@inproceedings{shinde-etal-2022-extractive,
title = "An Extractive-Abstractive Approach for Multi-document Summarization of Scientific Articles for Literature Review",
author = "Shinde, Kartik and
Roy, Trinita and
Ghosal, Tirthankar",
editor = "Cohan, Arman and
Feigenblat, Guy and
Freitag, Dayne and
Ghosal, Tirthankar and
Herrmannova, Drahomira and
Knoth, Petr and
Lo, Kyle and
Mayr, Philipp and
Shmueli-Scheuer, Michal and
de Waard, Anita and
Wang, Lucy Lu",
booktitle = "Proceedings of the Third Workshop on Scholarly Document Processing",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.sdp-1.25/",
pages = "204--209",
abstract = "Research in the biomedical domain is con- stantly challenged by its large amount of ever- evolving textual information. Biomedical re- searchers are usually required to conduct a lit- erature review before any medical interven- tion to assess the effectiveness of the con- cerned research. However, the process is time- consuming, and therefore, automation to some extent would help reduce the accompanying information overload. Multi-document sum- marization of scientific articles for literature reviews is one approximation of such automa- tion. Here in this paper, we describe our pipelined approach for the aforementioned task. We design a BERT-based extractive method followed by a BigBird PEGASUS-based ab- stractive pipeline for generating literature re- view summaries from the abstracts of biomedi- cal trial reports as part of the Multi-document Summarization for Literature Review (MSLR) shared task1 in the Scholarly Document Pro- cessing (SDP) workshop 20222. Our proposed model achieves the best performance on the MSLR-Cochrane leaderboard3 on majority of the evaluation metrics. Human scrutiny of our automatically generated summaries indicates that our approach is promising to yield readable multi-article summaries for conducting such lit- erature reviews."
}
Markdown (Informal)
[An Extractive-Abstractive Approach for Multi-document Summarization of Scientific Articles for Literature Review](https://preview.aclanthology.org/fix-sig-urls/2022.sdp-1.25/) (Shinde et al., sdp 2022)
ACL