Our proposed architecture which considers cross-line context with an inserted attention layer and
contextual modeling.

logical structures tend to span multiple consecutive
lines. Inclusion of such context reduces misclassifi-
cations in the middle of large logical structures.
We refine the current neural models for logical
structure classification by adapting Hierarchical
Attention Networks (HAN; Yang et al. 2016). By
selecting context-sensitive embedders, we forgo
word-level encoding and word-level attention lay-
ers and generate contextual sentence embeddings
directly. We then add a line-level attention layer
between the encoder and the classification layer to
account for cross-line context (Figure 1).

To account for cross-line context, without in-
creasing the runtime quadratically in proportion
to the document length, we introduce a similar
method to the sliding window attention model used
in Longformers (Beltagy et al., 2020) for the line-
level attention layer. Longformers replace the ex-
pensive global self-attention mechanism with a lo-
cal version that is based on sliding windows and
allows building representations from neighboring
lines. In our case, for each target sentence to be
labeled, we take into account the contextual infor-
mation of neighboring lines, the amount of which
depends on the size of the sliding window. Tak-
ing the surrounding context of d lines upward and
downward as the key K and value V matrices and
the target line ℓi as the query matrix Q as input to
the attention layer, we obtain the sentence embed-
ding ℓ′i as follows:

K = V = Stack({ℓi−d, . . . , ℓi−1, ℓi+1, . . . , ℓi+d}),
(2)

ℓ′i = Concat(ℓi,MultiHead(Q = ℓi,K, V )). (3)

3.3 Sentence Embeddings with Transformers
We also improve the quality of contextual sentence
embeddings using pretrained transformer models

such as BERT (Devlin et al., 2019), SciBERT (Belt-
agy et al., 2019), Sentence-BERT (Reimers and
Gurevych, 2019), and RoBERTa (Liu et al., 2019).
Sentence embeddings are generated from trans-
former outputs by either:

1. Using the embedding of special classifica-
tion token [CLS] that signals the beginning
of the sentence (Devlin et al., 2019). Upon
fine-tuning for downstream tasks, such tokens
model the input’s contextual meaning;

2. Obtaining the mean pooling of the output
subword embeddings, which Reimers and
Gurevych (2019) concluded produced more
accurate sentence embeddings, and can be fur-
ther enhanced with finetuning, or;

3. Obtaining an attentively pooled embedding
by adding an extra attention layer, similar
to the hierarchical attention structure that of
Yang et al. (2016), using the [CLS] as the
query matrix and the remaining subword em-
beddings as the key and value matrices.

4 Semi-Supervised Learning

Supervised learning can be used to produce accu-
rate models when adequate labeled data are pro-
vided. While unlabeled data is easy to obtain, la-
beled data are scarce, particularly in the SDP do-
main. Semi-supervised learning (SSL) methods ad-
dress this problem using both labeled and unlabeled
data, resulting in better performance compared to
purely supervised means.

4.1 Preliminaries
Notations. Prior to discussing SSL frameworks,
we define some necessary notation. Let X =
{(xb, yb) : b ∈ (1, . . . , B)} be a batch of B la-
beled data samples with xb being the input sam-
ple and yb being the ground-truth label. We let
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U = {ub : b ∈ (1, . . . , µB)} be a batch of µB
unlabeled data samples. We denote ŷ(x) as the
predicted class distribution of the sample x made
by the model. Further, we also denote H(q, p) as
the standard cross-entropy loss of predicted distri-
bution p and target distribution q, and D(q||p) as
the Kullback–Leibler divergence between distribu-
tions p and q. We denote A(·) and α(·) as “strong”
and “weak” data augmentations, respectively. We
discuss the difference between strong and weak
augmentations in the next section.

Data Augmentation. Recent semi-supervised
learning frameworks for image classification such
as MixMatch (Berthelot et al., 2019), ReMix-
Match (Berthelot et al., 2020), and FixMatch (Sohn
et al., 2020) use both “strong” and “weak” aug-
mentations as a form of robust data augmentation.
Weak augmentations refer to simple flip-and-crops
of the input image, while strong augmentations con-
tain more complex operations such as RandAug-
ment (Cubuk et al., 2020) and CTAugment (Berth-
elot et al., 2020), which perform multifold image
transformations to inject valid yet diverse noise
into the input data (Xie et al., 2020).

In the text domain, we employ back-
translation (Sennrich et al., 2016; Edunov
et al., 2018) as a form of strong augmentation
as proposed by Xie et al. (2020). The use of
back-translation retains the contextual meaning of
the text (validity), and reorganizes the text into
different writing (diversity). Although there is
no counterpart for weak augmentation in current
semi-supervised learning frameworks, we follow
the spirit of the flip-and-crop and apply Easy
Data Augmentation (EDA; Wei and Zou 2019) to
simulate the effects of weak augmentation. EDA
employs synonym replacement, random insertion,
random swap, and random deletion of words in
a sentence at random, augmenting the sentence
in a way that may not be grammatically correct
or human-readable but contextually similar and
sufficient for sentence embedding generation.

4.2 SSL Frameworks

We now review some SSL frameworks we use in
our work (Figure 2).

Unsupervised Data Augmentation (UDA; Xie
et al. 2020) is an SSL framework that uses con-
sistency training in conjunction with data augmen-
tation on unlabeled data to regularize the model

to be invariant to noise in classification tasks. La-
beled data are used to compute cross-entropy loss
(Equation 4), similar to supervised training, while
unlabeled data are used to compute consistency
loss against its strongly augmented version gener-
ated by back-translation (Equation 5). The training
objective would be minimizing the loss term L:

Ls =
1

B

B∑
b=1

H(yb, ŷ(xb)), (4)

Lu =
1

µB

µB∑
b=1

D(ŷ(A(ub))||ŷ(ub)), (5)

L = Ls + λLu, (6)

where λ is a hyperparameter to scale the relative
weight of the unsupervised loss.

FixMatch (Sohn et al., 2020) is a simplified
SSL framework for image classification that com-
bines elements from MixMatch (Berthelot et al.,
2019) and UDA (Xie et al., 2020). Like UDA,
FixMatch also employs data augmentation on unla-
beled data to increase robustness, but replaces the
consistency training of UDA with a cross-entropy
loss on a pseudo-label. For supervised learning, the
FixMatch algorithm trains on a weakly augmented
version of the labeled data against its label (Equa-
tion 7); while for unsupervised learning, it infers a
pseudo-label from the weakly augmented data, and
obtains the cross-entropy loss of the strong aug-
mented data against the pseudo-label (Equation 8).
The training objective would be minimizing the
loss term L:

Ls =
1

B

B∑
b=1

H(pb, pm(y, α(xb)), (7)

Lu =
1

µB

µB∑
b=1

1(max(pm(y|α(ub)) > τ)·

H(argmax(pm(y, α(ub)), pm(y,A(ub)),

(8)

L = Ls + λLu, (9)

where λ is a hyperparameter to scale the relative
weight of the unsupervised loss and τ is a threshold
to which we retain the pseudo-label.
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Figure 2: Frameworks Used for Semi-Supervised Training (Left: UDA (Xie et al., 2020), Right: FixMatch (Sohn
et al., 2020))

4.3 Loss Engineering as a Supervised
Training Strategy

While semi-supervised training does indeed in-
crease training accuracy and robustness, SSL
frameworks such as UDA often employ techniques
that regulate the loss term for better training, beg-
ging the question: Does employing such loss term
engineering techniques improve training under a
supervised setting?

4.3.1 Training Signal Annealing

We focus first on Training Signal Annealing (TSA),
a technique originally used in Xie et al. (2020)’s
UDA framework (omitted for simplicity in the pre-
vious section) as a method to reduce overfitting on
the training data. TSA employs a moving ceiling
ηt on the probabilities of the model prediction:

ηt = αt ·
(
1− 1

K

)
+

1

K
, (10)

where K is the number of label classes, and αt is a
schedule function in accordance to three schedules
with training progress percentile t as a variable:

• Exponential: αt = e5(t−1),

• Linear: αt = t,

• Logarithmic: αt = 1− e−5t.

Each sample is only added to the calculation of
the loss function if the highest probabilities of the
prediction are lower than the ceiling ηt. This al-
lows the model to select non-confident samples for
training, to improve the robustness of the training

process. We then get the loss term:

LTSA =

B∑
b=1

H(y,b,ŷ(xb))·1(max(ŷ(xb))<ηt)

max

(
1,

B∑
b=1

1(max(ŷ(xb))<ηt)

) .

(11)
We noted that the selection of non-confident sam-

ples for training during the early stages of the train-
ing can be beneficial to training on imbalanced
datasets, as classes that have fewer instances are
computed into the loss function more. As train-
ing progresses, the full dataset can still be trained
as the ceiling for the prediction certainty based
on the loss increases, adding more samples for
loss function computation. Due to the continuous
nature of the training data and the importance of
cross-line context, we employ TSA as a method
to combat performance degradation caused by an
imbalanced dataset, as other discrete techniques
such as SMOTE (Chawla et al., 2002) may not be
easy to leverage due to its lack of lexical versions
of such methods.

4.3.2 Supervised Data Augmentation
We also employ UDA (Xie et al., 2020) in a super-
vised setting, which we denote here as SDA (Super-
vised Data Augmentation; Figure 3). We simulate
the usage of unlabeled data from the unsupervised
consistency training component by stripping the
labels from our labeled data. We pass both the
original labeled data and the augmented version
of the text simultaneously into the model and run
the consistency loss training for augmented data
against the labeled text alongside the original cross-
entropy loss for the text and label within the same
batch, returning the sum of both losses as the loss
term. We also employ the usage of TSA on top of
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Figure 3: Our Proposed Supervised Data Augmentation
Framework

the cross-entropy loss, resulting in the loss term L:

LAug =
1

B

B∑
b=1

D(ŷ(A(xb)||ŷ(xb)), (12)

L = LTSA + LAug, (13)

where LTSA is the same loss term as Equation 11.

5 Experiments

Dataset. We use the dataset that contains 20 ACL
and 20 ACM articles from various years collected
and labeled by Luong et al. (2010), which we re-
fer to as the SectLabel dataset. Each line of the
dataset included the original text, as well as for-
matted versions of the rich context information of
that particular line. The version of the dataset we
use is the one used to train the contextual models
in SciWING, where the contextual data are dis-
carded, and only the raw data and the label remain.
The SectLabel dataset in SciWING randomly splits
each individual line into the training, validation,
and test dataset without considering neighboring
lines. However, due to our need to feed consec-
utive lines into the model with the inclusion of a
sliding window attention, we needed to reconstruct
the train–validation–test split in the dataset by ran-
domly select 4 papers each to form the validation
and test dataset, training the model on the remain-
ing 32 papers only, to cleanly separate the splits to
avoid data snooping.

Furthermore, to scale the performance to a
slightly outside of domain setting for the evalu-
ation of the inference performance, we constructed
an independent test dataset in addition to the test

dataset partitioned from the SectLabel data, which
we refer to as the extended test dataset. We manu-
ally label 20 randomly selected papers from ACL
2020, assigning each extracted text line to a par-
ticular label with the help of the original PDF file
to ensure that the labels are correct. The text ex-
traction engine and manual labeling differ from the
SectLabel dataset, allowing this dataset to have a
slight out-of-domain property that tests the model’s
ability to generalize.

For semi-supervised training, we assembled a
new corpus of unlabeled training data consisting
of 570 long articles from ACL 2021 and 1895 ar-
ticles from NeurIPS 2021, which we refer to as
the unlabeled dataset. The unlabeled dataset is
then augmented by data augmentation techniques
such as EDA (Wei and Zou, 2019) and back-
translation (Sennrich et al., 2016; Edunov et al.,
2018) to form the unlabeled dataset used for semi-
supervised training. (See Table 2 for sample aug-
mentations.)

Evaluation Metric. As categories such as
bodyText and reference comprise most of
the text in scientific articles, our data are extremely
skewed and unbalanced, requiring us to utilize the
macro F1 score.

Results. Table 3 presents the main performance
results, where we take the SciWING logical struc-
ture classification engine (Ramesh Kashyap and
Kan, 2020) as our baseline model. Our best model
increases SOTA performance in plain text-based log-
ical structure recovery networks by 10%. Among
architecture types, we find that the RoBERTa-
Sliding Attention model (RoBERTa-Attn) performs
well, outperforming SciWING by 7% in the Sect-
Label test dataset. We note that these results are
not directly comparable as the training data are
sampled differently.

When we further incorporate TSA and UDA, we
find that the performance grows even more, with
SDA improving performance on the SectLabel test
dataset by 10%, and UDA increasing the general-
izability of the model and increasing performance
on the extended test dataset.

6 Analysis

We analyze in detail both the architectural changes
(§6.1, 6.2) and training techniques (§6.3, 6.4). We
employ an iterative alteration of models in our
experiments, starting with SciWING’s SectLabel
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Original Once upon a midnight dreary, while I pondered, weak and weary,

Synonym Replacement (EDA) Erstwhile upon a midnight dreary, while I pondered, weak and weary,
Random Insertion (EDA) Once upon a midnight dreary, while I pondered, weak and once weary,
Random Swap (EDA) Once upon I midnight dreary, while a pondered, weak and weary,
Random Delete (EDA) Once upon a dreary, while I pondered, and weary,

Back Translation Once at midnight it was bleak while I was thinking, weak and tired,

Table 2: Sample Augmentation of EDA and Back Translations

SectLabel Extended
Model Macro F1 Micro F1 Macro F1 Micro F1

SciWING (Ramesh Kashyap and Kan, 2020) 0.732 0.900 - -
RoBERTa-Attn Model (OURS) 0.806 0.904 0.596 0.870
RoBERTa-Attn Model + UDAlog

† 0.784 0.906 0.669 0.887
RoBERTa-Attn Model + SDAlog

† 0.832 0.929 0.623 0.886

SectLabel (Luong et al., 2010)‡ 0.847 0.934 - -
* Bold text indicates SOTA performance.
† The subscript refers to the logarithmic Training Signal Annealing schedule used in training (§ 4.3.1).
‡ Uses rich text information in addition to plain text.

Table 3: Abridged Comparison of Our Models and Other Relevant Models

Window SectLabel Test Extended Test
Size Macro Micro Macro Micro

1† 0.693 0.869 0.446 0.791
3 0.770 0.907 0.531 0.855
5 0.779 0.909 0.579 0.871
7 0.778 0.907 0.564 0.876
5 (dilated) 0.758 0.900 0.539 0.856
* The model architecture for this experiment follows Sci-

WING in using ELMo-biLSTM as the backbone sen-
tence embedder model.

† Using a window size of 1 reduces the model back to the
SciWING baseline.

Table 4: Effects of Sliding Window Size

model as our baseline, and iteratively adding tech-
niques experimentally proven to be beneficial to
act as the baseline of the next batch of experiments.

6.1 Sliding Window Attention

For better context modeling, we incorporate a slid-
ing window attention layer to account for neighbor-
ing lines. We study the effect of varying window
size 1, 3, 5, 7, and 5 (dilated) in Table 4. Here, a
window size of 1 reduces the model back to the
baseline, while a dilated sliding window skips ev-
ery other line in the window.

With the inclusion of sliding window attention,

the model is less prone to misclassify lines in the
middle of a large logical structure (Table 5). We
observe, however, with the increase of window size
from 1 to 3, some categories in which single line
contextual information suffices to determine the la-
bel such as address and email drops in perfor-
mance slightly, but recover when the window size
increases to 5. Taking a window size of 7, we find
that the categories that exist within the boundaries
of the document, such as title, affiliation,
have dropped in performance, while other cate-
gories of the spanned text, such as listItem
and footnote have also dropped, possibly due
to the window size being too large and including
too much "noise".

For the dilated window size of 3, although such
a setting is able to include a larger span of con-
text, we find that although most categories per-
form slightly worse for the dilated version, title
and author performed particularly badly. We
believe the overall decrease in performance is be-
cause some logical structures only span one line
and using a dilated window skips over such logical
structures and lowers the continuity of the contex-
tual information.

Overall, we consider the window size of 5 to
have the best performance in total and we use such
a window size on further experiments.
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Baseline Sliding Window 5

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt author reference
Gardner, Christopher Clark, Kenton Lee, and Luke reference reference
Zettlemoyer. Deep contextualized word representa- bodyText reference
tions. arXiv preprint arXiv:1802.05365, 2018. reference reference

Table 5: Sample Classification Result of Sliding Window on Consecutive Lines (Citation of Peters et al. (2018))

Extended Test (Macro-F1) [CLS] Mean Attention

BERT (uncased) 0.506 0.485 0.511
BERT (cased) 0.546 0.581 0.580
SciBERT (uncased) 0.493 0.514 0.505
SciBERT (cased) 0.581 0.571 0.568
S-BERT 0.074 0.381 0.117
RoBERTa 0.555 0.564 0.596

* Sliding window attention of size 5 is employed.

Table 6: Training Results of Different Pretrained Trans-
formers

6.2 BERT and Pooling

We test the three different pooling methods for
producing sentence embeddings ([CLS] token,
mean pooling, and attention pooling), cross-
examining the results with the following pre-
trained transformer models: BERT (Devlin et al.,
2019), SciBERT (Beltagy et al., 2019), Sentence-
BERT (SBERT) (Reimers and Gurevych, 2019),
and RoBERTa (Liu et al., 2019) in Table 6.

We observe that uncased models underperform,
returning worse results than the SciWING base-
line model. In particular, categories that require
capitalization to convey context such as address,
sectionHeader, title, etc, underperform.

Furthermore, as Sentence-BERT models are
trained specifically to produce sentence embed-
dings of entire sentences, it may not be suitable
for our purposes, as the stripped lines in our train-
ing data are broken into lines on a typesetting basis
rather than a contextual basis that takes contextual
completeness into account.

In contrast, among BERT variants, RoBERTa
produces the best result when applying attention
pooling. Our further analysis found no perfor-
mance correlation between the model and the pool-
ing technique used.

6.3 Semi-Supervised Learning

We train our model in a semi-supervised setting in
hopes of increasing performance levels due to the
limited amount of labeled data. We also attempt

Macro F1 UDA FixMatch
Exp Linear Log No Aug w/EDA

SectLabel 0.781 0.818 0.784 0.796 0.820
Extended 0.499 0.627 0.669 0.570 0.642

* Backbone model is the RoBERTa model with a sliding
window of size 5 employed.

Table 7: Training Results of Different SSL Frameworks

to increase the robustness of the model in terms of
out-of-domain data, and evaluate on the extended
test dataset.

We experimented with all three Training Signal
Annealing (TSA) training schedules in conjunction
with Unsupervised Data Augmentation (UDA). For
FixMatch, we also attempt a version where weak
augmentation is not employed, performing cross-
entropy loss on the labeled data directly for su-
pervised learning. The results in Table 7 show
that FixMatch is able to achieve the highest perfor-
mance in the partitioned data set, which is in line
with the results reported by (Sohn et al., 2020) in
image classification. In addition, we see that UDA
with a logarithmic TSA schedule is able to increase
robustness of the model most, as exemplified on
the performance of the out-of-domain extended test
dataset.

With FixMatch, we see that the weakly aug-
mented version has increased performances on both
the SectLabel and extended test data, which vali-
dates Sohn et al. (2020)’s explanation that remov-
ing weak augmentation may lead to overfitting on
the guessed pseudo-labels. As seen from the results
of the extended test data, the model reinforces its
inference and fails to generalize without the use of
weak augmentation on the training data.

Turning our discussions to UDA, although the
exponential schedule should in theory work well in
a semi-supervised setting due to the need to regu-
late the release of training signals slowly to avoid
overfitting the labeled data, we observe that such a
schedule underperforms (Xie et al., 2020). Observ-
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Figure 4: Training Progress of UDA (Semi-Supervised) under Different Annealing Schedules

ing the validation metrics in Figure 4, we see that
convergence is slow and conclude that this may be
due to the minimal release of training signals early
in the training, allowing initial errors to amplify
themselves in the unsupervised consistency loss.

On the other hand, we find that the logarithmic
schedule limits the amount of training signals of
the supervised data, hence placing more emphasis
on the unlabeled data during training. This can lead
to a more robust model, given that the unlabeled
data are diverse enough. We expect this property to
be useful when dealing with cross-domain training.

While semi-supervised learning does increase
performance, ultimately it does not improve the
accuracy of minority classes by much, due to the
inherent reinforcement of noisy model prediction.
As the unlabeled data are pseudo-labeled according
to the predictions of the model, they contain the
model’s biases from the labeled data (Kim et al.,
2020; Wei et al., 2021). The result is that the minor-
ity classes’ performance are only improved a bit as
the majority classes still have an outsized influence
on the overall accuracy.

6.4 Loss Engineering

We now attempt to optimize the training process
by engineering the training loss term and observe
whether this is enough to improve training without
the requirement of additional unlabeled data and
the lengthy training procedure of semi-supervised
techniques. This includes the integration of ele-
ments of UDA (Xie et al., 2020) – TSA to counter
the imbalanced dataset, and training our model with
a supervised version of UDA (SDA).

Regarding the annealing schedules for the TSA
function αt, we believe that under a supervised
background, due to the large difference in the
amount of training signals released in the first half

Macro F1 Exp Linear Log

SectLabel Test TSA 0.790 0.824 0.819
SDA 0.761 0.819 0.836

Extended Test TSA 0.568 0.608 0.632
SDA 0.548 0.606 0.623

* Backbone model is the RoBERTa model with a sliding
window of size 5 employed.

Table 8: Training Results of Loss Engineering Tech-
niques

of the training process, the distribution of data dif-
fers greatly from schedule to schedule and would
greatly affect performance.

Table 8 shows convex annealing schedules (ex-
ponential) perform worse than the baseline, likely
due to there being insufficient training signals to
properly train the data, as observed from the slow
loss convergence in Figure 5. On the other hand,
non-convex annealing schedules (linear and loga-
rithmic) generally perform better, due to an earlier
increase in the moving ceiling ηt, so the model can
emphasize more training on non-confident samples
while still retaining enough training signals.

We find that the inclusion of consistency loss
enhances the effects of the TSA schedule itself,
returning a worse performance on the exponen-
tial schedule, while improving performance on the
logarithmic schedule. However, judging from the
extended testing data, such an addition of the con-
sistency loss may run a risk of overfitting as a result
of using two loss terms on the same sample, as the
performance decreased with such an inclusion.

From the experimental results, we observe that
utilizing training signal annealing is indeed able to
mitigate negative effects brought by data skewness
and improve model performance, even exceeding
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Figure 5: Training Progress of Supervised Learning Under Different Annealing Schedules

Parameters Modality Image Embedding

BERT 110M T ×
RoBERTa 125M T ×
LayoutLM

Vanilla 113M T+L ×
+ Image 160M T+L+I ResNet101

LayoutLMv2 200M T+L+I ResNeXt101

Table 9: Comparison of Selected Text-Only and Multi-
modal (with Layout and Image) Transformers

Batch Size

BERT/RoBERTa w/Sliding Attention 32
BERT/RoBERTa w/Sliding Attention + SSL 16
LayoutLM w/ResNet 8
LayoutLM w/ResNet + Sliding Attention 4
LayoutLMv2 MemoryError

Table 10: Batch Sizes of Transformer Models Compared
on a Single Nvidia RTX3090

that of the semi-supervised training results. How-
ever, as it still utilizes fewer training data, under
out-of-domain conditions, the model is not as ro-
bust as that of the semi-supervised training.

6.5 Comparison With Multimodal Models
We conclude our discussion with a brief mention
of multimodal models that can be used for logical
structure recovery. Related works such as Lay-
outLM (Xu et al., 2020) and LayoutLMv2 (Xu
et al., 2021) use positional coordinates and im-
age embeddings to encode the position and font
attributes of text in the embedding. The addition
of image embeddings not only increases the model
size (as shown in Table 9, but also lengthens the
inference timing, as multimodal models like the
LayoutLM series are, in essence, ensemble models,
requiring the finetune/inference timing to include
both the main transformer model and the image

embedding model. Furthermore, the batch size of
the input must be similarly reduced, as the input
now includes the full image albeit compressed.

A preliminary testing of corresponding largest
batch sizes on a 24GB RAM Nvidia RTX3090
is shown in Table 10. On the other hand, while
image-based models such as the Document Im-
age Transformer (DiT; Li et al. 2022) are not as
hard to train, we find the subsequent need of em-
ploying OCR engines to such models to be an ex-
tra inference dependency that can increase error.
Given the high amount of resources needed to train
a multimodal model, our work provides a purely
contextual model that serves as a lightweight and
accessible alternative.

7 Conclusion

This paper shows that, with effective use of multi-
line context, the results of plain text logical struc-
ture recovery models are comparable with other
models that use rich text information. We achieve
this by employing transformers to produce high-
quality sentence embeddings, applying sliding win-
dow attention to consider cross-line context, and
further optimizing by engineering loss functions
such as employing training signal annealing, incor-
porating consistency loss, and/or training under a
semi-supervised regime.

Further work on purely contextual models may
extend to solving the class imbalance problem of
logical structures, which is further amplified due
to the usage of semi-supervised training. Given
the importance of neighboring context, one cannot
simply rebalance the dataset. These issues require
other methods to decrease such biases.
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