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Abstract

Approaches to machine generated text detec-
tion tend to focus on binary classification of
human versus machine written text. In the
scientific domain where publishers might use
these models to examine manuscripts under
submission, misclassification has the potential
to cause harm to authors. Additionally, authors
may appropriately use text generation models
such as with the use of assistive technologies
like translation tools. In this setting, a binary
classification scheme might be used to flag ap-
propriate uses of assistive text generation tech-
nology as simply machine generated which is
a cause of concern. In our work, we simulate
this scenario by presenting a state-of-the-art
detector trained on the DAGPap22 with ma-
chine translated passages from Scielo and find
that the model performs at random. Given this
finding, we develop a framework for dataset
development that provides a nuanced approach
to detecting machine generated text by having
labels for the type of technology used such as
for translation or paraphrase resulting in the
construction of SynSciPass. By training the
same model that performed well on DAGPap22
on SynSciPass, we show that not only is the
model more robust to domain shifts but also
is able to uncover the type of technology used
for machine generated text. Despite this, we
conclude that current datasets are neither com-
prehensive nor realistic enough to understand
how these models would perform in the wild
where manuscript submissions can come from
many unknown or novel distributions, how they
would perform on scientific full-texts rather
than small passages, and what might happen
when there is a mix of appropriate and inappro-
priate uses of natural language generation.

1 Introduction

While estimated submission rates of machine gen-
erated scientific papers are still small (Cabanac
and Labbé, 2021), contemporary text generation
models can generate highly fluent scientific text

DAGPap22 SynSciPass Scielo
DAGPap22 99.6 31.4 52.0
SynSciPass 81.3 98.6 65.6
SciBERT 98.3
TF-IDF 82.0

Table 1: F1 scores on the DAGPap22, SynSciPass, and
Scielo datasets including baselines for DAGPap22 (see
Appendix B for model details)

(Generative Pretrained Transformer et al., 2022)
and manuscripts constructed this way could easily
be produced en masse potentially introducing an
unprecedented threat to scientific publishing and
research integrity. Despite this risk, machine gener-
ated text in scientific settings have appropriate uses
such as with assistive technology like translation,
paraphrasing, and speech-to-text (Li et al., 2022). 1

Scientific manuscripts may increasingly use both
appropriate and inappropriate text generation tech-
nologies. If appropriate uses of text generation
cause a manuscript to be flagged or rejected this
could harm populations that might already struggle
with manuscript writing and submission. For in-
stance, even if publisher’s intention is only to guide
editors, misclassified manuscripts can unintention-
ally bias editors decisions. Inspired by Schuster
et al. (2020), we ask whether we can develop a
method that could adequately distinguish between
appropriate and inappropriate uses of text genera-
tion by identifying the category of tool being used
such as for translation or paraphrase.

Alarmingly, our study finds that a DeBERTa v3
(He et al., 2021) detector that achieves state-of-
the-art performance when finetuned on a dataset
designed for detecting generated academic text
(DAGPap22 kag (2022)) does poorly on flagging

1This is not to say that other malicious applications of
these technologies such as disguising plagarism do not exist
or that use of poor quality text generation technologies don’t
introduce problems such as nonsensical phrases (see Cabanac
et al. (2021))



215

machine generated text under realistic scenarios
of appropriate text generation (see Table 1 which
shows SciBERT and logistic regression with TF-
IDF baselines trained on DAGPap22 as well as
DeBERTa v3 trained on DAGPap22 and SynSci-
Pass). Since misflagging a manuscript as machine
generated is harmful to the submitting author, we
reframe the problem as detecting the type of tool
used for generating text so that authors and publish-
ers can have a more nuanced and neutral approach
to understanding flagged texts and guiding edito-
rial decisions. We develop a framework to gen-
erate academic texts including labels of the type
of technology being used resulting in our dataset
of synthetic scientific passages (SynSciPass). Sec-
tion 2 explores how this dataset was constructed
and how it could be extended to further improve
robustness under domain shifts. In section 3, we
show training on SynSciPass results in being able
to distinguish the type of technology and how our
reframed task helps us move beyond brittle attribu-
tion tasks that rely on having access to particular
models or the less informative and potentially mis-
leading binary detection task. Finally in section 4,
we show that while models trained on our dataset
are able to improve robustness under domain shifts
for machine generated scientific texts, models for
detecting machine generated scientific text are far
from ready for safe use by publishers. We provide
a roadmap for how to close the gap by focusing
on realistic dataset construction that is designed to
test detectors ability to robustly generalize across
domain shifts.

2 A framework for robust and granular
detection datasets

Previous work on detecting machine generated text
has focused on attribution of text to particular mod-
els (Uchendu et al., 2020; Munir et al., 2021).
These approaches have shown the utility of hav-
ing knowledge of the underlying models for text
generation since by having access to those models
synthetic corpora can be built for the detection of
synthetic text (Liyanage et al., 2022). However
those approaches are limited to attributions on spe-
cific models trained on particular datasets and do
not present a realistic or comprehensive scenario
where models may be trained on different datasets
or models might be unknown. Our framework im-
proves upon model attribution methods by creating
corpora from a variety of distributions with a hier-

archy of labels including parent labels based on the
type of tool used such as for paraphrasing, trans-
lation, or novel text generation. By having access
to the type of tool used, we are able to make more
sophisticated judgments about machine generated
text such as allowing translation and paraphrase as
appropriate uses of text generation while requiring
more scrutiny for fully generated passages. Our
framework consists of (1) proposing a taxonomy
of approaches, model families, and models with
a variety of pretraining or finetuning datasets that
might be used for text generation and (2) sampling
machine generated text from each model in the
taxonomy so that each text can be labeled with a
granular labeling scheme according to (1). By do-
ing so, we hope to be able to attribute generated
text not only to specific models but also model
families and types of technology. With these more
generic labels we are able to determine if mod-
els generalize detection across model families or
across approaches used like if an unseen model for
translation were to be introduced.

2.1 SynSciPass

In order to address these issues we constructed
SynSciPass. For our dataset, we theorized three
potential sources of machine generated text (1)
free-form text generation using generative models
like GPT-2 (2) paraphrase models and (3) transla-
tion models. While other approaches like speech-
to-text or summarization are also likely used in
practice, we restricted to the previously mentioned
three. We also did not consider the use of mul-
titask models like GPT-3 that are able to use in-
context learning to also do paraphrase and transla-
tion (Brown et al., 2020) which future work should
follow up on to understand if different uses of the
same model can be properly distinguished. For
each approach, we selected a variety of models
from different model families in order to try to syn-
thesize a distribution of text generations that might
be found in manuscripts (as have been identified
by Cabanac et al. (2021) and Cabanac and Labbé
(2021)). These included common services a user
might have access to like GPT-2, Spinbot, SCIgen
(cf. Cabanac et al. (2021)) and Google translate
as well state of the art approaches for each source
such as BLOOM for text generation (BigScience,
2022). For each technology type, we also included
at least one model that was trained on a distribu-
tion of scientific text. The final dataset consisted of
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Figure 1: Confusion matrix for multi-class prediction
on SciSynPass test set

110,474 passages of which 99,989 (90.5%) were
not synthetic to introduce more realistic class im-
balance given the estimation that only a few papers
per million are machine generated (Cabanac and
Labbé, 2021). Please reference Appendix A and
B for construction details and Table 4 for full de-
tails on dataset construction including the models
used to generate data and which model family and
technology type they belong to.

3 Reframing synthetic text detection as
multi-class classification for
understanding appropriate use

Beyond making models more robust through pro-
ducing a more comprehensive dataset, our frame-
work reframes binary synthetic text detection as
multi-class classification that asks not “Is this pas-
sage of text synthetic?” but asks “If this passage is
synthetic, how was it created?”. Given that there
are several legitimate uses of text generation tools
in the scientific writing process such as using assis-
tive technology, in practice this reframing could al-
low journal editors to make a more nuanced assess-
ment of potentially synthetic text. For example, if a
passage of text was detected as using a translation
tool, an editor or submitting author can assess if the
translation tool was adequate in conveying mean-
ing or if professional translation services should
be employed during revisions. If a paraphrase tool
was used, editors can assess whether it might have
been used to disguise plagiarism or be the result of
a poor quality tool such as Spinbot which is known
to introduce non-idiomatic phrases (Cabanac et al.,
2021).

Using this approach we trained a multi-class
classifier resulting in a micro-averaged F1 score

of 99.6% (97.4%, 96.9%, 99.8%, and 96.2% per
class F1 for generation, paraphrase, human written,
and translation classes respectively) on our held-
out test set. To illustrate the models performance
we present the confusion matrix in Figure 1 show-
ing that our model does quite well across classes
even with the large class imbalance. Additionally
as seen in Table 1, the model achieves a F1 score
of 81.3% on DAGPap22 which is quite good con-
sidering the different domains and notably is about
the same as logistic regression with TF-IDF despite
not being trained on the DAGPap22 dataset. How-
ever, this might simply be that DAGPap22 contains
a similar underlying distribution. Unfortunately
the distribution of DAGPap22 was not known at
the time of writing preventing us from providing
a nuanced picture of the differences and overlap
between DAGPap22 and SynSciPass.

In order to see how our multi-class model might
generalize across families of text generation mod-
els, we performed an ablation study (Table 2) mea-
suring the performance of DeBERTa v3 trained
on SynSciPass as a whole, DeBERTa v3 trained
on SynSciPass with texts generated by gpt2-arxiv
removed and finally DeBERTa v3 trained on Syn-
SciPass with texts generated by BLOOM removed.
F1 scores were reported on model performance on
each text generate dataset (see Appendix A and B
for details on dataset and model names). In Table
2 we see that removing gpt2-arxiv samples results
in a small drop in average performance from the
model trained on SynSciPass as a whole (96.5 F1
down from 97.0 F1) indicating that when we test
against a seen model trained on a new dataset de-
tectors may still be effective at detecting the type
of technology used. Interestingly removing gpt2-
arxiv samples causes the model to do better on
gpt2 than SynSciPass as a whole (94.4 F1 up from
90.7 F1). This indicates that having access to the
model on a generic domain might be more impor-
tant than having access to a model pretrained on
a specific distribution as has been studied in Ro-
driguez et al. (2022). Along these lines we see
that removing BLOOM drops performance dramat-
ically on BLOOM from 96.3 to 28.0 F1 score fur-
ther indicating that having access to underlying
models are particularly important and that unseen
models may cause detectors to fail. Future work
should try to analyze detection models trained to
generalize across tools with a wider variety of mod-
els including more shifts in underlying pretraining
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BLOOM distilgpt2 gpt2-arxiv gpt2 SCIgen average
SynSciPass 96.3 100.0 97.9 90.7 100.0 97.0
-gpt2-arxiv 93.5 96.6 97.9 94.4 100.0 96.5
-BLOOM 28.0 97.8 96.8 91.7 100.0 82.9

Table 2: Ablation study reporting F1 scores on each text generation subset using DeBERTa v3 trained on SynSciPass
as a whole, SynSciPass without the samples generated by gpt2-arxiv and SynSciPass without samples generated by
BLOOM. See Appendix A and B for more details.

distribution, a variety of model sizes, different sam-
pling procedures, and introducing unseen models.

4 Out-of-domain Synthetic Passage
Detection

Following poor performance of models trained only
on DAGPap22 on SynSciPass and vice versa (See
Table 1). We wanted to investigate additional do-
main shifts to understand how robust these models
could be in realistic scenarios like seeing new sub-
ject domains or new models as this might give us a
better picture of how these models might perform
in practice. To test robustness over domain shift,
we created an additional dataset by sampling hu-
man written English passages from Scielo (using
Soares et al. (2019)) aligned with human written
Spanish passages that were translated back into
English. This was done to (1) simulate detection
where manuscripts might have used translation and
(2) simulate where the underlying distribution from
Scielo represents a potential stylistic and disci-
plinary shift from the Pubmed and arXiv domains
which have been seen in SynSciPass.

We sampled 1,000 bilingual English-Spanish hu-
man written passages from the Scielo bilingual
scientific texts dataset (Soares et al., 2019). We
kept the human written English passages labeled as
human generated. Then we translated the aligned
human written Spanish passages into English us-
ing Google translate and labeled these as machine
generated. To get a sense of the resulting lexi-
cal overlap between the human and machine trans-
lated passages, the BLEU score was 40.9 where the
overlap between the English passages with them-
selves is a BLEU score of 100.0. We tested the
resulting dataset of 2,000 passages using (1) De-
BERTa v3 trained on DAGPap22 only (DAGPap22)
(2) DeBERTa v3 pretrained on the Pubmed split
of scientific papers and pretrained on the test and
train texts from DAGPap22 and then finetuned on
DAGPap22 only (DAPT-TAPT) (3) DeBERTa v3
trained on SynSciPass only (SynSciPass) (4) De-

BERTa v3 trained on only translations from Syn-
SciPass (SynSciPass (Translation)) (5) DeBERTa
v3 trained with potential confounding factors re-
moved (passages generated by google translate and
passages generated by a model finetuned on sci-
elo) SynSciPass (SynSciPass (Removed)) (6) De-
BERTa v3 trained on both SynSciPass and DAG-
Pap22 (SynSciPass+DAGPap22) (See Appendix B
for full training details). In order to compare the
results fairly, we should be clear that SynSciPass
uses 1 translation model that was finetuned on the
same Scielo dataset (Soares et al., 2019) to back
translate between English and Spanish as well as
Google translate to back translate between English
and Chinese so there may be some confounding
effect of having samples produced by these mod-
els. SynSciPass does not contain any samples from
Scielo itself. In order to address this potential con-
founding factor readers should reference the results
from SynSciPass (Removed) where both of those
sample sets are removed.

In Table 3, we see that DAGPap22 does quite
poorly with an F1 score of 52%, mostly due to
poor recall indicating that a state-of-the-art model
trained on DAGPap22 would perform as if it’s ran-
domly assigning a human generated or machine
generated label on translated material mixed in
with human written passages from the Scielo do-
main. Even though this is somewhat expected given
that DAGPap22 does not contain information about
translations, it is alarming that this is what per-
formance would look like in real life manuscript
flagging systems if manuscripts used translators.

A standard approach to improving robustness
is pretraining on in-domain and expected task
datasets (Gururangan et al., 2020), when utilizing
this (DAPT-TAPT) the model does not do too much
better (57% F1) than the one trained on DAGPap22
only. Models trained on SynSciPass do improve
(up to 66.5 F1 for SynSciPass (Translation)) but
do not perform well enough to be considered safe.
These results indicate that common approaches for
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AURC ↓ F1 ↑ Precision ↑ Recall ↑
DAGPap22 47.9 52.0 49.6 54.6
DAPT-TAPT 49.3 57.0 50.4 65.7
SynSciPass 51.3 65.6 50.2 94.5
SynSciPass (Translation) 41.3 66.5 50.0 99.1
SynSciPass (Removed) 49.6 66.5 50.1 99.1
SynSciPass+DagPap22 45.6 65.6 50.4 93.9

Table 3: Performance of models presented in Section 4 on an out of distribution translation dataset (Scielo
Translations) showing a more than 13 point increase over a model trained on DAGPap22 when using SynSciPass.

machine generated text detection are not robust
against shifts in domain and result in dismal perfor-
mance under a realistic scenario. We also measured
the area under risk-coverage (AURC) (El-Yaniv
and Wiener, 2010) to present what it might be like
if we calibrated our models to only select answers
they are most confident in. For AURC, DAGPap22
actually does better than SynSciPass and DAPT-
TAPT indicating that it’s selective predictions can
be made safer. Not surprisingly SynSciPass (Trans-
lation) achieves the best AURC of 41.3 indicating
that its confidence scores are more meaningful than
the others and would perform best at selective pre-
diction, however this requires knowing where the
test distribution comes from.

5 Limitations

Given the above results it should be clear that ma-
chine generated text detectors in the scientific do-
main are not very robust to realistic domain shifts.
While adding nuance to classifications with the
multi-class classifier and providing a more compre-
hensive dataset enables enhanced robustness, the
approach is still sensitive to even small shifts in
distribution such as using a known model, google
translate in the Scielo case, trained on an unseen
dataset, Spanish to English scientific passage trans-
lation. The major limitation with our framework
is that in order to become more robust we will
have to continue to collect more distributions to
synthesize from and even as we collect a critical
mass of potential distributions of machine gener-
ated text, our results are inconclusive as to whether
models will continue to be more robust to distri-
butions shifts. Our results with BLOOM removed
indicate that generalization to unseen text gener-
ation models might not be possible with current
approaches. Since machine generated text will con-
tinue to approach human-level fluency and new
approaches will continue to be developed, it will

not be tractable to develop a comprehensive dataset
that is representative of the underlying distribu-
tion of machine generated text. Additionally, since
these models are still sensitive to slight shifts in
distribution, we suggest that future work should
shift focus to improving robustness of detection
on out of domain samples such as with selective
prediction or more sample efficient approaches of
collecting data to become robust as in Rodriguez
et al. (2022). In order to accomplish this, future
work should develop a comprehensive suite of tests
to evaluate the effects of domain shifts on detectors.

While a multi-class labeling approach might help
human evaluators of texts understand why a pas-
sage was flagged, this approach should additionally
be extended to provide interpretability on why par-
ticular passages of texts were flagged. This can
be with generating human-like rationales or using
methods similar to GLTR (Gehrmann et al., 2019)
to assist authors and journal editors in understand-
ing places their manuscript might be improved.

Another limitation of both SynSciPass and DAG-
Pap22 is that they both consist of small pas-
sages extracted from scientific texts. Since most
manuscripts are submitted as long texts, we are
not sure how these results would apply to realis-
tic scientific full-texts, especially when those full-
texts include tables, figures, and other non-textual
items. While Rodriguez et al. (2022) does pro-
vide approaches to address this with passage-based
models, future work should still aim to construct
datasets that are more realistic and close to the task
by providing full-text scientific documents that in-
clude layout, figures, and tables. Finally, these
datasets should aim to match the extreme class
imbalance that has been observed in real world dis-
tribution of machine generated texts identified in
Cabanac and Labbé (2021).
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6 Related Works

Jawahar et al. (2020) outlines many recent ap-
proaches to detecting machine generated text in
a variety of domains. The closest to our approach
is attribution models that attempt to use a stylo-
metric approach for uncovering the authorship of
a text where the author is a particular model or
particular model using a particular dataset (Jones
et al., 2022; Munir et al., 2021). Our approach is
unique in that it focuses on attribution of general
classes of tools such as translation, paraphrase, and
generation rather than specific models.

While we agree in principal with criticisms of
the stylometric approaches that seek to center the
veracity and coherence of texts (Dou et al., 2022;
Schuster et al., 2019), as text generation models
improve, the factuality and fluency gap between
machine and human generated text will get smaller
and smaller and methods that utilize veracity and
coherence will no longer work 2. Additionally,
many humans make errors and write poor quality
manuscripts so we do not feel like this is a good
criterion for detecting machine generated texts but
should be clearly separated as an equally important
but orthogonal task of understanding the quality
of scientific texts. Similarly, we are skeptical of
approaches like MAUVE (Pillutla et al., 2021) that
rely on distributional artifacts produced by machine
generated texts since as text generation models ma-
ture the gap between human and machine distribu-
tions will also close.

Rodriguez et al. (2022) is the closest to our work
in examining the effects of domain shifts in detect-
ing machine generated scientific texts showing that
detectors do not generalize well when subject do-
mains shift from physics to biomedicine. While
they show that generating even a small number
of samples in another domain improves detection,
their work is limited to only GPT-2 making their
findings reliant on having access to the underlying
models. Data augmentation like we used is a com-
mon strategy shown to improve the robustness of
models in NLP (Wang et al., 2022) and is common
for examining text generation model attribution
in detecting machine generated text since we have
access to the underlying text generation models dur-
ing analysis (Uchendu et al., 2020). Finally, recent
work has examined the robustness of these mod-

2Clark et al. (2021) find that humans already cannot reli-
ably distinguish between human and machine generated text
produced by GPT-3)

els (Gagiano et al., 2021; Wolff, 2020) but these
methods focus on robustness to adversarial attacks
such as homoglyphs and misspellings rather than
robustness to domain shifts and generalization to
unseen models which is studied in this work and
which we understand as area with the most promise
for both understanding and improving detectors.

7 Ethics Statement

The results in this paper should make it clear that at
this point machine generated text detectors should
not be used in production because they do not per-
form well on distribution shifts and their perfor-
mance on realistic full-text scientific manuscripts is
currently unknown. Further development is needed
on both interpretable and robust detection methods
as well as better datasets that are both realistic (such
as including full-texts rather than passages) and
varied (including comprehensive samples across
scientific disciplines). Because erroneously detect-
ing a manuscript as machine generated is a high
harm activity, future work should continue more
nuanced harm-reduction approaches to synthetic
paper detection like the ones introduced in this pa-
per.

8 Data Availability

The final constructed dataset, SynSciPass,
source code, and models are available at
https://github.com/domenicrosati/
synscipass.

9 Conclusion

Given our findings, we envision future work along
three lines (1) developing machine generated text
detectors that are robust across domain shifts and
developing realistic datasets that test this robust-
ness comprehensively (2) developing methods of
interpretability that help editorial teams detect and
manage the use of both appropriate and inappro-
priate use of text generation models (3) discussion
about the safe and ethical application of these tech-
nologies and the potential harm involved in their
deployment when use cases such as assistive tech-
nology are not considered.

We introduced a framework for collecting
datasets to improve the robustness and interpretabil-
ity of detecting machine generated text in the sci-
entific domain. By developing a comprehensive
dataset, SynSciPass, we were able to show that

https://github.com/domenicrosati/synscipass
https://github.com/domenicrosati/synscipass
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models trained on it were not only more robust un-
der domain shifts but also that those models were
able to detect the generic type of text generation
technology such as for translation, paraphrase, or
novel generations which could help understand if
a passage was generated by appropriate or inap-
propriate means. Despite these findings, our work
has also shown that current models, including our
own, do not perform well in realistic scenarios that
change the distribution of text seen. Because of
this lack of robustness, we suggest that future work
concentrate on formulating both datasets and ap-
proaches that comprehensively test machine gener-
ated text detectors in a wide variety of realistic and
unseen scenarios.

References
2022. Detecting generated scientific papers.

BigScience. 2022. Bigscience large open-science ope-
naccess multilingual language model.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
ArXiv:2005.14165 [cs].

Guillaume Cabanac and C. Labbé. 2021. Prevalence of
nonsensical algorithmically generated papers in the
scientific literature. J. Assoc. Inf. Sci. Technol.

Guillaume Cabanac, Cyril Labbé, and Alexander Mag-
azinov. 2021. Tortured phrases: A dubious writing
style emerging in science. Evidence of critical issues
affecting established journals. ArXiv:2107.06751
[cs].

Elizabeth Clark, Tal August, Sofia Serrano, Nikita
Haduong, Suchin Gururangan, and Noah A. Smith.
2021. All That’s ‘Human’ Is Not Gold: Evaluating
Human Evaluation of Generated Text. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 7282–7296, Online.
Association for Computational Linguistics.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Na-
zli Goharian. 2018. A Discourse-Aware Attention
Model for Abstractive Summarization of Long Doc-
uments. In Proceedings of the 2018 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 615–621,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
Noah A. Smith, and Yejin Choi. 2022. Is GPT-3 Text
Indistinguishable from Human Text? Scarecrow: A
Framework for Scrutinizing Machine Text. In ACL.

Ran El-Yaniv and Yair Wiener. 2010. On the founda-
tions of noise-free selective classification. Journal of
Machine Learning Research, 11(53):1605–1641.

Rinaldo Gagiano, Maria Kim, Xiuzhen Zhang, and
J. Biggs. 2021. Robustness Analysis of Grover for
Machine-Generated News Detection. In ALTA.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M. Rush. 2019. GLTR: Statistical Detection and
Visualization of Generated Text. In ACL.

Gpt Generative Pretrained Transformer, Almira Osman-
ovic Thunström, and Steinn Steingrimsson. 2022.
Can GPT-3 write an academic paper on itself, with
minimal human input?

Suchin Gururangan, Ana Marasović, Swabha
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A Construction of SynSciPass

SynSciPass was constructed using 100,000 pas-
sages that were randomly sampled from the sci-
entific papers dataset (Cohan et al., 2018). Each
passage was between 2 and 10 sentences randomly
sampled from the full-text of single publication
from both the arXiv and Pubmed training splits
with a resulting mean token length of 142 tokens
roughly matching the 140 token mean of the DAG-
Pap22 dataset. From these passages 1,000 items

were randomly sampled (with replacement) for
each model found in Table 4. Passages that were
constructed using BLOOM and GPT-2 proceeded
following the approach of (Liyanage et al., 2022)
where the first sentence of the real passage was used
as the prompt to construct the synthetic passage,
subsequent generations were used to re-prompt the
model to sample passages between 2 and 10 sen-
tences. The first sentence from the real passage
was then removed. For these models greedy de-
coding with a temperature of 1.0 was used. For
SCIgen, 1,000 papers were generated and then a
random passage of between 2 and 10 sentences was
extracted from each one. For the paraphrase mod-
els, a randomly sampled passage from the human
written passages were sent through a paraphrase
tool. For the translation models, a human written
passage was sent through the translation tool into
a target language and then back translated into en-
glish. For all models generations, text similarity
was measured between the original passage and the
synthesized example, if the sample was more than
10% similar it was not kept. This does simplify
the problem and make the data less realistic as it
removes synthetic passages that have a high lexical
overlap with reference passages which might be
common with inapporiate uses such as masking
plagarism. The final dataset consisted of 110,474
passages of which 99,989 (90.5%) were human
written. This was done to try to match the extreme
class imbalance that has been observed on synthetic
scientific papers in the wild (Cabanac and Labbé,
2021). The final dataset was split by 80%/10%/10%
into train, validation, and test sets.

B Training details on models used

For this work, all of our classification models
were trained by finetuneing DeBERTa v3 large (He
et al., 2021) using the following hyperparameters:
adamW optimizer, learning rate of 6e-6, batch size
of 8, weight decay of 0.01 with warmup steps of 50.
All classification models were trained for 3 epochs.
For the domain adaptive pretraining (DAPT) model,
we further pretrained using the parameters men-
tioned above with a masked language modeling
objective on the Pubmed train split from the scien-
tific papers dataset (Cohan et al., 2018) using 128
token chunks for 5 epochs. For the task adaptive
pretraining (TAPT) model, we used the same ap-
proach with 5 epochs on the DAGPap22 dataset.
Details of the SciBERT and logistic regression TF-

https://doi.org/10.18653/v1/2021.eacl-main.155
https://doi.org/10.18653/v1/2021.eacl-main.155
https://doi.org/10.18653/v1/2021.eacl-main.155
https://doi.org/10.18653/v1/2022.naacl-main.88
https://doi.org/10.18653/v1/2022.naacl-main.88
https://www.semanticscholar.org/paper/Are-We-Safe-Yet-The-Limitations-of-Distributional-Schuster-Schuster/8dba7ce2fabaf9cab2bd3a49d435ff35403e52c9
https://www.semanticscholar.org/paper/Are-We-Safe-Yet-The-Limitations-of-Distributional-Schuster-Schuster/8dba7ce2fabaf9cab2bd3a49d435ff35403e52c9
https://doi.org/10.1162/coli_a_00380
https://doi.org/10.1162/coli_a_00380
https://doi.org/10.48550/arXiv.1905.01852
https://doi.org/10.48550/arXiv.1905.01852
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2020.emnlp-main.673
https://doi.org/10.18653/v1/2022.naacl-main.339
https://doi.org/10.18653/v1/2022.naacl-main.339


222

type model family model passages
generate bloom bloom 1073

gpt2 GPT-2-arxiv_generate 998
distilgpt2 998
gpt2-medium 998

SCIgen SCIgen 822
paraphrase pegasus pegasus-xsum-finetuned-paws* 1000

pegasus-xsum-finetuned-paws-parasci* 1000
spinbot spinbot 990

real real real 99064
translate google_translate google_translate 901

opus opus-es-en 794
opus-es-en-scielo* 901

Table 4: Approaches used for data augmentation and number of passages generated. Models with an asterisk were
trained by the authors. Spinbot, SCIgen, and google translate are the names of the services used available online.
The rest of the models are or will be made available on the huggingface repository under those names.

IDF model baselines were not made available at
the time of writing this paper.


