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Abstract

Researchers have explored novel methods for
both semantic indexing and information re-
trieval of biomedical research articles. More-
over, most solutions treat each task indepen-
dently. However, both tasks are related. For
instance, semantic indexes are generally used
to filter results from an information retrieval
system. Hence, one task can potentially im-
prove the performance of models trained for
the other task. Thus, this study proposes a
unified retriever-ranker-based model to tackle
the tasks of information retrieval (IR) and se-
mantic indexing (SI). Particularly, our proposed
model can adapt to rapid shifts in scientific re-
search. Our results show that the model effec-
tively leverages task similarity to improve the
robustness to dataset shift. For SI, the Micro
f1 score increases by 8% and the LCA-F score
improves by 5%. For IR, the MAP increases by
5% on average.

1 Introduction

The pandemic caused the rapidly evolving curation
of scientific publications about COVID-19, result-
ing in an information crisis (Roberts et al., 2020).
As a result, healthcare practitioners, policymakers,
and other individuals fighting against COVID-19
require specialized information retrieval (IR) and
semantic indexing (SI) systems to keep track of
the ever-evolving literature landscape (Esteva et al.,
2020; Wang et al.). Researcher’s methods to ad-
dress these tasks have generally focused on one
task, IR or SI (Zhang et al., 2020; Colic et al.,
2020).

IR and SI are related. For example, IR addresses
the question, “what are the most relevant research
papers, and why are they deemed relevant?” SI is
essential to facilitate easy browsing and filtering
of IR-retrieved manuscripts. For instance, if a user
finds all relevant papers related to the question,
“What vaccines are the most effective for COVID-
19?”, they can use SI to filter papers associated with

a specific COVID-19 variant, e.g., MeSH terms
on PubMed (Lipscomb, 2000). Hence, this paper
proposes a novel architecture that jointly addresses
both tasks.

There has been an array of research in IR
and SI of biomedical documents. For instance,
since 2012, there has been an annual competition
where researchers compete to develop more ac-
curate biomedical IR and SI methods (BioASQ1).
The competition is essential to improve the Na-
tional Library of Medicine’s (NLM) infrastructure,
which provides IR and SI systems for biomedical
scientists and healthcare professionals to search
for biomedical research articles. NLM manually
indexes biomedical research articles with Medi-
cal Subject Headings (MeSH). MeSH terms are
used for biomedical SI purposes (e.g., filtering
search results), to facilitate hypothesis generation
by biomedical scientists, and to help general knowl-
edge discovery. Unfortunately, there are over 29
thousand MeSH terms. Thus manually identify-
ing the subset of terms applicable to each article
is difficult and expensive to complete in a timely
manner. Hence, the competition has helped re-
searchers introduce various methods for automated
MeSH coding. For instance, many researchers have
trained linear models, which still result in strong
baselines (Liu et al., 2014; Rios and Kavuluru,
2015). For example, Liu et al. (2014) combined
linear models with a learning-to-rank framework,
which is still used today in combination with neural
networks (Dai et al., 2020).

Similarly, BioASQ had a part in advancing
biomedical IR systems. For instance, Pappas et al.
(2020) used convolutional neural networks for
biomedical snippet retrieval. Similar to BioASQ,
recent IR efforts have focused on COVID-related
IR as part of the annual TREC competition (TREC-
COVID) (Roberts et al., 2020). For example, Soni
and Roberts (2021) evaluated two commercial deep

1http://www.bioasq.org/

http://www.bioasq.org/


139

learning IR systems on the TREC-COVID dataset,
showing that both systems underperformed the ex-
pected results. Researchers have proposed other
models beyond the commercial systems, includ-
ing pre-trained transformer models for text rank-
ing (Lin et al., 2020), along with zero-shot retrieval
systems for COVID (MacAvaney et al., 2020).
Some researchers have recently explored combin-
ing IR and SI. As an example, researchers have
used an IR system as part of a KNN-based com-
ponent of an ensemble model to improve MeSH
identification (Liu et al., 2014; Dai et al., 2020).
Nevertheless, to the best of our knowledge, no prior
work has used SI to improve IR systems, especially
in IR systems for COVID-related retrieval.

There are four major technical challenges with
developing COVID-related IR and SI systems:
sparse datasets, shifts in the data distribution, scale,
and interpretability. The limited amount of labeled
data and dynamic changes in the COVID-19 land-
scape has made it challenging to generalize IR
and SI methods beyond the datasets used to train
them (Shokraneh and Russell-Rose, 2020). Be-
cause information is quickly becoming outdated
in research articles, understanding what is relevant
is difficult for current IR methods. For example,
expert human judgments did not identify 70% of
the retrieved results as relevant (Voorhees et al.,
2021). However, the manual assessment process
is time-consuming. Therefore, it is important to
improve current models and provide textual evi-
dence for “why” it detected a document as relevant
to facilitate easier manual assessments by human
experts (Xun et al., 2019)—providing answers to
“why” is useful, especially if we develop systems
that work to help experts. For instance, Jin et al.
(2018) shows that human indexers at NLM become
significantly more efficient and accurate if they
are provided semantically sensible associations be-
tween the input text and system outputs.

To address the technical challenges, we propose
a specialized IR and SI approach that combines
interpretability, multi-task learning, and a mecha-
nism of using unlabeled data via self-supervised
learning to improve model robustness. Overall, our
model will allow for quick adaptation and robust-
ness to the dataset shift problem, becoming suitable
for the context of the pandemic. We summarize the
major contributions of this paper below: (1.) We
propose a novel interpretable, self-supervised, mul-
ti-task learning method to tackle the tasks of IR

and SI COVID-19-related research articles. We de-
vise a mechanism to train a unified retriever-ranker
on a self-supervised masked language modeling
(MLM), SI, and an IR task. This joint training
framework enables inter-document representation
learning, quick adaptation to new changes in the
data distribution, and interpretability, which we
demonstrate to be important for the context of the
pandemic. To the best of our knowledge, this is the
first study to show the utility of joint training of
SI and IR tasks—showing both tasks complement
each other in a single model, not just one task help-
ing the other one. (2.) We introduce a novel output
layer transformation method that allows us to pre-
dict new concepts as they appear over time without
retraining the model. (3.) Our study provides de-
tailed quantitative and qualitative analysis of our
model’s interpretability and transfer learning com-
ponents that highlight the dataset shift challenges
of IR and SI tasks during a health crisis.

2 Related Work

Biomedical Semantic Indexing. NLM has col-
lected biomedical literature from the last 150 years.
As of 2020, the PubMed database contains about
30 Million biomedical journal citations. This num-
ber has risen from 12 Million citations in 2004
to 30 Million citations in 2020, having a growth
rate of 4% per year. Through a laborious process,
NLM curators fully examine every document and
annotate it with a set of hierarchically organized ter-
minologies developed by NLM called Medical Sub-
ject Headings (MeSH2) along with supplementary
concepts for more fine-grained categorization (Pa-
pagiannopoulou et al., 2016). In 2019, more than
900K biomedical citations were added to PubMed
and manually indexed to more than 29K MeSH
concept categories3.

Researchers have been trying to address biomed-
ical natural language processing problems effec-
tively for more than a decade, e.g. BioASQ (Tsat-
saronis et al., 2015c), which has led to introduction
of many models for IR and SI (Jin et al., 2018;
Peng et al., 2016; Müller et al., 2017; Zavorin et al.,
2016; Xun et al., 2019). A successful group of
submissions involves deep learning models with
substantial hand-coded features and supervision.
DeepMesh (Peng et al., 2016), the best performing
model in the BioASQ challenge, combines docu-

2
https://www.nlm.nih.gov/mesh/meshhome.html

3
https://www.nlm.nih.gov/pubs/techbull/mj18/

brief/mj18_updates_2018_baseline_stats.html

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/pubs/techbull/mj18/brief/mj18_updates_2018_baseline_stats.html
https://www.nlm.nih.gov/pubs/techbull/mj18/brief/mj18_updates_2018_baseline_stats.html
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ment to vector models with crafted features from
the document and MeSH indexes, along with en-
semble models fed by those features. Other deep
learning approaches include UIMA concept extrac-
tor links (Peng et al., 2016), and AUTH, which also
uses a document-to-vector approach with an ensem-
ble of machine learning classifier (SVM) fed with
document-MeSH features (Papagiannopoulou et al.,
2016). Jin et al. (2018) and Xun et al. (2019) com-
bined retrieval systems with deep recurrent neural
networks and attention mechanism and also pro-
vide explainability for MeSH indexing decisions.
The amount of hand-crafted features and supervi-
sion required for these models make it difficult to
scale up as the biomedical databases change during
pandemic crises (Foroughi Pour et al., 2020).

Most SI models are developed to perform well in
normal situations across a broad range of biomedi-
cal concepts. Researchers evaluate SI models based
on their overall performance on all major MeSH
indices (Nentidis et al., 2019). In the pandemic sit-
uation, however, the focus of the literature has dras-
tically shifted toward the specific concepts and sub-
concepts related to the current Coronavirus disease.
The number of published documents related to
Coronavirus has risen from a few articles per month
to more than 10K articles in June 2020—roughly 1
out of every 11.5 citations are about Coronavirus
these days. Chen et al. (2020) The rapidly grow-
ing and evolving literature on COVID-19 causes
challenges for automatic SI models (Shokraneh
and Russell-Rose, 2020). Previously introduced
SI models are based on supervised learning ap-
proaches and heavily hand-coded features. There-
fore, they require large amounts of labeled data
for a specific concept to perform well. They also
have challenges scaling up to newly introduced
terminologies and sub-concepts. Hence, they are
unsuitable for emergencies, like the ongoing health
crisis. In this paper, we focus on measuring and
improving shifts in this setting.

Biomedical Information Retrieval. As previ-
ously mentioned, BioASQ challenge (Tsatsaronis
et al., 2015a) is the largest challenge for SI and
IR. Since 2015. BioASQ have shared a set of
question—answering-related datasets every year.
IR systems work in two phases. First, a broad
(simple) method is used to retrieve the initial can-
didate’s articles, and the second stage is to re-rank
the candidates using a more complex method. The
re-ranking model is usually based on the cross-

attention model and fine-tuned for the binary clas-
sification task (Nentidis et al., 2020). For the first
stage, many researchers use BM25 (Rosso-Mateus
et al., 2018; Almeida and Matos, 2020; Kazaryan
et al., 2020; Pappas et al., 2020). Likewise, sev-
eral methods have been developed for the second
stage. Rosso-Mateus et al. (2020) developed a sys-
tem that takes as input learns distance metric to
match question-passage pairs. Specifically, they
use siamese and triplet networks to create a novel
similarity learning method using a max-margin ap-
proach.

To the best of our knowledge, our study is the
first to combine the two specific tasks of extraction
of semantic indexes (which is essentially a multi-
label text classification into a set of pre-defined,
hierarchically organized semantic indexes) and IR
(ranking a list of documents based on their related-
ness to a query)—two tasks for which high-quality
annotation by human experts exists compared to
other domains. Other multi-task learning bench-
marks mostly combine text problems that take a
single piece of text as input rather than multiple
documents, such as masked language modeling,
NLU, and text classification (Raffel et al., 2019;
McCann et al., 2018). Semantic search studies use
the pre-trained models on such single input text
problems, then fine-tune and use the representation
of the document along with a similarity function
or task-specific layers to compute the similarity
between mid-level representations from the pre-
trained encoder. These approaches cause discrep-
ancies between the operations required for pre-text
and downstream tasks. Therefore, they may not
leverage the transfer learning (Ratner et al., 2018)
effectively.

The most similar work to this paper is by Liu
et al. (2019) which combines binary text classi-
fication with an information retrieval task via a
multi-task learning framework. However, our work
differs from Liu et al. (2019) in three major ways.
First, we focus on semantic indexing, which is
multi-label and contains more than 29k classes.
Hence, rather than assigning a binary class to an
instance (yes vs. no), our method must be able to as-
sign a set of classes. Moreover, training large-scale
multi-label models requires substantially different
methodological choices beyond what binary classi-
fication needs. Second, their work does not focus
on the biomedical domain, particularly biomedical-
related scientific documents. Third, most of their
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work focuses on single sentences rather than com-
plete documents. Because of the sequence length
limitation of BERT (Beltagy et al., 2020) multi-
document and long-document analysis is only fea-
sible by truncating the text. Hence, our approach
can scale beyond sentence-level tasks.

3 Datasets

This paper uses three datasets: BioASQ Tasks 8a
and 8b dataset, CORD-19 (Wang et al., 2020), and
TREC-COVID. We describe each dataset below:

BioASQ 8a and 8b. First, we use the SI and IR
datasets that were part of the BioASQ 8a and 8b
competitions. Specifically, we use the PubMed
articles from BioASQ’s (Tsatsaronis et al., 2015b)
Task 8a dataset, which includes almost 15 million
article abstracts and titles. We select 8M recent
articles published from 2007 to 2019.

For IR, we use BioASQ’s Task 8b dataset, which
includes 3,243 questions paired with related arti-
cle abstracts. We use validation sets for each task
for hyperparameter tuning. We also use the vali-
dation dataset as a pretraining procedure for the
COVID-19-related corpora. But, we ensure there
is no overlap between these general sets and their
corresponding COVID-19 datasets.

CORD-19. The models are trained and/or evalu-
ated on the following three COVID-19 datasets cor-
responding to the three tasks: SI, IR, and Masked
Language Modeling (MLM). For our Semantic In-
dexing task, we use CORD-19 dataset (Wang et al.,
2020) which includes 200K research articles about
Coronavirus published in peer-reviewed venues and
archival services such as bioRxiv4 and medRxiv5.
We select CORD-19 articles whose MeSH indexes
are manually annotated in PubMed. We crawl and
collect each article’s MeSH indexes. The COVID-
related SI dataset contains 17K articles which we
chronologically sort and split into 13.6K for train-
ing (the oldest 80%) and 3.4K for testing (the latest
20%)—the number of articles is less than 200k
because NLM has not yet indexed many articles.

During a data crisis, such as what is occurring
with COVID-19, it is likely that we will collect
unlabeled data quickly. However, it is unclear how
to best use the unlabeled data. In response to this
issue, we add an unsupervised task of incorporat-
ing COVID-related information into our models.

4https://www.biorxiv.org
5https://www.medrxiv.org

Specifically, we perform a self-supervised pre-text
task similar to Masked Language Modeling in (De-
vlin et al., 2019) to introduce knowledge about
the pandemic. The masked article is treated as a
query, and masked tokens are selected from a list
of COVID-19-related terms6. The model attempts
to detect articles that include the masked term(s),
which allows our model to learn context matching
using intra- and inter-document information (Co-
han et al., 2020). To train this task, we use the
entire CORD-19 training dataset, even the articles
that have not been indexed yet at the time of the
experiments.

TREC-COVID (Information Retrieval). As for
the COVID-19-specific IR task, we use the TREC-
COVID dataset (Roberts et al., 2020), which is
an IR dataset for question answering similar to
BioASQ QA task 8b. TREC-COVID includes 50
topics as queries represented by (concept, ques-
tion, narrative) tuples. It also includes a dataset of
191K candidate documents from CORD-19. Ex-
perts manually evaluated the relevance of 69,317
topic-document pairs and annotated with three la-
bels: unrelated, partially related, and related. Our
task is to return a list of related articles, which in-
clude the target answer using the topic assigned
to each question and given question as a query.
This task structure is the same as used in BioASQ
IR task 8b.

4 Methods

Intuitively, our method reformulates the semantic
indexing task as IR such that we can train a single
model—with a single output layer—that can per-
form both indexing and retrieval. Furthermore, our
method does not require learning class-level param-
eters, thus allowing it to adapt easily to changes in
the data distribution. Specifically, our method has
three main phases: 1. Given an input document, we
query all similar PubMed articles using a robust
IR approach (combining BM25 and document em-
beddings). 2. We generate document embeddings
that combine information from the input document
(query) with each candidate (similar) document
returned in step 1 (the initial retrieval phase) 3. Fi-
nally, given the query-candidate joint embeddings,
we introduce a novel output layer that can apply
to both the Semantic Indexing (classification) and

6We have used the list of related terms published by NLM
https://www.nlm.nih.gov/pubs/techbull/
nd20/nd20_mesh_covid_terms.html

https://www.biorxiv.org
https://www.medrxiv.org
https://www.nlm.nih.gov/pubs/techbull/nd20/nd20_mesh_covid_terms.html
https://www.nlm.nih.gov/pubs/techbull/nd20/nd20_mesh_covid_terms.html
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Figure 1: Intuitive attention modification diagram between the query Q (i.e., the purple items in the Figure) and
candidates D (i.e., the orange items). The candidates (document-document) attentions are masked in our model.

IR tasks. Given the novel output layer, we take
advantage of multi-task learning, jointly training
the model for SI, IR, and additional tasks (self-su-
pervised learning) to improve performance further.
We describe each step in the following subsections.

Initial Retrieval. For the first stage, we use an
initial retrieval system to identify a subset of re-
lated articles along with their task-specific annota-
tions (for example, for extraction of semantic in-
dexes, the task annotations include each candidate
article’s MeSH terms). Our initial retrieval sys-
tem combines a document-level embedding model
of SPECTER (Cohan et al., 2020) with a Bag-
of-Words representation fused with BM25 follow-
ing the schema of (Jin et al., 2018) and (Esteva
et al., 2020). We initialize sPECTER with SciB-
ERT (Beltagy et al., 2019) and trained on a bipartite
graph of citations to capture document-level relat-
edness and minimize a triplet loss between related
articles and maximize over unrelated ones. We fur-
ther pre-train SPECTER on PubMed articles and
fine-tune it on the COVID-19 dataset only. In ad-
dition, we use a BM25 weighted sum of article
tokens to compute a keyword-based representation
as well.

Formally, the input query and each candidate
document are described as sequences of word to-
kens, denoted as Q = {qi}ni=1 and D = {dj}mj=1,
respectively. For every candidate article, we also
track associated metadata such as manually as-
signed MeSH terms defined as LD = {lj}UD

j=1,
where UD is the total number of MeSH terms as-
signed to candidate document C. We represent
every article as an embedding c ∈ Rz defined as

cd =

∑n
i=1 Score(wi, D) · vwi∑n

i=1 Score(wi, D)
(1)

where z is the size of the SPECTER embedding, n
is the number of tokens in document D, Score() ∈
R represents a token-level BM25 score, wi is the i-

th word in article d, and vwi ∈ Rz is the token-level
embeddings from the pre-trained model. Equa-
tion 1 is used to represent every document D which
is used to represent both query dQ and candidate
dD documents.

Next, we use the cosine similarity scores be-
tween each input query representation dQ and
every candidate article representation dD in our
database to find the top K most relevant articles
C = {D1, . . . , DK}.

Transformer-based Representations and
Reranking Next, given a query document Q and a
set of candidate documents C = {D1, . . . , DK},
we use a BERT-like transformer model to rerank
each candidate document Di with respect to the
input query. Specifically, we first concat the query
Q with each candidate Di to form a long sequence
[CLS, Q,SEP,CLS, D1, . . . ,SEP,CLS, DK ],
where each candidate is separated with a CLS and
SEP token. Next, we predict a score for each
candidate ŷi = σ(CLSDi), where σ represents a
sigmoid function and CLSDi represents the CLS
token directly preceding the start of candidate Di’s
sequence of tokens.

At each level of the BERT representation, our
input structure provides the ability to interpret that
model in three unique ways using attention scores:
token-to-token, token-to-document, and document-
to-document. A high-level depiction of the atten-
tion scores is shown in Figure 1. First, the token-
to-token scores between words within each query
Q or within each candidate document D (i.e., the
self-attention scores in Figure 1) calculates the im-
portance of each word. For instance, the model
can learn that the word "the" is unimportant for the
downstream task. The token-to-token scores are
also calculated between the tokens in the query and
each candidate document (i.e., the token-to-token
cross-attention scores in Figure 1), which can be
interpreted as a similarity between the two words
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across two documents regarding the downstream
tasks.

Given that we care about relations between the
query and candidates, but we do not care about
token-to-token relations between two candidates,
we mask the attention weights at each level of the
BERT representation such that they are ignored.
Next, the CLS-to-token attention is calculated be-
tween each token within a query or candidate doc-
ument and the CLS representing each other docu-
ment, which can be interpreted as the importance of
how similar that token is regarding the topical con-
tent of another document. Finally, the CLS-to-CLS
attention scores can be interpreted as a similarity
score between each document—either between the
query and each candidate or between each candi-
date, respectively. For instance, for semantic index-
ing of MeSH terms, the model should learn to give
large CLS-to-CLS attention scores (for attention
scores between the query and each candidate) to
candidate documents with many MeSH terms that
should be assigned to the query. Finally, because
of the input sequence size, we use the Longformer
model (Beltagy et al., 2020).

Output Layer Transformation. The output of
the reranker transformer model is a set of sigmoid
scores representing similarities between each candi-
date document and the input query. However, while
these scores can directly be used to train the IR
models to detect relevant documents for reranking
purposes, we propose to use these identical scores
to generate other types of output, such as MeSH
code predictions for semantic indexing. Specifi-
cally, we propose a simple output layer transfor-
mation and training procedure to handle this task.
Intuitively, our model is a Transformer-weighted k-
NN, where scores of the scores for each "neighbor"
is learned and contextual.

Formally, given a candidate score ŷi for each
candidate Dj ∈ C, we generate a score for MeSH
term as

l̂i =

K∑
j=1

ŷj · 1[li ∈ Lj ]

where ŷj represents the sigmoid score for candi-
date Dj ∈ C, li represents the j-th MeSH code,
Lj represents the set of MeSH codes assigned to
candidate Dj , and l̂i is the final prediction score
for MeSH code li with respect to the input query
Q. At inference time, we optimize the thresholds
to maximize the micro-f1 score (Pillai et al., 2013).

For the SSL task, we generate scores for each of
the COVID-related terms that are masked within
the candidate documents.

To train the model, we first sample a task ran-
domly, then sample training instances for the task,
apply the output transformation, and train using Bi-
nary Cross-Entropy loss. For instance, for MeSH
prediction, we train the model as

L =
U∑
i=1

li log (l̂i) + (1− li) log (1− l̂i)

where li represents the ground-truth label (1 or 0)
for the i-th MeSH term and l̂i is the prediction for
the i-th term.

Note that for the IR task, we also train on rele-
vance using binary cross-entropy. Hence, instead of
using li as the ground-truth and l̂i as the prediction,
we use l̂j and lj , where l̂j is the sigmoid output
described in Section 4 that scores the relevance be-
tween the query and the j-th candidate and lj is the
ground-truth relevance (1 if relevant, 0 otherwise).
Overall, this output transformation procedure has
two major advantages. First, we do not need to
learn any label-specific parameters. Many MeSH
terms appear infrequently. As new MeSH terms are
added, models must be retrained to predict them.
However, our method can hypothetically predict
terms as soon as new terms are used to annotate
existing documents without retraining the model.
Second, the output layer can predict any meta-data
manually assigned or computed (as is the case for
the SSL task) to the candidate database instances.

5 Results

Evaluation Metrics. To evaluate the performance
of SI we use two sets of evaluation measures; i) flat
measures such as micro- and macro-f1 scores, and
ii) hierarchical measures such as Lowest Common
Ancestor F-measure (LCA-F) (Kosmopoulos et al.,
2015) for which we leverage BioASQ suggested
algorithm7.

For evaluation of IR tasks, we leverage trec_eval,
the evaluation metrics and algorithms provided
by TREC-COVID 8. The evaluation metrics in-
clude normalized discounted cumulative gain
(nDCG@N), P@N, Mean Average Precision

7https://github.com/BioASQ/
Evaluation-Measures/tree/master/
hierarchical

8https://trec.nist.gov/trec_eval/

https://github.com/BioASQ/Evaluation-Measures/tree/master/hierarchical
https://github.com/BioASQ/Evaluation-Measures/tree/master/hierarchical
https://github.com/BioASQ/Evaluation-Measures/tree/master/hierarchical
https://trec.nist.gov/trec_eval/
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Model Micro F1

Medical Text Indexer (MTI) (default) .658
MTI (first line indes) .649
Average top score .714

R+TR (base) (full attention) .553

R+TR (base) (w/o multi-task) .660
R+TR (base) (w/ multi-task) .667
R+TR (large) (w/o multi-task) .698
R+TR (large) (w/ multi-task) .705

(a)

Model MAP

Average top score .464

R+TR (base) (full attention) .191

R+TR (base) (w/o multi-task) .328
R+TR (base) (w/ multi-task) .344
R+TR (large) (w/o multi-task) .355
R+TR (large) (w/ multi-task) .410

(b)

Table 1: Semantic Indexing (a) and Information Retrieval (b) performances of our models, Retriever and Transformer-
based Ranker (R+TR), along with the baselines (best performing models of BioASQ Task 8a for SI, and Task
8b Phase A for IR). The baseline scores are the average of their provided Micro F1 and Mean Average Persision
(MAP) for IR and SI, respectively. The results are averaged across all test batches. Our model Retriever and
Transformer-based Ranker is abbreviated as R+TR.

(MAP), and Binary preference (Bpref) (Esteva
et al., 2020).

Baselines. We compare to three baseline mod-
els: the default MTI, MTI first line index, and the
top models from the BioASQ competition. We
explore MTI with base and “first line” parame-
ters. MTI is a pre-trained model that is for SI
of biomedical articles by the US National Library
of Medicine. The first line version is the current
version used by NLM that partially automates the
standard indexing process at the US National Li-
brary of Medicine before human annotators further
fine tune the indexes. We also report the scores
for the best BioASQ team in each batch as “Aver-
age top score”. Finally, to compare state-of-the-art
methods on the COVID data, we retrain Attention
MeSH (Grishchenko et al., 2020).

Hyperparameters and Model Variations. We
optimize hyperparameters using a held-out valida-
tion dataset. For the SI experiments, K (i.e., the
number of relevant articles retrieved) is set to 512.
For the IR experiments, we set K to 1024. We use
two versions of our re-ranker, a longformer base
version (4 layers, 256 hidden size, 8 heads) and a
large version (6 layers, 512 hidden size, 8 heads).
Furthermore, we evaluate different attention mech-
anism on the base model. We also experiment with
a naïve full attention mechanism (R+TR (full atten-
tion)) to compare the effect of the specific attention
mechanism suggested by (Beltagy et al., 2020)9.
All hyperparameters were chosen using the valida-

9R+TR (full attention) requires truncation of the input doc-
uments, resulting in poor performance. However, Longformer
uses dilated sliding window attention to avoid truncation. Di-
lation and window sizes are the target hyperparameters here.
See the appendix for results with various dilation parameters.

All Training Data Micro F1

Model LCA-F MiF MaF Accu. 0% 5% 10% 20%

MTI (default) .563 .730 .506 .491 .222 .332 .459 .564
MTI (first line indes) .553 .722 .501 .507 .218 .309 .462 .578
Attention MeSH .579 .764 .529 .558 .271 .396 .504 .619

R+TR (base) (w/o ssl & mt) .540 .700 .492 .485 .307 .433 .504 .591
R+TR (base) (w/ ssl) .552 .728 .506 .510 .380 .486 .616 .663
R+TR (base) (w/ ssl & mt) .563 .755 .511 .523 .485 .592 .656 .724
R+TR (large) (w/o ssl & mt) .562 .742 .502 .523 .363 .474 .559 .595
R+TR (large) (w/ ssl) .597 .777 .532 .569 .490 .619 .698 .733
R+TR (large) (w/ ssl & mt) .612 .810 .558 .586 .564 .676 .741 .789

Table 2: Semantic indexing performance of our pro-
posed models in comparison with baselines and ablation
studies. For ablation, we experiment with (w/) and with-
out (w/o) self-supervised learning (ssl) and multi-task
learning (mt). For evaluation, we use Micro F1 (MiF)
and Macro F1 (MaF). The second half of the table shows
the MiF score based on the size of the COVID-19 train-
ing dataset, ranging from 0% (zero-shot) to 20% (few-
shot).

tion data. Refer to the Appendix for a comprehen-
sive list of hyperparameters we searched over in
our experiments.

BioASQ Experiments (Non-COVID). We analyze
several design decisions for our transformer-based
ranking system, such as the effect of multi-task
learning on the general datasets and experimentally
compare our use of the masked attention mecha-
nisms. We report the results of each design deci-
sion in Table 5aa for BioASQ SI Task 8a, and Table
1bb for the BioASQ IR Task 8b, respectively. Our
model Retriever and Transformer-based Ranker is
abbreviated as R+TR.

Overall, for both IR and SI, we find that the full
attention mechanism requires truncating the input
documents, resulting in poor performance. The
multi-task learning improves the performance of
IR without affecting the SI’s performance. Such
improvement is expected not only because of the ef-
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fect of transfer learning but also because the SI task
improves retrieval and reinforces the latent space
to be closer to those of the semantic indexes which
human experts believed to be a better representa-
tion. For the IR results, we find that the multi-task
improvement is higher for larger versions of our
ranker (.328→.344 vs. .355→.410), showing that
the knowledge transfer capability increases with
the size of the transformer model. We do not re-
port the effect of the self-supervision results here
because it is only for COVID-19 datasets and dis-
regarded in our ablation analysis on the general
data. However, its effect is analysed in the follow-
ing sections. Overall, the SI results in match the
top contestants in the BioASQ competition (.714
vs .705). This is substantial given the submissions
use ensemble methods while we are just training a
single model. Similarly, for the IR task, we do not
match the best contestants. However, we will show
in the next results sections our model generalizes
better to out of domain data related to COVID-19.

COVID-19 Semantic Indexing Experiments. Ta-
ble 2 shows the SI performance of our models and
baselines on the COVID-19 SI test set. Results
on the left side (All Training Data) show the per-
formance of the models once trained on the entire
COVID-19 SI training set. The baselines are simi-
larly fine-tuned with the training data for fair com-
parison. Our proposed “R+TR(large) w/o SSL &
MT” model (i.e., without self-supervied learning
and without multi-task learning) performs similar
to the state-of-the-art baselines without leveraging
the proposed self-supervised task and multi-task
learning with IR (.742 Micro F1 vs .764). However,
when combined, each of these transfer learning
techniques substantially improves the SI perfor-
mance. Leveraging the self-supervised learning
task contributes and multi-task learning (SI + IR)
helps because R+TR models gets acquainted with
the context of the novel pandemic and its distri-
butions, improving the Micro F1 score to 0.810.
Overall, this experiment supports our hypothesis
that IR tasks with SI improves model performance,
particularly for COVID-related data.

The right side of Table 2 shows the performances
based on the size of the COVID-specific training
data. We chronologically sort the data and train
the SI models with a proportion of them from the
beginning. As shown in Table 2 the partitions in-
clude:0% which represents the zero shot learning
ability, 5%, 10%, and 20% denoting the few-shot

Model nDCG@20 P@20 Bpref MAP

top score .850 .876 .638 .473
ranke#1 in nCDG@20 .850 .876 .637 .472
ranke#1 in P@20 .850 .876 .637 .472
ranke#1 in Bpref .850 .870 .638 .473
ranke#1 in MAP .850 .870 .638 .473

R+TR (base) (w/o ssl & mt) .792 .838 .602 .455
R+TR (base) (w/ ssl) .821 .856 .626 .468
R+TR (base) (w/ ssl & mt) .857 .870 .642 .464
R+TR (large) (w/o ssl & mt) .805 .849 .620 .457
R+TR (large) (w/ ssl) .830 .861 .633 .475
R+TR (large) (w/ ssl & mt) .889 .891 .657 .492

R+TR (base) (w/ ssl & mt) (w/ f.t.) .899 .915 .664 .506
R+TR (large) (w/ ssl & mt) (w/ f.t.) .924 .946 .691 .523

Table 3: Information retrieval performance of our model
with and without pre-training on self-supervised and
semantic extraction tasks.

learning. 0% represents a model only trained on the
original BioASQ dataset (i.e., no COVID-specific
data). Our large R+TR’s zero-shot micro-f1 score
is significantly higher than the baselines, by 0.32
on average. It achieves 97% of its optimum per-
formance by using only 20% of the training data.
Again, providing evidence that our SI + IR multi-
task learning framework can adapt better across
domains.

Information Retrieval on COVID-19 Experi-
ments.

Table 3 shows the IR performance of our mod-
els evaluated on TREC-COVID round 5 dataset.10.
Our model trained without SSL and Multi-Task
learning (R+TR (base) (w/o ssl & mt) was only
trained on the BioASQ QA dataset (i.e., No
COVID-specific data), hence, it shows inferior per-
formance which is because of the inconsistencies
between two tasks. However, leveraging SSL and
multi-task learning, our base model beats the top
nDCG@20 and Bpref scores. This shows how
the proposed transfer learning framework improves
model’s ability to scale up to a new domain. Our
large R+RT achieves significantly superior perfor-
mance in every metric score.

To analyze the zero- and few-shot learning abil-
ity of our model, we fine-tune our SSL multi-task
learning models with TREC-COVID dataset. We
choose round 3 dataset for training which has 40
topics identical to the first 40 topics in round 5.
This is because the competition stated from 30 top-
ics in round 1 and every time added 5 topics for the
next round. We leave the last 10 topics of round 5
for evaluation.

10See for other baselines https://ir.nist.gov/
covidSubmit/archive.html

https://ir.nist.gov/covidSubmit/archive.html
https://ir.nist.gov/covidSubmit/archive.html
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query article:

semantic indexes (annotated by experts):

semantic indexes (extracted by our model):

related articles:

semantic indexes (annotated by experts):

semantic indexes (annotated by experts):
0.23

0.47

0.11

0.302

0.44

Figure 2: Illustration of attention weights between the input query and candidate articles along with the extracted
outputs. The intensity and the color of the highlights denotes attention weights’ values which is averaged and set to
three scalar between the highly correlated terms.

We also expand the 40 samples of (topic , set
of candidate documents) to 1,530 samples by ran-
domly selecting a subset of 128 candidate docu-
ments for every given topic rather than 1024. As
shown in the bottom of Table 3, our base and large
model can leverage such fine-tuning and achieve
significantly better scores than the top ones, by 0.05
MAP score. Note that in TREC-COVID challenge
also participants could use results from previous
rounds.

Interpretability.
As mentioned in Section 1, if our models im-

prove human productivity, it is important for them
to be interpretable. The interpretability can help
human experts comprehend the decision making
of a model and what has caused a mistaken output.
As shown in Figure 2, the local-global attention of
our model can assist human experts even when it
makes an error by providing evidence for the mis-
taken output and suggesting other alternatives. The
model extract the semantic index of SARS-CoV-
2 while the manual annotator believes the article
is about the general SARS viruses rather than a
specific variant. Highlights in the figure show the
global attention between the related articles and
the query article, and the local attention within
the query article. The weights are averaged and
set to three scalar values, following (Sarker et al.,
2019), to make the visualization simple (Lei et al.,
2017). As depicted by Figure 2, the extraction of
SARS-CoV-2 is because of the highly matched con-
text about COVID-19 (the top related article) and
the last sentence. However, the global attention

provides another related article along with sugges-
tions for the correct index. Knowing these, one can
quickly identify and fix the error.

The interpretability can also help to understand
the performance of the model in mitigating the
challenges of COVID-19 infodemic. Please refer
to A for more interpretability analysis.

6 Conclusion

In this study, we have unified the tasks of IR for
question answering with the extraction of semantic
indexes and with a self-supervised pre-text task.
Our approach allows us to simultaneously train on
downstream tasks and unlabeled data to maximize
the advantages of transfer learning in addressing
the data efficiency, generalization, and dataset shift
issues. Compared to benchmarks, our model learns
with less labeled data (it does not even need to
learn class-specific parameters) and shows a sub-
stantially higher zero-shot (out-of-domain) perfor-
mance. Overall, our study brings focus towards
state-of-the-art remedies to the current challenges
of the pandemic, which opens up new doors to
a more systematic analysis of each of these chal-
lenges and more sophisticated algorithms.

As future research, we will look to combine
more IR and SI-related tasks as more data is be-
ing annotated and prepared for the domain-specific
environment of the pandemic. To better evaluate
the performance of the global-local interpretability,
we plan to perform qualitative analysis by provid-
ing this tool to human experts. The goal is for the
tool to improve their time efficiency and perfor-
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mance when they are performing manual indexing
of biomedical research articles.
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A Interpretability

As a case study, to analyze the performance of our
model in handling the shift in the topics and termi-
nologies of COVID-19 related literature, we look
at attention weights between the various stigma-
tized and standard terms for the novel Coronavirus
over the time. The stigmatized terms include those
which have been used prior to the provisional stan-
dard term “2019-nCoV”, such as “Wuhan Coron-
avirus,” “Chinese Virus,” “Wuhan Novel Pneumo-
nia” to name a few (Hu et al., 2020). We use the
aggregated weights11 when these terms attend to or
get attended by the standard ones (i.e. COVID-19
and SARS-CoV-2). We use the chronologically
sorted dataset and looked at the weights as the
model gets trained over the different time frames.

As shown in Figure 3, as the distribution of ter-
minologies changes over time, the attention mecha-
nism learns to relate to the well-established terms

11Summed and averaged over all sample queries and candi-
date articles, using both local and global attentions.

Hyperparameter Value(s)

|V | 20M, 30M
K 128, 256 , 512, 1024
w (sliding window size) 32,..., 512, inc[32 : 512], dec[32 : 512]
dilation 0, 1, 2, 3, inc[0 : 3]
dilation heads 1, 2, 3
dorpout 0.1, 0.2, 0.3, 0.4∗
batch size 8, 16, 32, 64 (gpu memory limit)
output vector size 512, 1024, 2048
w.e. size 128, 256, 512∗
hidden size 128, 256, 512∗
#layers 4, 5, 6∗, 7, 8
learning rate 0.001, 0.0005, 0.00025, 0.0001

Table 4: Hyperparameter values. w.e.: embedding size
for initial retrieval step. We use bold text for the optimal
ones among all tried values. ∗ refer to those for large
ranker. Best dilation size is achieved by increasing it by
1 from first layer to the last.

mitigating the effect of the dataset shift. In the be-
ginning, the model shows high attention weights
toward SARS-CoV as it is another variant of Coron-
avirus, which has also originated from China. This
finding shows that the model matches the new con-
text. Specifically, the model quickly relates stigma-
tized terms even prior to introducing their standard
terms. With the standard terms, the model pays less
attention to stigmatized and provisional terms. The
attention over SARS-CoV-1 and other related vari-
ants decreases as the model dissolves the confusion
between them.

B Hyperparameters

In Table 4, we list all of the hyperparameters we
search over in this study. The best hyperparameters
we found on the validation dataset are marked via
bold and an asterisk (*). When training the trans-
former reranker model, we use a dropout value
of 0.2, batch size of 16, 2 dilation heads, with a
dilation varying from 0 to 3 from the first to last
layer of the Longformer (increasing or decreasing
every/every other layer).

C Dilation Results

In Table 5, we experiment with the longformer di-
alation parameter w, fixing it at 230, varying it
from size 32 to 512 from the first to last layer, vary-
ing it from 512 to 32 from the first to last layer
(i.e., in reverse), using dilation on two heads, and
combining global dilation with dialated sliding win-
dows. See Beltagy et al. (2020) for more details on
the dilation parameters. Overall, we find that the
combination of global and dilated sliding window

https://doi.org/10.1145/3451964.3451965
https://doi.org/10.1145/3451964.3451965
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Figure 3: Attention weights of terms attending to COVID-19 and SARS-CoV-2 over different time frames. These
weights are normalized for visualization purpose, following (Nguyen and Salazar, 2019)

with increasing window size shows better perfor-
mance than other combinations in both IR and SI.
However, the performance still does not match our
custom attention filtering as shown in Tables 5a
and 1b.
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Model Micro F1

R+TR (base) (full attention) .553

R+TR (increasing w) (from 32-512) .628
R+TR (fixed w) (=230) .614
R+TR (decreasing w) (from 512-32) .600
R+TR (increasing w) (dilation on 2 heads) .633
R+TR (global + dilated sliding window*) .660

(a)

Model MAP

R+TR (base) (full attention) .191

R+TR (increasing w) (from 32-512) .293
R+TR (fixed w) (=230) .280
R+TR (decreasing w) (from 512-32) .258
R+TR (increasing w) (dilation on 2 heads) .303
R+TR (global + dilated sliding window*) .328

(b)

Table 5: Semantic Indexing (a) and Information Retrieval (b) performances of our models, Retriever and Transformer-
based Ranker (R+TR), along with the baselines (best performing models of BioASQ Task 8a for SI, and Task
8b Phase A for IR). The baseline scores are the average of their provided Micro F1 and Mean Average Persision
(MAP) for IR and SI, respectively. The results are averaged across all test batches. Our model Retriever and
Transformer-based Ranker is abbreviated as R+TR.


