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Abstract

This paper uses model theory to analyze the
formal properties of three phonological feature
systems: privative, full binary, and underspeci-
fied. By systematically manipulating the choice
of logical language and representational prim-
itives, it is shown that logical negation effec-
tively converts any feature system into a full
binary one. This further implies that in order to
have underspecification or non-binary feature
oppositions, valuation should be encoded into
the representational primitives rather than de-
rived through the logical connectives. These
results are obtained by comparing the predicted
natural classes of each formalization.

1 Introduction

Phonological features are present in some form in
most modern theories of phonology. While there
are debates over how to best represent features, it is
typically agreed that features encode sub-segmental
acoustic and/or articulatory properties. A feature
system is a set of valued features where the valua-
tion is typically drawn from the set {+,−}. Seg-
ments are therefore shorthand for collections of
valued features, and rules or constraints use fea-
tures to target groups of sounds that undergo the
same phonological processes.

In practice, feature systems also regularly con-
tain a 0 valuation to imply that a certain segment
is not specified as either + or − for a given fea-
ture. The 0 valuation seems to serve two theoretical
purposes. The first purpose is simply as a place-
holder for a feature that does not apply for a given
segment. For example, the feature [distributed] dif-
ferentiates between coronal segments made with
the tip or blade of the tongue. For non-coronal
sounds, this distinction is meaningless and there-
fore is usually represented with 0. The second pur-
pose that 0 serves is for underspecification. Feature
systems that use underspecification do so in order

to ensure that certain rules do not target specific
segments, even though they share a certain pho-
netic property. For example, sonorant sounds are
phonetically voiced, but in some feature systems
they are phonologically underspecified as [0 voice]
which allows them to be excluded from phonologi-
cal voicing assimilation processes.

Most feature systems mix {+,−, 0} in different
ways, but it is not clear whether or not each system
can be formally represented and interpreted in the
same way. It is also worth considering whether or
not each feature system is meaningfully different
than the others, or if it can be thought of as a nota-
tional variant. One set of tools that allows for look-
ing into these types of questions is model theory
and logic. Model theory is a branch of mathematics
that allows for the precise definition of relational
structures such as strings (Libkin, 2004). These
structures can be further evaluated using different
types of logic.

Model theory and logic can therefore provide a
meta-language to compare different types of phono-
logical representations. Strother-Garcia (2019)
compares different types of syllabic representa-
tions, Jardine et al. (2021) study the difference
between traditional autosegmental representations
(Goldsmith, 1976) and Q-theoretic representations
(Inkelas and Shih, 2016), and Oakden (2020) shows
how different representations of tone are essentially
notational variants. Another advantage of using
model theory for phonology is that it has a well de-
fined relationship with computational complexity
and learnability (Strother-Garcia et al., 2016; Vu
et al., 2018; Chandlee et al., 2019). Additionally,
it provides a way to formalize differences between
representational structures so that we can move
beyond relying solely on our intuitions. Phonologi-
cal feature systems are one area that has yet to be
explored in this way.

In this paper I will use model theory and logic
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to explore three types of feature systems: a priva-
tive system that uses {+, 0}, a full binary system
which uses {+,−}, and a contrastive system that
uses {+,−, 0}. While Mayer and Daland (2020)
provide different algorithms for a how these feature
systems could be learned, this paper focuses on how
each feature system can be formally represented
using different types of logics and representational
primitives. The diagnostic that I will focus on are
the natural classes that are expected for a given
feature system.

Previous mathematical treatments of feature sys-
tems have primarily focused on the binary aspect of
features (Bale and Reiss, 2018; Keenan and Moss,
2009; Johnson, 1972). Their systems look like the
full binary system where every segment is specified
as either + or − for every feature. The reason for
this is due to their use of logical negation. The
main result I will show is that a full binary fea-
ture system is the only possible result when using
logical negation. Consequently, in order to effec-
tively have 0 values, the positive/negative feature
valuation must be encoded into the representational
primitives rather than emerge from the logical con-
nectives.

2 Phonological Features

The use of phonological features as a tool for
phonological analysis is typically traced back to the
Prague School, notably Nikolai Trubetzkoy and Ro-
man Jakobson. Trubetzkoy (1939) proposed three
different types of feature based oppositions: priva-
tive, gradual, and equipollent. A privative feature
in his analysis would be [voice] where a segment
either has the property of being voiced or it does
not. Gradual features are things such as [height 1],
[height 2], ..., [height n] where the numerical valu-
ations encode the vowel height scale. Equipollent
features are similar to privative features in that they
are present or absent, but unlike privative features
they do not encode a binary-like opposition. The
examples of features used to explain an equipollent
opposition are [labial], [coronal], and [dorsal].

Jakobson’s contribution to feature theory culmi-
nated with Preliminaries to Speech Analysis (Jakob-
son et al., 1951). In this monograph, all features
were treated as binary, specifically encoded as be-
ing either + and − for each feature. The use of
binary features in phonology was further amplified
due to their inclusion in The Sound Pattern of En-
glish (Chomsky and Halle, 1968) and they continue

to be used as the default valuation of features in
most modern phonology textbooks.

As feature theory has developed over the last
decade, there have been debates along multiple
dimensions about how best to represent features.
One dimension is whether or not features should
be thought of as attributes or particles in the terms
of Ladd (2014). That is, should we think about fea-
tures in terms of feature bundles that are ordered
temporally, or should we think about them in au-
tosegmental terms where each feature is specified
on its own tier and has some type of relation to a
general timing unit. In this paper I will focus on
the former as it is more typical. Nonetheless, the
results of this study should be able to be general-
ized to autosegmental or feature geometric systems
(McCarthy, 1988).

A second dimension in the debate on features
has to do with whether or not features should be
thought of as discrete or gradient categories. The
gradient approach often is lumped in with a scalar
approach (e.g., Flemming, 2001), but it is possible
to have scalar features without forgoing discrete
categories. Since I am using finite model theory
in this paper, the feature set needs to be finite and
therefore discrete categories are necessary. How-
ever, it is also possible to approximate gradient
feature values by having a large, but finite, set of
possible numerical valuations.

Two other debates have to do with whether or not
features are innate or emergent (Mielke, 2008), or
whether or not features contain phonetic substance
or instead are substance free (?). Neither of these
two areas directly affect feature valuation and will
be left aside.

2.1 Natural Classes

Natural classes are the result of partitioning a lan-
guage’s segment inventory using phonological fea-
tures. Traditionally, there are two explanations for
natural classes. The phonetic explanation is that
all segments that form a natural class share one or
more phonetic property. The distributional expla-
nation is that all segments that form a natural class
are the target/trigger for a phonological process or
involved in some type of constraint. One problem
with these explanations is that they do not always
cohere (Duanmu, 2016). For example, there are
groups of segments that have the same distribution,
but nonetheless do not share a phonetic property.
Mielke (2008, p. 12) attempts to explain this dis-
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connect by arguing for emergent features. He also
offers the following definition that will be useful
for current purposes: a natural class is, “a group of
sounds in an inventory which share one or more dis-
tinctive features, within a particular feature theory
to the exclusion of all other sounds in the inventory,”
(emphasis original).

It also should be clarified what it means for two
segments to share a feature. As Bale and Reiss
(2018) point out, phonologists can be sloppy when
talking about features by not clearly distinguishing
the difference between a feature and a segment’s
specific valuation for a feature. It is safe to assume
that what Mielke means in the quote above is that
two segments are part of the same natural class
when they share the same valuation for one or more
distinctive features. In set theoretic terms we can
think of natural classes as groups of sounds whose
valued feature intersection is non-empty.

Conjunction would therefore be the logical
parallel to this and conjunction does seem to
be the way in which phonologists tend to think
about natural class formation. For example, Ken-
stowicz and Kisseberth (1979, p. 241) write,
“...an adequate feature system should permit any
natural class of sounds to be represented by
the conjunction of features in a matrix,” while
Odden (2005, p. 49) writes, “Natural classes
can be defined in terms of conjunctions of fea-
tures....” If a phoneme /n/ had the feature bundle
[+coronal +sonorant -continuant +nasal], then we
say that /n/ has the properties of being +coronal
AND + sonorant AND -continuant AND +nasal.

While conjunction is the main way in which fea-
tures seem to be combined to form natural classes,
there are other possible logical connectives that
one might use. For example, the curly brackets
{} were used by Chomsky and Halle (1968) to
indicate disjunctive triggering environments. Fur-
thermore, Mielke (2008) showed that ∼97% of the
phonologically active classes he looked at can be
described with the SPE feature system if disjunc-
tion is allowed. This is an increase of 26% from
SPE’s coverage without disjunction, which seems
like a positive finding, but if we abstract away from
the specific features used in any given system, dis-
junction should be able to cover 100% of natural
classes.1 One reason why we may not want disjunc-

1The reason that SPE (and the other feature systems evalu-
ated by Mielke (2008)) do not reach 100% is because they are
unable to contrast between certain types of segments such as
pre-nasalized/post-nasalized stops.

tion, despite its ability to allow for broad empirical
coverage, is the fact that with arbitrary disjunction
any subset of segments can form a natural class.

While logical negation can be interpreted as com-
plementation, a reviewer points out that its use for
defining natural classes has largely been avoided
(e.g. Chomsky and Halle (1968)). A notable excep-
tion is Hayes and Wilson (2008) which employed
a complementation operator in their definition of
constraints.

Quantification is another tool used in formal
logic that could be used for interpreting feature bun-
dles. For the most part, phonologists seem to stay
away from quantification, but Reiss (2003) uses
it to define identity relations in the structural de-
scription of phonological rules. Since the structural
description is usually thought to be a natural class,
this could be one area where quantification is used
for interpreting feature bundles. That being said,
identity is often baked into the axioms of logical
interpretation languages. Strother-Garcia (2019)
discusses the relationship between quantifier-free
logics and locality for syllabification, but it is worth
pursuing whether or not this is the right approach
when considering phonological features. This is
left for future work.

2.2 Underspecification

0 values are often associated with underspecifica-
tion. Underspecification is when certain features
are not assigned either a plus or a minus value for a
given feature. Two common types of underspecifi-
cation are privative underspecification where minus
values are completely eliminated and only + fea-
ture values are assigned, and contrastive underspec-
ification where any feature value that is redundant
is removed. For example, sonorants can have a 0
value for the [voice] feature since sonorants do not
have a voicing contrast and are by default [+voice].
The redundant value for [voice] is then filled back
in at the end of the derivation. Sonorants being un-
derspecified for [voice] has been a central argument
in the debate around contrastive underspecification
and will be used in the current analysis as well (see
Steriade (1995) for further discussion and review).

0 values can also be used for non-redundant pur-
poses. This is sometimes used when a feature only
applies to a certain class of sounds (Hayes, 2011).
Steriade (1995, p. 117) calls this “trivial” under-
specification, contrasting it with the “temporary”
underspecification described in the previous para-

3



graph. In the analysis in this paper, the distinc-
tion between trivial and temporary underspecifica-
tion collapses because only the natural classes the
phonological feature matrices represent is under
consideration.

3 Model Theory

3.1 String Models
Strings can be straightforwardly defined in model
theory. At minimum, a model theoretic represen-
tation includes a finite domain D and a finite set
of relations R. R also typically includes a set of
labeling relations drawn from a primitive set of
symbols Σ onto elements of the domain, and an
ordering relation used to structure the domain el-
ements. Σ is typically referred to as the alphabet
since it contains the segmental labels for the do-
main elements. I will use the successor ordering
relation throughout this paper. The domain is typ-
ically taken to be the natural numbers N. Given
this, we can define successor as 〈i, i+ 1〉 ∈ D×D.
A model signature is a tuple containing all of this
information. For the successor model M�, this
contains 〈D,Rσ|σ ∈ Σ,�〉.

D = {1, 2}
Ra = {2}
Rb = {1}

� = {〈1, 2〉}
1

b

2

a
�

Figure 1: Successor word model forM�
ba.

Figure 1 shows the successor word model for the
word ba given the alphabet Σ = {a, b}. This de-
fines the word over segments. As phonologists we
may want to analyze this structure using features,
but since features are not innate to the model, we
have to define them ourselves. One way to do this is
with user defined predicates. These are predicates
that the analyst imposes on the model. Features
can be defined disjunctively from a segment based
model such as the one in Figure 1. For example,
we define the predicate voi as:

(1) voi(x)
def
= Ra(x) ∨Rb(x)

This formula says that any segment that is labeled
as a or b has the property of being voiced. Features
are therefore epiphenomenal in this type of model.

A second option is to have our alphabet Σ be
made of phonological features rather than phono-
logical segments. This also requires a change to the

labeling relations. Typically, each domain element
is given a single label. If phonological features are
the primitives, then it must be the case that a sin-
gle domain element can have more than one label.
Figure 2 shows a second successor model for the
word ba, this time using features as the alphabetic
primitives rather than segments. With this type of
model we can define segments conjunctively using
features. In this case, it is the segments which are
epiphenomenal.

D = {1, 2}
R+voi = {1, 2}
R+lab = {1}
R-cont = {1}
R-syl = {1}
R+syl = {2}
R+back = {2}
R-high = {2}
� = {〈1, 2〉}

1

+voi
+lab
-cont
-syl

2

+voi
+back
-high
+syl

�

Figure 2: Successor with features model for ba.

In the example given here, valued features make
up the primitive units. That is, + and − values are
built directly into the individual labeling relations.
Another possibility would be to only have feature
labels as the set of primitives and interpret feature
valuation as whether or not a domain element has
a given feature label. For example, a [+voice] do-
main element would be one that is labeled with the
feature [voice] while a [-voice] domain element
would be one that does not have the label [voice]. I
will refer to the first style, where the +/− values
are encoded directly into the primitives, as bivalent
primitives. The second style, where only a feature
itself is encoded into the primitives, will be referred
to as univalent primitives.

3.2 Logical Evaluation

Model theoretic structures can be interpreted with
different types of logic. First-order logic (FO) is
commonly used, but it allows for quantification
which does not seem to be used when describing
phonological natural classes. Quantifier-free logic
(QF) is like FO except without quantifiers. Even
this is likely too powerful since it still uses stan-
dard logical connectives like conjunction (∧), dis-
junction (∨), negation (¬), and implication (→).
Conjunction and possibly negation are the only
primitives that seem to be required for defining
natural classes and yet if they are both allowed to
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freely combine we can then derive the other logi-
cal connectives. For example, disjunction (P ∨Q)
can be defined as ¬(¬P ∧ ¬Q). One solution to
this problem is to restrict the use of negation to
only atomic sentences. We can do so by defining
different types of sub-QF logics.

Of the three logics we can define this way, two
of them will be used in this paper. Conjunction
of negative and positive literals (CNPL) allows
for the conjunction of any sentence within the
language, but negation is only allowed to scope
over atomic predicates. Conjunction of positive
literals (CPL) only allows for the conjunction of
sentences. Negation is strictly excluded from the
logical language. Conjunction of negative literals
(CNL) is the third logical language and only allows
for negated atomic primitives to be combined with
conjunction. The syntax of CNPL and CPL are
recursively defined in (2).

(2) (a) CNPL
i. Base case: For all atoms P , “P ” and

“¬P ” are sentences.
ii. Inductive case: For all sentences
A,B, “A ∧B” is a sentence.

(b) CPL
i. Base case: For all atoms, P , “P ” is

a sentence.
ii. Inductive case: For all sentences
A,B, “A ∧B” is a sentence.

For this paper, the atoms are the feature labeling
relations.

4 Model Theoretic Feature Systems

In this section I will demonstrate how different
phonological feature systems can be expressed us-
ing model theory. The diagnostic used in this anal-
ysis is a comparison of the natural classes that a
certain feature system is predicted to have based on
a feature table versus what type of natural classes
can be formed from the model theoretic represen-
tation and interpretation. Phonological feature sys-
tems are typically presented as tables of +, −, and
0 values. Three examples are shown in Table 1
(adapted from Mayer and Daland (2020)).

The privative feature system uses only + and
0, the full binary system uses only + and −, and
the contrastive system uses +, −, and 0. Each
of these therefore predicts different sets of natural
classes. Since the 0 value typically represents the

Privative Full Contrastive
son voice son voice son voice

N + + + + + 0
D 0 + - + - +
T 0 0 - - - -

Table 1: Example of three types of feature systems. N
represents all sonorants, D represents voiced obstruents,
and T represents voiceless obstruents.

lack of a valuation, the natural classes for each
feature system are based on similarity of + and −
values. The set of natural classes for the privative
feature system is therefore {{N},{N,D}}. There
are in fact two ways to define the subset {N} in
this feature system: segments that are [+son] or
segments that are [+son, +voi]. The subset {N,D}
is defined as all segments that are [+voi]. The set of
natural classes for the full system is {{N}, {N,D},
{D}, {T}, {D,T}} and the set for the contrastive
system is {{N}, {D}, {T}, {D,T}}. Construction
of these sets was done the same way as described
for the privative feature system.

There are two reasonable ways in which we can
turn these feature tables into model theoretic rep-
resentations. The first way would be to use a seg-
mental model and define translations from the seg-
mental model into different feature models. MSO-
definable string to string transformations (Cour-
celle, 1994; Engelfriet and Hoogeboom, 2001) al-
low for translation between different representa-
tional systems. A second way would be to use the
feature successor model and have the difference
in valuations emerge from the definitions of each
specific model. Both methods will result in the
same structures for evaluation, but I will take the
second approach as it aligns more directly with the
theme and discussion of the paper so far.

The primary model signature that will be used
is the successor model defined above: M� =
〈D,Rσ|σ ∈ Σ,�〉. We can alter the general suc-
cessor model slightly by providing fixed labeling
relations. This allows for the definition of two
model signatures: a univalent primitive signature
Mυ and a bivalent primitive signatureMβ . These
are defined as follows:

(3) Mυ = 〈D, voi, son,�〉

(4) Mβ = 〈D,+voi,+son,−voi,−son,�〉
We can further specify models for each feature

system (privative = P, full = F, contrastive = C).
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This leaves us with six potential structures: Mυ
P ,

Mυ
F ,Mυ

C ,Mβ
P ,Mβ

F , andMβ
C . Each can then be

evaluated using CPL and CNPL.
Since these models define strings, I will define

the string DNT.2 For the univalent primitive sig-
nature (Mυ), I will assume that any segment with
a + value in the feature table will be labeled with
that feature. In this case, both 0 and − values do
not correspond to a label. For the bivalent primitive
signature (Mβ), I will assume that any segment
with a + value in the feature table will be assigned
the +f label and any segment with a− value in the
feature table will be assigned the −f label. The 0
once again will correspond to no label.

4.1 Evaluating Univalent Primitive Models

Let us start by looking at the different univalent
feature models as interpreted with CPL logic. As
it turns out, the privative and full features systems
have an identical structure underMυ. This is not
all that surprising since a privative model just re-
places all of the − values with 0 values. In other
words, both types of feature system allow for bi-
nary distinctions to be made, but the full feature
system does it explicitly with a − while the priva-
tive system does it through presence/absence of a
feature. The top of Figure 3 shows the model for
the string DNT.

As can be seen, domain element 1 which cor-
responds to D is only labeled with the voi label
while domain element 2 which corresponds to N
is labeled with both the voi and son labels. Do-
main element 3 is left unlabeled since T has no
corresponding + features in either the privative or
full feature charts. The model for the contrastive
feature system is shown in the bottom of Figure
3.3 It differs slightly from the first model signature
due to N having a 0 value for voi since voicing is
not contrastive for sonorants in this feature system.
Because of this, domain element 2 only receives
the son label.

Given these model theoretic structures, we can
now interpret them logically. Since our first evalu-
ation logic is CPL, we can look at which domain
elements satisfy all of the predicates we can make
using conjunction over positive literals. The prim-
itives are the features voi and son, so there are
three predicates: the singletons voi and son, as

2Since N indicates all sonorant sounds this could corre-
spond to words like bus or juice.

3I will only show the visual representation of models in
the main body of the paper from here on out.

1

voi

2

son
voi

3
� �

1

voi

2

son

3
� �

Figure 3: Models for the string DNT using models
Mυ

P =Mυ
F (top) andMυ

C (bottom)

well as the conjunction of the two voi ∧ son. Ta-
ble 2 shows the resulting classes of sounds from
interpreting the structures in this way.

CPL(Mυ) Mυ
P Mυ

F Mυ
C

voi {N,D} {N,D} {D}
son {N} {N} {N}
son ∧ voi {N} {N} {}
MISSING – {D}, {T}, {D,T} {T}, {D,T}
EXTRA – – –

Table 2: CPL logical interpretation of the different uni-
valent primitive model theoretic structures.

The classes forMυ
P andMυ

F are {{N},{N,D}}.
For Mυ

P , which is the correlate of the privative
feature system, this is the expected result. That is,
it matches the set of natural classes that we would
predict given the feature table in Table 1. ForMυ

F ,
this is an under-prediction. As can be seen in the
MISSING row of Table 2,Mυ

F as interpreted with
CPL fails to generate the classes {{D},{T},{D,T}}
which a full binary feature system should have. The
reason these classes are not generated is because
they require an ability to reference minus values
in some way. This is not possible given the CPL
with univalent primitive system used here.Mυ

C as
interpreted with CPL correctly rules out the class
{D,N}, which is one of the primary goals of the
contrastive feature system, but still under predicts
in a similar way to the full model. This once again
has to do with not being able to reference minus
values for natural class formation.

Overall, CPL logic with univalent primitives is a
good way of representing privative feature systems
since the lack of minus features aligns with CPL’s
inability to target minus features. For the other two
feature systems, we need to be able to reference
minus features in order to obtain the desired natural
classes. One way that this may be accomplished
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is through the use of negation. As mentioned in a
previous section, we want to limit our negation to
the atomic elements, which in this case are feature
values. This allows for a straightforward interpre-
tation such that atomic elements on their own can
be thought of as +F for some atomic feature and
negated atomic elements can be thought of −F for
the same feature. CNPL as our interpretation logic
allows us to take this route.

CNPL(Mυ) Mυ
P Mυ

F Mυ
C

voi {N,D} {N,D} {D}
¬voi {T} {T} {N,T}
son {N} {N} {N}
¬son {D,T} {D,T} {D,T}
son ∧ ¬son {} {} {}
son ∧ voi {N} {N} {}
son ∧ ¬voi {} {} {N}
¬son ∧ voi {D} {D} {D}
¬son ∧ ¬voi {T} {T} {T}
voi ∧ ¬voi {} {} {}
MISSING – – –
EXTRA {D}, {T}, {D,T} – {N,T}

Table 3: CNPL logical interpretation of the different
univalent primitive model theoretic structures.

Table 3 shows the interpretation of theMυ struc-
tures using CNPL logic. Once again the privative
and full feature system models will have the same
set of classes: {{N}, {N,D}, {D}, {T}, {D,T}}. In
this case, this is the set of classes that we would ex-
pect for the full feature system. This means that the
privative model now overpredicts in regards to nat-
ural class formation. As can be seen in the EXTRA

row of Table 3, the classes {{D}, {T}, {D,T}} are
generated because the use of negation effectively
turns every feature into a binary feature. For the
contrastive feature system, this also presents a prob-
lem. In the contrastive system, a distinction needs
to be made between the negative value for a feature
and the lack of any value for a feature. Logical
negation collapses this distinction. As can be seen
in the third column, Mυ

c considers N to be part
of the ¬voi class. So not only does CNPL with
univalent features over predict in the case of the
contrastive feature system model, it over predicts
by creating a class that none of the three feature
systems uses.

A univalent model interpreted with CNPL there-
fore best models a full feature system where every
segment is fully specified for either + or −. Since
the privative and full feature systems have the same

model signature in this analysis, the meaningful
difference between these two systems seems to be
in how the structures are interpreted logically rather
than how the structures are labeled.4 It also appears
that there is no way to accurately represent a con-
trastive feature system with univalent primitives
using either of the two interpretation logics. For
contrastive feature systems it is necessary to target
minus feature values when defining natural classes,
but it is also necessary to maintain the distinction
between a 0 value and a− value. One way in which
this may be accomplished is to strictly encode the
feature valuation into the primitives rather than us-
ing logical negation to explain the +/− distinction.

4.2 Evaluating Bivalent Primitive Models
Figure 4 shows the models for Mβ

P , Mβ
F , and

Mβ
C . Recall that in Mβ , the primitives include

+voi,+son,−voi, and −son. Each of the three
model signatures varies in how much information
is encoded. For all models, a + value for a feature
results in a label of +F and a − value for a fea-
ture results in a label of −F . Unlike the univalent
models, each feature system here does result in a
unique model theoretic structure. This means that
the difference between the feature systems cannot
be explained by the logical interpretation language.

1

+voi

2

+son
+voi

3
� �

1

-son
+voi

2

son
+voi

3

-son
-voi

� �

1

-son
+voi

2

+son

3

-son
-voi

� �

Figure 4: Models for the string DNT using modelsMβ
P

(top),Mβ
F (middle), andMβ

C (bottom).

Given these structures, we can once again inter-
pret them logically using CPL. Table 4 shows what

4If we were to use negative valued feature labels as our uni-
valent primitives this distinction may not hold. In this case, all
segments would be unlabeled for the privative feature system.
So it is not necessarily any univalent feature model where the
distinction between privative and full feature systems is in the
logical interpretation, but rather a univalent feature model that
encodes positive feature values.
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classes result from the models. Notice that each
model does not contain any extra, nor have any
missing, classes. As it turns out, the interpretation
of each model now results in the exact set of natural
classes that the corresponding feature set predicts.

CPL(Mβ) Mβ
P Mβ

F Mβ
C

+voi {N,D} {N,D} {D}
-voi {} {T} {T}
+son {N} {N} {N}
-son {} {D,T} {D,T}
+son ∧ -son {} {} {}
+son ∧ +voi {N} {N} {}
+son ∧ -voi {} {} {}
-son ∧ +voi {} {D} {D}
-son ∧ -voi {} {T} {T}
+voi ∧ -voi {} {} {}
MISSING – – –
EXTRA – – –

Table 4: CPL logical interpretation of the different biva-
lent primitive model theoretic structures.

Given that feature bundles are interpreted con-
junctively and we used a logic that only contains
conjunction, this result is not all that surprising.
That being said, the same logic was used to in-
terpret the model theoretic structures defined with
univalent primitives and there was only able to cap-
ture a privative feature system. This highlights
the interaction between representation and logical
interpretation. Depending on the representations
used, different logics result in different outcomes.

Based on the results from this section we can
come to a few conclusions. For example, the pri-
vative model defined over univalent primitives and
interpreted with CPL logic is extensionally equiv-
alent to the privative model defined over bivalent
primitives and interpreted with CPL logic. That
is, the set of natural classes that are defined from
each model are identical. This suggests that it is the
logical interpretation language that is doing most
of the heavy lifting when modeling this type of
feature system. The same thing can be said about
the full feature systems, except it is a CNPL rather
than CPL logical interpretation that is the important
aspect of representing a full feature system. When
it comes to contrastive feature systems, we see that
it is in fact the representational aspect that is most
important for ensuring that the model theoretic rep-

resentation is in line with the feature table off of
which it is based.

5 Discussion

The previous section showed how the combination
of representational primitives and logical interpre-
tation languages results in the ability to describe
different types of feature systems. To be complete,
we could also consider CNPL with bivalent primi-
tives. Since using negation in the logic forces every
feature to be binary, it should be no surprise that
it is only the full system that can be correctly rep-
resented with this paring of primitives and logic.
That being said, this would make it so negative fea-
tures emerge from both the logic and the primitives
which means there is a lot of redundancy built into
the system.

So far, the discussion of 0 values has been fo-
cused on underspecification, but 0 is used for other
things as mentioned earlier. One of the ways in
which 0 values are used is for equipollent features
such as the place features [labial], [coronal], [dor-
sal]. If these features are used in a full feature
system, then it must be the case that they are inter-
preted as being binary. Consequentially, Coronal
and ¬Coronal must exist as natural classes. It
has sometimes been argued that [-coronal] is not a
natural class (Yip, 1989). We can take away from
this that in order to have any 0 values in a feature
system, we cannot use negation in the interpreta-
tion language. This goes against most mathemati-
cal treatments of phonological features and natural
classes (Keenan and Moss, 2009; Ojeda, 2013).

On the other hand, CNPL easily prevents any
element from being both + and − for the same
feature due to the law of excluded middle. It is
logically impossible for any element x to satisfy
both F (x) and ¬F (x). If we instead encode the
+ and − values directly into the primitives, there
is nothing about the interpretation language that
prevents any element x from satisfying both +F (x)
and −F (x).

One option when evaluation Mβ with CPL
would be to specify feature cooccurrence restric-
tions. This would be a logical statement with sub-
parts such as ϕ(x) = ¬[+F (x) ∨ −F (x)] which
would be true only if a segment does not have both
the positive and negative features. A model of a
feature systemM would therefore only satisfy ϕ if
it did not allow for any segment to be both positive
and negative for the same feature.

8



The goal of this paper was not to find the correct
feature system. Rather, the goal was to see how
to best represent each of the three different feature
systems formally in order to better understand what
the differences between each system are. Meaning-
ful differences between the three systems do in fact
emerge. For example, privative feature systems
can be represented most simply as they minimally
require univalent primitives and CPL logic. In or-
der to describe a full feature system there needs
to be either an increase in logical power (CNPL)
or an increase in representational primitives (biva-
lent primitives). A contrastive feature system is
the least flexible in how it can be represented as it
requires CPL and bivalent primitives.

Deciding which of these are the “right” feature
system cannot be directly decided based on the
analysis provided in this paper. For example, a
reviewer points out that most feature systems in use
do use a combination of +,-, and 0 which would
suggest that CPL with bivalent primitives is on the
right path. This raises the question of what it means
to be a minus feature in this type of system. If a
minus feature is not a negated positive feature (its
complement), then why use plusses and minuses at
all? Answers to these types of questions lie beyond
a purely formal account which is why the analysis
given in this paper primarily provides a roadmap
for future work on phonological feature systems
and a better understanding of how to represent them
in formal computational systems.

6 Conclusion

This paper used model theory and logic to explore
three types of phonological feature systems com-
monly used in phonological analysis. The main
takeaway is that using negation in the logical inter-
pretation language (e.g., CNPL) forces every fea-
ture to be binary. Furthermore, in order to include
non-binary oppositions in a feature system, the val-
uation of the features can be directly encoded into
the primitives. One advantage of encoding feature
valuation into the primitives is that it allows for
the mixture of different types of oppositions with-
out any noticeable issues. This opens the door for
more inquiry into how phonological features can
and should be viewed in a formal system.
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Abstract 

The phonological mechanisms responsible 

for the emergence of edge geminates in 

phonological processes like the Italian 

Raddoppiamento (Fono-)Sintattico (RS) 

are an open issue. Previous analyses of 

Italian treat gemination of (i) word initial 

consonants, (ii) morpheme-final 

consonants, and (iii) word final consonants 

as separate processes brought about by 

dedicated rule/constraints. We argue that 

these edge gemination processes result 

from the same, independently established 

principles. Through computational 

simulation of the split-gesture, competitive, 

coupled oscillator model of syllable 

structure of Articulatory Phonology, we 

show that increases in closure duration 

typical of geminates arise from changes to 

consonant/vowel couplings. Word initial 

gemination follows from coupling of a 

closure gesture to a preceding vowel across 

a word boundary. Word final gemination 

follows from coupling of a release gesture 

to a following vowel. In both cases, the 

posited structures reflect changes in 

syllabification hypothesized in previous 

work. The model simulation also predict 

different durations for resyllabified edge 

geminates and medial lexical geminates, in 

line with experimental findings on the 

topic. Changes to consonant/vowel 

couplings also account for the opposite 

effect: word initial degemination. Thus, the 

coupled oscillator model of Articulatory 

Phonology, originally developed to model 

intergestural timing, predicts the 

emergence of edge 

gemination/degemination. 

1 Introduction 

Word initial and word final geminates, collectively 

known as edge geminates, are employed 

contrastively in a highly restricted subset of the 

world’s languages (Burroni and Maspong, To 

appear; Kraehenmann, 2011; Topintzi and Davis, 

2017). This limited cross-linguistic distribution is 

often attributed to poor perceptual recoverability 

(Blevins, 2004). Despite the disfavorable phonetic 

characteristics of edge geminates, speakers of 

some languages productively create them in the 

speech stream as a result of regular phonological 

process. A well-known example is the so-called 

Raddoppiamento (Fono-)Sintattico (RS) in Central 

and Southern Italo-Romance varieties and 

Standard Italian (Passino, 2013 and references 

therein).  

Edge-consonant gemination is not a unique 

feature of Italo-Romance. It has also been reported 

in a variety of typologically diverse and genetically 

unrelated languages (Bertinetto and Loporcaro, 

1988), such as Finnish (Bertinetto, 1985), Biblical 

Hebrew (Lowenstamm, 1996), Pattani Malay 

(Paramal, 1991), Somali (Bertinetto and 

Loporcaro, 1988), Seri (Marlett and Stemberger, 

1983), and Tamil (Ramasamy, 2011). Edge 

gemination is, thus, a phenomenon with clear 

cross-linguistic status, yet our understanding of it 

remains limited.  

Three issues stand out in the discussion of edge 

geminates. The first issue is that, even though word 

initial gemination is by far the most widely studied 

case, other types of edge gemination also exist. 

Central and Southern Italian speakers, for instance, 

geminate initial consonants, as well as 

morpheme/word final consonants. Unified 

treatments of the phenomena have, however, rarely 

been pursued (for an exception cf. Passino, 2013; 

and partly Chierchia, 1986). Accordingly, the 

relationship among different types of edge 

gemination, if any, remains unclear.  

The second issue is that phonological accounts 

represent derived initial geminates and medial 

lexical geminates with identical ambisyllabic 

A split-gesture, competitive, coupled oscillator model 

of syllable structure predicts the emergence of edge gemination 

and degemination 
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structures (Section 2). Crucially, there are 

systematic phonetic differences between the two. 

Edge geminates are consistently shorter than 

medial geminates, as experimental work on Italian 

shows (Payne, 2005; Campos-Astorkiza, 2012). 

These differences in duration are unexpected in 

current phonological accounts.  

The third problem concerns the relationship 

between the emergence and loss of edge 

geminates. The emergence of edge geminates in 

Italian varieties and other languages has been 

analyzed as the synchronic consequence of regular 

phonological process. The loss of edge geminates, 

on the other hand, has been treated as a diachronic 

process as a consequence of perceptual/articulation 

biases and exemplar dynamics (Burroni and 

Maspong, To appear; Blevins and Wedel, 2009; 

Blevins, 2004). Nevertheless, synchronic 

degemination has been documented for Swiss 

German dialects (Kraehenmann and Jaeger, 2003) 

and synchronic diffusion of degemination has been 

documented for Pattani Malay (Burroni et al., 

2020). Therefore, even though edge gemination 

and degemination share the basic property of 

altering consonantal duration, the mechanisms 

posited to account for them are remarkably 

different in both their motivation and timescale. No 

model of the relation between perceptual biases 

and changes in articulation has been developed 

either.  

We argue that all types of edge gemination 

processes observed in languages like 

Central/Southern Italo-Romance varieties and 

Italian follow from changes to the dynamical 

coupling of consonants and vowels, which reflect 

changes in syllabification in a split-gesture, 

competitive, coupled oscillator model of syllable 

structure (Nam et al., 2009; Nam, 2007a; Nam, 

2007c). This model also predicts the attested 

differences in duration between derived edge 

geminates and lexical medial geminates. Finally, 

changes in dynamical coupling between 

consonants and vowels also capture edge 

degemination, thus, providing a unified account of 

both phenomena. 

2 Empirical phenomena under 

investigation and previous analyses 

We investigate two set of empirical phenomena: (i) 

edge gemination in languages like 

Central/Southern Italo-Romance varieties and 

Italian and (ii) word initial degemination in 

languages like Swiss German and Pattani Malay. 

There are three different edge gemination 

processes in Italian.  

First, speakers are known to produce new word 

initial geminates in the context of RS, provided that 

the target consonant is not already long. A word wi 

undergoes RS if: (i) the preceding word wi-1 is 

stressed on the final syllable, e.g., /faˈrɔ ˈbɛne/ → 

[faˈrɔ ˈbːɛne] ‘I will do well’ and (ii) wi-1 belongs 

to a closed class of monosyllables or disyllabic 

forms that do not have final stress but nonetheless 

trigger RS, e.g., /ˈkome ˈmaj/ → [ˈkome ˈmːaj] 

‘how come’. Second, singleton word final codas, 

usually only present in loanwords, are geminated 

before a vowel initial suffix in morphological 

derivatives, e.g., /buldog/ + /-ino/ → [buldogːino] 

‘small bulldog’. Third, word final codas are also 

geminated phrasally preceding another vowel 

initial word, e.g., /buldog agːresːivo/ → [buldogː 

agːresːivo] ‘aggressive bulldog’, a phenomenon 

often labeled backwards RS. Morpheme/word final 

gemination is subject to variation for final 

sonorants, especially [r], but it is categorical for 

obstruents (Passino, 2013). These three gemination 

phenomena are rarely offered a unified treatment, 

as the focus is usually on RS alone.  

RS, the first type of gemination and the one that 

is most often treated in phonological work, is also 

subject to a fair amount of dialectal variation 

(Loporcaro, 1997), as, in some Italo-Romance 

varieties or regional pronunciations of Standard 

Italian, the process is triggered only after a small 

subset of lexical items or is absent altogether.  

There are three main analyses of RS. The first 

approach holds that RS is a byproduct of well-

formedness conditions on Italian (final) stressed 

rhymes or metrical feet. Under this approach, RS is 

due to speakers geminating a word initial 

consonant to create an ambisyllabic geminate. This 

ambisyllabic geminate makes a final stressed 

syllable closed and, thus, heavy, in conformity with 

a requirement that all Italian stressed syllables 

either have coda or contain a long vowel. A second 

approach holds that words that trigger RS contain 

an underlying, featurally empty consonantal slot 

that only surfaces via total assimilation in RS 

environments. Insertion of an entire CV skeleton 

has also been proposed to account for RS, and 

morpheme/word-internal gemination as well 

(Passino, 2013). A third approach holds that 

productive RS is limited to a post-tonic 

environment, accordingly, the only rule needed is a 
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gemination rule of word initial consonants after 

word ending in stressed vowels.  

None of these solutions is unproblematic. Well-

formedness conditions on stress rhymes are at odds 

with the fact that RS also takes place after words 

that do not have final stress and that certain 

varieties also show no relationship between final 

stress and RS (Loporcaro, 1997). Empty consonant 

slots never surface and are, thus, problematic from 

an acquisition perspective. Additionally, there are 

words that trigger RS but did not have final 

consonants even when we look at the Latin 

ancestors of these words. Finally, reducing RS to a 

rule of onset gemination after final stressed vowels 

comes at the cost of greatly reducing the empirical 

coverage of the analysis, while certain assumptions 

regarding rule ordering are also necessary to 

prevent overapplication in contexts where stressed 

vowels do not trigger RS. All analyses agree that 

RS is produced by changes in syllabification, but 

they disagree on the rationale.  

We show in the next sections that in a split-

gesture coupled oscillator model of syllable 

structure all types of gemination follow purely 

from syllabification principles in a dynamical 

model, where no additional rationale is needed. We 

further show that this model predicts the observed 

phonetic differences between lexical medial 

geminates and derived edge geminates, a fact that 

is missed by other accounts.  

The second set of phenomena we investigate are 

degemination processes. Degeminations of initial 

geminates has been reported after obstruent-final 

words in Swiss German, e.g., /s tːaŋk͡xə/ → [s 

taŋk͡xə] ‘the filling-up’ (Kraehenmann and Jaeger, 

2003). Degeminations of initial geminates has also 

been reported for Pattani Malay, as some minimal 

pairs with and without initial geminates onsets are 

merging, e.g., [dapo] ‘kitchen’ and [dːapo] ‘at the 

kitchen’ are often no longer distinguishable in 

terms of closure duration of the initial consonant 

(Burroni et al., 2020). Degemination in Swiss 

German has been attributed to the loss of one of the 

two timing slots associated with initial geminates 

after obstruent-final words. The Pattani Malay 

neutralization has been analyzed in an exemplar 

model as a random walk in closure duration space 

leading to merger (Burroni and Maspong, To 

appear following Blevins and Wedel, 2009). In 

both cases a poor perceptual recoverability is 

invoked to drive change in the phonological 

representation of words, yet no link with the 

production of singletons and initial geminates has 

been explicitly proposed. We show that 

degemination also follows from changes in 

coupling reflecting changes in syllabification in a 

split-gesture, competitive, coupled oscillator 

model of syllable structure developed in the 

framework of Articulatory Phonology (Browman 

and Goldstein, 2000; Nam, 2007a). 

3 The Articulatory Phonology split-

gesture, competitive, coupled oscillator 

model of syllable structure 

In the framework of Articulatory Phonology (AP) 

phonological primitives are identified with 

articulatory gestures. Gestures are conceptualized 

as time dependent driving forces that modify the 

value of tract variables (TVs) and the positions of 

the synergy of articulators associated with TVs. An 

example of Lip Aperture being driven until time 10 

to a value of 0 mm, representing a bilabial closure 

[b], and until time 20 back to its original starting 

value of 10 mm, representing the release of the 

closure, is presented in Figure 1. 

 
In the original Task Dynamic model of AP, the 

duration and relative timing of each gesture was 

considered part of the lexical representation of 

words and specified “by hand”. Browman and 

Goldstein (1990) later modelled the unfolding of a 

gesture in time with a “virtual” second order 

undamped systems that has the same stiffness of 

the original gestural system. The onset and target 

achievements of the gesture were arbitrarily 

identified with 0° and 240° of this virtual gestural 

cycle. Gestures could then be timed to each other 

by referring to phase relationships of their virtual 

cycles, e.g., synchronously (0° to 0°) or onset to 

target of the preceding gesture (0° to 240°). Other 

phase relationships were deemed possible, but the 

number of linguistically relevant ones was 

hypothesized to be highly constrained. 

Intergestural timing was modeled under a working 

 

Figure 1 Example of Lip Aperture (LA) 

constriction and release, implemented with the 

model in Appendix A. 
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assumption that, for 𝑛-gestures, at maximum 𝑛 −
1  local coupling forces between gestural pairs 

could be specified. All relative timing relationships 

could thus be defined in terms of coupling to a 

preceding gesture (Browman and Goldstein, 

2000).  

A more principled dynamical model of relative 

timing between two gestures was developed by 

Saltzman and Byrd (2000) using coupled 

oscillators. Saltzman and Byrd (2000) showed that 

punctate relative phases (or ranges of relative 

phases) can be generated by coupling the 

oscillators regulating the virtual gestural evolution 

cycles. The relative phase of two gestures is 

defined as the difference of their phases (𝜙) around 

the virtual unit cycle, i.e., 𝜓 =  𝜙2 – 𝜙1 . The 

relative phase task-space potential employed by 

Saltzman and Byrd (2000) is a simple cosine 

function: 

 𝑉(𝜓) = −𝑎 𝑐𝑜𝑠(𝜓 − 𝜓0) (1) 

In this model, a represent a parameter that controls 

how quickly target relative phase is achieved. 𝜓 

represents the current relative phase value of the 

system. 𝜓0 represent a target relative phase. From 

this potential function a coupling force, defined as 

the negative of the derivative of the potential 

function is derived: 

 − 
𝑑𝑉(𝜓)

𝑑𝑡
= − 𝑎 𝑠𝑖𝑛(𝜓 − 𝜓0) (2) 

The force function is added to each hybrid 

oscillator’s equation to ensure that the coupled 

oscillators achieve the relative phase specified at 

the bottom of the potential valley and complete 

phase-locking, Appendix B. The coupled oscillator 

model developed by Saltzman and Byrd (2000) 

was extended to constellations larger than two 

gestures by Nam and Saltzman (2003), who 

challenged the assumption that gestures are timed 

locally to the preceding gesture. Following 

Browman and Goldstein (2000), Nam and 

Saltzman (2003) introduced the possibility of 

competitive coupling: several, mutually 

incompatible relative phase targets could now be 

specified for each pair of gestures. The 

consequence of competitive coupling is that 

surface relative timing among different gestures is 

a “compromise” of different relative phase 

equilibria specified for coupled oscillators. Nam 

and Saltzman (2003) focused on c-center timing, a 

non-local timing regime where the initiation of a 

word initial vowel gesture appears to be timed with 

the midpoint of the onset consonants forming a 

cluster. Nam and Saltzman (2003) showed that c-

center, problematic for strictly local timing as it 

involves timing to an entire cluster, emerges 

spontaneously if competing relative phases are 

specified between two onset consonants and for 

each consonant to the vowel.  

A full competitive model of syllable structure in 

Articulatory Phonology was developed by Nam 

(2007a; 2007b; 2007c). Nam proposed that the 

articulatory gestures associated with syllables can 

be represented as nodes in an undirected graph 

with no loops, where edges represent target phase 

couplings for the gestural nodes they connect. 

Using this graph representation, competing target 

relative phases can be specified for each gestural 

pair and competitive coupling is generalized to all 

possible gestural pairs.  

A second feature of the model is that consonantal 

gestures were split into two gestures: a closure and 

a release gesture. Nam (2007b), following 

Browman (1994), argued that releases should be 

treated as separate gestures, rather than as a return 

to a neutral vocal tract position. The reason is that 

the stiffness and velocity of closures and releases 

are similar, thus, suggesting that both are actively 

controlled gestures. Nam (2007a; 2007c) also 

showed that vowels can display c-center timing to 

the midpoint of the closure and release of a single 

consonant onset, Figure 2. This another fact that 

can be taken as evidence for a multigestural 

representation of a single consonant, similar to that 

of clusters. 

 

C-center in singleton consonants has since been 

experimentally confirmed and further studied 

(Tilsen, 2017). Nam (2007a) also showed that 

many properties of phonological systems can be 

understood in a split-gesture model; among these 

 
Figure 2 Electromagnetic articulography data 

exemplifying single consonant c-center for an 

English speaker producing the word mommy. 

Vowel onset is symmetrically displaced between 

closure and release. 
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are onset/coda asymmetries, both typological and 

developmental ones, and moraic structure and its 

acoustic reflexes. Notably, Nam (2007a) also 

hypothesized that many properties of geminates 

are best understood through the lenses of a split-

gesture model.  

4 The model 

The model we present closely follows the one 

developed by Nam (2007a; 2007c). Syllables are 

represented as nodes in an undirected graph 

without loops. This graph is known as the coupling 

graph. Closure and release belonging to the same 

consonant are represented as separate nodes. An 

example of this split-gesture graph representation 

of CV and VC syllables is illustrated in Figure 3. 

 
Figure 3 showcases another important constraint 

imposed on the model: only two target relative 

phases are assumed to be available: 0° and 180° 

(Tilsen, 2018). These are termed in-phase and anti-

phase.  

The rationale for only two phases is that only 

those are readily observed in the realm of human 

(and animal) movement, e.g., in transitions 

between different gaits of quadrupeds, like horses. 

Those two phase relationships have also been 

shown to emerge in experimental tasks involving 

rhythmic movement (Turvey, 1990). Other relative 

phase configurations can only be learned with 

training or emerge from competitive coupling 

(Nam, 2007a). In this model, the virtual cycle 

controlling the timing of each gesture is 

represented only in terms of phase around the unit 

circle. The differential equation controlling the 

evolution of each oscillator’s phase in the system 

of coupled oscillators is defined as: 

𝜃�̇� = 𝜔𝑖 + ∑ 𝐾 𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖 − 𝜓0)𝑁
𝑗 = 1  (3) 

ω𝑖 is the natural frequency of the ith oscillator, set 

to 2𝜋  to for our simulations. 𝐾  is a coupling 

constant that determines the force exerted by each 

pair in settling towards target relative phase 

equilibria. 𝜃𝑗 with 𝑗 =  1 … 𝑛 is the jth oscillator’s 

phase to which 𝜃𝑖 is coupled. 𝜓0 is a relative phase 

target equilibrium for the relative phase of 𝜃𝑖 and 

𝜃𝑗 . The model generalized Saltzman and Byrd’s 

(2000) model to a larger system of oscillators. The 

matrix form of the model is presented in Appendix 

C.  

This model returns �̇� , an 𝑖 × 1  vector of 

oscillator phases at each time step of the simulation 

of the differential equation. All differential 

equations were numerically integrated in 

MATLAB using a forward Euler method over a 

time range [0 100], the time step was fixed at .1. 

Following previous work (Nam, 2007a; Tilsen, 

2018), the phase of each oscillator is mapped to a 

virtual gestural cycle using a cosine function. 

Gestures are hypothesized to be triggered once 

phase-locking is completed and the virtual cycle 

oscillator crosses 0°.  

Following Tilsen (2018), we impose a constraint 

on initial phases such that each gestural oscillator 

has a higher initial phase than the gestural 

oscillator following it in the linearly ordered 

phonological sequence. For instance, for a CV 

sequence, with C split into CLO-REL, we impose 

a constraint 𝜑𝐶𝐿𝑂  >  𝜑𝑅𝐸𝐿  > 𝜑𝑉 . These 

constraints on initial phase values are taken to be 

part of the lexical representation and to reflect 

learned order of movements (Tilsen 2018). 

5 Experiments 

5.1 Singleton c-center and geminate timing  

The model can generate a variety of previously 

reported (relative) timing patterns.  

Simulation of c-center timing is achieved by 

coupling the closure (CLO) and release (REL) 

oscillators with a target relative phase of 180° 

(anti-phase), while both CLO/vowel (V) and 

REL/V are coupled with a target relative phase of 

0° (in-phase). The results are the stable relative 

phase patterns displayed in Figure 4 top and 

middle. CLO and REL have a relative phase of 

120°, while CLO and V and REL and V have a 

relative phase of 60° and -60° respectively.  

The model, thus, predicts a symmetric initiation 

of the V gesture after the initiation of CLO and 

before the initiation of REL, Figure 4 bottom. 

Arrows depict the initiation of each gesture after 

oscillators have settled in stable relative phases. 

 

Figure 3 Split-gesture graph representation of CV 

(top) and VC (bottom) syllables, dashed lines 

represent anti-phase coupling, solid line in-phase 
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As is well-known, lexical geminates differ from 

singletons are in terms of a longer closure duration 

(Ladefoged and Maddieson, 1996). In a split-

gesture model geminates are represented by an 

increased relative timing between the initiation of 

the CLO and REL gestures of the same consonant. 

Since the CLO and REL of a consonant control the 

same TV, a later initiation of the REL means that 

CLO will have control of the articulators for a 

longer period of time. Nam (2007a) suggested that 

this can be achieved by assuming that the CLO and 

REL oscillators are anti-phase coupled, like in a 

singleton, but, crucially, only the REL oscillator is 

in-phase coupled to the V oscillator. The result of 

this coupling is complete anti-phase between CLO 

and REL/V oscillators. This relative phase pattern 

predicts a longer delay in the initiation of the REL 

compared to the initiation of CLO, consistent with 

the longer durations of geminates, Figure 5. 

 
Recent experimental work has shown that the 

relative timing of closure and vowel initiation for 

medial geminates is stable across different speech 

rates (Tilsen and Hermes, 2020). This suggests a 

stable timing relationship, i.e., in-phase, between 

the two. Accordingly, a better representation for 

geminates in a split-gesture model may be coupling 

only CLO to V, while maintaining anti-phase 

coupling for CLO and REL. Under this coupling, 

the result is CLO and V stabilizing in-phase to each 

other and in anti-phase with REL, Figure 6.  

 

5.2 Word initial Gemination 

Following previous work (Section 2), we subscribe 

to the idea that RS is a change in syllabification. In 

particular, RS is the formation of an ambisyllabic 

geminate that acts as both a coda of the preceding 

syllable and as a word initial onset, as envisioned 

in all previous analyses. No further dedicated 

mechanism is necessary for the emergence of word 

initial geminates. The creation of an ambisyllabic 

geminate is conceptualized in dynamical terms as 

follows. The emergence of a new coda amounts to 

coupling the oscillators of a word final V and a 

word initial CLO gesture in anti-phase and to 

decoupling the CLO oscillator from the following 

V oscillator. No change ensues between the 

coupling of the CLO and REL oscillators of the 

word initial consonant, as they still have a target 

anti-phase relationship. We also assume that the 

final vowel of the word triggering RS and the first 

vowel of the word undergoing RS are anti-phase 

coupled or sequential. The coupling graph is 

illustrated in Figure 7. 

 
If we implement these target relative phases in the 

model, the result is the achievement of a target 

relative phases between CLO and REL of 135°. 

This relative phase relationship ensures that the 

CLO has active control of the TV for a period that 

is longer than for singleton (120°), but shorter than 

for lexical geminates (180°), in line with findings 

showing that RS derived edge geminates closure 

 

Figure 4 Simulation of single consonant c-center. 

 

 
Figure 5 Simulation of geminate timing. 

 

 

Figure 6 Simulation of geminate timing revised 

 

 
Figure 7 Proposed coupling graph for RS. 
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duration is not as long as that of lexical medial 

geminates. We return to this issue in Section 6. The 

model further predicts the correct relative timing 

initiation: final V of the word triggering RS, 

followed by CLO, followed by REL, followed by 

V2 of word undergoing RS, Figure 8. 

 

5.3 Word final gemination across 

morpheme/word boundaries 

Following previous work detailed in Section 2, 

especially Passino (2013), we assume that word 

final gemination across morpheme/word 

boundaries follows from changes in 

syllabification, just like RS. In this case, the 

morpheme or word final consonant of the word or 

stem triggering gemination becomes ambisyllabic 

and hence geminates, like in RS. In dynamical 

terms, a coupling relationship between the 

oscillators of a word final REL and a word initial 

V2 gesture emerges, while the REL oscillator is no 

longer coupled to the preceding V1 oscillator, as is 

usually the case for codas that share a mora with 

preceding vowels and shorten them (Nam, 2007c). 

No change ensues for the coupling of the CLO and 

REL oscillators of the word final consonant. They 

still have a target anti-phase relationship. The 

coupling graph is illustrated in Figure 9. 

 
Exactly as for RS, the model predicts a target 

relative phase between CLO and REL of 135°, 

Figure 10. The model, thus, generates both the 

correct relative timing pattern and it also predicts 

word final gemination across morpheme/word 

boundary. Again, derived edge geminates are 

expected to be shorter than lexical medial 

geminates. 

 

5.4 Experiment 4: word initial degemination 

In languages like Swiss German and Pattani Malay, 

synchronic or lexically diffusing degemination of 

word initial geminates has been observed in 

experimental work, Section 2. These have been 

attributed to poor perceptual recoverability 

triggering changes in phonological representation 

or in exemplar dynamics of closure duration. Yet, 

the relationship between degemination and 

articulation has been left unaddressed. In a split-

gesture, competitive, coupled oscillator model of 

syllable structure incipient degemination can be 

captured simply as the emergence of a more stable 

structure where both CLO and REL are in phase 

coupled to V. Lexical initial geminates are 

represented with a coupling graph identical to 

lexical medial geminates: in-phase CLO-V and 

antiphase CLO-REL. The change in coupling 

graph structure that triggers degemination is the 

emergence of a stable in-phase coupling between 

REL and V, Figure 11. 

 
Obviously, if this coupling graph is used as input 

to the model, c-center timing emerges. The result 

is a relative phase between CLO and REL of 120°, 

identical to that of singletons. Thus, the result of 

 
Figure 8 Simulation of RS. 

 

 

Figure 9 Proposed coupling graph for 

word/morpheme final gemination. 

 

 
Figure 10 Simulation of word/morpheme final 

gemination. 

 

 

 

Figure 11 Coupling graphs for initial geminates 

and word initial degemination. 

 

 

17



 
 

this change in coupling structure is degemination, 

as suggested by Nam (2007a), Figure 12. 

 

5.5 Dynamics of syllabification as the main 

force behind edge (de)gemination 

Having illustrated how the model predicts the 

emergence and loss of edge geminates, we can now 

fully appreciate the rationale behind these 

phenomena: dynamical principles of 

syllabification in a competitive, coupled-oscillator 

model of intergestural timing.  

The gemination phenomena we have discussed 

follow only from translating previously 

hypothesized changes in syllabification into 

changes to coupling graphs of articulatory gestures 

forming consecutive syllables. RS and 

morpheme/word final gemination had already been 

hypothesized to result from the phonological 

requirement of creating an ambisyllabic geminate; 

either to create heavy syllables or because of 

assimilation, originally due to empty consonants 

(Section 2). In the spirit of dynamical system 

theory, the model we have presented does not force 

to choose between these competing alternatives. 

Instead, the gemination has no further rationale: the 

process follows purely from the emergence of new 

dynamical couplings among articulatory gesture. 

These changes reflect resyllabification near a word 

boundary, where coupling strengths have long been 

hypothesized to be weak and gestural sliding has 

been observed (Browman and Goldstein, 2000). 

We can, thus, hypothesize that resyllabification 

emerges in speech production as a  consequence of 

various factors, e.g., fluctuations in coupling 

strength due to noise in the production system or 

because of the effects of speech rate. Once 

resyllabification alters the dynamical couplings, 

edge gemination is the natural response of the 

phonological system.  No dedicated rule of edge 

gemination is needed.  

The case of edge degemination follows from 

slightly different principles. It is not a case of 

resyllabification across a morpheme/word 

boundary, but, rather, it represents the emergence 

of a less marked coupling graph. In other words, it 

represents a more stable syllabic configuration. 

Specifically, the emergence of a new coupling 

between CLO and V, that triggers edge 

degemination (Figure 11 Coupling graphs for 

initial geminates and word initial degemination.), 

represents the emergence of a coupling graph 

where both articulatory gestures forming a 

consonant are timed to the vowel. Such 

configurations with a higher number of links, 

together with the emergence of in-phase 

relationships, have been demonstrated to lead to 

syllable productions that are less sensitive to the 

effects of noise (Nam, 2007a).  

In sum, the model we have presented shows that 

the emergence and loss of edge geminates are 

tightly linked as the byproduct of changes to 

coupling graphs that reflect resyllabification and 

more stable syllabic configurations. 

6 Discussion 

We have demonstrated that changes in dynamical 

couplings, reflecting syllabification, can be 

responsible for the emergence of (i) word initial 

gemination, (ii) word/morpheme final gemination, 

and (iii) word initial degemination. The changes in 

syllabification were implemented by introducing 

changes in the dynamical coupling between the 

oscillator controlling the relative timing of CLO, 

REL, and V in a split-gesture, competitive, coupled 

oscillator model of syllable structure. This model 

offers a unified theory of the articulatory features 

that accompany the emergence and disappearance 

of edge geminates.  

Furthermore, the model also predicts durational 

difference between derived edge geminates and 

lexical medial geminates. This is accomplished by 

different phase locking patterns: for lexical 

(medial) geminates the CLO and REL oscillators 

stabilize at a relative phase of 180°; for derived 

edge geminates the relative phase is 135°. Recall 

that the difference between singleton, displaying c-

center timing, and geminates is one of 120° vs 

180°. Accordingly, edge geminates only cover ¼ 

(15°/60°) of the relative phase difference that 

separates singleton from geminates. This relative 

phase patterns are compatible with the 

experimental findings of Campos-Astorkiza 

 

Figure 12 Simulation of word-initial degemination. 
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(2012), who reported that geminates derived via RS 

have a percentage of lengthening, compared to 

singleton, in the range of 23-60% (on average 

around 50%). For lexical geminates the range is 

200-276%. The model presented, thus, offers not 

only unified treatment of different types of edge 

gemination and degemination, but it also predicts 

phonetic differences between derived initial and 

lexical medial geminates that align with 

experimental findings. Crucially, the model does 

not require any dedicated mechanism to 

accomplish this, the phonological processes follow 

purely from dynamical couplings that reflect 

changes in syllabification. In this way, shared 

intuitions presented in previous work can be 

unified without a need for choosing any one 

rationale, as the system is self-organizing.  

The model also has some limitations. First, it 

accounts for difference between singleton and 

geminates purely in terms of relative intergestural 

timing. However, differences between singletons 

and geminate are likely to be manifested also in 

intragestural timing due to differences in 

parameters like targets, stiffnesses, etc. 

Furthermore, translating relative timing into 

periods of gestural activation intervals is a non-

trivial problem, for which a variety of solutions 

have been proposed (Tilsen, 2018).  

A second limitation is that recent experimental 

evidence (Tilsen and Hermes, 2020) has shown 

that the onset of geminate release, with respect to 

either the onset of the closure or the vowel, is 

linearly delayed as speech rate increases. For 

singletons the relative timing patterns are relatively 

unaffected. Tilsen and Hermes (2020) interpreted 

these different timing regimes as evidence that 

singletons can be modelled with coupled 

oscillators, but competitive queuing and feedback 

based gestural suppressions (Tilsen, 2016) may be 

necessary to generate the geminate timing patterns. 

This is a more general problem of the coupled 

oscillator model and of the TD model that regulates 

gestural evolution. They are feedforward systems 

with no feedback. This assumption is clearly 

problematic for speech (Shaw and Chen, 2019; 

Tilsen, 2016; Parrell et al., 2019). Accordingly, 

scholars have proposed extensions of the model 

that take feedback into account (Tilsen, 2016; 

Parrell et al., 2019). Integrating feedback 

mechanisms for different types of geminates is a 

direction that needs to be further explored.  

The coupled oscillator model is also sensitive to 

the initial conditions of the simulation. 

Specifically, it is sensitive to the initial phase of 

each gestural oscillator. To side step this problem, 

we have imposed constraints on initial phases that 

we take to a be a reflex of lexical representation 

and linear ordering (Tilsen, 2018). However, these 

constraints may betray the need for integrating a 

competitive queuing model on top of a coupled 

oscillator model of syllable structure (Tilsen 2016; 

2018).  

Finally, the coupling structures posited to 

account for the emergence and disappearance of 

edge geminates need empirical verification via 

collection of articulatory data, e.g., EMA or real 

time MRI. Such a dataset may also be a starting 

point to explore how the creation of new dynamical 

couplings may emerge in the first place. In 

particular, we can hypothesize that fluctuations in 

coupling strength may give rise to trial to trail 

variability in coupling of consonants at word edges 

and vowels (Browman and Goldstein, 2000). 

Ultimately, these changes may be phonologized as 

changes to coupling graphs. This hypothesis, 

however, requires empirical testing. 

7 Conclusion 

We have demonstrated that the AP split-gesture, 

competitive, coupled oscillator model provides us 

with a self-organizing model of syllable structure 

where edge-gemination and degemination emerge 

from dynamical coupling of closure and release 

oscillators with vowel oscillators. The model offers 

a unified analysis of different types of edge 

gemination and degemination, an aspect that was 

missing in previous phonological work. Moreover, 

the model also predicts crucial phonetic differences 

between derived edge geminates and lexical 

medial geminates reported in experimental work, 

but missing in previous phonological analyses. In 

sum, the coupled oscillator model of Articulatory 

Phonology, originally designed to model 

intergestural timing, has proven to be successful at 

predicting the finer details of elusive phonological 

processes like edge gemination and degemination. 
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Appendix A: The Task Dynamic Model 

In the Task Dynamic model the state of each TV is 

represented as a second order critically damped 

oscillatory system, following the Task Dynamic 

(TD) approach to motor control in speech 

(Saltzman and Munhall, 1989) 

 𝑚�̈� + 𝑏�̇� + 𝑘(𝑥 − 𝑇(𝑡)) = 0 

m represents the articulator mass. It is usually 

ignored and set to the unit value. b represents the 

damping coefficient. Critical damping, 𝑏 =

 2√𝑘𝑚, is assumed to enforce asymptotic target  

achievement without oscillations. k represents the 

stiffness parameter, which determines how quickly 

the target state of the system is achieved. Higher 

stiffness corresponds to a quicker target 

achievement. Finally, x and T(t) represent the 

current positional value of the system and its target 

state, respectively. 

Appendix B: The hybrid oscillator model 

of Saltzman and Byrd (2000) 

In the original coupled oscillator model of 

oscillators Saltzman and Byrd (2000) the force 

function is transformed into a task specific 

coupling force that drives changes in the 

acceleration of a hybrid oscillator that arises from 

the combination of a Van Der Pol and Rayleigh 

limit cycle  

 �̈� = −𝛼�̇� − 𝛽𝑥2�̇� − 𝛾�̇�3 − 𝜔0
2𝑥  

𝛼 represents a linear damping term, while 𝛽 and 𝛾 

non-linear van der Pol and Rayleigh damping, 

respectively. 𝜔0  represents the oscillator natural 

frequency. 

Appendix C: Matrix implementation of the 

split-gesture, competitive, coupled 

oscillator model of syllable structure of 

Articulatory Phonology 

The differential equation controlling the system of 

oscillators in our model is: 

�̇�  = ω + ∑ 𝐾 𝑠𝑖𝑛 (𝐴𝑗 ∘ 𝛷𝑗
𝑇 − 𝐴𝑗 ∘ 𝛷𝑗 − 𝛹0𝑗

)

𝑁

𝑗 = 1

 

ω  is the natural frequency of each oscillator and it is 

hypothesized to be identical for each oscillator, 

following previous work (Nam, 2007a) . Φ is an is 𝑖 × 𝑗 

(𝑖 =  𝑛, 𝑗 =  𝑛 , where 𝑛 is the number of oscillators in 

the system) matrix of initial phases for each oscillator 𝑖, 
with the value repeated across columns. 𝐴  is an 𝑖 × 𝑗 

adjacency matrix such that its element 𝑎𝑖𝑗 is defined as 

1 if the oscillator 𝑖 is coupled with oscillator 𝑗, and 0 

otherwise. 𝛹0𝑗  is an 𝑖 × 𝑗 matrix of target relative phase 

where each cell 𝜓0𝑖𝑗
 represents a target relative phase 

for the oscillator pair 𝜃𝑖  and 𝜃𝑗 . If the oscillators are 

uncoupled the target relative phase is set to 0. 𝐾  is a 

matrix of coupling constants. It is set to a unit matrix in 

all simulations reported to avoid exploding the 

parameter space, it could however be used to model 

cross-linguistic differences (Mücke et al., 2020). 
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Abstract
We perform an in-depth error analysis of the
Adversarial NLI (ANLI) dataset, a recently
introduced large-scale human-and-model-in-
the-loop natural language inference dataset
collected dynamically over multiple rounds.
We propose a fine-grained annotation scheme
for the different aspects of inference responsi-
ble for the gold classification labels, and use
it to hand-code the ANLI development sets
in their entirety. We use these annotations
to answer a variety of important questions:
which models have the highest performance on
each inference type, which inference types are
most common, and which types are the most
challenging for state-of-the-art models? We
hope our annotations will enable more fine-
grained evaluation of NLI models, and provide
a deeper understanding of where models fail
(and succeed). Both insights can guide us in
training stronger models going forward.

1 Introduction

Natural Language Inference (NLI) is one of the
canonical benchmark tasks for research on Natural
Language Understanding (NLU). NLI1 has char-
acteristics that make it desirable both from the-
oretical and practical standpoints. Theoretically,
entailment is, in the words of Richard Montague,
“the basic aim of semantics” (Montague, 1970, p.
223 fn.), and indeed meaning in formal seman-
tics relies on necessary and sufficient truth con-
ditions. Practically, NLI is easy to evaluate and
intuitive even to non-linguists, enabling data to be
collected at scale with crowdworker annotators.
Moreover, many core NLP tasks can also easily
be converted to NLI problems (White et al. 2017;
Demszky et al. 2018; Poliak et al. 2018a i.a.) sug-
gesting that NLI is generally seen as a good proxy
for measuring models’ overall NLU capabilities.

1Also known as recognizing textual entailment (RTE; Fy-
odorov et al. 2000; Dagan et al. 2006, i.a.).

Benchmark datasets are essential for driving
progress in NLP and machine learning (DataPerf
Working Group, 2021). In recent years, large-
scale NLI benchmarks like SNLI (Bowman et al.,
2015) and MNLI (Williams et al., 2018) have es-
tablished a straightforward basis for comparison
between trained models. However, with the advent
of transformer language models, many bench-
marks are now reaching saturation, leading some
to wonder: have we solved NLI and, perhaps,
NLU? However, the recent ANLI dataset (Nie
et al., 2020a) illustrated that our models do not yet
perform NLI in the robust and generalizable way
that humans can. In this paper we ask: where do
our models still fall short?

To improve towards general NLU, merely list-
ing examples of failure cases is not by itself suf-
ficient. We also need a quantifiable and finer-
grained understanding of which phenomena are
responsible for failures (or successes). Since the
dynamic adversarial set up of ANLI encouraged
human annotators to exercise their creative facul-
ties to fool model adversaries, the data contains
a wide range of possible inferences (as we will
show). Because of this, ANLI is an ideal testbed
for studying current model shortcomings, and for
characterizing what future models will have to do
in order to make progress on the NLI task.

Towards that end, we propose a genre-agnostic
annotation scheme for NLI that classifies exam-
ple pairs into 40 inference types. It is hierarchical,
reaching a maximum of four levels deep, enabling
analysis of model performance at a flexible level
of granularity. We also contribute expert hand-
annotations on the ANLI development sets (3200
sentence pairs) according to our scheme2, thereby
extending the usefulness of the ANLI dataset by
making it possible to analyze future models. We

2All annotations are publicly available at
https://github.com/facebookresearch/anli/anlizinganli.
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Context Hypothesis Rationale Gold/Pred.
(Valid.)

Tags

Eduard Schulte (4 January 1891 in Düsseldorf – 6 January 1966 in
Zürich) was a prominent German industrialist. He was one of the first
to warn the Allies and tell the world of the Holocaust and systematic
exterminations of Jews in Nazi Germany occupied Europe.

Eduard Schulte is
the only person
to warn the Al-
lies of the atroci-
ties of the Nazis.

The context states that he is not
the only person to warn the Allies
about the atrocities committed by
the Nazis.

C/N (CC) Tricky, Prag., Numerical, Or-
dinal

Kota Ramakrishna Karanth (born May 1, 1894) was an Indian lawyer
and politician who served as the Minister of Land Revenue for the
Madras Presidency from March 1, 1946 to March 23, 1947. He was
the elder brother of noted Kannada novelist K. Shivarama Karanth.

Kota Ramakr-
ishna Karanth
has a brother who
was a novelist
and a politician

Although Kota Ramakrishna
Karanth’s brother is a novelist, we
do not know if the brother is also a
politician

N/E (NEN) Basic, Coord., Reasoning,
Plaus., Likely, Tricky, Syntac-
tic

Toolbox Murders is a 2004 horror film directed by Tobe Hooper, and
written by Jace Anderson and Adam Gierasch. It is a remake of the
1978 film of the same name and was produced by the same people
behind the original. The film centralizes on the occupants of an apart-
ment who are stalked and murdered by a masked killer.

Toolbox Murders
is both 41 years
old and 15 years
old.

Both films are named Toolbox
Murders one was made in 1978,
one in 2004. Since it is 2019 that
would make the first 41 years old
and the remake 15 years old.

E/C (EE) Reasoning, Facts, Numerical
Cardinal, Age, Basic, Coord.,
Tricky, Wordplay

Table 1: Examples from development set. ‘corr.’ is the original annotator’s gold label, ‘pred.’ is the model
prediction, ‘valid.’ is the validator label(s).

find that examples requiring models to resolve
references, utilize external knowledge, and de-
ploy syntactic abilities remain especially challeng-
ing. Our annotations are publicly available, and
we hope they will be useful for benchmarking
progress on particular inference types and expos-
ing weaknesses of future NLI models.

2 Background

We proposes an inference type annotation scheme
for the Adversarial NLI (ANLI) dataset, which
was collected via a gamified, adversarial human-
and-model-in-the-loop format using the Dyn-
abench platform (Kiela et al., 2021; Ma et al.,
2021). Human annotators are matched with a tar-
get model trained on existing NLI data, and tasked
with finding examples that fooled it into predict-
ing the wrong label. Dynamically collecting data
has since been shown to have training-time bene-
fits above statically collected data (Wallace et al.,
2021). Other than being dynamic, ANLI was col-
lected with a similar method to SNLI and MNLI:
untrained crowdworkers are given a context—and
one of three classification labels, i.e., Entailment,
Neutral and Contradiction—and asked to write a
hypothesis. Table 1 provides examples.

The ANLI dataset was collected in English over
three rounds, with different target model adver-
saries each round. The first round adversary was
a BERT-Large (Devlin et al., 2019) model trained
on SNLI and MNLI. The second was a RoBERTa-
Large (Liu et al., 2019) ensemble trained on SNLI
and MNLI, as well as FEVER (Thorne et al.,
2018) and the training data from the first round.
The third round adversary was a RoBERTa-Large
ensemble trained on all previous data, plus the
training data from the second round, with the ad-

ditional difference that the contexts were sourced
from multiple domains (rather than just from
Wikipedia, as in the preceding rounds). The ANLI
dataset is split so that all development and test set
data were human-validated as model-fooling.

The ANLI dataset creators encouraged crowd-
workers to give free rein to their creativity (Nie
et al., 2020a, p.8).3 Annotators explored, then ulti-
mately converged upon, inference types that chal-
lenged each round’s target model adversary. For
example, the target model in round 1 was often
fooled by numbers (see §4), which means the de-
velopment set from round 1 (i.e., A1) contains
many NUMERICAL examples. Training a later
rounds’ adversary on A1 then should result in a
model that does better on such examples. Ulti-
mately, crowdworkers would be less successful at
fooling later adversaries with numbers, and fewer
NUMERICAL examples will end up in later devel-
opment sets.4 In this way, understanding how in-
ference types dynamically shift across the ANLI
development sets can illuminate the capabilities of
the target models used to collect them.

3 Developing A Scheme for Annotating
Types of Inferences in NLI

Categorizing sentential inference relations into
types is by no means a new endeavor (see the
Doctrine of Categories from Aristotle’s Organon):
ample research has aimed to understand model
behavior and/or develop best annotation practices
which ought to be incorporated. However, a
scheme should be, at least to some extent, tai-

3Gamification generally results in wide coverage datasets
(Joubert et al., 2018; Bernardy and Chatzikyriakidis, 2019).

4Assuming that models trained on later rounds don’t suf-
fer from catastrophic forgetting.
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Top Level Second Level Description

Numeral

Cardinal basic cardinal numerals (e.g., 56, 57, 0, 952, etc.).
Ordinal basic ordinal numerals (e.g., 1st , 4th , 72nd etc.).

Counting counting references in the text, such as: Besides A and B, C is one of the monasteries located at Mt. Olympus. ⇒ C is one of three monasteries
on Mount Olympus.

Nominal numbers as names, such as: Player 37 scored the goal ⇒ a player was assigned jersey number 37.

Basic

Comp.& Super. degree expressions denoting relationships between things, such as: if X is faster than Y ⇒ Y is slower than X
Implications cause and effect, or logical conclusions that can be drawn from clear premises. Includes classical logic types such as Modus Ponens.

Idioms idioms or opaque multiword expressions, such as: Team A was losing but managed to beat the other team ⇒ Team A rose to the occasion
Negation inferences relying on negating content from the context, with “no”, “not’, “never”, “un-” or other linguistic methods

Coordinations inferences relying on “and”, “or”, “but”, or other coordinating conjunctions.

Ref.
Coref. accurately establishing multiple references to the same entity, often across sentences, such as: Sammy Gutierrez is Guty
Names content about names in particular (e.g., Ralph is a male name, Fido is a dog’s name, companies go by acronyms)
Family content that is about families or kinship relations (e.g., if X is Y’s aunt, then Y is X’s nephew/niece and Y is X’s parent’s sibling)

Tricky

Syntactic argument structure alternations or changes in argument order (e.g., Bill bit John ⇒ John got bitten., Bill bit John 6⇒ John bit Bill)
Pragmatic presuppositions, implicatures, and other kinds of reasoning about others’ mental states: It says ‘mostly positive’ so it stands to reason some

were negative.
Exhaustification pragmatic reasoning where all options not made explicit are impossible, for example: a field involves X, Y, and Z ⇒ X, Y and Z are the only

aspects of the field
Translation examples with text in a foreign language or using a foreign orthography.
Wordplay puns, anangrams, and other fun language tricks, such as Margaret Astrid Lindholm Ogden’s initials are MALO, which could be scrambled

around to form the word ’loam’.

Reasoning
Plausibility the annotators subjective impression of how plausible a described event is (e.g. Brofiscin Quarry is named so because a group of bros got

together and had a kegger at it. and Fetuses can’t make software are unlikely)
Facts common facts the average human would know (like that the year is 2020), but that the model might not (e.g., the land of koalas and kangaroos

⇒ Australia), including statements that are clearly not facts (e.g., In Ireland, there’s only one job.)
Containment references to mereological part-whole relationships, temporal containment between entities (e.g., October is in Fall), or physical containment

between locations or entities (e.g., Germany is in Europe). Includes examples of bridging (e.g., the car had a flat ⇒ The car’s tire was broken).

Imperfections

Error examples for which the expert annotator disagreed with the gold label, such as the gold label of neutral for the pair How to limbo. Grab a long
pole. Traditionally, people played limbo with a broom, but any long rod will work ⇒ limbo is a type of dance

Ambig. example pairs for which multiple labels seem to the expert to be appropriate. For example, with the context Henry V is a 2012 British television
film, whether Henry V is 7 years old this year should get a contradiction or neutral label depends on what year it is currently as well as on which
month Henry V began to be broadcast and when exactly the hypothesis was written.

Spelling examples with spelling errors.

Table 2: Summary of the Annotation Scheme. Toy examples are provided, ⇒ denotes entailment, 6⇒ denotes
contradiction. Only top and second level tags are provided, due to space considerations.

lored to the particular task at hand. Here, we
balance these considerations and develop a novel
NLI annotation scheme. We hope other large NLI
datasets will be annotated according to our scheme
to make even wider comparison possible.

Researchers have proposed many ways to
‘crack open the black box’ (Alishahi et al., 2019;
Linzen et al., 2019), from uncovering lexical con-
founders or annotation “artifacts” (Gururangan
et al., 2018; Geiger et al., 2018; Poliak et al.,
2018b; Tsuchiya, 2018; Glockner et al., 2018;
Geva et al., 2019) to evaluating generalization
with diagnostic datasets (McCoy et al., 2019; Naik
et al., 2018; Nie et al., 2019; Yanaka et al., 2019;
Warstadt et al., 2019a; Geiger et al., 2020; Hossain
et al., 2020; Jeretic et al., 2020; Warstadt et al.,
2020; Schuster et al., 2020); see Zhou et al. (2020)
for a critical overview. Specific to NLI, some have
probed models to see what they learn (Richardson
et al., 2019; Sinha et al., 2021b), honed data col-
lection methods (Bowman et al., 2020; Vania et al.,
2020; Parrish et al., 2021) and analyzed inherent
disagreements between human annotators (Pavlick
and Kwiatkowski, 2019; Nie et al., 2020b; Nangia
et al., 2021), all in the service of understanding
and improving models (see Poliak (2020) for a re-
cent survey). See Table 10 and §A.3 for compar-

isons between our annotation scheme and others.
To inventory possible inference types, three

NLP researchers independently inspected data
from ANLI A1. For consistency, we then dis-
cussed and merged codes, applying an inductive
approach (Thomas, 2006; Blodgett et al., 2021).
Our scheme—provided in abbreviated form in Ta-
ble 2—has 40 tag types that can be combined to a
depth of up to four (see the Appendix for more de-
tails in §A.1, and more examples in Table 14). The
top level of the scheme was fixed by the original
ANLI paper to five classes: NUMERICAL, BASIC,
REFERENCE, TRICKY inferences, and REASON-
ING.5 We aimed to balance proliferating narrow
tags (and potentially being overly expressive), and
limiting tag count to enable generalization (poten-
tially being not expressive enough). A hierarchi-
cal tagset achieves the best of both worlds—we
can measure all our metrics at varying granular-
ities while allowing for pairs to receive as many
tags as are warranted (see Table 1).

Annotation. Annotating NLI data for inference
types requires various kinds of expert knowledge,

5These top-level types were introduced for smaller sub-
sets of the ANLI development set in § 5 of Nie et al. (2020a),
which we drastically expand both in number and specificity
of tag types, as well as in annotation scope.
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Dataset Subset Numerical Basic Reference Tricky Reasoning Error

A1

All 40.8 31.4 24.5 29.5 58.4 3.3

C 18.6 8.2 7.8 13.7 11.9 0.7
N 7.0 9.8 7.1 6.4 31.3 1.0
E 15.2 13.4 9.6 9.4 15.2 1.6

A2

All 38.5 41.2 29.4 29.1 62.7 2.5

C 15.6 11.8 10.2 13.6 15.5 0.3
N 8.1 12.8 9.1 7.4 30.0 1.4
E 14.8 16.6 10.1 8.1 17.2 0.8

A3

All 20.3 50.2 27.5 25.6 63.9 2.2

C 8.7 17.2 8.6 12.7 14.9 0.3
N 4.9 13.1 8.2 4.6 30.1 1.0
E 6.7 19.9 10.7 8.3 18.9 0.8

Table 3: Percentages (of the total) of tags by gold label and subdataset. ‘All’ refers to the total percentage of
examples in that round that were annotated with that tag. ‘C’, ‘N’, and ‘E’, refer to percentage of examples with
that tag that receive each gold label.

i.e. with a range of complicated linguistic phe-
nomena and the particularities of the NLI task.
Our work is fairly unique in that examples are
only tagged as belonging to a particular branch
of the taxonomy when the annotator believed the
tagged phenomenon is required for a human to
arrive at the target label assignment. Mere pres-
ence of a phenomenon was insufficient, meaning
that automation was impossible, and expert anno-
tation was necessary.6 A single annotator with
a decade’s training in linguistics and expertise in
NLI both devised our scheme and applied it to the
ANLI development set. Annotation was laborious,
taking the expert several hundred hours.

Inter-annotator Agreement. Employing a sin-
gle annotator may have downsides, if they inadver-
tently introduce personal idiosyncrasies into their
annotations. NLI may be especially susceptible
to this, as recent work uncovers much variation
in human judgements for this task (Pavlick and
Kwiatkowski, 2019; Min et al., 2020; Nie et al.,
2020b). To understand whether our tags are in-
dividual to the main annotator, we employed a
second expert (with 5 years of linguistic training)
to re-annotate 300 random examples, 100 from
each development set. Re-annotation took the sec-
ond annotator approximately 35 hours (exclud-
ing training time). Further details on the scheme,
guidelines, and process are in Appendix A.

6Experts are well known to achieve higher performance
than naı̈ve crowdworkers when the task is linguistically com-
plex (e.g., the CoLA subtask of the GLUE benchmark from
Warstadt et al. (2019b), as well as Nangia and Bowman 2019,
p. 4569, Basile et al. 2012; Bos et al. 2017, i.a.).

We measure inter-annotator agreement for each
tag independently. For each example, annotators
agree on a tag if they both used that tag or both
did not use that tag; otherwise they disagree. Av-
erage percent agreement between our annotators
is 72% for top-level and 91% for low-level tags
respectively (see Table 8 and §A.2 for further de-
tails). Recall that 50% would be chance (since we
are measuring whether the tag was used or not be-
tween two annotators). Our inter-annotator agree-
ment is comparable to a similar semantic annota-
tion effort on top of the original RTE data (Toledo
et al., 2012), suggesting we have reached an ac-
ceptable level of agreement for our setting, and
that the main annotator is not very idiosyncratic.

4 Experiments

We investigate 8 models: the original ANLI tar-
get model adversaries7, and five SOTA models8—
a RoBERTa-Large (Liu et al., 2019), a BART-
Large (Lewis et al., 2019), an XLNet-Large (Yang
et al. 2019, an ELECTRA-Large (Clark et al.,
2020), and an ALBERT-XXLarge (Lan et al.,
2020)—finetuned on SNLI (Bowman et al., 2015),
MNLI (Williams et al., 2018), FEVER (Thorne
et al., 2018), and ANLI rounds 1–3.

We report the tag distribution of the ANLI val-
idation sets to establish an estimate of inference
type frequency and explore what models may have
learned as rounds progressed. To measure diffi-
culty, we report models’ correct label probability,

7For A2 and A3, which were ensembles, we randomly
select a single RoBERTa-Large as the representative.

8https://github.com/facebookresearch/anli
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and entropy on example pairs requiring each infer-
ence type (as accuracy on ANLI is still very low).

4.1 Tag Distribution

REASONING tags are the most common in the
validation dataset, followed by NUMERICAL,
TRICKY, BASIC, REFERENCE and then IMPER-
FECTIONS. The frequency of top-level tags are
presented in Table 3, and for subtags in Table 15.

Walking through top-level types in turn, we find
that NUMERICAL pairs are most common in A1.
Since A1 contexts comprised the first few lines
of Wikipedia entries—which often have numbers
in them—this makes sense. A2, despite also us-
ing Wikipedia contexts, has a lower percentage of
NUMERICAL examples, possibly because its tar-
get model—also trained on A1—improved on that
category. In A3, the percentage of NUMERICAL

pairs has dropped even lower. Between A1/A2
and A3, this drop in top level NUMERICAL tag
frequency is due at least in part to a drop in the
use of CARDINAL subtag, which results in a corre-
sponding drop of third level DATES and AGES tags
(in the Appendix). Overall, NUMERICAL pairs are
more likely to have the gold label contradiction or
entailment than neutral.

BASIC pairs are fairly common, with increas-
ing frequency as rounds progress. Subtags LEXI-
CAL and NEGATION rise sharply in frequency be-
tween A1 and A3; IMPLICATIONS and IDIOMS

also rise—though they rise less sharply and are
only present in < 10% of examples. COORDINA-
TION and COMPARATIVES & SUPERLATIVES tag
frequency stays roughly constant. Overall, BASIC

examples tend to be gold labeled as entailment.
REFERENCE tags are rarest main tag type

(present in 24.5% of A1 examples, rising slightly
in A2 and A3). The most common subtag for REF-
ERENCE is COREFERENCE with incidences rang-
ing from roughly 16% in A1 to 26% in A3. Sub-
tags NAMES and FAMILY maintain roughly con-
stant low frequency across rounds, although there
is a precipitous drop in NAMES tags for A3 (likely
reflecting genre differences). Examples tagged as
REFERENCE most commonly have entailment as
their gold label for all rounds.

TRICKY inference types occur at relatively con-
stant rates. A1 contains more examples with word
reorderings than the others. PRAGMATIC exam-
ples are more prevalent in A1 and A3. A2 is
unique in having slightly higher frequency of EX-

HAUSTIFICATION tags. WORDPLAY examples in-
crease in A2 and A3 compared to A1. TRANS-
LATION pairs are rare (≈3%). On the whole,
there are fewer neutral TRICKY pairs than contra-
dictions or entailments, with contradiction being
somewhat more common.

REASONING examples are very common across
the rounds, with 50–60% of pairs receiving at least
one. Subtagged FACTS pairs are also common,
rising from 19% in A1 to roughly 25% of A2
and A3. CONTAINMENT shows the opposite pat-
tern; it halves its frequency between A1 and A3.
The frequency of third level LIKELY examples re-
mains roughly constant whereas third level UN-
LIKELY and DEBATABLE examples become more
common over the rounds. DEBATABLE tags rise to
3 times their rate in A1 by the third round, in part
reflecting the contribution of different domains of
text (see Table 7 for incidence on the procedural
genre). On average, REASONING tags are more
common for examples with a neutral gold label.

IMPERFECTION tags are rare across rounds (≈
14% of example pairs receive that tag on aver-
age), and are slightly more common for neutral
pairs. SPELLING imperfections are the most com-
mon second level tag type, at ≈ 5 − 6% of ex-
amples. Examples marked as AMBIGUOUS and
ERROR were rare at ≈ 3− 5%.

4.2 Model Predictions by Tag

For each model-round-tag triple, we report (i) the
average probability of the correct prediction and
(ii) the entropy of model predictions (i.e., from
the input to the softmax layer) in Table 49. We
report both because neither number is fully inter-
pretable in itself. Measuring the probability mass
the model assigned to the correct label gives a nu-
anced notion of accuracy, whereas entropy can be
seen as a measure of difficulty, in the sense that it
can tell us how (un)certain a model is in its pre-
dictions. If a particular model-round-tag triple has
high entropy, then that tag was more difficult for
that model to learn from that round’s data. A given
model-round-tag triple can have both high proba-
bility and high entropy, which would show that the
round-tag pairing is difficult (given the entropy),
but that the model succeeded, at least to some ex-
tent, in learning how to predict the correct label
anyway (given the probability).

ALBERT-XXLarge performs best overall, with

9Metrics for the lower level tags in Table 16–Table 20.
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Round Model Numerical Basic Ref. & Names Tricky Reasoning Imperfections

A1

BERT (R1) 0.10 (0.57) 0.13 (0.60) 0.11 (0.56) 0.10 (0.56) 0.12 (0.59) 0.13 (0.57)
RoBERTa Ensemble (R2) 0.68 (0.13) 0.67 (0.13) 0.69 (0.15) 0.60 (0.18) 0.66 (0.15) 0.61 (0.14)
RoBERTa Ensemble (R3) 0.72 (0.07) 0.73 (0.08) 0.72 (0.08) 0.65 (0.09) 0.70 (0.08) 0.68 (0.07)

RoBERTa-Large 0.73 (0.13) 0.75 (0.12) 0.76 (0.10) 0.70 (0.14) 0.75 (0.15) 0.68 (0.13)
BART-Large 0.73 (0.10) 0.76 (0.08) 0.72 (0.07) 0.70 (0.08) 0.70 (0.11) 0.71 (0.08)

XLNet-Large 0.73 (0.10) 0.74 (0.09) 0.75 (0.09) 0.70 (0.10) 0.72 (0.09) 0.67 (0.08)
ELECTRA-Large 0.71 (0.29) 0.66 (0.36) 0.68 (0.34) 0.62 (0.44) 0.63 (0.41) 0.63 (0.40)

ALBERT-XXLarge 0.74 (0.22) 0.77 (0.18) 0.76 (0.20) 0.65 (0.21) 0.77 (0.18) 0.69 (0.22)

A2

BERT (R1) 0.29 (0.53) 0.30 (0.47) 0.29 (0.44) 0.25 (0.48) 0.31 (0.47) 0.33 (0.48)
RoBERTa Ensemble (R2) 0.19 (0.28) 0.21 (0.26) 0.20 (0.25) 0.16 (0.23) 0.19 (0.24) 0.19 (0.27)
RoBERTa Ensemble (R3) 0.50 (0.18) 0.43 (0.16) 0.41 (0.14) 0.44 (0.14) 0.45 (0.14) 0.33 (0.14)

RoBERTa-Large 0.54 (0.22) 0.51 (0.21) 0.47 (0.17) 0.48 (0.22) 0.49 (0.20) 0.49 (0.19)
BART-Large 0.55 (0.13) 0.52 (0.13) 0.48 (0.14) 0.48 (0.15) 0.50 (0.13) 0.42 (0.10)

XLNet-Large 0.54 (0.11) 0.53 (0.12) 0.53 (0.13) 0.52 (0.12) 0.50 (0.10) 0.44 (0.10)
ELECTRA-Large 0.56 (0.36) 0.53 (0.40) 0.52 (0.40) 0.51 (0.45) 0.53 (0.38) 0.54 (0.39)

ALBERT-XXLarge 0.57 (0.28) 0.57 (0.29) 0.58 (0.28) 0.50 (0.26) 0.56 (0.25) 0.58 (0.32)

A3

BERT (R1) 0.34 (0.53) 0.34 (0.51) 0.32 (0.50) 0.29 (0.55) 0.32 (0.49) 0.31 (0.54)
RoBERTa Ensemble (R2) 0.29 (0.47) 0.26 (0.54) 0.26 (0.57) 0.24 (0.58) 0.27 (0.55) 0.23 (0.58)
RoBERTa Ensemble (R3) 0.20 (0.43) 0.23 (0.50) 0.24 (0.53) 0.25 (0.54) 0.25 (0.54) 0.23 (0.52)

RoBERTa-Large 0.44 (0.32) 0.44 (0.26) 0.45 (0.25) 0.49 (0.25) 0.46 (0.27) 0.40 (0.23)
BART-Large 0.51 (0.14) 0.50 (0.14) 0.49 (0.14) 0.53 (0.18) 0.50 (0.14) 0.48 (0.17)

XLNet-Large 0.52 (0.15) 0.49 (0.14) 0.49 (0.15) 0.51 (0.14) 0.52 (0.15) 0.43 (0.14)
ELECTRA-Large 0.55 (0.46) 0.51 (0.45) 0.52 (0.44) 0.54 (0.44) 0.52 (0.48) 0.47 (0.49)

ALBERT-XXLarge 0.56 (0.39) 0.57 (0.33) 0.55 (0.36) 0.52 (0.32) 0.54 (0.32) 0.52 (0.33)

ANLI

BERT (R1) 0.22 (0.54) 0.26 (0.52) 0.26 (0.50) 0.21 (0.53) 0.26 (0.51) 0.27 (0.53)
RoBERTa Ensemble (R2) 0.41 (0.26) 0.37 (0.33) 0.34 (0.37) 0.33 (0.34) 0.35 (0.33) 0.32 (0.37)
RoBERTa Ensemble (R3) 0.52 (0.20) 0.44 (0.27) 0.41 (0.30) 0.45 (0.26) 0.45 (0.28) 0.39 (0.28)

RoBERTa-Large 0.59 (0.21) 0.55 (0.20) 0.53 (0.19) 0.56 (0.20) 0.56 (0.21) 0.50 (0.19)
BART-Large 0.61 (0.12) 0.58 (0.12) 0.54 (0.13) 0.57 (0.14) 0.55 (0.13) 0.52 (0.12)

XLNet-Large 0.61 (0.12) 0.58 (0.12) 0.56 (0.13) 0.57 (0.12) 0.57 (0.12) 0.50 (0.11)
ELECTRA-Large 0.62 (0.35) 0.56 (0.40) 0.56 (0.40) 0.56 (0.44) 0.55 (0.43) 0.54 (0.44)

ALBERT-XXLarge 0.64 (0.28) 0.63 (0.27) 0.61 (0.30) 0.56 (0.26) 0.61 (0.25) 0.59 (0.30)

Table 4: Mean correct label probability (highest bold) and mean entropy of label predictions (lowest bold) by
model and top level tag. Recall that the entropy for three equiprobable outcomes (i.e., random chance of three NLI
labels) is upper bounded by ≈ 1.58. See Appendix E: Table 16–Table 21 for full results on lower-level tags.

the highest label probability for the full ANLI
development set for each top-level tag except
for TRICKY, where it performs roughly as well
as the others. BART-Large, XLNet-Large, and
ELECTRA-Large are tied for second place, with
RoBERTa-Large being a relatively close third.
In general, the five SOTA models’ probabilities
of correct label differ by a few points, although
BART-Large and XLNet-Large show markedly
more certainty (i.e., lower entropy of predictions)
than the others. It is clear that A1 is easier than
A2 and A3, as measured by both higher correct la-
bel probability and lower entropy in general across
models. A2 and A3 don’t appreciably differ, al-
though A3 generally has slightly lower correct la-
bel probabilities and higher entropies, meaning
that A2 and A3 remain difficult for current models.

The ANLI model adversaries perform much
worse that the SOTA models, having both lower
mean probability of the correct label and often
higher entropy: On A1 and A2, of three model ad-
versaries, RoBERTa-Large (R3) also has the high-

est average label probability and lowest entropy
(recall that RoBERTa-Large (R3) was one of the
model adversaries in the ensemble, so its average
prediction probability on A3 should be low).

Difficulty by Tag. Accuracy on ANLI is still
fairly low (see Table 13), however it is still worth
discussing which inference types confound our
best current models. To understand our results,
we have to be aware of how prevalent in the train-
ing corpus certain types are. We cannot neces-
sarily expect a model to perform well on things it
hasn’t seen (although people often do, see Chom-
sky 1980). Because the ANLI training sets are not
annotated, we will estimate the incidence of tags
using the development sets (recall Table 3). To
explore the relationship between phenomenon fre-
quency and learnability by models, we split lower
level tags into “common” tags are present in ap-
proximately 10% or more the ANLI development
sets, while the rest are deemed “uncommon” (see
Appendix E Table 16–Table 21 for more details).
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Wikipedia Fiction News Procedural Legal RTE

0.64 (0.24) 0.57 (0.29) 0.58 (0.24) 0.60 (0.28) 0.55 (0.39) 0.52 (0.52)

Table 5: Mean correct label probability (mean entropy
of label predictions) for ALBERT-XXLarge by genre.

Tag Wikipedia Fiction News Procedural

Numerical 39.7% 3.5% 17.2% 10.5%
Basic 36.8% 41.0% 54.5% 48.5%
Reference 27.5% 21.0% 19.7% 14.5%
Tricky 29.0% 28.5% 25.3% 24.0%
Reasoning 61.7% 67.5% 59.6% 62.5%
Error 2.8% 3.5% 1.0% 2.5%

Table 6: Percentage of top-level tags in each genre.

Perhaps obviously, common inference types
(e.g., REASONING-LEXICAL, NUMERICAL-
DATES, REASONING-LIKELY) are easier for
models to perform well on (according to higher
correct label probability). More compellingly
though, there were some common inference
types that the models still behaved poorly
on, namely REASONING-FACTS, REFERENCE-
COREFERENCE, BASIC-NEGATION and TRICKY-
SYNTACTIC. Since these tags are fairly frequent,
it’s reasonable to conclude that these types re-
quired more complex knowledge. For example,
REASONING-FACTS, which includes knowing
that “2020 is this year” or that “a software
engineering tool can’t enable people to fly”.

Models can do fairly well on some un-
common tags, e.g., BASIC-COORDINATION

and NUMERICAL-NOMINAL, REASONING-
UNLIKELY, REFERENCE-NAMES, REASONING-
CONTAINMENT, TRICKY-WORDPLAY. There are
two potential explanations for this higher than
expected performance: perhaps the SNLI, MNLI
or FEVER training data has sufficient quantities
these inference types or, alternatively, these
types are somewhat easier to learn from fewer
examples. Models do struggle with NUMERICAL-
COUNTING, NUMERICAL-AGE, BASIC-
IMPLICATIONS, REASONING-DEBATABLE,
BASIC-IDIOM, TRICKY-PRAGMATICS, TRICKY-
EXHAUSTIFICATION. Similarly, these failures
can either be due to tag rarity or to their inher-
ent difficulty. Future work could ask whether
augmenting training data with more examples of
these types boosts performance.

Overall, models struggle with examples requir-
ing linguistic or external knowledge: the hardest
top-level tag for all models is TRICKY, with REA-
SONING and REFERENCE being next in line. Any-

Tag Wikipedia Fiction News Procedural

Numerical 0.65 (0.25) 0.65 (0.27) 0.67 (0.32) 0.66 (0.26)
Basic 0.64 (0.25) 0.55 (0.27) 0.56 (0.22) 0.61 (0.32)
Reference 0.65 (0.22) 0.50 (0.23) 0.52 (0.23) 0.71 (0.29)
Tricky 0.56 (0.24) 0.52 (0.26) 0.64 (0.19) 0.57 (0.29)
Reasoning 0.66 (0.24) 0.61 (0.28) 0.55 (0.24) 0.56 (0.31)
Imperfection 0.63 (0.27) 0.62 (0.34) 0.60 (0.26) 0.53 (0.26)

Table 7: Mean correct label probability (mean entropy
of label predictions) for ALBERT-XXLarge.

where from one quarter to two thirds of data con-
tains at least one of these tags, so models have
been exposed to these inference types. NUMER-
ICAL and BASIC examples are less difficult, but
are by no means solved. On rounds A1–3, ad-
versaries improve on NUMERICAL examples, sug-
gesting that exposure to relevant NUMERICAL ex-
amples can enable modest improvement (see also
Dua et al. 2019 for a related observation).

Summary. ALBERT-XXLarge performs
slightly better than the others, but it is less certain
in its predictions; XLNet-Large and BART-Large
perform slightly worse, but have lower entropy.
Top-level TRICKY10, REASONING, and REF-
ERENCE categories are still difficult for SOTA
models, even though they are frequent. Of the
lower level tags that appear in approximately
10% of the ANLI development sets, FACTS,
COREFERENCE, NEGATION and SYNTACTIC

example pairs remain difficult.

4.3 Overlap in Model Predictions
Generally, model outputs were somewhat corre-
lated with ANLI gold labels represented as one-
hot vectors (see Figure 1). ALBERT-XXLarge
model outputs are the most positively correlated
(Pearson’s correlation) (≈ 0.5), RoBERTa-Large,
BART-Large, XLNet-Large, and ELECTRA-
Large have medium sized positive correlations,
and the R2 and R3 RoBERTa-Large models have
small positive correlations. BERT (R1) is slightly
negatively correlated with gold labels. All differ-
ences were significant (p < 0.01).

However, different models made very simi-
lar predictions: RoBERTa-Large, BART-Large,
XLNet-Large, and ALBERT-XXLarge correlated
highly with each other (> 0.6), with ELECTRA-
Large (> 0.5), and with A2 and A3 RoBERTa-

10TRICKY was the only inference type for which
ALBERT-XXLarge wasn’t the top performer; XLNet-Large
performed somewhat better, largely due to stronger higher
probability and lower entropy on linguistically sophisticated
SYNTACTIC and PRAGMATIC examples.
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gold label

RoBERTa-Large

BART-Large

XLNet-Large

ELECTRA-Large

ALBERT-XXLarge

BERT (R1)

RoBERTa Ens. (R2)

RoBERTa Ens. (R3)

1.00 0.36 0.39 0.39 0.41 0.47 -0.16 0.06 0.20

0.36 1.00 0.62 0.64 0.56 0.60 0.10 0.53 0.66

0.39 0.62 1.00 0.65 0.54 0.61 0.14 0.47 0.55

0.39 0.64 0.65 1.00 0.56 0.60 0.15 0.46 0.55

0.41 0.56 0.54 0.56 1.00 0.57 0.11 0.39 0.48

0.47 0.60 0.61 0.60 0.57 1.00 0.09 0.43 0.51

-0.16 0.10 0.14 0.15 0.11 0.09 1.00 0.28 0.16

0.06 0.53 0.47 0.46 0.39 0.43 0.28 1.00 0.68

0.20 0.66 0.55 0.55 0.48 0.51 0.16 0.68 1.00

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Correlation between gold labels and model
outputs. All comparisons are significant p < 0.01.

Large models (0.4− 0.5). RoBERTa-Large model
predictions from A2 correlated with those from
A3 (0.68). These results suggest that substantial
improvement on ANLI may require radically new
ideas, not just minor adjustments to the pretrain-
finetune paradigm (c.f. Sinha et al. 2021a,b).

4.4 Analyzing Results by Genre

A3 was collected using contexts from a variety
of text domains. Table 5 shows the performance
of the highest performing model (ALBERT-
XXLarge) across genres. Wikipedia is the least
difficult genre (as well as the most frequent), Pro-
cedural is somewhat harder, then News (which is
lower entropy), followed by Fiction, Legal, then
RTE. Genres differ widely in how many of their
examples have particular top-level tags (see Ta-
ble 6). Across all genres, TRICKY and REASON-
ING examples occur at roughly the same rates—
with REASONING examples being very common
across the board. Compared to the other genres,
News text has more BASIC tags, and Wikipedia
text has more NUMERICAL. Procedural text has
the lowest rate of NUMERICAL and REFERENCE

tags, but the highest rate of IMPERFECTION.
Table 7 breaks down of the performance of

the ALBERT-XXLarge model by genre and tag
(see Table 22 in the Appendix for the other mod-
els’ performance). ALBERT-XXLarge perfor-
mance on NUMERICAL examples is relatively sta-
ble across the genres, but for the other top level

tags there is some variation that does not just re-
flect tag frequency. For example, the ALBERT-
XXLarge model does better on BASIC and REA-
SONING examples from Wikipedia, on REFER-
ENCE examples from the Procedural genre, and on
TRICKY examples from the News genre. This sug-
gests that data from different genres could be dif-
ferentially beneficial for training the skills needed
for these top-level tags, suggesting that targeted
upsampling could be beneficial in the future.

4.5 Other Analyses

Appendix B provides a detailed analysis of other
dataset properties (word and sentence length, and
most common words by round, gold label, and
tag), where we show that ANLI and MNLI are rel-
atively similar to each other but differ from SNLI.
Crowdworker rationales from ANLI are explored
in §B.1, Table 23–Table 24.

5 Conclusion

We release annotations of the ANLI development
sets to determine which inference types are re-
sponsible for model success and failure, and how
their frequencies change over dynamic data collec-
tion. Inferences relying on numerical or common
sense reasoning are most prevalent, appearing in
≈40%–60% of examples. We finetuned a variety
of transformer language models on NLI and com-
pared their performance to the original target mod-
els used to adversarially collect ANLI. ALBERT-
XXLarge performs the best of our 8 model sam-
ple, but there is still ample room for improvement
in accuracy. Despite being frequent, examples re-
quiring common sense reasoning, understanding
of co-reference, negation and syntactic knowledge
remain the most difficult. One could imagine ex-
plicit interventions to address this, perhaps incor-
porating insights from Sap et al. (2020), or using
other modes of evaluation that explore model and
data dynamics (Gardner et al., 2020; Swayamdipta
et al., 2020; Rodriguez et al., 2021).

ANLI remains difficult: the huge GPT-3
model (Brown et al., 2020) barely made any
progress, and even the recent DeBERTa model
(He et al., 2021) cannot break 70% accuracy. We
hope our annotations will inspire new innovations
by enabling more fine-grained understanding of
model strengths and weaknesses as ANLI matures.
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A Further Details on Annotation

A.1 Details of the Annotation Scheme

A full ontology, comprising all four levels, is pro-
vided together with examples in Table 14.

To give an idea of what sorts of information
falls under each tag, we will go through them
in turn. NUMERICAL classes refer to examples
where numerical reasoning is crucial for determin-
ing the correct label, and break down into CARDI-
NAL, ORDINAL—along the lines of Ravichander
et al. (2019)—COUNTING and NOMINAL; the first
two break down further into AGES and DATES if
they contain information about either of these top-
ics. BASIC consists of staple types of reasoning,
such as lexical hyponymy and hypernymy (see
also Glockner et al. 2018), conjunction (see also
Toledo et al. 2012; Saha et al. 2020), and negation
(see also Hossain et al. 2020). REFERENCE con-
sists of pairs that require noun or event references
to be resolved (either within or between context
and hypothesis). TRICKY examples require either
complex linguistic knowledge, say of pragmatics
or syntactic verb argument structure, reorderings,
word games (e.g., anagrams, acrostic jokes), and
foreign language content (TRANSLATION).

REASONING examples require the application
of reasoning outside of what is provided in the ex-
ample alone; it is divided into three levels. The
first is PLAUSIBILITY, which was loosely inspired
by Bhagavatula et al. (2020); Chen et al. (2020),
for which the annotator provided their subjective
intuition on how likely the situation is to have
genuinely occurred (for example ‘when computer
games come out they are often buggy’ and ‘lead
actors get paid the most’ are likely). PLAUSIBIL-
ITY also contains DEBATABLE examples, which
depend on opinion or scalar adjectives like “big”
(e.g. a big mouse is “big” for a mouse, but not big
when compared to an elephant). The other two
FACTS and CONTAINMENT refer to external facts
about the world (e.g., ‘what year is it now?’) and
relationships between things (e.g., ‘Australia is in
the southern hemisphere’), respectively, that were
not clearly provided by the example pair itself.

There is also a catch-all class labeled IM-
PERFECTION that catches not only label “er-
rors” (i.e., rare cases of labels for which the
expert annotator(s) disagreed with the gold la-
bel from the crowdworker-annotator), but also
spelling mistakes (SPELLING), event corefer-

ence examples (EVENTCOREF11), and pairs that
could reasonably be given multiple correct labels
(AMBIGUOUS). The latter are likely uniquely sub-
ject to human variation in entailment labels, à
la Pavlick and Kwiatkowski (2019), Min et al.
(2020), Nie et al. (2020b), since people might vary
on which label they initially prefer, even though
multiple labels might be possible.

Exhaustive List of Tags. In the actual dataset,
tags at different levels are dash-separated, as in
REASONING-PLAUSIBILITY-LIKELY. These in-
clude: BASIC CAUSEEFFECT, BASIC COMPAR-
ATIVESUPERLATIVE, BASIC COORDINATION,
BASIC FACTS, BASIC IDIOMS, BASIC LEXI-
CAL DISSIMILAR, BASIC LEXICAL SIMILAR,
BASIC MODUS, BASIC NEGATION, EVENT-
COREF, IMPERFECTION AMBIGUITY, IMPER-
FECTION ERROR, IMPERFECTION NONNATIVE,
IMPERFECTION SPELLING, NUMERICAL CAR-
DINAL, NUMERICAL CARDINAL AGE, NU-
MERICAL CARDINAL COUNTING, NUMERI-
CAL CARDINAL DATES, NUMERICAL CARDI-
NAL NOMINAL, NUMERICAL CARDINAL NOM-
INAL AGE, NUMERICAL CARDINAL NOMI-
NAL DATES, NUMERICAL ORDINAL NUMER-
ICAL ORDINAL AGE, NUMERICAL ORDINAL

DATES, NUMERICAL ORDINAL NOMINAL, NU-
MERICAL ORDINAL NOMINAL DATES, REA-
SONING CAUSEEFFECT, REASONING CONTAIN-
MENT LOCATION, REASONING CONTAINMENT

PARTS, REASONING CONTAINMENT TIMES,
REASONING DEBATABLE, REASONING FACTS,
REASONING-PLAUSIBILITY LIKELY, REASON-
ING PLAUSIBILITY UNLIKELY, REFERENCE

COREFERENCE, REFERENCE FAMILY, REFER-
ENCE NAMES, TRICKY EXHAUSTIFICATION,
TRICKY PRAGMATIC, TRICKY SYNTACTIC,
TRICKY TRANSLATION, TRICKY WORDPLAY.

In addition to these tags, some top-level tags are
associated with a -0 flag; these are very rare (less
than 30 of these in the dataset). The zero-flag was
associated with examples that didn’t fall into any
lower level categories. Finally, for the purposes
of this paper, we collapsed two second-level tags
BASIC CAUSEEFFECT and BASIC MODUS12 into
BASIC-IMPLICATIONS because these types were
rare, we felt the two are related.

11SNLI and MNLI annotation guidelines required annota-
tors to assume event coreference.

12MODUS labeled classical inference types such as Modus
Ponens, Modus Tollens, etc.
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Tag Agreement (%) A1 # of Tags A2 # of Tags

REASONING 59.1% 176 226
BASIC 69.2% 122 128
REFERENCE 64.5% 88 136
NUMERICAL 88.6% 94 112
TRICKY 64.5% 89 105
IMPERFECTION 81.2% 44 56
EVENTCOREF 89.2% 11 29

REASONING-FACTS 54.8% 61 174
REFERENCE-COREFERENCE 66.2% 72 109
REASONING-PLAUSIBILITY 71.2% 104 70
BASIC-LEXICAL 73.9% 67 69
NUMERICAL-CARDINAL-DATES 92.9% 51 68
TRICKY-PRESUPPOSITION 74.9% 19 66
BASIC-NEGATION 94.3% 34 33
REFERENCE-NAMES 82.2% 22 45
NUMERICAL-CARDINAL 92.9% 23 38
BASIC-CONJUNCTION 87.9% 12 38
TRICKY-SYNTACTIC 88.2% 33 12
EVENTCOREF 89.2% 11 29
TRICKY-TRANSLATION 92.6% 15 23
TRICKY-EXHAUSTIFICATION 94.6% 22 14
IMPERFECTION-SPELLING 93.3% 15 15
REASONING-CONTAINMENT-LOCATION 96.6% 15 13
NUMERICAL-CARDINAL-AGE 98.6% 14 12
IMPERFECTION-NONNATIVE 94.3% 5 20
IMPERFECTION-LABEL 93.6% 8 17
IMPERFECTION-AMBIGUITY 93.9% 16 8
BASIC-COMPARATIVESUPERLATIVE 95.3% 17 5
REASONING-CONTAINMENT-TIME 94.3% 16 5
BASIC-CAUSEEFFECT 95.9% 8 12
NUMERICAL-ORDINAL 98.6% 9 9
NUMERICAL-CARDINAL-COUNTING 99.3% 7 9
NUMERICAL-CARDINAL-NOMINAL-DATES 95.3% 0 14
TRICKY-WORDPLAY 96.9% 8 5
NUMERICAL-CARDINAL-NOMINAL 96.3% 6 7
BASIC-IDIOM 96.3% 7 6
REFERENCE-FAMILY 99.3% 5 5
NUMERICAL-ORDINAL-DATES 97.9% 4 2
BASIC-0 98.3% 4 1
IMPERFECTION-0 98.9% 2 1
REASONING-CONTAINMENT-PARTS 99.6% 1 0
REASONING-0 99.6% 0 1

Aggregate 91.1% (avg) 713 (sum) 955 (sum)

Table 8: Interannotator agreement percentages (bold exceeded 90%) and tag counts for 300 randomly sampled
examples. Tags are sorted by the number of usages of that tag by either annotator.

More Examples from the Annotation Guide-
lines. Some tags required sophisticated linguis-
tic domain knowledge, so more the annotation
guidelines included more examples (some will
be provided here). For example, the TRICKY-
EXHAUSTIFICATION is wholly novel, i.e., not
adopted from, or similar to, any other semantic an-
notation scheme known to the authors. This tag
marks examples where the original crowdworker-
annotator assumed that only one predicate holds
of the topic, and that other predicates don’t. Of-
ten TRICKY-EXHAUSTIFICATION examples have
the word “only” in the hypothesis, but that’s only
a tendency: observe the context, Linguistics is
the scientific study of language, and involves an
analysis of language form, language meaning, and
language in context and the hypothesis Form and
meaning are the only aspects of language linguis-
tics is concerned with, which gets labeled as a con-

tradiction.13 For this example, the crowdworker-
annotator wrote a hypothesis that excludes one of
the core properties of linguistics provided in the
context and claims that the remaining two they list
are the only core linguistic properties.

To take another example, also a contradiction:
For the context, The Sound and the Fury is an
American drama film directed by James Franco. It
is the second film version of the novel of the same
name by William Faulkner and hypothesis Two
Chainz actually wrote The Sound and the Fury,
we have a TRICKY-EXHAUSTIFICATION tag. The
Gricean Maxims of Relation and Quantity (Grice,
1975) require the writer of the original context
to be maximally cooperative and informative, and
thus, to list all the authors of The Sound and Fury.
Since the context only listed Faulkner, we con-

13This example also receives BASIC-COORDINATION,
and BASIC-LEXICAL-SIMILAR for “involves” and “as-
pects”/“concerned with”.
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clude that the book only had one author, Faulkner,
and Two Chainz did not in fact (co-)author The
Sound and the Fury.14

As we mentioned above, any one example sen-
tence pair can receive multiple tags. An ex-
ample with a hypothesis George III comes af-
ter George II would receive tags REFERENCE-
NAMES (because we are comparing the names
of two individuals), and NUMERICAL-ORDINAL

(because we are comparing the roman numerals
for first and second). A pair with the context Sean
Patrick Hannity...is an American talk show host,
author, and conservative political commentator...
and the hypothesis Hannity has dated a liberal
would receive the tags BASIC-LEXICAL (because
of the relation between “conservative” and “lib-
eral”), REFERENCE-COREFERENCE, (because of
the coreference between “Sean Patrick Hannity”
and “Hannity”), and REASONING-UNLIKELY

(because it’s unlikely given world knowledge that
a liberal and a conservative commentator would
date, although it’s definitely possible).

The annotation guidelines also provided exam-
ples to aid in disentangling REFERENCE-NAMES

from REFERENCE-COREFERENCE, as they of-
ten appear together. REFERENCE-COREFERENCE

should be used when resolving reference between
non-string matched noun phrases (i.e. DPs) is nec-
essary to get the label: Mary Smithi was a pro-
lific author. Shei had a lot of published works by
2010.⇒Smithi published many works of litera-
ture. REFERENCE-NAMES is used when the label
is predicated on either (i) a discussion of names,
or (ii) resolving multiple names given to a per-
son, but the reference in the hypothesis is an ex-
act string match to one of the options: La Cygnei
(pronounced “luh SEEN”) is a city in the south
of France.⇒La Cygnei is in France. Some ex-
amples require both REFERENCE-COREFERENCE

and REFERENCE-NAMES tags: Mary Beauregard
Smith, the fourth grand Princess of Winchester
was a prolific author.⇒Princess Mary wrote a lot.

A.2 Inter-Annotator Agreement

Annotation guidelines for each tag were discussed
verbally between the two annotators during the
training of the second expert. The main expert an-
notator trained the second by first walking through
the annotation guidelines (i.e., Table 2), answering

14This pair also gets TRICKY-PRAGMATIC, and EVENT-
COREF and BASIC-LEXICAL-SIMILAR tags.

Average Top Level Tags
Precision Recall F1 Precision Recall F1

A1 0.55 0.42 0.44 0.59 0.73 0.61
A2 0.42 0.55 0.73 0.59

Table 9: Average Precision, Recall and F1 between our
two annotators on 300 randomly selected development
set examples. A1 was taken with the original annotator
as ground truth, A2 with the second expert. Recall that
X to Y precision is equivalent to Y to X recall.

any questions, and providing additional examples
taken from their experience as necessary. The sec-
ond expert then annotated 20 randomly sampled
examples from the R1 training set as practice.

The two annotators subsequently discussed
their selections on these training examples when
they differed. Of course, there is some subjec-
tivity inherent in this annotation scheme, which
crucially relies on expert opinions about what in-
formation in the premise or hypothesis could be
used to determine the correct label. After sat-
isfactorily coming to a conclusion (i.e., a con-
sensus for all 20 examples), the second annota-
tor was provided with another set of 20 randomly
sampled examples, this time from the R3 train-
ing set (to account for genre differences across
rounds), and again, discussion was repeated un-
til consensus was reached. Several further discus-
sions took place. Once both annotators were confi-
dent in the second expert annotator’s understand-
ing of the scheme, the secondary annotator was
provided with 3 random selections of 100 exam-
ples (one from each development set) as the final
set to calculate inter-annotator agreement from.
The second annotator was also provided with the
exhaustive tag list (above), which includes some
splits that subcategorize the tags from Table 2 even
further. The tags are visible in Table 8, along with
percent agreement for each tag.

To provide additional NLI-internal context for
our percent agreement results, we note that percent
agreement on both top and lower level tags ex-
ceeds the percent agreement of non-experts on the
task of NLI as reported in Bowman et al. (2015)
and Williams et al. (2018). Recall that performing
NLI is a subtask of our annotations (i.e., experts
must check the NLI label to determine if there was
an error and must also then tag contained phenom-
ena that contribute to the label decision).

Since our annotation scheme incorporated some
subjectivity—i.e., annotators tag phenomena they
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Our Scheme’s Tag Other Scheme’s Tag (Citation)

BASIC-NEGATION Negation (Naik et al., 2018; Hossain et al., 2020; Geiger et al., 2020)
BASIC-LEXICAL-DISSIMILAR Antonymy (Naik et al., 2018), Contrast (Bejar et al., 2012); Ch. 315

BASIC-LEXICAL-SIMILAR Overlap (Naik et al., 2018), Similar (Bejar et al., 2012); Ch. 3, hyponym/hypernym (Geiger et al., 2020), Lexical (Joshi et al., 2020)
BASIC-CAUSEEFFECT Cause-Purpose (Bejar et al., 2012); Ch. 3, cause (Sammons et al., 2010), Cause and Effect (LoBue and Yates, 2011)

BASIC-COORDINATION Conjoined Noun Phrases (Cooper et al., 1996), ConjNLI (Saha et al., 2020), “Connectives” (Joshi et al., 2020)
BASIC-COMPARATIVESUPERLATIVE Comparatives (Cooper et al., 1996), , “Connectives” (Joshi et al., 2020)

NUMERICAL numeric reasoning, numerical quantity (Sammons et al., 2010), Mathematical (Joshi et al., 2020)
NUMERICAL-CARDINAL cardinal (Ravichander et al., 2019)
NUMERICAL-ORDINAL ordinal (Ravichander et al., 2019)

REFERENCE-COREFERENCE Anaphora (Inter-Sentential, Intra-Sentential) (Cooper et al., 1996), coreference (Sammons et al., 2010)
REFERENCE-COREFERENCE with REFERENCE-NAMES Representation (Bejar et al., 2012); Ch. 3

REFERENCE-FAMILY parent-sibling, kinship (Sammons et al., 2010)
REFERENCE-NAMES name (Sammons et al., 2010)

REASONING-DEBATABLE Cultural/Situational (LoBue and Yates, 2011), Defeasible Inferences (Rudinger et al., 2020)
REASONING-PLAUSIBILITY-LIKELY Probabilistic Dependency (LoBue and Yates, 2011)
REASONING-CONTAINMENT-TIMES Temporal Adverbials (Cooper et al., 1996), Space-Time (Bejar et al., 2012); Ch. 3, event chain, temporal (Sammons et al., 2010)

REASONING-CONTAINMENT-LOCATION spatial reasoning (Sammons et al., 2010), Geometry (LoBue and Yates, 2011)
REASONING-CONTAINMENT-PARTS Part-Whole, Class-Inclusions (Bejar et al., 2012); Ch. 3, has-parts (LoBue and Yates, 2011)

REASONING-FACTS Real World Knowledge (Naik et al., 2018; Clark, 2018; Bernardy and Chatzikyriakidis, 2019)
TRICKY-SYNTACTIC passive-active, missing argument, missing relation, simple rewrite, (Sammons et al., 2010)

IMPERFECTIONS-AMBIGUITY Ambiguity (Naik et al., 2018)

Table 10: Comparisons between our tagset and tags from other annotation schemes.

believe a human would use to provide the NLI la-
bel for the example—annotators are likely to have
different blindspots. Descriptively, annotators dif-
fered slightly in the number of tags they assign on
average: the original annotator assigns fewer tags
per example (Mean = 2.25, Std. = 1.01) than
the second expert (Mean = 3.02, Std. = 1.45).
The number of tags in the intersection of the two
was predictably lower (Mean = 1.20, Std.= 0.85)
than either annotator’s average or the union (Mean
= 4.07, Std. = 1.55).

In addition to agreement percentages that are
reported in Table 8, we report average preci-
sion, recall, and F1 (a weighted average of the
two) for our annotations in Table 9.16 For per-
centages, we note that agreement was generally
higher for rarer tags. The most frequent top-
level tag, REASONING, had the lowest agreement,
perhaps due to disagreements in REASONING-
FACTS, where the subjectivity of decisions likely
drove down agreement. Subjectivity might be ex-
pected for REASONING-PLAUSIBILITY examples
as well, because it is hard to be sure whether a
particular fact is necessary for the label (partic-
ular in the case of REASONING-PLAUSIBILITY-
DEBATABLE. REASONING-PLAUSIBILITY also
showed some disagreement, as people differ
whether they feel compelled to note that the likeli-
hood of a context is relevant for the label decision.
Finally, we note that frequent lower level tags
NUMERICAL-CARDINAL(-DATES) and BASIC-
NEGATION had the highest agreement.

Although we report accuracy (i.e., percentage
16For all statistics that aggregate tag results, we did not

include Imperfection tags, as imperfections can be difficult
to spot and annotator differences for these tags typically only
represent whether an annotator noticed a mistake when the
other did not.

agreement), F1 is usually more useful than accu-
racy, especially if you have an uneven class dis-
tribution (as we do). For this reason, we addi-
tionally report F1, precision and recall between
the two annotators (reporting statistics twice, once
with each annotator taken to be ground truth). Pre-
cision, recall and F1 are all fairly high (recall that
these three measures are upper bounded by 1), but
are higher for top level tags than for the average
of all tags. We believe this is an acceptable level
of agreement, especially given the difficulty of the
task and the fact that tags vary in how subjective
their decisions are.

A.3 Direct Comparisons to other Annotation
Schemes

Our scheme derives its inspiration from the wealth
of prior work on types of sentential inference
both within and from outside NLP—Cooper et al.
(1996); Sammons et al. (2010); LoBue and Yates
(2011); Jurgens et al. (2012); Jia and Liang (2017);
White et al. (2017); Naik et al. (2018); Nie et al.
(2019); Kim and Linzen (2020); Yu and Ettinger
(2020); White et al. (2020), i.a. When one im-
plements an annotation scheme, one must decide
on the level of depth one wants to achieve. On
the one hand, a small number of tags can allow
for easy annotation (by non-experts or even auto-
matically), whereas on the other, a more compli-
cated and complete annotation scheme (like, e.g.,
Cooper et al. 1996; Bejar et al. 2012) can allow for
a better understanding of the full range of possible
phenomena that might be relevant. (Note: for con-
textualization, our tags are greater in tag number
than Naik et al. (2018) but smaller and more man-
ageable than Cooper et al. 1996 and Bejar et al.
2012). We wanted annotations that allow for an
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evaluation of model behavior on a phenomenon-
by-phenomenon basis, in the spirit of Weston et al.
(2016); Wang et al. (2018); Jeretic et al. (2020)—
but unlike Jia and Liang (2017). We also wanted to
be able to detect interactions between phenomena
(Sammons et al., 2010). Thus, we implemented
our hierarchical scheme (for flexible tag-set size)
in a way that could provide all these desiderata.

Table 10 provides a by-tag comparison between
our annotation scheme and several others. Only
direct comparisons are listed in the table; in other
cases, our scheme had two tags where another
scheme had one, or vice versa. Some of these ex-
amples are listed below, by the particular inference
types for each annotation scheme.

Several labels from Naik et al. (2018)’s annota-
tion scheme concur with ours, but ours has much
wider coverage. In fact, it is a near proper superset
of their scheme. Both taxonomies have a NEGA-
TION tag, an AMBIGUITY tag, a REAL WORLD

KNOWLEDGE—which for us is REASONING-
FACTS, and a ANONYMY tag—which for us
is BASIC-LEXICAL-DISSIMILAR. Additionally,
both annotation schemes have a tag for numeri-
cal reasoning. We didn’t include “word overlap”
as that is easily automatable and would thus be an
inappropriate use of limited hand-annotation time.
Instead, we include a more flexible/complex no-
tion of overlap in our BASIC-LEXICAL-SIMILAR

tag, which accounts not only for synonyms, but
also for phrase level paraphrases.

Our scheme can handle nearly all of the infer-
ence types in Sammons et al. (2010). For example,
their ‘numerical reasoning’ tag maps onto a com-
bination of NUMERICAL tags and REASONING-
FACTSfor us to account for external mathemat-
ical knowledge. A combination of their ‘kin-
ship’ and ‘parent-sibling’ tags is present in our
REFERENCE-FAMILY tag. One important differ-
ence between our approach and theirs is that we
do not separate negative and positive occurrences
of phenomena; both would appear under the same
tag for us. One could imagine performing a further
round of annotation on the ANLI data to separate
positive from negative as Sammons et al. does.

Several of the intuitions of the LoBue and
Yates (2011) taxonomy are present in our scheme.
For example, their ‘arithmetic’ tag roughly cor-
responds to a combination of our NUMERICAL-
CARDINAL and REASONING-FACTS (i.e., for
mathematical reasoning). Examples labeled

with their “preconditions” tag would receive our
TRICKY-PRAGMATIC tag. Interestingly, our
TRICKY-EXHAUSTIFICATION tag seems to be a
combination of their ‘mutual exclusivity’, ‘omni-
science’ and ‘functionality’ tags. Other relation-
ships between our tags and theirs are in Table 10.

Many of our numerical reasoning types were in-
spired by Ravichander et al. (2019), which showed
that many NLI systems perform very poorly on
many types of numerical reasoning. In addi-
tion to including cardinal and ordinal tags, as
they do, we take their ideas one step further and
also tag numerical examples where the numbers
are not merely playing canonical roles as degrees
of measure (e.g., NUMERICAL-NOMINAL and
NUMERICAL-COUNTING). We also expand on
their basic numerical types by specifying whether
a number refers to a date or an age. For any of
their examples requiring numerical reasoning, we
would assign NUMERICAL as a top level tag, as
well as a REASONING-FACTS tag, as we described
in the paragraph above. A similar set of tags
would be present for their “lexical inference” ex-
amples where, e.g., it is necessary to know that ‘m’
refers to ‘meters’ when it follows a number; in this
case, we would additionally include a TRICKY-
WORDPLAY tag.

The annotation tagset of Poliak et al. (2018a)
overlaps with ours in a few tags. For exam-
ple, their ‘pun’ tag is a proper subset of our
TRICKY-WORDPLAY tag. Their ‘NER’ and ‘Gen-
dered Anaphora’ fall under our REFERENCE-
COREFERENCE and REFERENCE-NAMES tags.
Their recasting of the MegaVeridicality dataset
(White and Rawlins, 2018) would have some over-
lap with our TRICKY-PRAGMATIC tag, for ex-
ample, for the factive pair Someone knew some-
thing happened. ⇒ something happened.. Sim-
ilarly, their examples recast from Schuler (2005,
VerbNet) would likely recieve our TRICKY-
SYNTACTIC tag for argument structure alterna-
tion, in at least some cases.

Rozen et al. (2019)’s tagset also has some
overlap with ours, although none directly.
They present two automatically generated
datasets: one targets comparative reasoning about
numbers—i.e., corresponding to a combination
of our NUMERICAL-CARDINAL and BASIC-
COMPARATIVESUPERLATIVE tags—and the
other targets dative-alternation—which, like (Po-
liak et al., 2018a)’s recasting of VerbNet, would
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Dataset Contexts Statements
WordLen. Sent.Len. WordLen. Sent.Len.

ANLI

All 4.98 (0.60) 55.6 (13.7) 4.78 (0.76) 10.3 (5.28)
A1 5.09 (0.69) 54.1 (8.35) 4.91 (0.74) 11.0 (5.36)
A2 5.09 (0.47) 54.2 (8.24) 4.80 (0.77) 10.1 (4.95)
A3 4.73 (0.50) 59.2 (21.5) 4.59 (0.76) 9.5 (5.38)
C 5.00 (0.79) 55.8 (13.8) 4.76 (0.73) 11.4 (6.51)
N 4.97 (0.47) 55.4 (13.8) 4.83 (0.78) 9.4 (4.49)
E 5.00 (0.49) 55.7 (13.6) 4.75 (0.78) 10.3 (4.44)

MNLI

All 4.90 (0.97) 19.5 (13.6) 4.82 (0.90) 10.4 (4.43)
M 4.88 (1.10) 19.3 (14.2) 4.78 (0.92) 9.9 (4.28)

MM 4.93 (0.87) 19.7 (13.0) 4.86 (0.89) 10.8 (4.53)
C 4.90 (0.97) 19.4 (13.6) 4.79 (0.90) 9.7 (3.99)
N 4.90 (0.98) 19.4 (13.8) 4.79 (0.85) 10.9 (4.46)
E 4.91 (0.96) 19.6 (13.5) 4.86 (0.95) 10.4 (4.71)

SNLI

All 4.31 (0.65) 14.0 (6.32) 4.23 (0.75) 7.5 (3.14)
C 4.31 (0.64) 14.0 (6.35) 4.16 (0.71) 7.4 (2.90)
N 4.31 (0.66) 13.8 (6.28) 4.26 (0.72) 8.3 (3.36)
E 4.31 (0.64) 14.0 (6.31) 4.26 (0.81) 6.8 (2.90)

Table 11: Average length of words and sentences in
contexts, statements, and reasons for ANLI, MultiNLI,
SNLI. Average and (standard deviation).

probably correspond to our TRICKY-SYNTACTIC.

White et al. (2017) uses pre-existing seman-
tic annotations to create an RTE/NLI formatted
dataset. Their approach has several strong ben-
efits, not the least of which is its use of min-
imal pairs to generate examples that can pin-
point exact failure points. For the first of our
goals—understanding the contents of ANLI in
particular—it would be interesting to have such
annotations, and this could be a potentially fruit-
ful future direction for research. But for the
other—understanding current model performance
on ANLI—it is not immediately clear to us that
annotating ANLI for lexical semantic properties
of predicates and their arguments (e.g., volition,
awareness, and change of state) would help. In the
end, it is an empirical question for future work.

From the above pairwise comparisons between
existing annotation schemes (or data creation
schemes), it should be clear there are many shared
intuitions and many works are attempting to cap-
ture similar phenomena. We believe our tags
thread the needle in a way that incorporates the
best parts of the older annotation schemes while
also innovating new phenomena and ways to view
phenomena in relation to each other. In particular,
very few of the schemes cited above arrange low
level phenomena into a comprehensive multilevel
hierarchy. This is one of the main benefits of our
scheme. Our hierarchy allows us to compare mod-
els at multiple levels, and hopefully, as our mod-
els improve, it can allow us to explore transfer be-
tween different reasoning types.

Dataset WordLen. Sent.Len. Count

All 4.54 (0.69) 21.05 (13.63) 3200

R1 4.57 (0.65) 22.40 (13.80) 1000
R2 4.51 (0.71) 20.14 (12.96) 1000
R3 4.55 (0.70) 20.81 (14.11) 1200

C 4.53 (0.70) 19.46 (12.64) 1062
N 4.52 (0.64) 23.81 (15.05) 1066
E 4.58 (0.72) 19.87 (12.66) 1070

Numerical 4.44 (0.65) 21.79 (13.21) 1036
Basic 4.63 (0.69) 21.31 (13.92) 1327

Reference 4.53 (0.70) 20.04 (13.01) 868
Tricky 4.56 (0.71) 20.58 (13.22) 893

Reasoning 4.52 (0.66) 21.82 (14.08) 1197
Imperfection 4.53 (0.71) 19.26 (13.06) 452

Table 12: Average length of words and sentences in
rationales for ANLI. Average and (standard deviation).

B Dataset Properties

To further describe the ANLI dataset, we mea-
sure the length of words and sentences across all
rounds and across all gold labels. We compare
ANLI to SNLI and MNLI in Table 11. We also re-
port length of rationales in Table 12. As the tables
show, the statistics across classification labels are
roughly the same within each dataset. It is easy to
see that ANLI contains much longer contexts than
both MNLI and SNLI. Overall, ANLI and MNLI
appear more similar in statistics to each other than
to SNLI, having have longer statements and longer
words.

We analyzed the top 25 most frequent words
(with stopwords removed based on the NLTK17

stopword list) in development set contexts, state-
ments, and rationales. We investigate frequent
words for the entire dataset, by round, and by
gold label (see Table 23), and by top-level an-
notation tag (see Table 24). The most frequent
words in contexts reflect the domains of the orig-
inal text. Since Wikipedia contexts were the most
frequent in ANLI, words from Wikipedia includ-
ing, for example ‘film’, ‘album’, ‘directed’, ‘foot-
ball’, ‘band’, ‘television’ predictably figure promi-
nently. References to nations, such as ‘american’,
‘state’, and ‘national’ are also common—perhaps
reflecting a North American bias in the dataset.

Statements written by crowdworkers show a
preference instead for terms like ‘born’, ‘died’,
and ‘people’, suggesting again, that Wikipedia
contexts, consisting largely of biographies, have
a specific genre effect on constructed statements.

17https://www.nltk.org/
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Model A1 A2 A3 ANLI hyperparameters

BERT (R1) 0 28 32 21 24-layer, 1024-hidden, 16-heads, 335M param.
RoBERTa (R2) Ens. 67 18 22 35 24-layer, 1024-hidden, 16-heads, 355M param.
RoBERTa (R3) Ens. 72 45 20 44 24-layer, 1024-hidden, 16-heads, 355M param.
RoBERTa-Large 74 51 46 56 24-layer, 1024-hidden, 16-heads, 355M param.
BART-Large 74 52 50 58 24-layer, 1024-hidden, 16-heads, 406M param.
XLNet-Large 74 52 51 58 24-layer, 1024-hidden, 16-heads, 340M param.
ELECTRA-Large 67 54 55 58 24-layer, 1024-hidden, 16-heads, 335M param.
ALBERT-XXLarge 76 57 57 63 12 repeating layer, 4096-hidden, 64-heads, 223M param.

Table 13: Accuracy for each model on the ANLI De-
velopment Sets (highest accuracy is bolded). Hyper-
parameters also provided. ‘Ens.’ refers to one model
randomly selected from an ensemble of different seeds

Several examples appear in the top 25 most fre-
quent words for both statements and contexts,
including ‘film’, ‘american’, ‘one’, ‘two’, ‘not’,
‘first’, ‘new’, ‘played’, ‘album’, and ‘city’. In
particular, words such as ‘one’, ‘first’, ‘new’, and
‘best’ in contexts appear to be opposed by (near)
antonyms such as ‘two’, ‘last’, ‘old’, ‘least’, and
‘less’ in statements. This suggests the words
present in a context might affect how crowdwork-
ers construct statements, potentially suggesting
some lexical confounds in ANLI. Finally, we ob-
serve that the top 25 most frequent words in con-
texts are used roughly 3 times as often as the top
25 most frequent words in statements. This sug-
gests that statements have wider and more varied
vocabulary than contexts do.

B.1 Analyzing Annotator Rationales

We observe that the most frequent words in ratio-
nales differ from those in contexts and statements.
The original annotators often use ‘statement’ and
‘context’ in their rationales to refer to example
pairs, as well as ‘system’ to refer to the model; this
last term is likely due to the fact that the name of
the Mechanical Turk task used to employ crowd-
workers in the original data collection was called
“Beat the System” (Nie et al., 2020a, App. E). The
set of most frequent words in rationales also con-
tains, predictably, references to the model perfor-
mance (e.g., ‘correct’, ‘incorrect’), and to speech
act verbs (e.g., ‘says’, ‘states’).

Interestingly, there is a higher number of verbs
in the rationales denoting mental states (e.g.,
‘think’, ‘know’, ‘confused’), which suggests that
the annotators could be ascribing theory of mind
to the system, or at least using mental-state terms
metaphorically—which could be due to the Nie
et al. (2020a) data collection procedure that en-
courages crowdworkers to think of the model as
an adversary. Rationales also contain more modals
(e.g., ‘probably’, ‘may’, ‘could’), which are often
used to mark uncertainty, suggesting that the an-

notators are aware of the fact that their rationales
might be biased by their human expectations. Fi-
nally, we note that the top 25 most frequent words
used in rationales are much more common than
are the top 25 most frequent words in contexts (by
roughly two times) or in statements (by roughly
5-6 times). This suggests that vocabulary used
for writing rationales is smaller than that in the
contexts (from domains such as Wikipedia), and
crowdworker annotated statements.

C Tag Breakdowns

Table 15 shows a breakdown of second-level tag
incidence by top-level tag.

D Development Set Accuracies for
8 Transformer Models

Table 13 shows development set accuracies for all
transformer models, by round. ANLI is still quite
challenging, with even SOTA models barely ex-
ceeding 50% accuracy (although remember that
the development set is approximately balanced 3-
way classification, so we are beating random base-
line). The ALBERT-XXLarge model achieves
the highest accuracy on the full development set,
reaching approximately 63% correct. On A1, the
accuracy between the ALBERT-XXLarge and the
other SOTA models hovers around two points, ex-
tending to 5–6 percentage points on A2, and 6–11
points on A3; the gap between ALBERT-XXLarge
and the other SOTA models on the full ANLI de-
velopment set hovers between 5 and 7 points.

E Model Predictions Breakdown by Tag

Model predictions by specific tags are in Ta-
ble 16 (BASIC), Table 17 (NUMERICAL), Table 18
(REASONING), Table 19 (REFERENCE), Table 20
(TRICKY), Table 21 (IMPERFECTIONS).

For NUMERICAL, COUNTING is the hardest,
which makes sense given that COUNTING exam-
ples are relatively rare, and require that one actu-
ally counts phrases in the text, which is a metalin-
guistic skill. ORDINAL is the next most difficult
category, perhaps because, like COUNTING exam-
ples, ORDINAL examples are relatively rare.18 For

18Additionally, it seems difficult for models to bootstrap
their CARDINAL number knowledge for ORDINAL numbers.
One might hope that a model could bootstrap its knowledge
of the order of cardinal numbers (e.g., that one comes before
two and three) to perform well on their corresponding ordi-
nals, However, numerical order information doesn’t seem to
be generally applied in these models. Perhaps this is because
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BASIC, IMPLICATION, IDIOM and NEGATION

were more difficult than LEXICAL, COMPARA-
TIVE & SUPERLATIVE and COORDINATION. For
REFERENCE, there is a lot of variation in the
behavior of different models, particularly for the
NAMES examples, although also for COREFER-
ENCE examples, making it difficult to determine
which is more difficult. Finally, for TRICKY ex-
amples, WORDPLAY examples the most difficult,
again because these require complex metalinguis-
tic abilities (i.e., word games, puns, and ana-
grams), but they are followed closely by EXHAUS-
TIFICATION examples, which require a complex
type of pragmatic reasoning.19

F Model Predictions Breakdown by
Domain

Table 22 shows the breakdown by genre.
Wikipedia results correspond with the overall
dataset: ALBERT-XXLarge performs the best
on everything except TRICKY (where XLNET-
LARGE performs best. ALBERT-XXLarge per-
forms best nearly across the board on pro-
cedural text (being narrowly edged out by
ELECTRA-Large on REASONING) and fiction
(where ELECTRA-Large performs best on REF-
ERENCE, and where BART-Large and ELECTRA-
Large jointly take top slot for TRICKY). Fi-
nally, the news genre has the most variation:
ALBERT-XXLarge still performs well on BASIC,
TRICKY, REASONING tags, although ELECTRA-
Large narrowly beats it on NUMERICAL; XLNet-
Large beats out all others on REFERENCE in the
news genre by 3+ points.

We aim to characterize relative performance
between the models and note variation between
model performances on different genres. For ex-
ample, BART and RoBERTa struggle with fic-
tion (except for on the TRICKY tag). For ex-
ample, ELECTRA-Large performs quite well on
NUMERICAL examples from the Wikipedia, news,
and procedural datasets, but poorly on NUMER-
ICAL examples from Fiction. Similary BART-
LARGE performs well on TRICKY examples from
Wikipedia, fiction, and news, but struggles with
TRICKY examples in procedural text. To give a fi-

many common ordinal numbers in English are not morpho-
logically composed of their cardinal counterparts (e.g., one
and first, two and second.

19See Chierchia et al. (2004) for a summary of the linguis-
tic theory on exhaustification, although we adopt a wider def-
inition of the phenomenon for the tag here as in Table 14.

nal example, RoBERTa-Large and XLNet-Large
do well on REFERENCE examples in procedu-
ral text and Wikipediate to some extent (and, for
XLNet-Large, also news text), but they struggle
with fiction (and, for RoBERTa-Large, also news).
Since models do not perform similarly on par-
ticular tags across genres, we suggest they have
not learned fully generalizable knowledge corre-
sponding to these tag types.20

20Although we analyze examples in the aggregate to ab-
stract away from particular example idiosyncrasies, remem-
ber that examples can be tagged with any number of other
inference types and may vary in many other features (e.g.,
length, vocabulary etc.), so they are not strictly comparable,
and more work needs to be done to bolster these conclusions.
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Top
Level

Second
Level

Third
Level

Context Hypothesis Round Label Other Tags

Num.

Cardinal Dates Otryadyn Gündegmaa (. . . born 23 May 1978), is a Mongo-
lian sports shooter. . . .

Otryadyn Gündegmaa was
born on May 23rd

A1 E (N) Ordinal, Dates

Ages . . . John Fox probably won’t roam an NFL sideline
again. . . the 63-year-old Fox will now move into an analyst
role. . .

John Fox is under 60 years
old.

A3 C (E) Ref., Coref.

Ordinal Dates Black Robe. . . is a historical novel by Brian Moore set in
New France in the 17th century. . .

Black Robe is a novel set in
New France in the mid 1600s

A2 N (E) Reasoning, Plaus.,
Likely, Cardinal

Ages John Barnard (6 July 1794 at Chislehurst, Kent; died 17
November 1878 at Cambridge, England) was an English
amateur cricketer who played first-class cricket from 1815
to 1830. M. . .

John Barnard died before his
fifth birthday.

A1 C (N) Cardinal, Dates, Rea-
soning, Facts

Counting . . . The Demand Institute was founded in 2012 by Mark
Leiter and Jonathan Spector. . .

The Demand Institute was
founded by two men.

A2 E (N) Ref., Names

Nominal Raúl Alberto Osella (born 8 June 1984 in Morteros) is an
Argentine association footballer . . . He played FIFA U-17
World Cup Final for Argentina national team in 2001. . . .

Raul Alberto Osella no longer
plays for the FIFA U-17 Ar-
gentina team.

A2 E (N) Reasoning, Facts,
Tricky, Exhaust.,
Cardinal, Age, Dates

Basic

Lexical . . . The dating app Hater, which matches users based on
the things they hate, has compiled all of their data to create
a map of the foods everyone hates. . .

Hater is an app designed for
foodies in relationships.

A3 C (N)

Comp.&
Super.

. . . try to hit your shot onto the upslope because they are eas-
ier putts to make opposed to downhill putts.

Upslope putts are simple to
do

A3 N (E)

Implic. [DANIDA]. . . provides humanitarian aid . . . to developing
countries. . .

Focusing on developing
countries, DANIDA hopes to
improve citizens of different
countries lives.

A2 E (N)

Idioms . . . he set to work to hunt for his dear money. . . he found
nothing; all had been spent. . .

The money got up and
walked away.

A3 N (C) Reasoning, Plaus.,
Unlikely

Negation Bernardo Provenzano . . . was suspected of having been the
head of the Corleonesi . . .

It was never confirmed that
Bernardo Provenzano was
the leader of the Corleonesi.

A2 E (N) Tricky, Prag.

Coord. . . . Dan went home and started cooking a steak. However,
Dan accidentally burned the steak. . . .

The steak was cooked for too
long or on too high a tem-
perature.

A3 E (N) Basic, Lexical, Tricky,
Prag.

Ref.
Coref. . . . Tim was a tutor. . . . His latest student really pushed him,

though. Tim could not get through to him. He had to give
up. . .

Tim gave up on her eventu-
ally.

A3 C (E)

Names Never Shout Never is an EP by Never Shout Never which
was released December 8, 2009.. . .

Never Shout Never has a self
titled EP.

A1 E (N)

Family Sir Hugh Montgomery . . . was the son of Adam Mont-
gomery, the 5th Laird of Braidstane, by his wife and cousin.

Sir Hugh Montgomery had at
least one sibling.

A2 N (E) Reasoning, Plaus.,
Likely

Tricky

Syntactic Gunby. . . is situated close to the borders with Leicester-
shire and Rutland, and 9 mi south from Grantham. . .

Gunby borders Rutland an
Grantham.

A1 C (E) Imperfect., Spelling

Prag. . . . Singh won the award for Women Leadership in Indus-
try. . .

. . . Singh won many awards
for Women in Leadership in
Industry.

A3 C (N)

Exhaust. Linguistics . . . involves an analysis of language form, lan-
guage meaning, and language in context. . . .

Form and meaning are the
only aspects of language lin-
guistics is concerned with.

A1 C (N)

Wordplay . . . Brock Lesnar and Braun Strowman will both be under
. . . on Raw. . .

Raw is not an anagram of
war

A3 C (E)

Reasoning

Plaus.
Likely B. Dalton Bookseller. . . founded in 1966 by Bruce Day-

ton, a member of the same family that operated the Dayton’s
department store chain. . .

Bruce Dayton founded the
Dayton’s department store
chain.

A1 C (E) Ref., Names

Unlikely The Disenchanted Forest is a 1999 documentary film that
follows endangered orphan orangutans . . . returned to their
rainforest home. . . .

The Disenchanted Forest is
. . . about orangutans trying
to learn how to fly by build-
ing their own planes. . .

A2 C (N) Reasoning, Facts

Debatable The Hitchhiker’s Guide to the Galaxy is a 2005 British-
American comic science fiction film. . .

Hitchhiker’s Guide to the
Galaxy is a humorous film.

A1 N (E) Basic, Lexical

Facts . . . [Joey] decided to make [his mom] pretend tea. He got
some hot water from the tap and mixed in the herb. But to
his shock, his mom really drank the tea! She said the herb
he’d picked was chamomile, a delicious tea!

Joey knew how to make
chamomile tea.

A3 C (E)

Contain.
Parts Milky Way Farm in Giles County, Tennessee, is the former

estate of Franklin C. Mars . . . its manor house is now a
venue for special events.

The barn is occassionaly
staged for photo shoots.

A1 N (C) Plaus., Unlikely, Im-
perfect., Spelling

Loc. Latin Jam Workout is a Latin Dance Fitness Pro-
gram. . . [f]ounded in 2007 in Los Angeles, California,
Latin Jam Workout combines . . . music with dance. . .

Latin Jam Workout was not
created in a latin american
country

A2 E (C) Basic, Negation

Times Forbidden Heaven is a 1935 American drama
film. . . released on October 5, 1935 . . .

Forbidden Heaven is . . . film
released in the same month
as the holiday Halloween.

A1 Facts

Imperfect.

Error Albert Levitt (March 14, 1887 – June 18, 1968) was a judge,
law professor, attorney, and candidate for political office. . . .

Albert Levitt . . . held several
positions in the legal field dur-
ing his life, (which ended in
the summer of 1978). . .

A2 N (C) Num., Cardinal, Dates

Ambig. Diablo is a 2015 Canadian-American psychological western
. . . starring Scott Eastwood. . . It was the first Western star-
ring Eastwood, the son of Western icon Clint Eastwood.

It was the last western starring
Eastwood

A2 C (N) Ref., Coref., Label,
Basic, Comp.&Sup.,
Lexical, Num., Ordi-
nal, Family

Spelling “Call My Name” is a song recorded by Pietro Lombardi
from his first studio album “Jackpot”. . . It was written and
produced by “DSDS” jury member Dieter Bohlen. . . .

“Call my Name” was writ-
ten and recorded by Pier-
rot Lombardi for his album
”Jackpot”.

A1 C (E) Tricky, Syntactic, Im-
perfect., Spelling

Translat. Club Deportivo Dénia is a Spanish football team. . . it plays
in Divisiones Regionales de Fútbol . . . holding home games
at “Estadio Diego Mena Cuesta”,. . .

Club Deportivo Dénia
plays in the Spanish vil-
lage “Estadio Diego Mena
Cuesta”.

A2 C (E) Tricky, Syntactic

Table 14: Examples from the full scheme.
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Round Overall Cardinal Ordinal Counting Nominal Dates Age

Numerical

A1 40.8% 37.8% 6.2% 1.9% 4.2% 27.4% 5.9%
A2 38.5% 34.7% 6.7% 2.8% 3.5% 24.3% 6.7%
A3 20.3% 18.6% 2.8% 2.3% 0.4% 7.1% 3.2%
All 32.4% 29.6% 5.1% 2.3% 2.6% 18.8% 5.1%

Round Overall Lexical Compr. Supr. Implic. Idioms Negation Coord.

Basic

A1 31.4% 16.0% 5.3% 1.5% 0.3% 5.6% 5.5%
A2 41.2% 20.2% 7.6% 2.4% 1.7% 9.8% 4.5%
A3 50.2% 26.4% 4.9% 4.2% 2.2% 15.8% 6.1%
All 41.5% 21.2% 5.9% 2.8% 1.4% 10.7% 5.4%

Round Overall Coreference Names Family

Ref. & Names

A1 24.5% 15.8% 12.5% 1.0%
A2 29.4% 22.7% 11.2% 1.7%
A3 27.5% 25.5% 1.9% 1.3%
All 27.1% 21.6% 8.1% 1.3%

Round Overall Syntactic Prag. Exhaustif. Wordplay

Tricky

A1 29.5% 14.5% 4.7% 5.5% 2.0%
A2 29.1% 8.0% 2.8% 8.6% 5.7%
A3 25.6% 9.3% 6.7% 4.8% 5.5%
All 27.9% 10.5% 4.8% 6.2% 4.5%

Round Overall Likely Unlikely Debatable Facts Containment

Reasoning

A1 58.4% 25.7% 6.2% 3.1% 19.6% 11.0%
A2 62.7% 23.9% 6.9% 6.5% 25.6% 10.3%
A3 63.9% 22.7% 10.9% 10.8% 26.5% 5.3%
All 61.8% 24.0% 8.2% 7.0% 24.0% 8.7%

Round Overall Error Ambiguous EventCoref Translation Spelling

Imperfections

A1 12.4% 3.3% 2.8% 0.9% 5.7% 5.8%
A2 13.5% 2.5% 4.0% 3.4% 6.2% 6.5%
A3 16.1% 2.2% 7.6% 1.9% 0.8% 5.5%
All 14.1% 2.6% 5.0% 2.1% 4.0% 5.9%

Table 15: Percent examples in development set with particular tag, per round, on average.

BASIC
Round Model Basic Lexical Comp.Sup. ModusPonens CauseEffect Idiom Negation Coordination

A1

BERT (R1) 0.11 (0.56) 0.12 (0.59) 0.13 (0.66) 0.07 (0.31) 0.15 (0.55) 0.01 (0.45) 0.07 (0.40) 0.10 (0.52)
RoBERTa Ensemble (R2) 0.69 (0.15) 0.73 (0.14) 0.63 (0.24) 0.43 (0.06) 0.75 (0.02) 0.35 (0.12) 0.66 (0.17) 0.67 (0.13)
RoBERTa Ensemble (R3) 0.72 (0.08) 0.78 (0.08) 0.72 (0.15) 0.32 (0.19) 0.75 (0.01) 0.67 (0.02) 0.67 (0.06) 0.65 (0.08)

RoBERTa-Large 0.76 (0.10) 0.80 (0.12) 0.82 (0.11) 0.56 (0.08) 0.67 (0.20) 0.66 (0.02) 0.71 (0.11) 0.74 (0.06)
BART-Large 0.72 (0.07) 0.76 (0.07) 0.68 (0.08) 0.29 (0.01) 0.75 (0.00) 0.67 (0.00) 0.65 (0.07) 0.76 (0.11)

XLNet-Large 0.75 (0.09) 0.78 (0.09) 0.77 (0.13) 0.23 (0.35) 0.75 (0.00) 0.66 (0.02) 0.64 (0.11) 0.76 (0.03)
ELECTRA-Large 0.68 (0.34) 0.71 (0.34) 0.71 (0.23) 0.39 (0.42) 0.60 (0.20) 0.31 (0.66) 0.61 (0.33) 0.65 (0.43)

ALBERT-XXLarge 0.76 (0.20) 0.80 (0.19) 0.78 (0.24) 0.31 (0.46) 0.64 (0.15) 0.67 (0.02) 0.63 (0.21) 0.77 (0.14)

A2

BERT (R1) 0.29 (0.44) 0.31 (0.46) 0.31 (0.56) 0.24 (0.31) 0.29 (0.40) 0.35 (0.44) 0.24 (0.41) 0.20 (0.38)
RoBERTa Ensemble (R2) 0.20 (0.25) 0.24 (0.23) 0.19 (0.33) 0.33 (0.32) 0.21 (0.35) 0.19 (0.21) 0.17 (0.26) 0.15 (0.29)
RoBERTa Ensemble (R3) 0.41 (0.14) 0.43 (0.15) 0.49 (0.16) 0.55 (0.18) 0.15 (0.17) 0.28 (0.10) 0.42 (0.09) 0.41 (0.21)

RoBERTa-Large 0.47 (0.17) 0.47 (0.17) 0.49 (0.23) 0.99 (0.07) 0.30 (0.23) 0.37 (0.10) 0.55 (0.12) 0.48 (0.15)
BART-Large 0.48 (0.14) 0.55 (0.14) 0.48 (0.18) 0.40 (0.00) 0.23 (0.06) 0.43 (0.21) 0.48 (0.16) 0.44 (0.09)

XLNet-Large 0.53 (0.13) 0.54 (0.13) 0.51 (0.13) 0.80 (0.02) 0.39 (0.17) 0.53 (0.02) 0.56 (0.18) 0.51 (0.09)
ELECTRA-Large 0.52 (0.40) 0.54 (0.46) 0.46 (0.41) 0.47 (0.52) 0.38 (0.42) 0.53 (0.28) 0.56 (0.40) 0.56 (0.26)

ALBERT-XXLarge 0.58 (0.28) 0.61 (0.28) 0.53 (0.31) 0.80 (0.04) 0.48 (0.50) 0.60 (0.31) 0.64 (0.22) 0.50 (0.21)

A3

BERT (R1) 0.32 (0.50) 0.33 (0.51) 0.36 (0.59) 0.29 (0.72) 0.25 (0.57) 0.22 (0.47) 0.32 (0.46) 0.34 (0.50)
RoBERTa Ensemble (R2) 0.26 (0.57) 0.26 (0.57) 0.29 (0.55) 0.25 (0.81) 0.16 (0.58) 0.24 (0.68) 0.25 (0.62) 0.26 (0.56)
RoBERTa Ensemble (R3) 0.24 (0.53) 0.23 (0.53) 0.21 (0.53) 0.24 (0.57) 0.17 (0.51) 0.19 (0.57) 0.23 (0.57) 0.28 (0.50)

RoBERTa-Large 0.45 (0.25) 0.44 (0.24) 0.46 (0.38) 0.45 (0.15) 0.39 (0.17) 0.42 (0.22) 0.46 (0.25) 0.49 (0.26)
BART-Large 0.49 (0.14) 0.51 (0.16) 0.49 (0.11) 0.29 (0.14) 0.42 (0.10) 0.46 (0.13) 0.49 (0.15) 0.52 (0.13)

XLNet-Large 0.49 (0.15) 0.50 (0.12) 0.47 (0.26) 0.34 (0.23) 0.40 (0.14) 0.44 (0.13) 0.46 (0.16) 0.59 (0.08)
ELECTRA-Large 0.52 (0.44) 0.56 (0.43) 0.51 (0.50) 0.58 (0.46) 0.43 (0.36) 0.64 (0.48) 0.52 (0.43) 0.54 (0.44)

ALBERT-XXLarge 0.55 (0.36) 0.55 (0.35) 0.56 (0.48) 0.65 (0.33) 0.48 (0.27) 0.52 (0.44) 0.56 (0.36) 0.53 (0.33)

ANLI

BERT (R1) 0.26 (0.50) 0.27 (0.51) 0.27 (0.60) 0.21 (0.50) 0.25 (0.52) 0.26 (0.46) 0.26 (0.44) 0.23 (0.48)
RoBERTa Ensemble (R2) 0.34 (0.37) 0.36 (0.37) 0.35 (0.37) 0.33 (0.46) 0.25 (0.45) 0.23 (0.47) 0.29 (0.44) 0.36 (0.36)
RoBERTa Ensemble (R3) 0.41 (0.30) 0.42 (0.31) 0.46 (0.27) 0.34 (0.36) 0.23 (0.35) 0.25 (0.36) 0.36 (0.35) 0.43 (0.29)

RoBERTa-Large 0.53 (0.19) 0.54 (0.19) 0.57 (0.24) 0.61 (0.11) 0.40 (0.19) 0.42 (0.16) 0.53 (0.19) 0.57 (0.17)
BART-Large 0.54 (0.13) 0.58 (0.13) 0.54 (0.13) 0.31 (0.06) 0.41 (0.08) 0.46 (0.15) 0.51 (0.14) 0.57 (0.11)

XLNet-Large 0.56 (0.13) 0.58 (0.11) 0.57 (0.17) 0.41 (0.22) 0.44 (0.13) 0.49 (0.08) 0.52 (0.16) 0.62 (0.07)
ELECTRA-Large 0.56 (0.40) 0.59 (0.42) 0.54 (0.39) 0.49 (0.46) 0.44 (0.36) 0.58 (0.42) 0.55 (0.40) 0.58 (0.39)

ALBERT-XXLarge 0.61 (0.30) 0.63 (0.29) 0.61 (0.34) 0.58 (0.30) 0.50 (0.32) 0.56 (0.37) 0.60 (0.29) 0.60 (0.24)

Table 16: Correct label probability and entropy of label predictions for the BASIC subset: mean probability (mean
entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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NUMERICAL
Round Model Numerical Cardinal Ordinal Counting Nominal Dates Age

A1

BERT (R1) 0.10 (0.57) 0.10 (0.57) 0.11 (0.60) 0.09 (0.64) 0.07 (0.46) 0.10 (0.58) 0.07 (0.41)
RoBERTa Ensemble (R2) 0.68 (0.13) 0.68 (0.13) 0.71 (0.18) 0.51 (0.23) 0.72 (0.11) 0.69 (0.13) 0.64 (0.11)
RoBERTa Ensemble (R3) 0.72 (0.07) 0.72 (0.07) 0.77 (0.05) 0.51 (0.23) 0.69 (0.06) 0.75 (0.07) 0.64 (0.08)

RoBERTa-Large 0.73 (0.13) 0.73 (0.13) 0.75 (0.10) 0.58 (0.10) 0.76 (0.14) 0.74 (0.14) 0.65 (0.18)
BART-Large 0.73 (0.10) 0.73 (0.10) 0.72 (0.11) 0.54 (0.12) 0.74 (0.04) 0.77 (0.10) 0.67 (0.12)

XLNet-Large 0.73 (0.10) 0.74 (0.10) 0.63 (0.08) 0.53 (0.15) 0.70 (0.11) 0.76 (0.09) 0.71 (0.13)
ELECTRA-Large 0.71 (0.29) 0.71 (0.28) 0.74 (0.35) 0.69 (0.42) 0.64 (0.23) 0.73 (0.27) 0.68 (0.38)

ALBERT-XXLarge 0.74 (0.22) 0.75 (0.22) 0.72 (0.21) 0.56 (0.19) 0.78 (0.19) 0.77 (0.21) 0.71 (0.32)

A2

BERT (R1) 0.29 (0.53) 0.28 (0.53) 0.33 (0.53) 0.43 (0.49) 0.31 (0.53) 0.25 (0.53) 0.18 (0.48)
RoBERTa Ensemble (R2) 0.19 (0.28) 0.20 (0.28) 0.19 (0.24) 0.14 (0.30) 0.20 (0.34) 0.19 (0.26) 0.22 (0.25)
RoBERTa Ensemble (R3) 0.50 (0.18) 0.51 (0.18) 0.50 (0.13) 0.36 (0.20) 0.44 (0.19) 0.55 (0.17) 0.51 (0.15)

RoBERTa-Large 0.54 (0.22) 0.54 (0.22) 0.49 (0.21) 0.47 (0.17) 0.55 (0.10) 0.56 (0.24) 0.51 (0.26)
BART-Large 0.55 (0.13) 0.54 (0.14) 0.57 (0.10) 0.56 (0.08) 0.47 (0.18) 0.56 (0.12) 0.50 (0.15)

XLNet-Large 0.54 (0.11) 0.55 (0.11) 0.45 (0.14) 0.51 (0.06) 0.54 (0.12) 0.57 (0.11) 0.54 (0.14)
ELECTRA-Large 0.56 (0.36) 0.57 (0.35) 0.55 (0.32) 0.52 (0.34) 0.49 (0.22) 0.60 (0.36) 0.59 (0.40)

ALBERT-XXLarge 0.57 (0.28) 0.57 (0.28) 0.60 (0.26) 0.58 (0.26) 0.53 (0.20) 0.59 (0.30) 0.52 (0.34)

A3

BERT (R1) 0.34 (0.53) 0.34 (0.53) 0.43 (0.49) 0.34 (0.34) 0.41 (0.48) 0.31 (0.48) 0.28 (0.45)
RoBERTa Ensemble (R2) 0.29 (0.47) 0.29 (0.46) 0.25 (0.47) 0.17 (0.48) 0.35 (0.41) 0.30 (0.34) 0.32 (0.36)
RoBERTa Ensemble (R3) 0.20 (0.43) 0.20 (0.42) 0.25 (0.52) 0.11 (0.37) 0.20 (0.77) 0.22 (0.30) 0.26 (0.44)

RoBERTa-Large 0.44 (0.32) 0.44 (0.32) 0.48 (0.29) 0.53 (0.15) 0.36 (0.53) 0.38 (0.33) 0.42 (0.37)
BART-Large 0.51 (0.14) 0.52 (0.14) 0.48 (0.12) 0.51 (0.17) 0.59 (0.07) 0.51 (0.10) 0.46 (0.14)

XLNet-Large 0.52 (0.15) 0.52 (0.16) 0.57 (0.09) 0.47 (0.11) 0.59 (0.07) 0.50 (0.17) 0.42 (0.16)
ELECTRA-Large (tuned) 0.55 (0.46) 0.56 (0.44) 0.52 (0.54) 0.58 (0.44) 0.66 (0.53) 0.54 (0.43) 0.57 (0.30)

ALBERT-XXLarge 0.56 (0.39) 0.56 (0.38) 0.61 (0.40) 0.61 (0.32) 0.46 (0.43) 0.58 (0.36) 0.56 (0.35)

A3

BERT (R1) 0.22 (0.54) 0.22 (0.55) 0.27 (0.54) 0.31 (0.48) 0.19 (0.49) 0.19 (0.54) 0.16 (0.45)
RoBERTa Ensemble (R2) 0.41 (0.26) 0.41 (0.26) 0.40 (0.26) 0.25 (0.35) 0.48 (0.22) 0.44 (0.21) 0.39 (0.23)
RoBERTa Ensemble (R3) 0.52 (0.20) 0.52 (0.19) 0.55 (0.18) 0.30 (0.27) 0.56 (0.16) 0.59 (0.14) 0.50 (0.19)

RoBERTa-Large 0.59 (0.21) 0.59 (0.21) 0.59 (0.18) 0.52 (0.15) 0.65 (0.15) 0.62 (0.21) 0.54 (0.26)
BART-Large 0.61 (0.12) 0.61 (0.12) 0.61 (0.11) 0.54 (0.12) 0.62 (0.10) 0.65 (0.10) 0.55 (0.13)

XLNet-Large 0.61 (0.12) 0.62 (0.12) 0.54 (0.10) 0.50 (0.10) 0.62 (0.11) 0.65 (0.11) 0.57 (0.14)
ELECTRA-Large 0.62 (0.35) 0.62 (0.34) 0.61 (0.38) 0.58 (0.40) 0.58 (0.25) 0.65 (0.33) 0.62 (0.37)

ALBERT-XXLarge 0.64 (0.28) 0.64 (0.28) 0.65 (0.27) 0.59 (0.26) 0.66 (0.21) 0.67 (0.27) 0.60 (0.33)

Table 17: Correct label probability and entropy of label predictions for the NUMERICAL subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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REASONING
Round Model Reasoning Likely Unlikely Debatable Facts Containment

A1

BERT (R1) 0.13 (0.60) 0.14 (0.57) 0.15 (0.54) 0.16 (0.52) 0.11 (0.64) 0.11 (0.62)
RoBERTa Ensemble (R2) 0.67 (0.13) 0.64 (0.16) 0.78 (0.13) 0.61 (0.05) 0.65 (0.12) 0.71 (0.14)
RoBERTa Ensemble (R3) 0.73 (0.08) 0.72 (0.09) 0.78 (0.04) 0.68 (0.00) 0.71 (0.08) 0.75 (0.11)

RoBERTa-Large 0.75 (0.12) 0.74 (0.15) 0.82 (0.09) 0.67 (0.06) 0.74 (0.15) 0.75 (0.09)
BART-Large 0.76 (0.08) 0.78 (0.07) 0.86 (0.06) 0.70 (0.04) 0.71 (0.09) 0.72 (0.12)

XLNet-Large 0.74 (0.09) 0.74 (0.08) 0.82 (0.07) 0.70 (0.09) 0.72 (0.12) 0.74 (0.08)
ELECTRA-Large 0.66 (0.36) 0.68 (0.35) 0.77 (0.24) 0.66 (0.42) 0.63 (0.37) 0.58 (0.47)

ALBERT-XXLarge 0.77 (0.18) 0.77 (0.17) 0.88 (0.09) 0.67 (0.21) 0.73 (0.21) 0.76 (0.20)

A2

BERT (R1) 0.30 (0.47) 0.34 (0.44) 0.31 (0.42) 0.36 (0.44) 0.23 (0.49) 0.33 (0.54)
RoBERTa Ensemble (R2) 0.21 (0.26) 0.27 (0.28) 0.21 (0.33) 0.16 (0.27) 0.18 (0.22) 0.17 (0.19)
RoBERTa Ensemble (R3) 0.43 (0.16) 0.43 (0.14) 0.45 (0.18) 0.43 (0.16) 0.40 (0.13) 0.38 (0.17)

RoBERTa-Large 0.51 (0.21) 0.48 (0.19) 0.56 (0.20) 0.43 (0.21) 0.49 (0.23) 0.49 (0.22)
BART-Large 0.52 (0.13) 0.61 (0.12) 0.53 (0.13) 0.48 (0.13) 0.43 (0.14) 0.48 (0.17)

XLNet-Large 0.53 (0.12) 0.57 (0.13) 0.56 (0.12) 0.49 (0.05) 0.48 (0.11) 0.49 (0.11)
ELECTRA-Large 0.53 (0.40) 0.58 (0.39) 0.54 (0.38) 0.52 (0.39) 0.49 (0.39) 0.51 (0.42)

ALBERT-XXLarge 0.57 (0.29) 0.62 (0.27) 0.65 (0.30) 0.55 (0.25) 0.50 (0.30) 0.53 (0.29)

A3

BERT (R1) 0.34 (0.51) 0.37 (0.47) 0.38 (0.48) 0.35 (0.51) 0.29 (0.54) 0.35 (0.46)
RoBERTa Ensemble (R2) 0.26 (0.54) 0.25 (0.51) 0.28 (0.58) 0.25 (0.62) 0.25 (0.51) 0.28 (0.38)
RoBERTa Ensemble (R3) 0.23 (0.50) 0.23 (0.47) 0.25 (0.52) 0.21 (0.56) 0.22 (0.48) 0.20 (0.38)

RoBERTa-Large 0.44 (0.26) 0.44 (0.25) 0.51 (0.25) 0.47 (0.24) 0.40 (0.27) 0.50 (0.32)
BART-Large 0.50 (0.14) 0.52 (0.14) 0.57 (0.13) 0.47 (0.15) 0.44 (0.14) 0.58 (0.16)

XLNet-Large 0.49 (0.14) 0.47 (0.13) 0.56 (0.14) 0.50 (0.16) 0.47 (0.15) 0.51 (0.13)
ELECTRA-Large 0.51 (0.45) 0.49 (0.48) 0.56 (0.39) 0.49 (0.49) 0.48 (0.44) 0.51 (0.48)

ALBERT-XXLarge 0.57 (0.33) 0.59 (0.33) 0.65 (0.32) 0.58 (0.37) 0.50 (0.33) 0.55 (0.23)

ANLI

BERT (R1) 0.26 (0.52) 0.29 (0.49) 0.31 (0.48) 0.33 (0.49) 0.23 (0.55) 0.25 (0.56)
RoBERTa Ensemble (R2) 0.37 (0.33) 0.39 (0.32) 0.38 (0.41) 0.28 (0.44) 0.33 (0.32) 0.41 (0.21)
RoBERTa Ensemble (R3) 0.44 (0.27) 0.46 (0.24) 0.43 (0.32) 0.34 (0.37) 0.41 (0.26) 0.48 (0.19)

RoBERTa-Large 0.55 (0.20) 0.55 (0.19) 0.60 (0.20) 0.49 (0.21) 0.52 (0.22) 0.60 (0.19)
BART-Large 0.58 (0.12) 0.63 (0.11) 0.63 (0.12) 0.51 (0.13) 0.50 (0.13) 0.60 (0.15)

XLNet-Large 0.58 (0.12) 0.59 (0.12) 0.62 (0.12) 0.52 (0.12) 0.54 (0.13) 0.59 (0.10)
ELECTRA-Large 0.56 (0.40) 0.58 (0.41) 0.60 (0.35) 0.52 (0.45) 0.52 (0.41) 0.54 (0.46)

ALBERT-XXLarge 0.63 (0.27) 0.66 (0.26) 0.70 (0.26) 0.58 (0.31) 0.56 (0.29) 0.63 (0.24)

Table 18: Correct label probability and entropy of label predictions for the REASONING subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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REFERENCE
Round Model Reference Coreference Names Family

A1

BERT (R1) 0.12 (0.59) 0.11 (0.56) 0.12 (0.60) 0.12 (0.56)
RoBERTa Ensemble (R2) 0.66 (0.15) 0.67 (0.15) 0.68 (0.15) 0.29 (0.19)
RoBERTa Ensemble (R3) 0.70 (0.08) 0.70 (0.08) 0.75 (0.06) 0.44 (0.17)

RoBERTa-Large 0.75 (0.15) 0.76 (0.15) 0.77 (0.15) 0.52 (0.26)
BART-Large 0.70 (0.11) 0.73 (0.13) 0.73 (0.09) 0.54 (0.10)

XLNet-Large 0.72 (0.09) 0.74 (0.08) 0.75 (0.09) 0.62 (0.09)
ELECTRA-Large 0.63 (0.41) 0.64 (0.41) 0.66 (0.40) 0.61 (0.35)

ALBERT-XXLarge 0.77 (0.18) 0.78 (0.18) 0.80 (0.17) 0.67 (0.12)

A2

BERT (R1) 0.31 (0.47) 0.29 (0.47) 0.33 (0.48) 0.34 (0.41)
RoBERTa Ensemble (R2) 0.19 (0.24) 0.20 (0.24) 0.16 (0.24) 0.18 (0.24)
RoBERTa Ensemble (R3) 0.45 (0.14) 0.46 (0.16) 0.42 (0.14) 0.45 (0.17)

RoBERTa-Large 0.49 (0.20) 0.53 (0.20) 0.42 (0.19) 0.44 (0.16)
BART-Large 0.50 (0.13) 0.52 (0.13) 0.41 (0.13) 0.40 (0.14)

XLNet-Large 0.50 (0.10) 0.52 (0.10) 0.43 (0.08) 0.48 (0.19)
ELECTRA-Large 0.53 (0.38) 0.55 (0.39) 0.48 (0.39) 0.38 (0.47)

ALBERT-XXLarge 0.56 (0.25) 0.58 (0.28) 0.49 (0.22) 0.58 (0.17)

A3

BERT (R1) 0.32 (0.49) 0.33 (0.48) 0.27 (0.51) 0.25 (0.59)
RoBERTa Ensemble (R2) 0.27 (0.55) 0.27 (0.53) 0.26 (0.76) 0.39 (0.39)
RoBERTa Ensemble (R3) 0.25 (0.54) 0.24 (0.54) 0.26 (0.46) 0.47 (0.41)

RoBERTa-Large 0.46 (0.27) 0.46 (0.27) 0.46 (0.38) 0.47 (0.22)
BART-Large 0.50 (0.14) 0.49 (0.13) 0.67 (0.17) 0.62 (0.23)

XLNet-Large 0.52 (0.15) 0.50 (0.16) 0.70 (0.15) 0.61 (0.09)
ELECTRA-Large 0.52 (0.48) 0.51 (0.48) 0.66 (0.42) 0.51 (0.45)

ALBERT-XXLarge 0.54 (0.32) 0.53 (0.32) 0.66 (0.31) 0.62 (0.27)

ANLI

BERT (R1) 0.26 (0.51) 0.27 (0.49) 0.22 (0.54) 0.25 (0.51)
RoBERTa Ensemble (R2) 0.35 (0.33) 0.34 (0.35) 0.42 (0.24) 0.29 (0.28)
RoBERTa Ensemble (R3) 0.45 (0.28) 0.42 (0.31) 0.56 (0.13) 0.46 (0.26)

RoBERTa-Large 0.56 (0.21) 0.55 (0.22) 0.59 (0.19) 0.47 (0.20)
BART-Large 0.55 (0.13) 0.55 (0.13) 0.59 (0.12) 0.51 (0.16)

XLNet-Large 0.57 (0.12) 0.56 (0.12) 0.61 (0.09) 0.56 (0.13)
ELECTRA-Large 0.55 (0.43) 0.55 (0.43) 0.59 (0.40) 0.48 (0.43)

ALBERT-XXLarge 0.61 (0.25) 0.60 (0.27) 0.65 (0.20) 0.62 (0.20)

Table 19: Correct label probability and entropy of label predictions for the REFERENCE subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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TRICKY
Round Model Tricky Syntactic Pragmatic Exhaustification Wordplay

A1

BERT (R1) 0.10 (0.56) 0.10 (0.54) 0.09 (0.56) 0.11 (0.56) 0.13 (0.72)
RoBERTa Ensemble (R2) 0.60 (0.18) 0.60 (0.17) 0.60 (0.23) 0.59 (0.17) 0.52 (0.15)
RoBERTa Ensemble (R3) 0.65 (0.09) 0.67 (0.09) 0.72 (0.08) 0.54 (0.11) 0.51 (0.06)

RoBERTa-Large 0.70 (0.14) 0.72 (0.15) 0.68 (0.10) 0.64 (0.13) 0.65 (0.15)
BART-Large 0.70 (0.08) 0.73 (0.09) 0.64 (0.07) 0.62 (0.08) 0.75 (0.02)

XLNet-Large 0.70 (0.10) 0.73 (0.11) 0.66 (0.06) 0.56 (0.10) 0.78 (0.15)
ELECTRA-Large 0.62 (0.44) 0.62 (0.49) 0.62 (0.40) 0.56 (0.41) 0.60 (0.45)

ALBERT-XXLarge 0.65 (0.21) 0.66 (0.19) 0.61 (0.17) 0.58 (0.25) 0.63 (0.23)

A2

BERT (R1) 0.25 (0.48) 0.22 (0.53) 0.20 (0.35) 0.29 (0.47) 0.21 (0.47)
RoBERTa Ensemble (R2) 0.16 (0.23) 0.19 (0.25) 0.10 (0.13) 0.20 (0.21) 0.09 (0.30)
RoBERTa Ensemble (R3) 0.44 (0.14) 0.40 (0.13) 0.33 (0.10) 0.37 (0.16) 0.59 (0.14)

RoBERTa-Large 0.48 (0.22) 0.49 (0.20) 0.33 (0.21) 0.40 (0.25) 0.59 (0.16)
BART-Large 0.48 (0.15) 0.46 (0.14) 0.26 (0.14) 0.45 (0.15) 0.58 (0.13)

XLNet-Large 0.52 (0.12) 0.48 (0.13) 0.39 (0.14) 0.50 (0.14) 0.60 (0.07)
ELECTRA-Large 0.51 (0.45) 0.49 (0.52) 0.39 (0.44) 0.47 (0.41) 0.57 (0.45)

ALBERT-XXLarge 0.50 (0.26) 0.44 (0.25) 0.40 (0.28) 0.51 (0.29) 0.42 (0.24)

A3

BERT (R1) 0.29 (0.55) 0.29 (0.50) 0.29 (0.64) 0.28 (0.48) 0.25 (0.58)
RoBERTa Ensemble (R2) 0.24 (0.58) 0.26 (0.51) 0.24 (0.62) 0.18 (0.53) 0.24 (0.72)
RoBERTa Ensemble (R3) 0.25 (0.54) 0.29 (0.53) 0.20 (0.57) 0.23 (0.58) 0.24 (0.50)

RoBERTa-Large 0.49 (0.25) 0.47 (0.28) 0.41 (0.19) 0.46 (0.24) 0.63 (0.25)
BART-Large 0.53 (0.18) 0.51 (0.17) 0.43 (0.21) 0.46 (0.18) 0.72 (0.20)

XLNet-Large 0.51 (0.14) 0.57 (0.14) 0.46 (0.13) 0.36 (0.11) 0.57 (0.16)
ELECTRA-Large 0.54 (0.44) 0.53 (0.44) 0.41 (0.50) 0.49 (0.45) 0.72 (0.41)

ALBERT-XXLarge 0.52 (0.32) 0.53 (0.36) 0.46 (0.30) 0.44 (0.31) 0.62 (0.32)

ANLI

BERT (R1) 0.21 (0.53) 0.19 (0.52) 0.22 (0.56) 0.24 (0.50) 0.22 (0.55)
RoBERTa Ensemble (R2) 0.33 (0.34) 0.39 (0.30) 0.32 (0.41) 0.30 (0.29) 0.22 (0.47)
RoBERTa Ensemble (R3) 0.45 (0.26) 0.48 (0.24) 0.38 (0.34) 0.38 (0.27) 0.42 (0.29)

RoBERTa-Large 0.56 (0.20) 0.58 (0.21) 0.48 (0.17) 0.48 (0.21) 0.62 (0.20)
BART-Large 0.57 (0.14) 0.59 (0.13) 0.46 (0.15) 0.50 (0.14) 0.67 (0.15)

XLNet-Large 0.57 (0.12) 0.62 (0.12) 0.51 (0.11) 0.48 (0.12) 0.61 (0.12)
ELECTRA-Large 0.56 (0.44) 0.56 (0.48) 0.47 (0.46) 0.50 (0.42) 0.65 (0.43)

ALBERT-XXLarge 0.56 (0.26) 0.57 (0.26) 0.49 (0.26) 0.51 (0.28) 0.54 (0.28)

Table 20: Correct label probability and entropy of label predictions for the TRICKY subset: mean probability
(mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas
RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different random seeds,
so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable
outcomes (i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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IMPERFECTIONS
Round Model Imperfections Errors Ambiguity EventCoref Translation Spelling

A1

BERT (R1) 0.13 (0.57) 0.07 (0.38) 0.17 (0.73) 0.12 (0.77) 0.11 (0.59) 0.14 (0.64)
RoBERTa Ensemble (R2) 0.61 (0.14) 0.38 (0.11) 0.53 (0.19) 0.82 (0.25) 0.67 (0.17) 0.77 (0.12)
RoBERTa Ensemble (R3) 0.68 (0.07) 0.49 (0.12) 0.57 (0.02) 0.89 (0.00) 0.71 (0.06) 0.81 (0.07)

RoBERTa-Large 0.68 (0.13) 0.46 (0.15) 0.65 (0.17) 0.88 (0.04) 0.75 (0.13) 0.79 (0.14)
BART-Large 0.71 (0.08) 0.52 (0.06) 0.73 (0.10) 0.78 (0.00) 0.74 (0.11) 0.79 (0.11)

XLNet-Large 0.67 (0.08) 0.49 (0.11) 0.58 (0.18) 0.81 (0.24) 0.72 (0.06) 0.81 (0.06)
ELECTRA-Large 0.63 (0.40) 0.49 (0.43) 0.65 (0.51) 0.58 (0.50) 0.73 (0.37) 0.70 (0.35)

ALBERT-XXLarge 0.69 (0.22) 0.48 (0.24) 0.62 (0.27) 0.78 (0.19) 0.71 (0.19) 0.78 (0.21)

A2

BERT (R1) 0.33 (0.48) 0.42 (0.39) 0.32 (0.47) 0.27 (0.43) 0.29 (0.51) 0.34 (0.45)
RoBERTa Ensemble (R2) 0.19 (0.27) 0.22 (0.22) 0.19 (0.23) 0.21 (0.33) 0.16 (0.23) 0.21 (0.28)
RoBERTa Ensemble (R3) 0.33 (0.14) 0.34 (0.17) 0.43 (0.11) 0.40 (0.11) 0.46 (0.13) 0.32 (0.12)

RoBERTa-Large 0.49 (0.19) 0.38 (0.26) 0.50 (0.16) 0.50 (0.20) 0.48 (0.27) 0.56 (0.18)
BART-Large 0.42 (0.10) 0.29 (0.08) 0.48 (0.10) 0.58 (0.12) 0.48 (0.13) 0.45 (0.11)

XLNet-Large 0.44 (0.10) 0.36 (0.03) 0.48 (0.10) 0.54 (0.13) 0.55 (0.10) 0.45 (0.10)
ELECTRA-Large 0.54 (0.39) 0.40 (0.24) 0.63 (0.33) 0.55 (0.38) 0.56 (0.44) 0.60 (0.46)

ALBERT-XXLarge 0.58 (0.32) 0.60 (0.42) 0.69 (0.26) 0.54 (0.23) 0.66 (0.26) 0.54 (0.30)

A3

BERT (R1) 0.31 (0.54) 0.30 (0.57) 0.28 (0.58) 0.24 (0.29) 0.42 (0.76) 0.36 (0.52)
RoBERTa Ensemble (R2) 0.23 (0.58) 0.22 (0.65) 0.23 (0.58) 0.36 (0.52) 0.26 (0.21) 0.19 (0.46)
RoBERTa Ensemble (R3) 0.23 (0.52) 0.23 (0.55) 0.17 (0.52) 0.32 (0.48) 0.16 (0.26) 0.22 (0.46)

RoBERTa-Large 0.40 (0.23) 0.32 (0.14) 0.35 (0.19) 0.70 (0.18) 0.56 (0.13) 0.39 (0.24)
BART-Large 0.48 (0.17) 0.37 (0.13) 0.39 (0.17) 0.63 (0.26) 0.30 (0.03) 0.53 (0.15)

XLNet-Large 0.43 (0.14) 0.41 (0.10) 0.40 (0.15) 0.64 (0.13) 0.52 (0.19) 0.40 (0.12)
ELECTRA-Large 0.47 (0.49) 0.32 (0.42) 0.43 (0.53) 0.63 (0.37) 0.33 (0.40) 0.48 (0.46)

ALBERT-XXLarge 0.52 (0.33) 0.39 (0.31) 0.50 (0.36) 0.68 (0.32) 0.47 (0.49) 0.49 (0.28)

ANLI

BERT (R1) 0.27 (0.53) 0.24 (0.44) 0.27 (0.58) 0.24 (0.43) 0.22 (0.57) 0.28 (0.53)
RoBERTa Ensemble (R2) 0.32 (0.37) 0.28 (0.31) 0.27 (0.42) 0.35 (0.39) 0.39 (0.20) 0.38 (0.29)
RoBERTa Ensemble (R3) 0.39 (0.28) 0.36 (0.27) 0.31 (0.33) 0.44 (0.22) 0.55 (0.11) 0.44 (0.22)

RoBERTa-Large 0.50 (0.19) 0.39 (0.18) 0.44 (0.18) 0.62 (0.17) 0.60 (0.20) 0.57 (0.19)
BART-Large 0.52 (0.12) 0.41 (0.09) 0.47 (0.14) 0.62 (0.15) 0.58 (0.11) 0.58 (0.12)

XLNet-Large 0.50 (0.11) 0.42 (0.09) 0.45 (0.14) 0.61 (0.14) 0.62 (0.09) 0.55 (0.10)
ELECTRA-Large 0.54 (0.44) 0.41 (0.37) 0.52 (0.48) 0.58 (0.40) 0.62 (0.41) 0.59 (0.42)

ALBERT-XXLarge 0.59 (0.30) 0.49 (0.32) 0.57 (0.32) 0.62 (0.26) 0.67 (0.25) 0.60 (0.27)

Table 21: Correct label probability and entropy of label predictions for the IMPERFECTIONS subset: mean prob-
ability (mean entropy). BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1,
whereas RoBERTas (R2) and (R3) were part of an ensemble of several identical architectures with different ran-
dom seeds, so they have low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three
equiprobable outcomes (i.e., random chance of three NLI labels) is upper bounded by≈ 1.58. A3 had no examples
of TRANSLATION, so no numbers can be reported.
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Genre Model Numerical Basic Reference Tricky Reasoning Imperfections

Wikipedia

BERT (R1) 0.20 (0.55) 0.23 (0.49) 0.24 (0.51) 0.18 (0.52) 0.23 (0.53) 0.24 (0.52)
RoBERTa Ensemble (R2) 0.43 (0.21) 0.40 (0.21) 0.40 (0.21) 0.37 (0.22) 0.42 (0.21) 0.37 (0.21)
RoBERTa Ensemble (R3) 0.58 (0.13) 0.51 (0.12) 0.54 (0.12) 0.52 (0.12) 0.53 (0.13) 0.46 (0.12)

RoBERTa-Large 0.61 (0.18) 0.57 (0.15) 0.59 (0.18) 0.58 (0.18) 0.60 (0.18) 0.55 (0.18)
BART-Large 0.63 (0.11) 0.57 (0.11) 0.58 (0.12) 0.58 (0.12) 0.62 (0.11) 0.54 (0.10)

XLNet-Large 0.62 (0.11) 0.61 (0.12) 0.59 (0.09) 0.60 (0.11) 0.62 (0.11) 0.53 (0.09)
ELECTRA-Large 0.62 (0.33) 0.57 (0.38) 0.57 (0.40) 0.56 (0.44) 0.58 (0.38) 0.57 (0.40)

ALBERT-XXLarge 0.65 (0.25) 0.64 (0.25) 0.65 (0.22) 0.56 (0.24) 0.66 (0.24) 0.63 (0.27)

Fiction

BERT (R1) 0.49 (0.35) 0.28 (0.54) 0.29 (0.52) 0.35 (0.60) 0.29 (0.51) 0.30 (0.62)
RoBERTa Ensemble (R2) 0.32 (0.73) 0.25 (0.68) 0.26 (0.70) 0.24 (0.71) 0.26 (0.63) 0.24 (0.73)
RoBERTa Ensemble (R3) 0.35 (0.55) 0.26 (0.70) 0.29 (0.73) 0.26 (0.72) 0.27 (0.64) 0.28 (0.73)

RoBERTa-Large 0.41 (0.14) 0.46 (0.22) 0.45 (0.26) 0.56 (0.16) 0.45 (0.24) 0.35 (0.15)
BART-Large 0.14 (0.06) 0.49 (0.17) 0.46 (0.14) 0.59 (0.12) 0.48 (0.14) 0.47 (0.14)

XLNet-Large 0.57 (0.01) 0.49 (0.08) 0.50 (0.10) 0.52 (0.09) 0.52 (0.10) 0.40 (0.04)
ELECTRA-Large 0.23 (0.28) 0.54 (0.36) 0.56 (0.45) 0.59 (0.36) 0.51 (0.38) 0.47 (0.45)

ALBERT-XXLarge 0.65 (0.27) 0.55 (0.27) 0.50 (0.23) 0.52 (0.26) 0.61 (0.28) 0.62 (0.34)

News

BERT (R1) 0.38 (0.47) 0.32 (0.53) 0.26 (0.48) 0.25 (0.61) 0.40 (0.49) 0.39 (0.46)
RoBERTa Ensemble (R2) 0.23 (0.40) 0.24 (0.43) 0.16 (0.32) 0.23 (0.49) 0.26 (0.41) 0.14 (0.64)
RoBERTa Ensemble (R3) 0.19 (0.30) 0.22 (0.37) 0.21 (0.34) 0.26 (0.40) 0.22 (0.39) 0.23 (0.41)

RoBERTa-Large 0.43 (0.31) 0.46 (0.22) 0.41 (0.14) 0.49 (0.15) 0.47 (0.23) 0.50 (0.23)
BART-Large 0.56 (0.16) 0.49 (0.14) 0.41 (0.18) 0.63 (0.17) 0.54 (0.15) 0.66 (0.20)

XLNet-Large 0.56 (0.14) 0.51 (0.13) 0.55 (0.18) 0.52 (0.12) 0.49 (0.14) 0.48 (0.17)
ELECTRA-Large 0.68 (0.39) 0.53 (0.39) 0.45 (0.33) 0.57 (0.35) 0.48 (0.40) 0.53 (0.45)

ALBERT-XXLarge 0.67 (0.32) 0.56 (0.22) 0.52 (0.23) 0.64 (0.19) 0.55 (0.24) 0.60 (0.26)

Procedural

BERT (R1) 0.37 (0.43) 0.30 (0.57) 0.38 (0.48) 0.19 (0.46) 0.34 (0.56) 0.30 (0.58)
RoBERTa Ensemble (R2) 0.28 (0.65) 0.24 (0.67) 0.22 (0.69) 0.21 (0.70) 0.26 (0.70) 0.23 (0.60)
RoBERTa Ensemble (R3) 0.21 (0.63) 0.24 (0.59) 0.21 (0.68) 0.27 (0.64) 0.25 (0.63) 0.25 (0.51)

RoBERTa-Large 0.58 (0.23) 0.50 (0.13) 0.65 (0.25) 0.57 (0.25) 0.45 (0.20) 0.45 (0.07)
BART-Large 0.53 (0.08) 0.47 (0.07) 0.49 (0.19) 0.41 (0.16) 0.47 (0.10) 0.52 (0.09)

XLNet-Large 0.57 (0.10) 0.53 (0.14) 0.66 (0.21) 0.53 (0.17) 0.49 (0.15) 0.57 (0.18)
ELECTRA-Large 0.67 (0.35) 0.58 (0.43) 0.58 (0.44) 0.55 (0.41) 0.58 (0.44) 0.42 (0.52)

ALBERT-XXLarge 0.66 (0.26) 0.61 (0.32) 0.71 (0.29) 0.57 (0.29) 0.56 (0.31) 0.53 (0.26)

Table 22: Probability of the correct label (entropy of label predictions) for each model on each top level annotation
tag. BERT (R1) has zero accuracy, by construction, on A1 because it was used to collect A1, whereas RoBERTas
(R2) and (R3) were part of an ensemble of several identical architectures with different random seeds, so they have
low, but non-zero, accuracy on their respective rounds. Recall that the entropy for three equiprobable outcomes
(i.e., random chance of three NLI labels) is upper bounded by ≈ 1.58.
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Subset Context Statement Rationale Context+Statement

ANLI film (647), american (588), known
(377), first (376), (born (365), also
(355), one (342), new (341), released
(296), album (275), united (249), di-
rected (240), not (236), – (218), based
(214), series (196), best (191), may
(188), band (185), state (182), football
(177), two (175), written (175), televi-
sion (175), national (169), south (165)

not (252), born (132), years (120),
released (107), one (87), film (83),
first (82), only (76), people (75), year
(61), played (58), new (58), two (54),
made (54), album (49), no (46), died
(46), won (46), less (44), last (42),
american (41), years. (40), three
(40), written (38), used (37), john
(37)

not (1306), system (753), statement
(494), know (343), think (274), def-
initely (268), context (261), correct
(243), difficult (228), only (224),
doesn’t (223), may (221), confused
(218), no (200), says (198), incor-
rect (193), text (184), could (181),
states (166), born (160), one (155),
say (147), years (146), don’t (140),
would (130), whether (129)

film (730), american (629), not (488),
first (458), one (429), known (414),
released (403), new (399), also (379),
(born (368), album (324), united
(281), directed (274), based (238),
two (229), born (226), series (223),
played (221), – (221), best (220),
band (219), only (213), written (213),
football (208), may (208), state (204)

R1 film (299), american (272), known
(175), (born (169), first (158), also
(129), released (119), album (115), di-
rected (106), based (104), united (103),
new (97), – (93), football (88), one (84),
band (77), best (77), south (73), former
(71), written (70), series (67), played
(67), march (66), city (65), located (65),
television (64)

born (65), film (47), not (46), years
(45), released (43), first (36), died
(26), only (25), american (24), pop-
ulation (23), old (23), album (22),
won (22), played (21), directed (21),
new (19), last (18), football (18), cen-
tury. (18), year (18), united (17),
years. (16), world (16), written (16),
one (16), based (16)

not (392), system (331), know (135),
statement (126), think (111), context
(105), difficult (93), definitely (86),
correct (80), born (80), only (75),
may (75), confused (75), incorrect
(63), could (62), stated (62), don’t
(59), says (58), doesn’t (57), infor-
mation (54), states (53), no (53), first
(52), probably (49), used (48), text
(47)

film (346), american (296), first
(194), known (188), (born (170), re-
leased (162), also (140), album (137),
directed (127), united (120), based
(120), new (116), born (109), football
(106), one (100), – (94), band (91),
best (89), played (88), written (86),
south (81), world (79), city (77), se-
ries (77), population (77), name (77)

R2 film (301), american (266), known
(166), (born (159), also (146), released
(136), new (128), album (127), first
(126), directed (114), one (112), series
(110), united (97), – (95), television
(95), band (87), state (86), based (83),
written (82), song (79), national (76),
played (74), best (69), located (67), city
(66), football (66)

not (75), years (54), released (53),
born (51), one (32), first (32), film
(31), year (29), ago. (24), only (24),
played (23), album (23), known (22),
two (22), new (21), band (19), made
(18), city (16), no (16), died (16),
john (15), less (15), won (15), written
(14), people (14), lived (14)

not (387), system (198), statement
(125), know (93), doesn’t (79), diffi-
cult (78), think (77), years (74), con-
text (72), confused (70), may (65),
only (63), born (61), states (60), cor-
rect (59), no (56), ai (55), definitely
(55), released (52), text (50), incor-
rect (49), say (48), year (48), could
(45), one (44), says (42)

film (332), american (280), released
(189), known (188), (born (161),
also (159), first (158), album (150),
new (149), one (144), series (124),
directed (123), band (106), united
(105), television (101), not (98),
played (97), – (97), written (96), state
(96), song (89), born (88), based (87),
national (83), city (82), located (80)

R3 not (197), one (146), said (122), new
(116), would (104), first (92), some (91),
make (87), people (83), may (83), also
(80), time (77), no (75), – (75), like
(74), get (74), last (72), only (68), two
(68), police (66), made (61), think (55),
home (54), go (54), way (53), many
(53)

not (131), people (48), one (39), only
(27), no (22), made (21), years (21),
speaker (19), two (19), new (18),
three (17), used (16), use (16), per-
son (16), less (16), born (16), good
(15), make (14), year (14), first (14),
played (14), school (13), govern-
ment (13), didn’t (13), last (13), some
(13)

not (527), statement (243), system
(224), definitely (127), know (115),
correct (104), says (98), no (91),
doesn’t (87), text (87), think (86),
only (86), context (84), incorrect (81),
may (81), model (75), could (74),
confused (73), one (67), said (66), say
(63), whether (58), difficult (57), nei-
ther (57), incorrect. (56), would (53)

not (328), one (185), new (134), peo-
ple (131), said (127), would (115),
first (106), some (104), make (101),
no (97), may (95), only (95), two
(87), time (86), last (85), like (83), get
(82), made (82), also (80), – (75), po-
lice (74), use (67), many (66), three
(63), home (62), go (62)

Contra. american (219), film (216), new (146),
(born (129), first (124), also (116),
known (115), united (110), one (108),
released (94), album (86), – (81), di-
rected (78), series (76), may (72), best
(71), television (70), band (69), not (68),
based (66), written (65), south (65), na-
tional (63), two (62), song (60), football
(59)

not (63), years (55), born (42), film
(37), released (36), first (31), year
(30), only (28), one (23), new (23),
died (21), people (19), american (19),
won (19), years. (19), world (18),
three (18), played (18), album (17),
two (17), less (17), directed (17), old
(16), made (16), written (15), lived
(15)

not (471), system (269), statement
(174), incorrect (121), think (104),
definitely (90), confused (87), diffi-
cult (83), only (78), born (71), says
(63), context (61), years (57), states
(51), one (50), would (49), incorrect.
(47), know (42), name (42), probably
(41), year (41), ai (41), could (40),
first (38), may (38), model (35)

film (253), american (238), new
(169), first (155), not (131), one
(131), (born (130), released (130),
known (126), also (125), united
(119), album (103), directed (95), se-
ries (88), – (83), band (82), written
(80), two (79), best (79), may (78),
television (78), south (77), world
(75), based (74), years (74), football
(72)

Neut. film (224), american (198), known
(126), first (118), one (116), released
(115), (born (112), also (107), album
(101), new (97), not (95), directed (93),
based (77), united (74), football (67),
may (61), band (60), best (60), – (58),
city (55), two (55), national (54), played
(54), series (53), state (51), song (51)

not (63), one (37), born (36), released
(29), only (28), never (25), played
(24), film (22), people (21), made
(19), first (18), no (18), new (17),
album (17), won (17), known (16),
population (15), john (14), two (14),
last (14), name (13), united (13), died
(12), best (12), football (11), written
(11)

not (608), know (263), system (236),
doesn’t (157), no (150), context
(147), statement (146), may (133),
say (125), whether (124), correct
(123), could (119), neither (117),
don’t (117), only (110), definitely
(109), text (102), information (89),
nor (83), mentioned (80), think (80),
state (78), says (71), difficult (71), in-
correct (69), confused (67)

film (246), american (208), not (158),
one (153), released (144), known
(142), first (136), album (118), new
(114), (born (114), also (112), di-
rected (101), united (87), based (83),
played (78), football (78), only (76),
best (72), band (70), two (69), made
(69), city (66), may (64), born (63),
name (63), written (60)

Entail. film (207), american (171), known
(136), first (134), also (132), (born
(124), one (118), new (98), album (88),
released (87), – (79), state (73), not (73),
based (71), directed (69), series (67),
united (65), played (61), written (61),
best (60), television (60), former (60),
two (58), band (56), may (55), located
(53)

not (63), one (37), born (36), released
(29), only (28), never (25), played
(24), film (22), people (21), made
(19), first (18), no (18), new (17),
album (17), won (17), known (16),
population (15), john (14), two (14),
last (14), name (13), united (13), died
(12), best (12), football (11), written
(11)

not (608), know (263), system (236),
doesn’t (157), no (150), context
(147), statement (146), may (133),
say (125), whether (124), correct
(123), could (119), neither (117),
don’t (117), only (110), definitely
(109), text (102), information (89),
nor (83), mentioned (80), think (80),
state (78), says (71), difficult (71), in-
correct (69), confused (67)

film (231), not (199), american (183),
first (167), known (146), one (145),
also (142), released (129), (born
(124), new (116), album (103), born
(91), state (84), years (82), two (81),
based (81), – (79), directed (78),
played (77), series (76), united (75),
written (73), people (71), best (69),
band (67), may (66)

Table 23: Top 25 most common words used by round and gold label. Bolded words are used preferentially in
particular subsets.
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Subset Context Statement Rationale Context+Statement+Rationale

ANLI film (647), american (588), known
(377), first (376), (born (365), also
(355), one (342), new (341), re-
leased (296), album (275), united
(249), directed (240), not (236), –
(218), based (214), series (196), best
(191), may (188), band (185), state
(182), football (177), two (175), writ-
ten (175), television (175), national
(169), south (165)

not (252), born (132), years (120),
released (107), one (87), film (83),
first (82), only (76), people (75),
year (61), played (58), new (58),
two (54), made (54), album (49),
no (46), died (46), won (46),
less (44), last (42), american (41),
years. (40), three (40), written
(38), used (37), john (37)

not (1306), system (753), statement
(494), know (343), think (274), def-
initely (268), context (261), correct
(243), difficult (228), only (224),
doesn’t (223), may (221), confused
(218), no (200), says (198), incorrect
(193), text (184), could (181), states
(166), born (160), one (155), say (147),
years (146), don’t (140), would (130),
whether (129)

not (1794), film (802), system
(781), american (659), one (584),
first (563), statement (511), re-
leased (504), known (495), also
(467), new (452), only (437), may
(429), know (387), born (386),
(born (371), album (362), no (337),
think (337), based (335), years
(332), two (313), states (313),
united (308), state (304), directed
(301)

Numerical american (236), film (211), (born
(162), first (151), known (138), al-
bum (136), new (129), released (126),
also (117), united (117), one (109),
– (101), band (87), series (83), best
(82), television (79), directed (77),
football (76), based (75), state (74),
played (73), second (72), south (71),
world (70), city (69), states (65)

years (114), born (79), released
(74), first (61), year (52), not (44),
died (38), less (37), two (36), one
(35), years. (34), three (32), popu-
lation (30), old (30), film (28), ago.
(27), album (26), only (24), old.
(24), century. (23), last (23), won
(20), least (20), world (20), second
(18), played (18)

not (344), system (291), statement
(166), years (137), difficult (125), born
(115), think (103), definitely (102), year
(90), confused (90), only (88), correct
(84), know (82), context (77), released
(72), may (71), incorrect (70), first (61),
text (60), could (59), would (57), one
(55), says (51), doesn’t (50), mentioned
(49), died (48)

not (423), system (297), years
(278), first (273), released (272),
film (265), american (256), born
(231), one (199), album (181),
year (170), statement (169), (born
(166), known (160), only (158),
new (158), two (145), may (140),
also (137), united (134), difficult
(125), based (124), states (117),
think (112), band (111), second
(109)

Basic film (238), american (193), one (143),
known (138), new (135), first (134),
also (132), not (125), released (105),
directed (104), (born (100), album
(99), state (97), united (90), may (83),
song (80), based (78), series (74), best
(74), two (73), television (72), – (69),
south (68), written (68), said (65),
would (64)

not (219), one (51), people (41),
no (36), film (31), new (31), re-
leased (28), less (28), never (27),
played (24), only (24), born (23),
two (23), made (22), album (21),
last (21), first (21), used (20), least
(18), written (18), three (17), di-
rected (17), best (16), years (16),
movie (16), good (16)

not (546), system (290), statement
(248), know (125), definitely (120),
think (115), context (101), says (101),
doesn’t (97), correct (92), only (91),
confused (89), may (88), incorrect (83),
states (78), no (76), text (75), could (69),
one (65), difficult (61), whether (58),
would (58), say (56), neither (54), said
(52), model (50)

not (890), system (303), film
(298), one (259), statement (254),
american (227), new (196), first
(191), known (182), also (181),
may (180), only (176), released
(165), no (154), think (149), know
(146), state (140), would (137),
two (134), directed (133), album
(132), states (128), based (127),
says (127), people (126), said (123)

Reference film (188), american (163), known
(139), (born (128), also (112), first
(98), one (85), new (83), directed
(72), – (71), not (71), released (70),
best (66), united (61), album (57),
television (56), south (54), world
(54), based (53), may (52), written
(52), series (50), band (49), ) (45),
two (45), national (44)

not (70), born (39), years (33),
name (23), film (21), made (20),
won (19), one (19), people (19),
first (19), only (17), year (17),
played (16), released (16), died
(16), known (15), band (15),
speaker (14), new (14), written
(14), three (13), two (12), no (12),
man (12), directed (11), album (10)

not (358), system (199), statement
(112), know (91), think (71), doesn’t
(70), confused (67), may (66), context
(60), model (60), only (57), says (52),
correct (52), could (51), definitely (50),
name (50), difficult (49), born (46), one
(42), probably (41), would (41), incor-
rect (40), states (39), don’t (38), no (35),
understand (34)

not (499), film (230), system (207),
known (186), american (171), first
(147), one (146), also (139), (born
(129), may (126), statement (122),
born (122), new (112), only (109),
name (105), released (105), know
(104), think (100), directed (93),
years (89), would (88), written
(84), two (83), states (82), based
(82), best (80)

Tricky film (227), american (142), first
(110), known (104), one (102), also
(99), new (93), (born (88), album
(83), released (81), directed (77),
based (75), song (71), not (68), series
(65), written (61), united (60), band
(59), ) (55), may (51), – (50), south
(48), only (48), two (48), television
(46), located (44)

not (82), only (58), born (33), film
(32), released (27), one (26), two
(22), first (21), made (19), years
(19), new (18), three (18), played
(16), album (16), american (16),
used (16), people (14), series (14),
wrote (13), directed (13), written
(13), also (13), band (13), known
(13), won (13), starts (12)

not (386), system (204), statement
(129), only (88), know (75), think (73),
difficult (69), context (67), confused
(66), incorrect (63), definitely (63), may
(57), correct (54), says (51), states (49),
doesn’t (48), one (43), name (42), used
(41), text (41), no (40), ai (38), don’t
(37), words (36), first (36), could (35)

not (536), film (281), system (208),
only (194), one (171), first (167),
american (166), also (146), known
(141), statement (133), new (124),
released (123), album (111), may
(110), based (110), directed (99),
two (92), (born (89), written (89),
series (88), know (87), song (86),
used (86), made (86), name (86),
think (85)

Reasoning film (390), american (363), (born
(245), first (229), also (227), known
(226), new (219), one (203), released
(173), album (159), united (154), di-
rected (151), not (147), based (138),
– (125), football (124), state (117),
national (116), played (111), best
(110), band (109), television (108),
may (108), series (106), former (105),
south (104)

not (131), born (92), released (66),
years (60), people (50), first (49),
one (49), film (43), played (39),
year (36), only (35), new (35),
made (30), never (30), two (29),
died (27), album (27), won (26), no
(26), known (25), last (25), amer-
ican (24), used (24), united (22),
john (22), city (22)

not (919), system (466), know (291),
statement (279), context (188), def-
initely (173), correct (172), doesn’t
(171), think (164), no (162), may (162),
could (147), difficult (144), only (126),
say (126), whether (123), says (119),
confused (119), text (118), don’t (114),
neither (110), incorrect (110), born
(101), one (96), information (95), states
(92)

not (1197), system (483), film
(481), american (411), one (348),
first (335), know (312), released
(307), known (306), also (292),
new (290), statement (288), may
(281), (born (250), only (249),
born (249), no (239), state (218),
based (213), album (206), think
(200), played (196), united (196),
context (191), could (184), doesn’t
(182)

Imperfections film (87), american (76), also (54),
one (52), first (47), known (45), re-
leased (45), new (44), album (42), not
(36), based (35), directed (35), (born
(35), city (34), united (33), written
(31), two (30), song (29), – (26), se-
ries (25), band (25), people (25), tele-
vision (24), population (24), name
(24), national (24)

not (38), film (18), people (14),
born (12), written (12), one (12),
only (11), first (11), made (10),
released (10), new (10), american
(8), city (8), two (7), years (7),
popular (7), many (6), different
(6), united (6), album (6), street
(6), show (6), also (6), population
(6), three (6), life (5)

not (168), system (82), statement (70),
know (50), correct (38), context (35),
think (34), says (32), no (30), definitely
(29), doesn’t (28), confused (26), could
(26), incorrect (26), one (24), states
(23), only (23), stated (22), neither (22),
may (21), model (21), say (21), text
(20), don’t (20), difficult (19), state (19)

not (242), film (116), american
(94), system (89), one (88), state-
ment (72), also (72), first (71),
known (65), released (64), know
(63), new (58), written (55), based
(54), album (53), only (52), no
(50), two (49), people (47), think
(46), city (45), may (44), states
(44), made (43), directed (42),
united (42)

Table 24: Top 25 most common words used by annotation tag. Bolded words are used preferentially in particular
subsets.
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Abstract

The concurrent learning of both unseen struc-
tures and grammar is an enduring problem in
phonological acquisition. The present study
develops a joint model of word-UR-SR triples
that incorporates a Maximum Entropy model of
SRs conditioned on URs. The learner was pre-
sented with word-SR frequencies, and success-
fully learned the hidden structures and gram-
mars that enabled it to generalize well on test
data that were withheld during training. When
given an option between acquiring a grammar
that supported a rich base analysis and one that
didn’t, the learner always acquired the gram-
mar that supported rich bases. These results
suggest that the preference for acquiring a rich
base grammar over a non rich base one is an
emergent property of the proposed model.

1 Introduction

In order to fully acquire language, a child has to ac-
quire both the representations and grammar of her
language from observed surface forms. Representa-
tions include underlying forms, metrical structures,
morphological boundaries within words, etc. Such
representations are absent from the observed data
that the child receives, and are thus termed hidden
structure. The current study focuses on the learn-
ing of hidden structure(s) concurrently with the
grammar.

Multiple approaches have been proposed for the
concurrent learning of hidden structure and an ac-
companying constraint-based grammar (Tesar and
Smolensky, 2000; Jarosz, 2015; Boersma and Pater,
2016; Rasin and Katzir, 2016; Nelson, 2019). Fol-
lowing Eisenstat (2009), Pater et al. (2012), Staubs
and Pater (2016), Nazarov and Pater (2017), and
O’Hara (2017), this study incorporates a Maximum
Entropy (MaxEnt) grammar (Goldwater and John-
son, 2003) that governs the mapping between hid-
den structures and surface forms. The current study

combines the word-hidden structure mapping with
the hidden structure-surface form mapping by uti-
lizing the chain rule of probability theory. This pro-
duces a joint word-underlying form-surface form
(WORD-UR-SR) model that is compatible with a
weighted-constraint grammar of UR-SR mappings.
While the model is similar to the ones in Staubs
and Pater (2016) and Nazarov and Pater (2017),
the current study focuses on learning URs that an
analyst would posit, with the learned grammar and
lexicon subjected to generalization tasks with wug
morphemes.

The model and the learner are introduced in
§2 and §3 respectively. We then turn to several
schematic languages, the first of which is based
on English voicing assimilation (§4). This is fol-
lowed by a set of six stress languages (§5). Two of
the languages within the stress set allow multiple
analyses, of which only one analysis supports rich
bases (Prince and Smolensky, 2004), thus provid-
ing the opportunity to determine whether there is
a preference for acquiring the rich base grammar
over a non rich base one. The final schematic lan-
guage is based on English velar softening (§6). §7
concludes.

2 Model

The knowledge whose acquisition will be in-
vestigated is knowledge of a particular distribu-
tion over WORD-UR-SR triples (e.g. <CROC-
PL, /kôAk+z/, [kôAks]>: 99%; <CROC-
PL, /kôAk+z/, [kôAkz]>: .003%; <CROC-PL,
/kôAk+s/, [kôAks]>: .002%; . . . ). In this paper,
WORD1 represents a sequence of morphemes, and
morphemes are represented with uppercase letters.

1WORD is also abbreviated WD in this paper.
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The probability of a triple can be rewritten as:

Pr(WD,UR, SR) = Pr(SR|WD,UR)

∗ Pr(WD,UR) (1)

The first term, Pr(SR|WD,UR), is the prob-
ability of an SR for a given WORD-UR pair,
and is determined by the traditional phono-
logical constraint grammar. For instance, if
Pr([bæNks]|BANK-PL, /bæNk+z/) = 0.9, then
we should interpret it to mean that the WORD-
UR pair <BANK-PL, /bæNk+z/> is realized
as SR [bæNks] 90% of the time. The model
proposed here does not condition the UR-SR
mapping on the word. Using the example
above, this means that Pr([bæNks]|BANK1-PL,
/bæNk+z/) = Pr([bæNks]|BANK2-PL, /bæNk+z/)
= Pr([bæNks]|BANK3-3SG.PRES, /bæNk+z/),
where BANK1 is the financial institution concept,
BANK2 is the river concept, and BANK3 is the
concept of turning at an angle. Consequently,
Pr(SR|WD,UR) = Pr(SR|UR), and the proba-
bility of the WORD-UR-SR triple can be simplified
to equation (2):

Pr(WD,UR, SR) = Pr(SR|UR)
∗ Pr(WD,UR) (2)

Such probabilistic mappings of SRs conditioned
on URs (i.e. Pr(SR|UR)) are computed by vir-
tually all probabilistic constraint-based grammars
(e.g. probabilistic OT, probabilitic versions of Har-
monic Grammar, etc.) The current study uses a
MaxEnt model, which is a weighted constraint
grammar.

Following the traditional phonological MaxEnt
model, each UR-SR pair (x, y) is associated with
a feature vector, ~v(x, y), which captures the pair’s
properties. For UR-SR pairs, there are two classes
of relevant properties. The first class concerns the
form that the SR takes. For example, a feature
may be used to track how many pairs of adjacent
obstruents of an SR have different voicing values.
Such features are known as markedness constraints.
The second class of features concerns the mapping
between the UR and the SR, and are most com-
monly used to penalize any changes between the
two. These features are conventionally known as
faithfulness constraints. Each feature has an as-
sociated weight, and the feature weights can be
organized into the weight vector ~w. The features

of the UR-SR pair (x, y) are linearly combined
(as in equation (3)2) to produce its harmony score,
h(x, y). h(x, y) is essentially the weighted sum of
the UR-SR pair (x, y)’s features, and is a scalar
(rather than a vector).

h(x, y) = −(~w · ~v(x, y)) (3)

The MaxEnt model then maps each pair’s harmony
score to its probability (equation (4)).

Pr(SR = y|UR = x) =
eh(x,y)

Z(x)
(4)

Since the traditional phonological MaxEnt gram-
mar is a conditional (“discriminative”) model, the
partition function Z(x) sums over all UR-SR pairs
that share the same UR (equation 5).

Z(x) =
∑

y′∈Yx
eh(x,y

′) (5)

In equation (5), Yx is the set of all SRs that are com-
patible with UR x. This has the effect of normaliz-
ing the probability of a particular UR-SR mapping
among only all other mappings from the same UR.

The second term in equation (2), Pr(WD,UR),
is the joint probability of a WORD-UR pair.
This implicitly defines a conditional distribution
Pr(UR|WD) (equation (6)).

Pr(UR = x|WD = w) =

Pr(WD = w,UR = x)∑
x′ Pr(WD = w,UR = x′)

(6)

Under this conditional distribution we would ex-
pect Pr(/kôAk+z/|CROC-PL) to be high, and
Pr(/kôAk+s/|CROC-PL), Pr(/kôAg+z/|CROC-
PL), etc. to be low. For the morpheme CROC,
the learner needs to choose between 2 possible
stem-final segments: voiceless /k/ and voiced
/g/3. For the plural morpheme, the learner needs
to choose between voiceless /s/ and voiced /z/.
Consequently, there are four potential URs that the
learner considers for the word CROC-PL (Table
1). Table 1 also shows the four features for each

2A UR-SR pair is active for a phonological constraint when
it violates the requirements of that constraint, which in turn
reduces the pair’s conditional probability. Hence the negative
sign in equation (3).

3This example is modeled after English voicing assimila-
tion where adjacent obstruents agree in voicing. The surface
sequence [ks] could have arisen from any of the following UR
sequences {/k+s/, /k+z/, /g+s/, /g+z/}. Hence, I vary only
the stem-final segment, but none of the other stem segments.
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of the four variants that the learner has to choose
among. These features represent the strength of
association between a particular morpheme and an
aspect (e.g. morpheme-final obstruent voicing) of
its UR. Within phonology, such features are also
known as UR constraints (Zuraw, 2000; Boersma,
2001). Similar to its UR-SR counterpart, there is
a feature vector ~u(w, x) for each WORD-UR pair
(w, x). Likewise, the UR constraint weights can be
organized into a vector ~θ. The harmony score for
each WORD-UR pair is computed as per equation
(7)4.

g(x, y) = ~θ · ~u(x, y) (7)

The harmony score of a WORD-UR pair is then
mapped to its probability (equation 8).

Pr(WD = w,UR = x) =
eg(w,x)

Z
(8)

In contrast to the UR-SR model described above,
the WORD-UR model is not conditional. The nor-
malization takes place over all WORD-UR pairs
(equation (9)).

Z =
∑

w∈W

∑

x∈Xw

eg(w,x) (9)

In equation (9),W is the set of words, and Xw is
the set of all URs that are compatible with word
w. This normalization produces a generative dis-
tribution over WORD-UR pairs, which in turn pro-
duces the generative distribution over WORD-UR-
SR triples of equation (2). This departs from the
models in Staubs and Pater (2016) and Nazarov
and Pater (2017), which are discriminative mod-
els. A generative model is capable of describing
differences in the frequencies of various words,
in addition to the relationship between words and
their realizations, whereas a discriminative model
only does the latter.

3 Learning

The model takes in a set of WORD-SR pair frequen-
cies (e.g. {<CROC-PL, [kôAks]>: 50; <CROC-
PL, [kôAkz]>: 0; . . .}), and learns a probabil-
ity distribution over WORD-UR-SR triples (e.g.
<CROC-PL, /kôAk+z/, [kôAks]>: 99%; <CROC-
PL, /kôAk+z/, [kôAkz]>: .003%; <CROC-PL,

4A WORD-UR pair is active for a particular UR constraint
when it contains the morpheme, segment, etc., required by
that constraint, which in turn increases the pair’s probability.
Hence the sign difference between equations (3) and (7).

/kôAk+s/, [kôAks]>: .002%; . . . ). The triple proba-
bility defined in Section 2 in fact implicitly defines
a distribution over WORD-SR pairs as well. More
concretely, the probability of pairs can be computed
from the probability of triples via this summation:

Pr(WD = w, SR = y)

=
∑

x

Pr(WD = w,UR = x, SR = y)

=
∑

x

Pr(SR = y|UR = x) ∗ Pr(WD = w,UR = x)

=
∑

x

eh(x,y)

Z(x)
∗ e

g(w,x)

Z

(10)

The likelihood Pr(WD,SR) can be understood
as a function of the parameters ~w and ~θ. Experi-
mentation showed that regularization terms did not
improve performance in fitting to test data that was
withheld from training, so the learner’s objective
is to seek the values of ~w and ~θ that maximize
this likelihood. In order to assess which values
of ~w and ~θ will be found by the learner, I use the
Expectation-Maximization (EM) algorithm (Demp-
ster et al., 1977). Notice that Pr(WD,SR) is a
marginal distribution5. The likelihood function of
marginal distributions is not guaranteed to be con-
vex, so each EM run finds a local maximum. I take
the highest of these local maxima to identify the
predicted outcome of learning.

4 English Voicing Assimilation

In English voicing assimilation, adjacent obstru-
ents with different voicing values are resolved with
suffixes assimilating their voicing value to that of
the stem. The underlying voicing value of stem-
final obstruents and suffixes constitute the hidden
structures.

4.1 Experimental setup
The first language had the words {CROC-PL, DOG-
PL, COW-PL}. Its grammar had the constraints
{AGREE(voice), IDENTstem, IDENTgeneral}, so ~w
was 3-dimensional for this language. In addition,
six potential UR variants {/kôAk/, /kôAg/, /dAk/,
/dAg/, /-s/, /-z/} were considered, making ~θ 6-
dimensional. These nine dimensions correspond to
the first nine rows in Table 3.

What constitutes successful learning? First, we
can check whether the UR learned for each mor-
pheme of the training data matches what would

5The summation in equation (10) produces marginal prob-
abilities.
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WORD URWORD (CROC, /kôAk/) (CROC, /kôAg/) (PL, /-s/) (PL, /-z/)

CROC-PL /kôAk+s/ 1 0 1 0
/kôAg+s/ 0 1 1 0
/kôAk+z/ 1 0 0 1
/kôAg+z/ 0 1 0 1

Table 1: UR constraints for the word CROC-PL.

be predicted via traditional phonological analy-
ses. For example, a phonologist would posit that
a child learns the URs /kôAk/, /dAg/ and /-z/ for
the CROC, DOG and -PL morphemes respectively.
Recall that the model produces a distribution over
WORD-UR-SR triples. In order to find the proba-
bility of the word-sized UR containing /-z/ in the
appropriate position, given that the WORD (i.e. se-
quence of morphemes) has -PL in that position, we
apply the following equation:

p(/-z/|-PL) =

[Pr(UR=/dAk-z/, WD=DOG-PL)
+Pr(UR=/dAg-z/, WD=DOG-PL)
+Pr(UR=/kôAk-z/, WD=CROC-PL)
+Pr(UR=/kôAg-z/, WD=CROC-PL)
+Pr(UR=/kaw-z/, WD=COW-PL)]

[Pr(WD=DOG-PL)+Pr(WD=CROC-PL)
+Pr(WD=COW-PL)]

(11)

The probability of a particular UR for each mor-
pheme is calculated in the same manner for each
of the other morpheme-UR pairs.

Second, the model must be able to generalize to
unseen data in the way that humans do. Unseen
data are WORD-SR pairs that the model wasn’t pro-
vided with in the training set. For English voicing
assimilation, the words in Table 2 provide a good
test set for generalizability. Each test word is com-

WORD

WUG-PL
HEAK-PL
CRA-PL
DOG-D
CROC-D

Table 2: Test set words for English voicing assimilation.

posed of a new morpheme and an old morpheme.
This isolates each of the old morphemes, so that
only one old morpheme appears in each word. This
allows us to test what the model knows between /-
s/ vs. /-z/ as the UR of the -PL morpheme, as well
as what the model knows about how /-s/ & /-z/
are realized on the surface. The new nouns WUG
/w2g/, HEAK /hik/ & CRA /kôA/ will illuminate
what the model had learned about the -PL suffix. I

introduce a novel suffix with UR /-d/ (representing
some morpheme I will write as -D), to test what the
model had learned about the roots DOG and CROC.
For example, if Pr((/hik-z/, [hiks])|HEAK-PL) is
high, then we’d know that the model generalizes
in the same way that English speakers do, as evi-
denced by wug tests. The probability of a UR-SR
pair for a given word is calculated as per equation
(12).

Pr(UR = x, SR = y|WD = w) =

Pr(WD = w,UR = x, SR = y)∑
x′
∑

y′ Pr(WD = w,UR = x′, SR = y′)
(12)

4.2 Results

The training data consisted of 10 logically possi-
ble WORD-SR pairs, of which only three were
observed. Each of the three observed pairs
{(CROC-PL, [kôAks]), (DOG-PL, [dAgz]), (COW-
PL, [kawz])} was only observed once. The learner
sought the parameter values that maximized the
likelihood of the training data. Five settings of the
parameters are shown in Table 3. I found these
by running the EM algorithm from 20 randomly
initialized6 starting points. The likelihood of the
training data for each of the five parameter settings
is 0.33 × 0.33 × 0.33 = 0.333. These five set-
tings have already hit the maximum likelihood of
training data – there isn’t another parameter setting
that would provide a much better likelihood since
these settings have already matched the empirical
relative frequencies almost perfectly.

6Initial weights for all eight languages in the present study
were drawn from a uniform distribution with range=[0.1, 5) for
phonological constraints & range=[0, 100) for UR constraints.

7In this paper, negative weights were only allowed for
UR constraints. Weights for regular phonological constraints
were not allowed to be negative. For voicing assimilation, the
UR constraint (COW, /kaw/) was excluded from the set of
features, since the morpheme COW had only one underlying
form under consideration. This resulted in (DOG, /dAg/)
attaining 0 weight, which pushed (DOG, /dAk/) to a negative
weight. Because it is the difference between weights rather
than the actual value of the weights that matter, the negative
weights do not have any meaningful impact on the results.
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1 2 3 4 5

AGREE(voice) 24.7 40.9 24.4 33.3 26.5
IDENTstem 15.0 11.9 12.6 29.4 11.6
IDENTgeneral 11.9 18.5 12.0 18.5 13.6
(DOG, /dAk/) -43.2 -11.9 -30.0 -26.4 -11.6
(DOG, /dAg/) 0.0 0.0 0.0 0.0 0.0
(CROC, /kôAk/) 0.0 0.0 0.0 0.0 0.0
(CROC, /kôAg/) -16.3 -23.7 -20.5 -33.1 -13.3
(-PL, /-s/) 0.3 14.4 9.5 20.7 24.6
(-PL, /-z/) 91.0 56.8 76.6 83.0 77.4

Pr(CROC-PL, [kôAks]) 0.33 0.33 0.33 0.33 0.33
Pr(DOG-PL, [dAgz]) 0.33 0.33 0.33 0.33 0.33
Pr(COW-PL, [kawz]) 0.33 0.33 0.33 0.33 0.33

Likelihood of training data 0.333 0.333 0.333 0.333 0.333

Negative log-likelihood of training data -3.29585 -3.29585 -3.29585 -3.29584 -3.29586

Table 3: Feature weights7, probability of observed data, & likelihood of training data from the best five runs (English voicing
assimilation).

Recall the first criterion of successful learning:
the learner has to learn the very same morpheme-
sized URs that human learners are posited by pho-
nologists to learn. Applying the equation in (11),
we see that the lexicon learned is indeed the one
that matches with traditional phonological analysis
(Table 48). A further examination of the UR con-
straints confirms that the UR constraints associated
with expected URs (i.e. DOG has underlying root-
final /g/, CROC has underlying root-final /k/, the
plural morpheme is underlying /-z/) have higher
weights than their counterparts (Table 3).

1 2 3 4 5

p(/dAg/|DOG) 1.0 1.0 1.0 1.0 1.0
p(/kôAk/|CROC) 1.0 1.0 1.0 1.0 1.0
p(/-z/|-PL) 1.0 1.0 1.0 1.0 1.0

Table 4: Lexicon (English voicing assimilation).

To fulfill the second criterion of successful learn-
ing, the learned models had to generalize in the
same way that English speakers generalize. The
generalization task considered 8 UR-SR combi-
nations for each word9. For nonce word HEAK
/hik/, an English speaker would produce [hiks]
for HEAK-PL via the UR /hik-z/. Thus, suc-
cessful generalization for the word HEAK-PL re-
quired assigning high probability to the UR-SR

8All probabilities in Table 4 were very close to or at 100%.
The lowest was 99.9991% for p(/dAg/|DOG) of the fifth pa-
rameter setting.

9To illustrate the 8 combinations, consider the nonce word
WUGS. 2 variations are available via the UR: /-s, -z/, 2 via
the SR of the stem-final consonant: [w2k, w2g], and 2 via the
SR of the suffix consonant: [-s, -z]. This produces 23 = 8
UR-SR combinations.

pair (/hik-z/, [hiks]), and low probability to the
seven other pairs. Table 5 presents, in the top five
rows, Pr((UR, SR)|WD) for the UR-SR pairs that
are expected to have high probability for their re-
spective words, given what we know about how
English speakers behave on wug tests. The results
in Table 510 indicate that all five models very suc-
cessfully generalized in a manner that mimicked
speakers, with probabilities close to or at 100%. A
look at the learned phonological constraint weights
in Table 3 shows why all five parameter settings
mirrored speakers so well in the generalization task.
The models all learned the two crucial weight-
inequalities required for English voicing assimi-
lation: AGREE(voice) > IDENTgeneral as well as
IDENTstem > 0.

For voicing assimilation, the model did well on
both the UR-learning of morphemes & wug-test
mirroring tasks because both the lexicon & gram-
mar learned by the learner mirrored what English
speakers are believed to have learned for voicing
assimilation.

5 PAKA stress languages

5.1 Experimental setup

The next 6 languages were generated using simi-
lar morphemes and constraints that generated the
PAKA World dataset in Tesar et al. (2003). There
were two roots: (PA & BA), as well as two suf-
fixes (-KA & -GA). The URs of PA and KA were
always unstressed: /pa/ & /-ka/. In contrast, the

10All probabilities in Table 5 were very close to or at 100%.
The lowest was 99.9986% for Pr((/dAg-d/, [dAgd])|DOG-D)
of the fifth parameter setting.
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1 2 3 4 5

Pr((/w2g-z/,[w2gz])|WUG-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/hik-z/,[hiks])|HEAK-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/kôA-z/,[kôAz])|CRA-PL) 1.0 1.0 1.0 1.0 1.0
Pr((/dAg-d/, [dAgd])|DOG-D) 1.0 1.0 1.0 1.0 1.0
Pr((/kôAk-d/, [kôAkt])|CROC-D) 1.0 1.0 1.0 1.0 1.0
Pr((/w2g-s/,[w2gz])|WUG-PL) 0.0 0.0 0.0 0.0 0.0
Pr((/w2g-z/,[w2kz])|WUG-PL) 0.0 0.0 0.0 0.0 0.0
...

...
...

...
...

...

Table 5: Probability of UR-SR pair for a given test set word (English voicing assimilation).

URs of BA & GA could bear stress, so the model
considered the potential-URs {/"ba/, /ba/, /-"ga/,
/-ga/}. Accordingly, the relevant UR constraints
for this dataset were: (BA, /"ba/), (BA, /ba/), (GA,
/-"ga/) & (GA, /-ga/). The four features that went
into Pr(SR|UR) were:

• MAINLEFT (ML)
– Stress the leftmost syllable.

• MAINRIGHT (MR)
– Stress the rightmost syllable.

• MAXgeneral-STRESS (F )
– If a syllable is stressed in the UR, retain

its stress in the SR.
• MAXroot-STRESS (FR)

– If a root syllable is stressed in the UR,
retain its stress in the SR.

These morphemes & constraints produced six
logically possible languages11, which are the six
sets of observed SRs shown in Table 6. Languages
3, 4 & 6 were each compatible with only 1 lexi-
con. Language 5 was compatible with both /-ga/
& /-"ga/, but compatible with only a single gram-
mar. For Languages 1 & 2, four lexicon-grammar
combinations were available for each language.

5.2 Results
For each language, the training data had 12 logi-
cally possible WORD-SR pairs13, of which four
pairs were each observed once. The four SRs for

11Since MaxEnt generates probabilistic languages, there are
technically an infinite number of possible languages. However,
I’m restricting the set of languages to only those where there
is effectively only one winning SR per UR.

12Since the model is MaxEnt rather than non-probabilistic
Harmonic Grammar, the difference between the terms on both
sides of an inequality need to be sufficiently large in order to
generate categorical outcomes. Determining exactly how large
a difference is needed for each inequality is difficult. Never-
theless, the test task provides a way to check that the trained
weights indeed produce sufficient difference between the two
terms of an inequality. If the difference were not sufficiently
large, the test task would fail to produce categorical outcomes.

13There were three SRs per word – left-stress, right-stress,
and no stress at all.

each language can be read off column “Observed
SRs” of Table 6. As with English voicing assimila-
tion, I did 20 EM runs per language. For all six lan-
guages, the learner succeeded in finding multiple
parameter settings that hit the maximum likelihood
of training data 0.25×0.25×0.25×0.25 = 0.254.
For the sake of brevity, only one of these parameter
settings is presented for each of the six languages
(Table 7).

To test generalizability, two new roots {SO /so/,
ZE /"ze/} and two new suffixes {-FO /-fo/, -VE
/-"ve/} were introduced to form test set words (Ta-
ble 8). As expected, all parameter settings that
attained the maximum likelihood of training data
generalized to test words at near 100% probability.
A sample of the probabilities of UR-SR pairs for
test word BA-FO is shown for one simulation of
Language 3, where the combination of trained mor-
pheme BA with an unaccented suffix like /-ka/ pro-
duced stress on the first syllable. Likewise, when
BA combines with unstressed /-fo/, successful gen-
eralization requires a UR-SR pair with ["bafo] to
have high probability (Table 9).

5.3 Rich base supporting grammars

According to Prince and Smolensky (2004), the
role of a constraint-based grammar is to assign an
output to each input15. In the case of absolute ill-
formedness (e.g. absence of right-stressed SRs in
a left-stressed language), the grammar (i.e. the
constraint interactions that govern the UR-SR map-
ping) must ensure that no input ever leads to ill-
formed outputs (e.g. not even a UR with rightmost

14UR constraints for the morphemes PA & -KA that do
not have multiple URs under consideration were included in
this feature set. Hence negative UR constraint weights do not
make an appearance here.

15Prince and Smolensky (2004) were writing about Opti-
mality Theory, where the grammar consisted of ranked con-
straints picking a sole output for each input. Nevertheless, the
grammar’s role in mapping inputs to outputs still holds for
probabilistic constraint-based grammars.
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Lg Observed SRs Description Lexicon Required weight inequalities12

1 ["paka, "paga, "baka, "baga] predictable left-stress /ba, -ga/ ML > MR
/"ba, -ga/

/ba, -"ga/ ML > MR + F
/"ba, -"ga/

2 [pa"ka, pa"ga, ba"ka, ba"ga] predictable right-stress /ba, -ga/ MR > ML
/ba, -"ga/

/"ba, -ga/ MR > ML + F + FR
/"ba, -"ga/

3 ["paka, pa"ga, "baka, "baga] full accentual contrast, default left /"ba, -"ga/ MR + F > ML > MR

4 [pa"ka, pa"ga, "baka, ba"ga] full accentual contrast, default right /"ba, -"ga/ ML + F + FR > MR > ML + FR

5 [pa"ka, pa"ga, "baka, "baga] contrast in roots only, default right /"ba, -ga/ ML + FR > MR > ML
/"ba, -"ga/

6 ["paka, pa"ga, "baka, ba"ga] contrast in suffixes only, default left /ba, -"ga/ MR + F > ML > MR

Table 6: PAKA languages and respective logically-possible lexicon-grammar combinations.

Lg 1 Lg 2 Lg 3 Lg 4 Lg 5 Lg 6

MAINLEFT (ML) 19.6 0.0 16.9 8.4 0.0 44.7
MAINRIGHT (MR) 0.0 20.0 0.0 23.3 19.4 0.0
MAXgeneral-STRESS (F) 1.5 1.7 32.4 37.4 21.7 111.4
MAXroot-STRESS (FR) 3.1 0.0 7.5 0.0 23.2 2.2
(BA, /ba/) 69.9 47.3 15.5 36.4 27.8 81.1
(BA, /"ba/) 0.5 77.2 61.4 80.5 66.7 34.2
(GA, /-ga/) 59.6 28.1 11.1 25.8 71.4 59.3
(GA, /-"ga/) 6.2 65.2 61.2 85.0 35.2 76.8

Likelihood training data 0.254 0.254 0.254 0.254 0.254 0.254

Negative log-likelihood training data -5.545177 -5.545177 -5.545178 -5.545178 -5.545177 -5.545177

Table 7: Feature weights14 & likelihood of training data from the best runs for each PAKA language.

WORD

SO -FO
SO -GA
BA -FO
ZE -GA
BA -VE

Table 8: Test set words for the six PAKA languages.

stress can produce an SR with rightmost stress).
Within models that feature probabilistic UR-SR
mappings, this translates to the grammar ensuring
that no inputs ever map to ill-formed outputs with
anything other than a vanishingly small probability.
In other words, the grammar should be fail-safe; it
should be able to map all URs (even implausible
ones like a right-stressed UR in a left-stressed lan-
guage) to SRs with appropriate probability values.
This concept is known as the Richness of the Base
(Prince and Smolensky, 2004).

Language 1 & Language 2 are languages with
predictable left- and right-stress respectively. Each
of these two languages is compatible with two

WORD UR-SR pair Pr(UR, SR|WD)

BA -FO /ba-fo/, [bafo] 2.7× 10−12

/ba-fo/, ["bafo] 4.6× 10−5

/ba-fo/, [ba"fo] 2.7× 10−11

/"ba-fo/, [bafo] 1.8× 10−21

/"ba-fo/, ["bafo] 9.9995× 10
/"ba-fo/, [ba"fo] 1.7× 10−20

Table 9: Generalization to BA-FO in Language 3 (one run
shown).

grammars (Table 6). In Language 1, the two pos-
sible grammars are Grammar 1 (ML > MR) &
Grammar 2 (ML>MR + F ). The lexicon that in-
cludes /-ga/ minimally requires Grammar 1, while
the lexicon that includes /-"ga/ minimally requires
Grammar 2. Since the weights of phonological con-
straints could not be negative, Grammar 2 entails
Grammar 1. It follows that Grammar 2 is com-
patible with both /-ga/ & /-"ga/ while Grammar
1 is compatible with only /-ga/. Grammar 2 is
thus a grammar that supports rich bases because it
is capable of producing SRs with the right proba-
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bilities even with an implausible UR (underlying
stressed suffix /-"ga/ in a left-stressed language
where unstressed root /pa/ also exists). In con-
trast, Grammar 1 is the less restrictive grammar
because it requires onlyML>MR, thus allowing
MR + F > ML. The gang effect of right-stress
(MR) and general faithfulness (F ) over left-stress
(ML) results in /pa-"ga/ surfacing with rightmost
stress *[pa-"ga]. For Language 2, this entailment
relation also holds amongst its two grammars, with
Grammar 4 (MR>ML + F + FR) being the rich
base supporting grammar, and Grammar 3 (MR >
ML) the less restrictive one. These two languages
thus provide useful test cases on whether there is a
preference for a rich base supporting grammar over
its less restrictive rival or vice versa.

All 20 runs for Languages 1 & 2 always learned
the rich base grammar. Trained weights for an
example run of Language 1 is shown in Table 7,
where the rich base grammar, ML (19.6) >MR +
F (0 + 1.5), is learned. To test this further, I ran 200
more simulations for both languages. All 200 runs
for both languages always learned the rich base
supporting grammar, sometimes with the lexicon
that minimally required the rich base grammar, and
sometimes with the lexicon that minimally required
the less restrictive one. This indicated a strong
preference for learning the rich base grammar over
its less restrictive counterpart.

The preference for acquiring the rich base gram-
mar is an emergent property of the model. EM
finds the local maximum by hill-climbing from a
randomly initialized point within the solution space.
The solution space is the likelihood function of the
marginal distribution (equation (10)) of the model
defined in §2. Hill-climbing (i.e. gradient ascent)
is guided by the gradients of the solution space at
the current point. The preference for converging at
maxima corresponding to the rich base grammar
indicates the following: within the solution space,
there are more points with gradients pointing to-
wards maxima corresponding to the rich base gram-
mar and fewer points with gradients pointing to-
wards maxima corresponding to the less restrictive
grammar. Since the solution space is a property of
the model (rather than that of a particular learner),
models with similar architecture (e.g. Staubs and
Pater (2016); Nazarov and Pater (2017)) are likely
to also favor the acquisition of rich base grammars.

6 Velar Softening

In English velar softening, /k/→ [s] before a high
front vowel when a morpheme-boundary intervenes
(e.g. electri[k]∼electri[s]-ity). Velar softening
is an instance of the derived environment effect
(DEE) because its triggering environment requires
the presence of a morpheme boundary. DEEs are
a puzzle because both the alternation and the seg-
mentation into morphemes must be acquired simul-
taneously. In an additional wrinkle, DEEs are often
only triggered by specific morphemes. For exam-
ple, the -ity morpheme triggers velar softening, but
the -ish morpheme does not. Velar softening thus
has three sources of hidden structure – presence
of a morpheme boundary, whether a particular suf-
fix is exceptional in triggering velar softening, and
the usual UR-segment-learning (/k/ or /s/) that
we’ve already seen in the preceding test cases. I
use the *-symbol to indicate the exception tagged
UR variant.

6.1 Experimental setup

There were eight observed words {ELECTRIC,
ELECTRICITY, ELECTRICISH, KITTY, SE-
CURE, SECURITY, SMALL, SMALLISH}. The
three sources of hidden structure were combined to
produce URs for these eight words. The URs for
ELECTRICITY are shown with their relevant UR
constraint features (Table 10). The UR /electrik-
*ity/ contained the morphemes ELECTRIC16 &
-ITY, so it was active for those two features. These
features represent a new class of UR constraint,
namely those that indicate the presence of certain
morphemes. Such features were not required in the
preceding cases as the morpheme boundary was
not in question. The UR /electrik-*ity/ had un-
derlying /k/ for morpheme ELECTRIC, and the
exception-tagged version of the -ITY suffix, so it
was also active for features (ELECTRIC, k)17 &
(-ITY, -*ity) respectively. These UR constrains are
the same kind that we’ve seen before.

Three phonological constraints controlled the
UR-SR mapping – a general markedness constraint
against [kI] sequences (M ), an exception-tagged
version that was active only when an exception-
tagged morpheme was part of the [kI] sequence
(ME), and a general IDENT constraint (Fgen).

16Abbreviated as EL...C in Table 10.
17Abbreviated as (EL...C, k) in Table 10.
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URELECTRICITY EL...C EL...CITY -ITY (EL...C, k) (EL...C, s) (EL...CITY, k) (EL...CITY, s) (-ITY, -*ity) (-ITY, -ity)

/electrik-*ity/ 1 0 1 1 0 0 0 1 0
/electrik-ity/ 1 0 1 1 0 0 0 0 1
/electris-*ity/ 1 0 1 0 1 0 0 1 0
/electris-ity/ 1 0 1 0 1 0 0 0 1
/electrikity/ 0 1 0 0 0 1 0 0 0
/electrisity/ 0 1 0 0 0 0 1 0 0

Table 10: URs under consideration for the word ELECTRICITY shown with their UR constraint features (English velar
softening).

6.2 Results

The training data had 12 logically possible WORD-
SR pairs, of which eight were each observed once.
Of 125 EM runs, multiple parameter settings were
found to have reached the maximum likelihood
of training data 0.1258 = 5.9605 × 10−5. 90.9%
of these parameter settings learned the very same
hidden structures that matched the standard phono-
logical analysis of velar softening. This included
learning that the -ITY morpheme was exception-
tagged but that -ISH wasn’t. All of these hidden
features were learned at probabilities18 greater than
97%, with the lowest going to the probability of a
morpheme boundary in SECURITY at 97.3%.

To test whether the learned grammars gener-
alized in a way that mimicked human learners,
the following three morphemes were introduced:
a new root with a morpheme-final-/k/ (CLEMIC
/"klEmIk/), an exception-tagged suffix *-ISM /*-
Izm/ and a non-exception-tagged suffix -Y /-i/
to create the test words in Table 11. For each

WORD Expected UR-SR

ELECTRIC-ISM electri/k/-*ism, electri[s]ism
ELECTRIC-Y electri/k/-y, electri[k]y
CLEMIC-ITY clemi/k/-*ity, clemi[s]ity
CLEMIC-ISH clemi/k/-ish, clemi[k]ish

Table 11: Test set words for English velar softening & UR-
SR pairs expected to be learned by human learners.

test word, its expected UR-SR pair arose from
what traditional phonological analysis would have
a child positing as its UR and SR. For instance, the
word ELECTRIC-ISM would be posited to have
morpheme-final /k/ as opposed to /s/ for ELEC-
TRIC, with that /k/ surfacing as [s]. The expected
UR-SR pair for each word is shown in column “Ex-
pected UR-SR” of Table 11. The same 90.9% of
parameter settings that hit the maximum likelihood
of training data generalized well to the test set with
probabilities of the expected UR-SR pair for each

18These probability values were calculated using the same
method shown in eq (11).

word approaching 100%19. Examination of the
weights learned for the parameter settings that suc-
cessfully generalized confirmed that they had each
learned the grammar necessary for velar softening.
That is, the alternation applied when the suffix was
exception-tagged (ME + M > Fgen), but did not
take place when the suffix wasn’t exception-tagged
(Fgen >M ).

What would this high-but-not-100% rate of ac-
quisition of the velar softening grammar mean for
human learners? Perhaps 10% of people fail to
learn the velar softening grammar, and instead rely
on memorized forms for existing words. These
people are predicted to not apply velar softening in
a wug test. Interestingly, in a wug test with nonce
stems and the -ity suffix, Pierrehumbert (2006)
found that 2 in 10 subjects did not have produc-
tive velar softening.

7 Conclusion

The present study produced a domain-general
model that concurrently learned both hidden struc-
ture and a weighted-constraint grammar. The
model was trained on eight languages, and general-
ized well to test data on all of them. Two languages
in particular presented a choice between acquiring
a grammar that supported rich bases versus one
that didn’t. This study found a strong preference
for acquiring the rich base grammar, which I ar-
gued was an emergent property of the model. The
present study thus presented a way in which a rich
base grammar may be acquired when URs are not
known in advance.
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Abstract

Grillo and Costa (2014) argue for a pseudo-
relative (PR) first account of relative clause
attachment preferences (RC) such that, when
faced with a sentence ambiguous between a
PR and a RC interpretation, the parser prefers
committing to a PR structure first, thus giving
rise to what looks like a high-attachment prefer-
ence. One possible explanation for this parsing
choice is in terms of simplicity of the PR struc-
ture, and overall economy principles. Here, we
evaluate this hypothesis by testing the predic-
tions of a parser for Minimalist grammars for
PR and RC structures in Italian. We discuss
the relevance of our results for PR-first expla-
nations of the cross-linguistic variability of RC
attachment biases, and highlight the role that
computational models can play in evaluating
the cognitive plausibility of economy consider-
ations tied to fine-grained structural analyses.

1 Introduction

The idea that economy and simplicity principles
affect syntactic derivations has been central to in-
quiries in Generative grammar. In earlier iterations,
economy conditions were basically conceived as
evaluation metrics for selecting grammars from the
format permitted for rule systems. In a lexicalized,
non-rule based framework such as the Minimalist
Program, economy has come to play a different but
still central guiding role in the theoretical architec-
ture of the grammar — motivating, for instance, the
preference for applying some grammatical opera-
tions over others (Chomsky, 1995; Collins, 2001).

These appeals to economy considerations,
ubiquitous even in the most recent syntactic
literature, occasionally reference general parsing
and computational motivations (Kayne, 1994;
Motut, 2010; Fukuda, 2011; Razaghi et al., 2015;
Bošković and Messick, 2017, a.o.). In this sense,
a mutual exchange of questions and insides across

the syntactic and psycholinguistic literature has
been fruitful, inspiring a vast array of research
questions. For instance, there are numerous detailed
formalizations of the role of locality considerations
in our understanding of grammatical and processing
principles (Frazier, 1987, 1978; De Vincenzi, 1991;
Gibson, 2000). However, within the theoretical
literature there is sometime the tendency to rely
on economy explanations without overtly speci-
fying what kind of assumptions are made about
fine-grained syntactic details and their relation to
broader principles of cost. For example, while it is
possible to find many claims of structural simplicity
made to motivate syntactic and/or psycholinguistic
predictions, it is often unclear in these contexts how
simplicity is actually quantified, how these computa-
tional demands would be implemented in a precise
parsing architecture, and how these costs are linked
to cognitive resources. Ideally, it would be desirable
to formally spell-out the kind of complexity as-
sumptions underlying different aspects of syntactic
representations, so to explore the plausibility of the
predictions made by economy claims with respect
to behavioral responses in psycholinguistic studies
(Bresnan, 1978, 1982; Rambow and Joshi, 1994;
Kobele et al., 2013; Demberg and Keller, 2009).

Following these intuitions, in this paper we focus
on economy principles as referenced in the context
of the cross-linguistic variation of relative clause
attachment ambiguity preference. We suggest that
a transparently specified computational model
which takes syntactic assumptions seriously can
help shed light on these issues. In particular, we
propose the use of a parser for Minimalist grammars
(MGs; Stabler, 2013), coupled with complexity
metrics measuring memory usage (Kobele et al.,
2013; Gerth, 2015; Graf et al., 2017, a.o.), in
order to investigate the predictions of the so-called
pseudo-relative first hypothesis (Grillo and Costa,
2014) in a framework that actually formalizes
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economy considerations. As a starting point in this
enterprise, we evaluate the predictions of the model
for the processing preferences reported in recent at-
tachment ambiguity studies for Italian (De Vincenzi
and Job, 1993; Grillo and Costa, 2014).

2 Parsing Principles
and RC Attachment Preferences

One of the most researched topics in the sentence
processing literature is the cross-linguistic variation
in attachment ambiguity preferences. Notoriously,
when a complex Determiner Phrase (e.g., DP1 of
DP2) is followed by a RC, languages are known
to show varying biases for the RC modifying
either DP2 (Low Attachment, LA) or DP1 (High
Attachment, HA). Consider the following sentence:

(1) Pearl saw the Commander of the Gem that run

a. Pearl saw the Commander of [the Gem
that run] LA

b. Pearl saw [[the Commander of the Gem]
that run] HA

This sentence is ambiguous between two
interpretations. In the LA interpretation, the relative
clause [that run] modifies the second DP: e.g.
in (1a), it is the Gem that is doing the running.
However, a HA interpretation is also available (1b),
according to which it is the commander that was
running, with the RC modifying the whole complex
DP [the Commander of the Gem]. While it is well
established that English speakers will generally
prefer the LA interpretation, it has been shown that
languages vary significantly in this respect (Cuetos
and Mitchell, 1988). For instance, Spanish, Greek,
and Italian speakers show a general preference for
a HA interpretation (Cuetos and Mitchell, 1988;
Carreiras and Clifton Jr, 1993; De Vincenzi and Job,
1993; Papadopoulou and Clahsen, 2003, a.o.), while
in Basque and Chinese speakers pattern similarly to
English (Gutierrez-Ziardegi et al., 2004; Shen, 2006,
a.o.). Additionally, variation in attachment pref-
erence within the same language has also been re-
ported (Fernández, 2003), as well as variation across
online and offline tasks (De Vincenzi and Job, 1993).

This cross-linguistic variation in Relative Clause
(RC) attachment preferences has been the object
of extensive investigation in theoretical linguistics
and psycholinguistics. A long-standing hypothesis
in the sentence processing literature has been that
processing economy principles are a core feature

of the human parser. In this sense, RC attachment
ambiguity is of interest as a perfect case study for
the exploration of such general economy consider-
ations. As mentioned, such ambiguity is due to the
possibility of attaching the RC to either the first DP
or the second DP. An intuitive interpretation of local-
ity of structure building would favor the latter, under
the assumption that local attachment reduced the
processing load of the parser (Frazier, 1990; Gibson
et al., 1996; Gibson, 1998). While LA languages
perfectly conform to the predictions made by such
an hypothesis, HA languages present a problem.
Importantly, numerous studies have unveiled a
variety of factors that can modulate RC attachment
— such as prosodic, semantic, and pragmatic vari-
ables (MacDonald et al., 1994; Gilboy et al., 1995;
Acuna-Farina et al., 2009; Fernández, 2005; Fraga
et al., 2005; Hemforth et al., 2015). These additional
variables seem to behave somewhat consistently
across languages, and the many existing proposals
in the literature (Cuetos and Mitchell, 1988;
Clifton Jr and Frazier, 1996; Gibson et al., 1996;
Hemforth et al., 2000, a.o.) still leave the full pattern
of cross-linguistic variation somewhat unexplained.
If the goal is to provide explanatory insights into
parsing mechanisms, even accounts that try to
reduce variation in cross-linguistic preferences
to statistical/exposure distributions would need to
address whether HA/LA is less frequent in a specific
language because of the inherent complexity of
one construction over the other, or because of some
external reason. All else being equal then, if the vari-
ance in the interpretative biases for RC attachment
is not to be located in language specific grammatical
distinctions, it might pose an issue for theories
of language processing that see universal parsing
mechanisms underlying human language process-
ing behavior (see Grillo and Costa, 2014; Grillo
et al., 2015; Aguilar et al., 2021, for a discussion).

While acknowledging the complicated array of
variables affecting RC interpretation, Grillo and
Costa (2014) point out a possible confounding factor
in previous experiments reporting HA in languages
like Italian and Spanish: namely, the availability of
a pseudo-relative interpretation. Their claim is that
in HA languages there is an additional structural
representation available for sentences like (1): a
pseudo-relative clause (PR) construction. Although
linearly identical to RCs, PRs have different
structural and semantic properties — essentially,
they behave as NP/DP modifiers denoting events.
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Importantly, the main structural difference is that
in a PR parse, the matrix verb takes the whole
PR as its complement (akin to what happens for
English Small Clauses), and what looks like the
“modified” DP is the subject of that clause. As PRs
are complement/adjuncts of VPs, the most local DP
is not grammatically available to the PR, and thus
they are only compatible with what looks like a HA
interpretation. Interestingly, it is possible to control
for PR availability by modulating the syntactic and
semantic environment of a sentence. With these con-
siderations in mind, Grillo and Costa (2014) report
that when participants are tested with sentences for
which the RC interpretation is the only possible one
(i.e., PR is made unavailable based on the properties
of the main clause verb), a LA parse is preferred
over the HA one (see also De Vincenzi and Job,
1993; Branco-Moreno, 2014; Aguilar et al., 2021).

These facts are accounted for by formulating a
pseudo-relative first hypothesis. This hypothesis
states that, when faced with a sentence ambiguous
between a PR and a RC interpretation, the parser
prefers committing to a PR structure first, thus
giving rise to what looks like a HA preference. Then,
if a PR analysis is made unavailable, the parser will
prefer the LA parse over the HA due to universal
locality principles. Grillo and Costa (2014) argue
that the parsing preference for PR constructions
might be due to the richer functional domain usually
associated to RCs, making the latter dispreferred.

The preference of the parser for a PR structure is
thus accounted for in this literature in terms of sim-
plicity of the PR structure, and overall economy prin-
ciples. However, while the locality ideas that would
lead to preferring a LA over a HA have been exten-
sively discussed in the past, the specific parsing prin-
ciple grounding the alleged PR vs. RC complexity
asymmetry is left generally unspecified. While the
idea that structure building operations correspond
to some type of cognitive cost is certainly not new,
it is unclear that simply postulating additional func-
tional structure per se implies increased parsing cost
(Miller and Chomsky, 1963; Bresnan, 1978). In fact,
it is possible to conceive of pletora of ways in which
a specific structure could be defined as being simpler
than another, and none of these are guaranteed to
have concrete effects on a specific parsing strategy
(Bresnan, 1982; Berwick and Weinberg, 1983). If
such hypotheses are to be thoroughly explored, it
seems crucial to ground our theoretical stipulations
in a transparent theory of exactly why certain oper-

Steps Parse Action
1 CP is conjectured
2 CP expands to C’
3 C’s expands to does and TP
4 TP expands to Connie and T’
5 T’ expands to T and VP
6 VP expands to like and who
7 who is found
8 does is found
9 Connie is found

10 T is found
11 like is found

(a)

1CP2

2C’3

3does8
3TP4

4Connie9
4T’5

5T10
5VP6

6like11
6who7

index

outdex

(b)

Figure 1: Example of a string-driven top-down tree
traversal for an MG derivation tree.

ations are more costly for the parser than others. In
the rest of the paper, we propose the use of a compu-
tational model grounded in a rich grammar formal-
ism, as a way to evaluate the economy claims made
by the PR-first hypothesis. The following section
illustrates the core ideas behind the model, and clar-
ifies why such an approach can offer insights when
testing theories of structural and processing com-
plexity. For recent, detailed overviews of the tech-
nical details of the approach the reader is referred to
(Gerth, 2015; Graf et al., 2017; De Santo, 2020b).

3 MG Parsing

MGs (Stabler, 1996, 2011) are a lexicalized formal-
ism rigorously implementing an early version of
Minimalist syntax. These grammars consist of a
sets of lexical items (LIs), each with a phonetic form
and a finite, non-empty string of features. Syntactic
objects are built from LIs via two feature checking
operations: Merge — encoding subcategorization —
and Move — allowing for long-distance movement
dependencies. In this paper, we will ignore the
feature component of the LIs, and focus on the
fact that the fundamental data structure in MGs is
a derivation tree, which encodes the sequence of
Merge and Move operations required to build the
phrase structure tree for a given sentence (Michaelis,
1998; Harkema, 2001; Kobele et al., 2007).

Merge and Move operations are represented in
these trees as binary and unary branching nodes,
respectively. The main difference between a more
traditional phrase structure tree and a derivation tree
is that in the latter, the final word order of a sentence
is not directly reflected in the order of the leaf nodes
in a derivation tree. This is because moving phrases
remain in their base position, and their landing
site can be deterministically reconstructed via the
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feature calculus.

Given that MGs are able to represent the struc-
turally rich analyses now common in Minimalist
syntax, they have been focus of a line of work aimed
at connecting syntactic assumptions to offline pro-
cessing behavior. Specifically, this work has shown
that a top-down parser for MGs (Stabler, 2013)
can successfully predict a variety of processing
difficulty contrasts, via metrics that relate offline
parsing difficulty to memory usage (Kobele et al.,
2013; Graf et al., 2017; De Santo, 2020b, a.o.).

Stabler (2013)’s parser is a variant of a standard
recursive-descent parser for CFG, modified to take
care of the fact that the order of lexical items in a
derivation tree does not fully match the linear sur-
face order. Basically, the parser scans the nodes
from top to bottom and from left to right; but since
the surface order of lexical items in the derivation
tree is not the phrase structure tree’s surface order,
simple left-to-right scanning of the leaf nodes yields
the wrong word order. In order to keep track of the
derivational operations affecting the linear word or-
der, the MG variant follows the standard approach of
predicting nodes downward (toward words) and left-
to-right until a Move node is predicted. At that point,
the parser discards the top-down strategy and builds
the shortest path towards the predicted mover. After
the mover has been found, the parser continue from
the point where the search for the mover started
(Figure 1a). The memory stack associated to the
parser therefore plays a fundamental role: if a node
is hypothesized at step i, but cannot be worked on
until step j, it must be stored for j−i steps in a prior-
ity queue. For instance, considering the derivation
tree in Figure 1b, the node for does is predicted at
step 3. However, since a movement dependency for
Spec,CP has been postulated, the parser is not fol-
lowing a pure top-down strategy and will not match
that prediction against the linear input until a node
for who has been predicted and confirmed (at step 6
and 7).

To make the traversal strategy easy to follow,
we adopt Kobele et al. (2013)’s tree annotation
approach. The annotation indicates for each node
in the tree when it is first conjectured by the parser
(index, superscript) and placed in the memory
queue, and at what point it is considered completed
and flushed from memory (outdex, subscript). Index
and Outdex allow the MG model to rigorously link
parser behavior, syntactic structure, and processing
difficulty by connecting the stack states of the

top-down parser to memory usage. In order to allow
for psycholinguistic predictions, it is then possible
to use these annotations to predict processing
difficulty based on how the structure of a derivation
tree affects memory usage during a parse (Rambow
and Joshi, 1994; Gibson, 2000; Kobele et al., 2013;
Graf and Marcinek, 2014; Gerth, 2015).

The MG model distinguishes several cognitive
notions of memory usage (Graf et al., 2017). Here,
we focus on a measure of how long a node is kept
in memory through a derivation (TENURE). Tenure
for each node is computed considering the moment
a node was first postulated into the structure (and
thus placed in the memory stack of the parser) and
the moment such prediction was confirmed and the
node could be taken out of memory. Essentially then,
a node’s tenure is equal to the difference between its
index and its outdex. For instance, considering the
annotated MG tree in Figure 1b, tenure for Connie
is Outdex(Connie)−Index(Connie)=9−4=5.

Based on how this cognitive notion of mem-
ory usage interacts with the geometry of the
underlying syntactic structure, the MG parser
then assigns a cost to each sentence. Kobele
et al. (2013) show that tenure can be associated
to quantitative values by defining metrics like
MAXT := max({tenure-of(n)}) and SUMT
:=∑n tenure-of(n). MAXT measures the maximum
amount of time any node stays in memory during
processing, while SUMT measures the overall
amount of memory usage for all nodes whose tenure
is not trivial (i.e.,>2). It thus captures total memory
usage over the course of a parse. A metric like
MAXT can then be used to derive categorical pro-
cessing contrasts, by comparing the tenure values
assigned by the MG model to derivation trees corre-
sponding to sentences with stark asymmetries in re-
ported offline processing preferences. For instance,
building on these intuitions, Graf and Marcinek
(2014) show that MAXT makes the right difficulty
predictions for several phenomena, such as right
embedding vs. center embedding, nested dependen-
cies vs. crossing dependencies, as well as a set of
cross-linguistic contrasts involving relative clauses.
Importantly, while the space of possible metrics
defined by this model is potentially vast, in what
follows we will focus our discussion on MAXT ex-
clusively, given the attention that this specific metric
has received in recent work (Gerth, 2015; Graf et al.,
2017; Liu, 2018; Lee, 2018; De Santo, 2019, 2020a).

Finally, note that Stabler’s original parser is
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equipped with a search beam discarding the most
unlikely predictions. Consistent with previous
work, we follow Kobele et al. (2013) in ignoring
the beam and assuming that the parser is equipped
with a perfect oracle, which always makes the right
choices when constructing a tree. This idealization
is clearly implausible from a psycholinguistic point
of view, and might seem controversial when model-
ing structurally ambiguous sentences. However, it is
made with a precise purpose in mind: by assuming
a deterministic parse, we aim to evaluate structural
economy claims by focusing on the specific con-
tribution of syntactic complexity to memory load.

4 PRs vs RCs in a Computational Model

Consider now the following Italian sentence:

(2) (Io)
(I)

Ho
have

visto
seen

la
the

nonna
grandma

della
of the

ragazza
girl

che
that

gridava
screaming-3SG

“I saw the grandma of the girl that was
screaming”

This sentence is ambiguous between a HA
interpretation (the grandma was screaming) and
a LA interpretation (the girl was screaming).
Additionally, the HA interpretation is ambiguous
between two structural analyses: a PR analysis and
a true HA, RC analysis.

As mentioned, the pseudo-relative first hypoth-
esis as stated in previous literature predicts that a
PR parse should be preferred over RC parses (both
LA and HA), due to the overall simplicity of PRs
over RCs. Additionally, the hypothesis then predicts
that, in absence of an available PR parse, a LA parse
should be preferred over an HA one, possibly due to
locality principles. The relevant pairwise contrasts
are summarized in Table 1. Note that, while the PR
< LA1 contrast might seem counter intuitive, it is
crucial for the PR-first hypothesis to pan out: when
faced with a choice, the parser follows a PR strategy
first as it is (in some ways) simpler. A conceivable
weaker version of the hypothesis, which makes a
prediction only for the HA vs. PR contrast with
nothing to say about the relative simplicity of the PR
structure when compared to relative clauses with LA
constructions would be insufficient, as it would not
explain why the parser does not follow a LA strategy

1Henceforth in the paper, processing contrasts are
summarized as x < y, to be interpreted as x is preferred over y.

to begin with. With this in mind, we test this hypoth-
esis over sentences in Italian as reported in (De Vin-
cenzi and Job, 1993; Grillo and Costa, 2014).

4.1 Syntactic Choices

Adopting MGs as the core grammar formalism
makes the model sensitive to fine-grained syntactic
choices. Exploring how different syntactic analyses
impact the main results is thus important to the
explanatory aims of the approach (De Santo, 2021).
In this sense, the psycholinguistic literature tends
to be fairly non-committal with respect to the
details of the structural hypotheses underlying
relative clauses. Therefore, here we evaluate two
different analyses of RC constructions currently
popular in minimalist syntax (Bianchi, 2002a,b):
the promotion analysis (Kayne, 1994) and the
wh-movement analysis (Chomsky, 1977).

Promotion Analysis Under a promotion analysis
(Kayne, 1994), the head of the RC is a noun starting
out as an argument of the embedded verb and
undergoing movement into the specifier of the
RC. The RC itself is selected by the determiner
that would normally select the head noun in
head-external accounts, like the wh-movement case
below (Figure 2a).

Wh-movement Analysis Chomsky (1977)’s wh-
movement analysis treats the construction of an RC
as an instance of wh-movement. The complemen-
tizer position is overtly filled by that, while a silent
wh-operator Op moves from the base position to
Spec,CP. The whole CP merges with the relativized
NP as its adjunct (Figure 2b). The silent Op is co-
indexed with the NP to which the RC is adjoining.

Pseudo-relatives Similarly to RCs, there are
various potential analyses to pseudo-relative clause
constructions. Here, we follow Grillo and Costa
(2014) and adopt an approach to PR structures as
small clauses (Cinque, 1992). Essentially, as men-
tioned before, in PR parses the matrix verb takes the
whole PR as its complement, and the modified DP is
the head of that clause (Figure 2c). Thus, there is no
movement extracting the head DP from within the
PR. The modified DP is linked to its interpreted po-
sition by co-indexing it with a null pro, resembling
what is done with RC in the wh-movement analysis.
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Figure 2: Sketches of the (a) RC with promotion, (b) RC with wh-movement, and (c) PR analyses for the sentence
The horse that the wolf chased.
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Figure 3: Annotated derivation trees for the Italian
sentence I saw the grandma of the girl that screamed,
according to a pseudo-relative clause analysis. The
root of the tree is treated as a VP since additional
structure in the matrix clause would be identical across
comparisons. Boxed nodes are those with tenure value
greater than 2, following (Graf and Marcinek, 2014).

4.2 Modeling Results2

As the model’s results are categorical, only one
test item per construction is needed. Consider once
again the ambiguous sentence in (4). According
to what discussed in the previous section, we can
build five derivations for that single linear string:
one derivation using a PR analysis, and then two
derivations for RC/LA and RC/HA, each modulated

2All simulations in this paper were run on the open
source code made available by Graf et al. (2017) at
https://github.com/CompLab-StonyBrook/mgproc.

by syntactic analysis (wh-movement or promotion).
Annotated derivation trees for these configurations
can be seen in Figure 3 and Figure 4. With all of this
in place, we can finally look at the modeling results.
Table 1 and Table 2 report overall performance
of the model, and MAXT values for the three
constructions considered here.

First, MAXT successfully captures the LA<HA
preference, independently of syntactic analysis.
This is because in the HA cases the parser has to
search for the whole NP [the grandma of the girl]
before being able to work on the rest of the RC
(Figures 4a and 4b vs. Figures 4c and 4d). This
is encouraging, in the sense that it shows how the
model captures the well-established intuition about
locality of attachment for these two constructions.

We can then move on to the pseudo-relative
contrasts. Under a promotion analysis, the parser
correctly captures PR<HA, due to the additional
movement dependencies hypothesized for the
RC/HA structure (Figure 4a). However, MAXT pre-
dicts no difference between the two when the RC is
built according to a wh-movement approach (Figure
4b). Looking at the annotated derivation trees for the
HA case, it is possible to infer that in the promotion
case MAXT (measured on the complementizer that)
is driven by the fact that the whole head NP raises
to Spec,CP. Thus, the parser needs to expand it
in its base position (Spec,vP) before being able to
work on the rest of the CP. This contrasts starkly
with what is done when building the PR structure:
since there is no movement dependency to resolve,
having to build the big NP first does weight on the
CP node somewhat, but it does not affect how long
CP internal nodes have to be maintained in memory
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Figure 4: Annotated derivation trees for Italian Relative Clauses: (a) HA with a promotion analysis, (b) HA
attachment with a wh-movement analysis, (c) LA with a promotion analysis, and (d) LA with a wh-movement
analysis for the sentence I saw the grandma of the girl that screamed. Trees are treated as VPs since additional
structure in the matrix clause would be identical across comparisons. Boxed nodes are those with tenure value
greater than 2, following (Graf and Marcinek, 2014).

(Figure 3). Crucially though, this is very similar
to what has to be done for RCs according to the
wh-movement analysis. According to this approach,
there is no movement of the whole NP from within
the RC, but just of an operator to Spec,CP. Thus,
while there are some subtle structural differences
between RCs and PRs under the wh-movement
analysis too, they do not end up affecting overall
memory load in any significant way (beyond the
specific node on which MAXT is measured).

Finally, we look at the last contrast relevant to
the PR-first hypothesis. Under neither of the RC
analyses considered the model is able to capture the
fact that a PR construction should be more efficient
to parse than a LA attachment RC one. This is be-
cause for both PR and HA structures, the parser has
to explore the full complex NP before being able to
expand on the rest of the structure (thus increasing
memory load on the hypothesized embedded CP),
while in the LA case only the lower DP needs to be
fully built and discarded from memory.

MG Parser
Hypothesis Promotion Wh-mov
PR < HA X Tie
PR < LA × ×
LA < HA X X

Table 1: Summary of the predictions made by a pseudo-
relative first account, and corresponding parser’s
predictions based on MAXT, as pairwise comparisons
(x < y: x is preferred over y).

5 Conclusion

In this paper, we exploited a transparent compu-
tational model connecting grammatical represen-
tations to memory cost via parsing, in order to
explicitly test an economy-based hypothesis about
why pseudo-relative clauses are preferred over
relative clauses in psycholinguistic experiments.
This PR-first hypothesis has been put forward in
the literature as a way to account for the reported
cross-linguistic variation between high-attachment
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MAXT
Promotion Wh-mov

PR 10/CP
HA 11/that 10/CP
LA 5/that 7/that

Table 2: MAXT values (value/node) by construc-
tion, with RCs modulated across a promotion and
wh-movement analysis.

(HA) and low-attachment (LA) parsing preferences
— which would then arise as an artifact of a syntactic
difference between languages with pseudo-relative
constructions and languages without it. In order
to evaluate the broader implications of the PR-first
idea then, what seems crucial is the ability to
explore the soundness of the complexity predictions
made by this hypothesis when interacting with the
broad range of fine-grained syntactic assumptions
for a minimalist derivation.

Using complexity metrics calculated on Mini-
malist Grammar derivations for Italian sentences,
we showed that a preference for PR over HA is
predicted, as well as the more traditional preference
for LA over HA, but the required preference for
PR over LA is not. Overall then, our results do
not support a memory-based, parsing economy
explanation for a PR preference in Italian.

Importantly, these modeling results do not call
into question the strong experimental evidence for
PR availability modulating attachment preferences
(De Vincenzi and Job, 1995; Branco-Moreno,
2014; Grillo and Costa, 2014; Grillo et al., 2015;
Aguilar et al., 2021, a.o.), and thus do not weaken
the analysis of LA/HA variation as an artifact of
PR availability per se. In fact, the MG model’s
predictions are consistent with the idea that, when
comparing genuine RC structures, a LA derivation
should be easier than a HA derivation. What these re-
sults invite us to consider however, is the importance
of deeper evaluations of “simplistic” explanations
of processing facts based on un-specified parsing
simplicity principles. While our model might not tell
us why PRs are preferred over RCs, it suggests ways
to narrow down the space of plausible accounts.

Obviously, there are a variety of ways in which
simplicity claims can be incorporated into a
parsing model (Boston, 2012). Moreover, here we
only considered structural differences between
PRs and RCs while, as Grillo and Costa (2014)
themselves suggest , notions of complexity driven
by semantic/pragmatic differences might be playing

an important role (Crain, 1985; Altmann and
Steedman, 1988).

Cross-linguistic validation is also fundamental
in this type of inquiry. Note that under standard as-
sumptions a corresponding Spanish sentence would
only differ lexically for the Italian cases, and the nu-
merical contrasts would be virtually identical across
the two languages. Thus, while the discussion in this
paper was focused on Italian, these results straight-
forwardly extend to Spanish too. However, in the
future it will be important to extend this evaluation
to HA languages with wider syntactic differences,
for which a PR advantage has been also established
experimentally (e.g., French; Koenig and Lam-
brecht, 1999; Pozniak et al., 2019). In this sense,
the pairwise differences needed by the MG parser
might also suggest ways to design fine-grained
experimental contrasts for languages in which PR
availability still lacks experimental support.

Finally, the difference between the performance
under a promotion vs. wh-movement account
highlights once again the model’s sensitivity to
syntactic details, and reveals how different syntactic
choices might affect notions of simplicity grounded
in parsing intuitions in unexpected ways. Crucially
though, what our results reveal is that quantified
implementations of simplicity and economy might
differ significantly from more broadly specified,
general intuitions. Transparent computational mod-
els, coupled with more extensive cross-linguistic
experimental comparisons, can then play a crucial
role in building theories of the interface between
grammatical principles and sentence processing
mechanisms that are explicit and explanatory.
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and Ana Piñeiro. 2009. Animacy in the adjunction
of spanish rcs to complex nps. European Journal of
Cognitive Psychology, 21(8):1137–1165.

Miriam Aguilar, Pilar Ferré, José M Gavilán, José A
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Céline Pozniak, Barbara Hemforth, Yair Haendler,
Andrea Santi, and Nino Grillo. 2019. Seeing events
vs. entities: The processing advantage of pseudo
relatives over relative clauses. Journal of Memory
and Language, 107:128–151.

Owen Rambow and Aravind K Joshi. 1994. A
processing model for free word order languages.
Perspectives on Sentence Processing.

Maryam Razaghi, Shahin Rahavard, and Firooz Sadighi.
2015. Economy, simplicity and uniformity in min-
imalist syntax. International Journal on Studies in
English Language and Literature.

Xingjia Shen. 2006. Late assignment of syntax theory:
evidence from chinese and english.

74



Edward P Stabler. 1996. Derivational minimalism.
In International Conference on Logical Aspects of
Computational Linguistics, pages 68–95. Springer.

Edward P Stabler. 2011. Computational perspectives on
minimalism. In The Oxford Handbook of Linguistic
Minimalism.

Edward P Stabler. 2013. Two models of minimalist,
incremental syntactic analysis. Topics in cognitive
science, 5(3):611–633.

75



How well do LSTM language models learn filler-gap dependencies?

Satoru Ozaki, Dan Yurovsky, Lori Levin
Carnegie Mellon University

{ ikazos, yurovsky }@cmu.edu, levin@andrew.cmu.edu

Abstract

This paper revisits the question of what LSTMs
know about the syntax of filler-gap dependen-
cies in English. One contribution of this paper
is to adjust the metrics used by Wilcox et al.
(2018) and show that their language models
(LMs) learn embedded wh-questions – a kind
of filler-gap dependencies – better than they
originally claimed. Another contribution of
this paper is to examine four additional filler-
gap dependency constructions to see whether
LMs perform equally on all types of filler-gap
dependencies. We find that different construc-
tions are learned to different extents, and there
is a correlation between performance and fre-
quency of constructions in the Penn Treebank
Wall Street Journal corpus.

1 Introduction

Language models (LMs) that use recurrent neu-
ral networks (RNNs, Elman, 1990), especially
those adopting the long short-term memory (LSTM,
Hochreiter and Schmidhuber, 1997) architecture,
achieve outstanding performance in various natural
language processing tasks. The fact that the same
architecture yields high performance across many
tasks seems to suggest that these LMs are learning
something fundamental about natural language.

But what does it mean to learn a language, and
have neural networks really achieved language ac-
quisition? Much recent work focuses on evaluat-
ing neural networks’ understanding of various syn-
tactic phenomena that occur in natural language,
such as subject-verb agreement (Linzen et al., 2016;
Bernardy and Lappin, 2017; Kuncoro et al., 2018;
Gulordava et al., 2018), negative polarity item li-
censing (Futrell et al., 2018; Jumelet and Hupkes,
2018; Marvin and Linzen, 2018), and anaphora
(Marvin and Linzen, 2018; Warstadt et al., 2019).1

1For a summary of the types of syntactic phenomena tested

These studies typically take a pre-trained LM or
train one from scratch, and test the LM’s perfor-
mance on a dataset of artificially constructed lin-
guistic expressions or a curated subset of real-world
linguistic utterances, which pertain to particular
syntactic phenomena of the researcher’s interest.

Following Chowdhury and Zamparelli (2018),
Wilcox et al. (2018, 2019b) and others, we focus
on English filler-gap dependencies because of their
three interesting properties: (a) bijectivity of filler
and gap, (b) unboundedness, and (c) sensitivity to
island constraints. We will review these in more
detail in Section 2.

Wilcox et al. (2018) address whether neural net-
works know the bijectivity property: fillers are bad
without gaps and gaps are bad without fillers. Their
LMs detect that a filler is better (less surprising)
with a gap than without a gap, but they do not fully
capture bijectivity. One contribution of our paper is
to experiment with different types of probabilistic
metrics. With our changes, we show that Wilcox
et al.’s models do in fact fully capture the bijectivity
property for one metric.

English has a variety of filler-gap dependency
constructions, which share the same three prop-
erties. While some linguists have analyzed these
constructions as generated from a common abstract
syntactic mechanism such as wh-movement (Chom-
sky, 1977), others have analyzed them as a mixture
of idiosyncractic constructions (Sag, 2010). Do
LMs capture the same properties across all con-
structions, or does performance vary over construc-
tions? In this paper, we extend the work of Wilcox
et al. (2018) to include four additional filler-gap
dependency constructions, and examine their be-
havior collectively and individually to see how they
bear on the issues of general mechanisms and spe-
cific constructions in human language.

and the list of studies in the literature for each type, see
Warstadt et al. (2020).
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This paper is structured as follows. In Section 2,
we review the properties of English filler-gap de-
pendencies and previous work on RNNs’ acquisi-
tion of filler-gap dependencies. In Section 3, we
revisit Wilcox et al. (2018)’s experiment, revise
their metrics and propose stricter criteria for the ac-
quisition of filler-gap dependencies. We show that
for one metric, their LMs understand filler-gap de-
pendencies better than they had previously claimed.
In Section 4, we check if LMs learn four other
kinds of filler-gap dependency constructions, and
their interaction with island constraints and embed-
ding depth. We see that different constructions are
learned to different extents. In Section 5, we test
if the performance for each type of construction
we obtain in Section 4 correlates with the relative
frequency of these constructions in a written-text
English corpus. Finally, in Section 6, we conclude
our findings.

2 Properties of English Filler-Gap
Dependencies

(1-a) is an example of a wh-question, which is a
filler-gap dependency construction in English. The
verb put is followed by a gap, indicated by an
underscore, which is an empty position that would
canonically be occupied as in We put the book on
the table. The word what is understood to fill the
gap and is called the filler. The filler and the gap
are marked by a common subscript index.

(1) a. Whati did you put i on the table?
b. *Whati did you put iti on the table?
c. *You put i on the table.
d. You put it on the table.

English has several kinds of filler-gap dependency
constructions, including comparatives (2-a), it-
clefts (2-b), topicalization (2-c), embedded wh-
questions (2-d), tough-movement (2-e) and a few
others (Chomsky, 1977; Huddleston and Pullum,
2002; Sag, 2010; Chaves and Putnam, 2021, among
others).

(2) a. Maryanne read more booksi this month
than Alfred read i last month.

b. It was Annai that Kevin talked to i.
c. These moviesi, Antonio wishes he had

never seen i.
d. Someone figured out whoi Margaret was

describing i.
e. Thomasi was difficult to persuade i.

Filler-gap dependencies are of interest for at least

three reasons. First is the property of bijectivity of
filler and gap: there can be no gap without a filler
and no filler without a gap. (1-b) is ungrammatical
because there is a filler (what) but where we would
expect a gap, there is a pronoun (it). Conversely,
(1-c) is ungrammatical because there is a gap, but
no filler.

Second, filler-gap constructions are unbounded
in the sense that the filler and gap can be sepa-
rated by a potentially unlimited number of clausal
boundaries (three in (3)). This poses a challenge
to language modelling, as these dependencies must
be modelled robustly across arbitrarily many inter-
vening words.

(3) Whati did Rebecca believe [ you and Albert
said [ the professor thought [ she already dis-
cussed i last week ]]] ?

Finally, the availability of filler-gap dependencies
is constrained by complex structural restrictions.
This is illustrated in (4-a), which is a paraphrase of
(4-b). Though the two questions differ only min-
imally in their structure, (4-a) is ungrammatical
while (4-b) is not. On the other hand, (4-c), which
has the same structure as (4-a) but no filler-gap de-
pendency, is grammatical. This shows that there
is a constraint that disallows filler-gap dependen-
cies across a kind of structure unique to (4-a). The
precise identification and characterization of such
constraints are challenging for linguists, and the
mere existence of such constraints poses a chal-
lenge for language acquisition researchers: how do
children acquire such complex structural linguistic
rules from exposure to positive evidence alone?

(4) a. *Whati did Rebecca believe your claim
that the professor discussed i ?

b. Whati did Rebecca believe you claimed
that the professor discussed i ?

c. Did Rebecca believe your claim that the
professor discussed this?

There is much debate on the question of how well
RNNs learn filler-gap dependencies. Chowdhury
and Zamparelli (2018) claim that GRU and LSTMs
produce higher perplexity and cross-entropy loss
for ungrammatical, gapless wh-questions than for
their grammatical, gapped counterparts (e.g. Which
candidate should the students discuss /*him?).
However, their performances are heavily affected
by sentence processing factors. Wilcox et al. (2018,
2019b, et seq.) look at two pre-trained LSTM LMs
and define a metric called wh-licensing interac-
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tion, which measures the extent to which the sur-
prisal of a gapped clause is reduced significantly
by the presence of the licensor. Using this metric,
they show their LMs learn several structural prop-
erties of filler-gap dependencies as well as certain
island constraints. On the other hand, Da Costa and
Chaves (2020) and Chaves (2020) study the same
LMs with respect to number agreement between
the head noun and the verb of a relative clause (e.g.
which lawyer I think was/*were ...) and observe
that the LMs become less sensitive to agreement
violations as the dependency crosses increasing
levels of embeddings. They also claim that the is-
land constraints Wilcox et al. (2018) purport these
LMs to learn have certain exceptions, which are
not acquired by these LMs.

3 Study 1: Surprisal and grammaticality

Wilcox et al. (2018) use a 2x2 factorial design
as in (5), differing by [licensor], i.e. the pres-
ence/absence of the licensor, and [gap], i.e. the
presence/absence of the gap. Their data consists
entirely of embedded wh-questions. The filler is
called a licensor because the gap cannot occur with-
out it.

(5) a. I know that the lion devoured a gazelle at
sunrise. [-licensor, -gap]

b.*I know what the lion devoured a gazelle at
sunrise. [+licensor, -gap]

c.*I know that the lion devoured at sun-
rise. [-licensor, +gap]

d. I know what the lion devoured at sun-
rise. [+licensor, +gap]

They experiment on two pre-trained LSTM LMs.
The first is the Google model (Jozefowicz et al.,
2016). Trained on the One Billion Word Bench-
mark (Chelba et al., 2013), it consists of two hidden
layers with 8196 units each. The second is the Gu-
lordava model (Gulordava et al., 2018). Trained
on 90 million tokens of English Wikipedia, it con-
sists of two hidden layers with 650 units each.

The metric designed by Wilcox et al. builds
on the definition of surprisal in (6) (Hale, 2001;
Levy, 2008; Smith and Levy, 2013), where S(wk)
is the surprisal generated by an RNN upon seeing
the word wk in a sentence, and hk−1 is the RNN’s
hidden state after consuming all previous words in
the sentence. The probability is calculated from the
RNN’s softmax activation.

(6) S(wk) = − log2 P(wk|hk−1)

For each experimental item, Wilcox et al. measures
surprisal at two places: summed over a region im-
mediately following the potential gap (emphasized
in (7-a)), and summed over the entire embedded
clause following the potential licensor (emphasized
in (7-b)). The former, which we call local sur-
prisal, reflects any local effects from the gap’s
licitness, while the latter, which we call global
surprisal, reflects global expectations about the
general well-formedness of the sentence.

(7) a. I know that/what the lion devoured (a
gazelle) at sunrise .

b. I know that/what the lion devoured (a
gazelle) at sunrise .

One can thus extend the definition of surprisal to
be a function of experimental items, i.e. sentences.
Then, Wilcox et al. define a metric they call wh-
licensing interaction, as (S([+licensor, -gap]) −
S([-licensor, -gap])) − (S([+licensor, +gap]) −
S([-licensor, +gap])).

This metric computes the surprisal difference be-
tween the two kinds of sentences that are ungram-
matical ([+licensor, -gap] and [-licensor, +gap])
and the two kinds of sentences that are grammatical
([+licensor, +gap] and [-licensor, -gap]). When this
metric is positive, we can conclude that the model
reflects some understanding of filler-gap dependen-
cies because it finds ungrammatical sentences as a
group more surprising than grammatical ones. A
model can score high on this metric by knowing
the bijectivity of filler-gap dependencies, i.e. if a
sentence has a gap it should have a licensor and if a
sentence has a licensor it should have a gap. How-
ever, a model can achieve a large positive score on
this metric even if it only encodes one direction
of the bijectivity. For instance, if the presence of
a licensor reduces the surprisal of a sentence with
a gap, but has no impact on a sentence without a
gap, the formula will indicate that the model has
learned filler-gap dependencies even though it has
learned only a single direction of the dependence.
In search for stronger evidence, we propose two
criteria: (8) and (9).

(8) Does surprisal “flip”?
Is the surprisal higher for [+licensor] than
[-licensor] when [-gap] and is it lower for
[+licensor] than [-licensor] when [+gap]?

(9) Does surprisal “divide” by grammatical-
ity?
Within the four variants of a filler-gap de-
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pendency (e.g. (5)), do grammatical variants
have lower surprisals than their ungrammati-
cal counterparts?

A flip in surprisal (8) is stronger than a high wh-
licensing interaction because the former implies the
latter but not the other way around. To see this, con-
sider the previous scenario where wh-licensing in-
teraction is high despite the LM not having learned
bijectivity. Then, surprisal is not higher for [+licen-
sor] when [-gap], so there is no flip. Surprisal will
flip only if LMs learn bijectivity.

A division in surprisal by grammaticality (9) is
even more demanding than a flip, but it is a rea-
sonable criterion given that probabilistic measures
correlate with acceptability judgments (Lau et al.,
2014, 2015, 2017). The method of comparing prob-
abilities within minimal pairs has also driven much
other work in the assessment of neural networks’
understanding of syntax (Linzen et al., 2016; Gu-
lordava et al., 2018; Marvin and Linzen, 2018).

For our first study, we assess Wilcox et al.’s LMs’
acquisition of filler-gap dependencies by checking
for flips (8) and divisions (9) on three kinds of
probabilistic metrics calculated from the data from
their first experiment, which we describe now.

3.1 Metrics
Local surprisal Wilcox et al. (2018) always mea-
sures local surprisal on the post-gap region regard-
less of [gap]. This means local surprisal for a [-gap]
sentence is measured after the filled gap, e.g. in
a [-gap] variant of (7-a), the measurement takes
place at at sunrise rather than a gazelle. However,
a spike in surprisal due to illicit filled gaps might
occur at the filled gap rather than at the post-gap
region (Roger Levy, p.c.). Taking this possibil-
ity into account, local surprisal is measured at the
filled gap for [-gap] sentences in later work such as
(Wilcox et al., 2019b). We follow this practice and
measure local surprisal at different regions depend-
ing on [gap]. Note that we can no longer check
for divisions by grammaticality with local surprisal
as we cannot compare surprisals between [+gap]
and [-gap] conditions, since [gap] perfectly con-
founds with region. Nevertheless, this allows us
to check for surprisal flips, which only depends on
comparisons within [+gap] and [-gap].

Global surprisal We follow Wilcox et al. (2018)
in measuring global surprisal. We normalize it by
region length, which is otherwise an obvious con-
found – the embedded clause in [+gap] sentences

is shorter and thus likely less surprising than [-gap]
sentences.

SLOR The syntactic log-odds ratio (SLOR,
Pauls and Klein, 2012) for a sentence s is sen-
tence probability normalized for word frequency
and word count, and has been shown to positively
correlate with human acceptability judgments (Lau
et al., 2017).

We train two unigram models on the training sets
for the Google model and the Gulordava model re-
spectively with add-one smoothing, and use the
unigram model that matches the LM in our calcula-
tion of SLOR.

3.2 Experiments

We use mixed-effects models in all analyses. To
check if the metrics flip, we predict the metrics with
a fixed effect of [+licensor] on [-gap] and [+gap]
sentences separately. To check if the metrics divide
by grammaticality (9), we predict the metrics with a
fixed effect of the grammaticality variable [+gram],
defined as [gram] = NOT ([licensor] XOR [gap]),
on all data.2 We always include a random intercept
by sentence, not by variant, i.e. all variants in (5)
count as the same sentence.

In the plots, points indicate means and error
bars indicate 95% confidence intervals thereof com-
puted by non-parametric bootstrapping.

We analyze the data from Wilcox et al. (2018)’s
first experiment, which shows that both LMs show
positive though different wh-licensing interactions
for sentences each containing either a subject, ob-
ject or a prepositional object (PP) gap, indicating
that they learn that gaps may occur in all three
syntactic positions.

3.3 Local surprisal

Figure 1a shows local surprisal. We see flips in
all conditions with significant differences between
the [+/-licensor] sentences (p < 0.05). This allows
us to make a stronger statement about the LMs’
acquisition of filler-gap dependencies than Wilcox
et al. (2018), whose wh-licensing interaction metric
can only lead them to conclude that these LMs
learn that having a licensor has a different effect on
surprisal depending on [gap].

2[+gram] iff either [+licensor, +gap] or [-licensor, -gap],
i.e. iff the sentence is grammatical insofar as filler-gap depen-
dencies are concerned.
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Figure 1: Local, normalized global surprisals and SLOR for sentences containing subject, object and PP gaps.

3.4 Global surprisal

Figure 1b shows global surprisal. Flips are only
observed for the Google model with subject gaps
([+gap]: β = −0.24, p < 0.05, [-gap]: β =
0.53, p < 0.05). Elsewhere, [-licensor] is less sur-
prising than [+licensor], and [-gap] less surprising
than [+gap].

As for divisions, grammatical sentences are less
surprising than ungrammatical sentences in all
conditions, but this difference is significant only
for subject gaps for both models (Google: β =
−0.39, p < 0.05, Gulordava: β = −0.16, p <
0.05).

3.5 SLOR

While local and global surprisal are negative
log-likelihoods, SLOR is based on positive log-
likelihood. Thus, we expect grammatical sentences
to have higher SLORs than ungrammatical sen-
tences.

Figure 1c shows SLOR. As with global surprisal,
we see SLOR flip only for the Google model with
subject gaps ([-gap]: β = 0.08, p < 0.05, [+gap]:
β = −0.56, p < 0.05). In the remaining condi-
tions, SLOR is higher for [-licensor] than [+licen-
sor] and higher for [-gap] than [+gap].

Grammatical sentences have higher SLOR than
ungrammatical sentences in all conditions, al-
though the difference is significant only for subject
and object gaps for both models (p < 0.05).

Contrary to local surprisal, both global surprisal
and SLOR display flips and divisions in very few
conditions. We tend to observe flips and divisions,
if at all, most often in subject gaps, then in object
gaps, and least often in PP/goal gaps. This trend is
consistent with Wilcox et al. (2018)’s results with
wh-licensing interaction.

3.6 Summary of the metrics
Why does local surprisal give us the most opti-
mistic assessment of filler-gap dependency acqui-
sition? We note that global surprisal and SLOR
suffer from more confounds and thus may reflect
grammaticality less purely than local surprisal. For
example, the impact of word frequency as a con-
found on global surprisal and SLOR is greater than
that on local surprisal; grammatical combinations
of infrequent words can be more surprising than
ungrammatical combinations of frequent words,
violating the division criterion (9). 3 SLOR at-
tempts to correct sentence probability by unigram
frequency but ignores higher order effects, e.g. the
[-licensor] bigram know that and the [+licensor]
bigram know who/what/where can have different
frequencies, which can correlate with extraction
availability (Liu et al., 2019; Richter and Chaves,
2020), and affect the conditional probabilities of
all words that follow in an autoregressive model
such as LSTMs, potentially drastically affecting
sentence-level probability.

4 Study 2: Other constructions

How well do LMs learn other kinds of filler-
gap dependency constructions? We generated
six sub-datasets that contain five kinds of filler-
gap dependencies: comp-quant for compara-
tives (2-a), cleft-adj and cleft-noun for
it-clefts (2-b), topic for topicalization (2-b),

3A reviewer has pointed out that the three metrics are all
confounded by word frequency. This is correct, as surprisal
measured at any word is influenced by the frequency of said
word as well as all words in its context. However, we believe
the impact of this confound on global surprisal and SLOR is
greater than that on local surprisal simply because the region
at which local surprisal is measured is strictly contained by
the region at which global surprisal is measured, which in turn
is strictly contained by the region at which SLOR is measured,
i.e. the entire sentence. Semantic factors can also affect these
metrics in a similar way. Metrics that involve surprisals from
more words are more heavily impacted by such confounds.
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embwhq for embedded wh-questions (2-d) and
tough for tough-movements (2-e). Each sub-
dataset contains 1200 sentences, or 4800 variants.
Like Wilcox et al. (2018), every sentence has four
variants generated from combinations of [gap] and
[licensor]. For independent reasons, we generate
two datasets for it-clefts. We describe dataset con-
struction in more detail in Appendix A.

The gap is always an object gap. The gap-
containing clause in each sentence may be sep-
arated by 0 – 3 levels of embedding, of which
there are three types: bridges (10-a), complex NP
objects (10-b) and interrogatives (10-c). The latter
two types of embeddings induce island effects –
namely violations of the Complex NP Constraint
and the Wh-island Constraint (Ross, 1967) – so
each sentence is also specified for islandhood; a
sentence is an island iff it contains a complex NP
object or an interrogative embedding.

(10) a. It was Alexi that I think that you met i.
b. *It was Alexi that I believed his claim

that you met i.
c. *It was Alexi that I wondered if you met

i.

We then assess the LMs’ acquisition of these con-
structions from different perspectives. As we
shall see, the LMs learn different constructions
to different extents. Embedded wh-questions are
learned best across the board and topicalizations are
learned the worst. The LMs show mixed acquisi-
tion for the remaining constructions, with clefts and
comparatives learned generally better than tough-
movement.

We fit mixed-effects models to predict one of
the three metrics with a random intercept by sen-
tence for all analyses. We will describe the fixed
effect structure for each analysis. To visualize the
modeling results and the inferences they license,
we plot model effect estimates along with error
bars indicating 95% confidence intervals on those
estimates.

4.1 Licensor-gap interaction

We first focus on sentences with no embeddings
and look at how [licensor] and [gap] affect surprisal
and SLOR. For each combination of construction
type and LM, we fit for a fixed effect of [+licensor],
[+gap] and their interaction. We are specifically
interested in the interaction term. A significant
licensor-gap interaction that points in the direc-
tion of higher probability, i.e. lower surprisal and

higher SLOR, means a LM has learned that [+licen-
sor] has a better effect on surprisal / SLOR when
[+gap] than when [-gap]. This way of assessing the
acquisition of filler-gap dependencies is roughly
the same as looking at Wilcox et al. (2018)’s wh-
licensing interaction, which they obtain by direct
calculation from the data instead of from a statisti-
cal model.

Figure 2 shows the licensor-gap interactions. For
embedded wh-questions, the interaction is always
significant in the direction of higher probability
for both LMs in all three metrics. The Google
model shows a highly significant positive interac-
tion for clefts, comparatives and tough-movements
for all three metrics. However, the Gulordava
model shows a significant interaction for clefts and
comparatives only for global surprisal and SLOR,
and never for tough-movements. Both models
showed the least understanding of topicalization,
here the expected positive interaction was often
significantly negative indicating that licensors in-
creased the surprisal of sentences with gaps.

4.2 Flips

Next, we check how often flips occur on the con-
structions. We first look at sentences with no em-
beddings. Figure 3 shows the [+licensor] effects.
We see that both LMs show flips for embedded
wh-questions in all three metrics. Clefts flip only
in local surprisal for Google and in global surprisal
for both LMs. Comparatives only flip in global
surprisals for both LMs. No metrics flip for topi-
calization and tough-movement in any condition.

We then look at sentences with one embedding
each. The data thus consist of islands and non-
islands. Islandhood affects filler-gap dependen-
cies, which are [+gap, +licensor], but not [-gap,
-licensor] sentences. 4 We consider the interac-

4We expect probabilistic outputs from a human-like LM
to be affected by islandhood for [+gap, +licensor] sentences,
not for [-gap, +licensor] sentences. This expectation comes
from the acceptabilities of these two types of sentences, as
illustrated in (i).

(i) I know { that / *who } you believe [ the idea that she
beat him in the election ].

In contrast, Wilcox et al. (2021) expect islandhood to affect
surprisals in both [-gap, +licensor] sentences as well as [+gap,
+licensor] sentences. This is in line with a view on human sen-
tence processing that humans do not expect a gap in an island,
so the filled gap in (i) is equally surprising with or without an
upstream licensor (Fodor, 1983; Freedman and Forster, 1985;
Stowe, 1986). There is a rich body of literature concerning
the debate on the question of how the human parsing mech-
anism interacts with grammatical constraints such as island
constraints, and we believe it would be an interesting research

81



google gulordava

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic

−1

0

1

Construction type

E
ffe

ct
 o

n 
lo

ca
l s

ur
pr

is
al

google gulordava

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic
−2

−1

0

1

2

Construction type

E
ffe

ct
 o

n 
gl

ob
al

 s
ur

pr
is

al google gulordava

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic

em
bw

hq
co

m
p

cle
ft−

ad
j

cle
ft−

no
un

to
ug

h
to

pic

−2

−1

0

1

2

Construction type

E
ffe

ct
 o

n 
S

LO
R

Figure 2: Licensor-gap interaction.
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Figure 3: [+licensor] effects on [-gap] and [+gap] sentences.

tion between [licensor] and islandhood for [-gap]
and [+gap] sentences separately. Figure 4 shows
the [-gap, -licensor, +island] and [+gap, +licensor,
+island] effects. When there is neither a licensor
or a gap, islandhood does not affect surprisal or
SLOR for any of the constructions or either LM.
When both are present, islandhood hurts surprisal
and SLOR for embedded wh-questions for both
LMs. Islandhood hurts all three metrics for clefts
and comparatives as well except SLOR from the
Gulordava model. For tough-movement, island-
hood does not affect SLOR, but it does associate
with lower local surprisal for both LMs and lower
global surprisal for the Google model. Islandhood
never affects topicalization. From these licensor-
islandhood interactions we can conclude that the
LMs are learn island constraints to different extents
for different constructions.

4.3 Divisions

Finally, we check how often divisions by grammat-
icality occur on the constructions. We first look
at sentences with no embeddings. Figures 5a, 5b
show the grammaticality effects. For both LMs,
grammatical clefts, comparatives and embedded
wh-questions have lower global surprisal than their

direction to conduct systematic comparisons between LM and
human behaviors in the context of this question (e.g. Wilcox
et al. (2019a)).

ungrammatical counterparts, whereas for topical-
ization the grammatical variants are more surpris-
ing. Grammatical tough-movement is less surpris-
ing for Google (β = −0.20, p < 0.05) but more
surprising for Gulordava (β = 0.04, p = 0.55).

Grammatical clefts, comparatives and embed-
ded wh-questions also have higher SLOR, but
for Gulordava the difference is non-significant for
clefts (β = 0.05, p = 0.48) and comparatives
(β = 0.09, p = 0.24). Topicalization again is more
surprising when grammatical. Grammatical tough-
movement has slightly higher SLOR for Google
(β = 0.20, p = 0.07) but a non-significant differ-
ence for Gulordava (β = −0.005, p = 0.9).

We then look at all non-island sentences, and
consider the interaction between grammaticality
and the number of embeddings. Figures 5c, 5d
show the interaction effects between grammatical-
ity and the number of embeddings. Increasing num-
ber of embeddings is associated with higher global
surprisal in all grammatical constructions except
topicalization, with non-significant effects in com-
paratives and tough-movement for Gulordava. It
is also associated with lower SLOR in the same
constructions with non-significant effects in tough-
movement for both LMs, clefts and comparatives
for Gulordava. These patterns suggest that filler-
gap dependencies that extend over multiple embed-
dings are harder for the LMs to process. However,
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Figure 4: [+island] effects for [-gap, -licensor] and [+gap, +licensor] sentences.
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Figure 5: Interaction effects between grammaticality and the number of embeddings, fit first on sentences without
embeddings then on all non-island sentences.

topicalization has lower surprisal and higher SLOR
with more embeddings.

4.4 Summary

We looked at five kinds of filler-gap dependency
constructions, and found that the LMs learn differ-
ent constructions to different extents with respect to
licensor-gap interaction, flips, licensor-islandhood
interaction, division by grammaticality and the in-
teraction between grammaticality and the number
of embeddings. Roughly, the constructions seem to
be better learned in the decreasing order of embed-
ded wh-questions, clefts and comparatives, tough-
movement and topicalization.

5 Study 3: Acquisition and frequency

Why do the LMs learn the five filler-gap depen-
dency constructions to different extents? One sim-
ple hypothesis is that LMs learn frequent syntac-
tic phenomena better than rare ones (Zhang et al.,
2020). To test this, we searched for occurrences
of our five constructions in the Brown corpus and
the Wall Street Journal corpus from Penn Treebank
3.0 (Marcus et al., 1993) using Tregex (Levy and
Andrew, 2006). This gives us an estimate of the
relative frequencies of the constructions in a typi-

cal written-text corpus, which is what the two LMs
were trained on. We choose our licensor-gap inter-
action from Section 4 to be a quantitative measure
of the LMs’ acquisition of the constructions. We
look for a correlation between licensor-gap interac-
tion and the relative frequency of the constructions;
the results are shown in Table 1. We provide the
relative frequencies of the constructions and the
Tregex scripts we used to search for the construc-
tions in Appendix B.

LM Metric r (Brown) r (WSJ)

Google
global -0.20 -0.67
local -0.32 -0.75
slor 0.13 0.65

Gulordava
global -0.32 -0.73
local -0.52 -0.82
slor 0.52 0.86

Table 1: Pearson’s r between the licensor-gap interac-
tion and frequency of the filler-gap dependency con-
structions.

Significance testing is not performed due to the
lack of data – there are only five kinds of con-
structions. The correlation between licensor-gap
interaction for the Gulordava model and frequency
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in the WSJ corpus seems strong, potentially due
to a domain similarity between English Wikipedia,
which Gulordava was trained on, and WSJ, which
consists solely of newspaper articles. The Brown
corpus however covers a wider range of older texts.
Overall, acquisition of a construction seems to be
correlated with its frequency, but more construc-
tions need to be tested in order for the correlation
to be non-anecdotal and for this conclusion to be
supported.

6 Discussion

We have shown that Wilcox et al. (2018)’s LSTM
LMs learn the bijectivity of certain English filler-
gap dependency constructions. For embedded wh-
questions, gaps are less surprising with a licensor
than without, and filled gaps are more surprising
with a licensor than without. However, this sign of
acquisition is stronger for local surprisal than for
global surprisal and SLOR. Compared to local sur-
prisal, global surprisal and SLOR are more heavily
impacted by confounds such as sentence length and
word frequency, which makes the latter two unfair
metrics for assessing LMs’ syntactic understanding
– probability is not all about grammaticality.

As has been correctly pointed out by two review-
ers, the connections between probability, categori-
cal grammaticality and gradient acceptability are
not innocent. While probability seems to be corre-
lated with acceptability for sentences constructed
with round-trip translation, it seems less so with
grammaticality for sentences constructed by lin-
guists (Lau et al., 2017; Sprouse et al., 2018). This
suggests that probability is a good indicator of un-
acceptability caused by coarse lexical and syntac-
tic errors introduced by machine translation, but
it cannot be used to distinguish between linguist-
constructed minimal pairs that often vary very sub-
tly in surface structure. The experimental items
in our study are also constructed from a linguis-
tic standpoint. With this in mind, the failure of
global and SLOR to indicate correspondence with
grammaticality supports the present claim in the
literature.

We also see that the LMs learn different filler-
gap dependency constructions to different extents,
in terms of licensor-gap interaction, flips and divi-
sions, as well as islandhood and the number of em-
beddings. Moreover, the more frequent a construc-
tion is in written English, the more the licensor-gap
interaction improves the probability of a filler-gap

dependency. While this does not tell us much about
what the neural networks have learned, this is a
human-like behavior in that frequency affects hu-
man language acquisition (Ambridge et al., 2015)
and sentence processing (Ellis, 2002).

A systematic investigation with a wider coverage
of filler-gap dependency constructions is in order.
In this study, we were able to adopt Wilcox et al.
(2018)’s 2x2 design because for each of our five
constructions, we could either take the filler to be
the licensor, or find a construction with a minimal
surface difference that does not license gaps, and
take that to be our [-licensor] variant. For example,
we construct [-licensor] variants of comparatives (...
than ...) by turning them into coordinate structures
(... and ...). In other filler-gap dependency construc-
tions, this is much more challenging. For example,
infinitival relative clauses (11) are filler-gap de-
pendencies, but it is not obvious how to construct
[-licensor] variants for them.

(11) a. Here are some optionsi for you to choose
from i.

b. She was the first personi i to point out
the mistake.

The experimental paradigm needs to be revised in
a way to cover such constructions as well. In future
research, we wish to collect human acceptability
judgments for our data, and compare our results
with the probabilistic outputs from LMs to check
the connection between probability and acceptabil-
ity.

We provide our data and code at https://

github.com/ikazos/scil2022-fgd. We also
thank Roger Levy and a reviewer for pointing out
SyntaxGym (Gauthier et al., 2020) to us, which we
plan to contribute our data to in the near future.
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A Dataset construction

In this section, we discuss how we constructed the
[-licensor] and [-gap] variants of the 5 filler-gap
dependency constructions.

[-gap] variants are always created by filling the
gap with the filler. The creation of [-licensor] dif-
fers over constructions.

A.1 Comparatives
We look at comparative constructions with a com-
parative quantifier more modifying an object NP
with than leading a subordinating clause contain-
ing the gap. We consider the filler to be a lot of
+ matrix object NP. For the [-licensor] variant, we
replace more with a lot of and replace than with
and, giving us a coordinate structure that does not
license a gap.

(12) a. [+licensor, +gap]
Mary bought more books this month than
John bought last month.

b. [+licensor, -gap]
*Mary bought more books this month
than John bought a lot of books last
month.

c. [-licensor, +gap]
*Mary bought a lot of books this month
and John bought last month.

d. [-licensor, -gap]
Mary bought a lot of books this month
and John bought a lot of books last
month.

A.2 Clefts
We look at clefts with object gaps of the struc-
ture It was ... that .... The two subdatasets
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cleft-adj and cleft-noun are created with
different strategies for creating the [-licensor] vari-
ants. In cleft-adj, the [-licensor] variants are
created by replacing the filler with an adjective that
take an extraposed sentential subject, e.g. appar-
ent. In cleft-noun, the [-licensor] variants are
created by replacing the filler with a noun that take
an extraposed sentential subject, e.g. a fact. We
collected a list of such adjectives and nouns from
COMLEX Syntax (Grishman et al., 1994).

(13) a. [+licensor, +gap]
It was books that Mary bought last
month.

b. [+licensor, -gap]
*It was books that Mary bought books last
month.

c. [-licensor, +gap] (cleft-adj)
*It was apparent that Mary bought
last month.

d. [-licensor, +gap] (cleft-noun)
*It was a fact that Mary bought last
month.

e. [-licensor, -gap] (cleft-adj)
It was apparent that Mary bought books
last month.

f. [-licensor, -gap] (cleft-noun)
It was a fact that Mary bought books last
month.

A.3 Embedded wh-questions

We look at embedded wh-questions with object
gaps. The matrix verb selects for either a sentential
or an interrogative complement; we gathered a list
of such verbs from VerbNet (Schuler, 2005) and
from Wilcox et al. (2018)’s data. Following Wilcox
et al. (2018), we replace the wh-phrase leading
the interrogative complement with that for the [-
licensor] variants.

(14) a. [+licensor, +gap]
Clara knows what Mary bought last
month.

b. [+licensor, -gap]
*Clara knows what Mary bought books
last month.

c. [-licensor, +gap]
*Clara knows that Mary bought last
month.

d. [-licensor, -gap]
Clara knows that Mary bought books last
month.

A.4 Topicalization

We look at topicalization (also known as comple-
ment preposing (Huddleston and Pullum, 2002))
with object gaps. Unlike the other constructions,
topicalization does not allow subject gaps – this
is one of the reasons why we exclusively generate
object gaps throughout all constructions. The filler
is always a definite NP, which helps with a focus in-
terpretation. For the [-licensor] variants, we simply
delete the filler and the comma. For the [-gap] vari-
ants, we fill the gap with the filler directly instead
of e.g. a referential pronoun, because that would
give us left-dislocation for [+licensor, -gap], which
is a grammatical construction.

(15) a. [+licensor, +gap]
These books, Mary bought last month.

b. [+licensor, -gap]
*These books, Mary bought these books
last month.

c. [-licensor, +gap]
*Mary bought last month.

d. [-licensor, -gap]
Mary bought these books last month.

A.5 Tough-movement

We look at tough-movement with object gaps. We
select matrix adjectives that license hollow to-
infinitivals (Huddleston and Pullum, 2002). For
the [-licensor] variants, we replace the filler with it.

(16) a. [+licensor, +gap]
These books are impossible to finish
in a day.

b. [+licensor, -gap]
*These books are impossible to finish
these books in a day.

c. [-licensor, +gap]
*It is impossible to finish in a day.

d. [-licensor, -gap]
It is impossible to finish these books in a
day.

B Data and Tregex scripts for Study 3

The relative frequencies for each construction type
in the Brown corpus and the WSJ corpus are listed
in Table 2. Here are the Tregex scripts used to
search for the occurrences for each construction.

B.1 Clefts

This covers both cleft-adj and cleft-noun.
The script is: S-CLF
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Construction Freq (in Brown) Freq (in WSJ)

Clefts 108 65
comp-quant 9 41
embwhq 280 146
topic 119 14
tough 36 79

Table 2: Relative frequency for each construction type
in the Brown corpus and the WSJ corpus.

B.2 Comparatives
This covers comp-quant. The script is: @NP
<< more & !<< (@ADJP << more) <
(PP|SBAR < ( < than) & < @S)

B.3 Embedded wh-questions
This covers embwhq. The script is: VP <
(SBAR < (/WH*/ << what|who))

B.4 Topicalization
This covers topic. We first look for oc-
currences of /NP-TPC-?/ !<< ‘‘, then sub-
tract the number of occurrences of ‘‘ $+
(/NP-TPC-?/ !<< ‘‘) to rule out false posi-
tives.

B.5 Tough-movement
This covers tough. The script is: ADJP-PRD <
(SBAR < /WHNP-*/).
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Abstract 

Inferential reasoning is an essential feature 

of argumentation. Therefore, a method for 

mining discourse for inferential structures 

would be of value for argument analysis 

and assessment. The logic of relational 

propositions is a procedure for rendering 

texts as expressions in propositional logic 

directly from their rhetorical structures. 

From rhetorical structures, relational 

propositions are defined, and from these 

propositions, logical expressions are then 

generated. There are, however, unsettled 

issues associated with Rhetorical Structure 

Theory (RST), some of which are 

problematic for inference mining. This 

paper takes a deep dive into some of these 

issues, with the aim of elucidating the 

problems and providing guidance for how 

they may be resolved. 

1 Introduction 

The logic of relational propositions is a process for 

rendering texts as expressions in propositional 

logic. It is based on Rhetorical Structure Theory, as 

defined by Mann and Thompson (1986, 1988). 

From rhetorical structures, relational propositions 

are defined, and from relational propositions, 

logical expressions are constructed (Potter, 2019). 

Inferences contained in these expressions tend to 

be applicable to their respective texts as well, with 

little to no loss of coherence (Potter, 2021). This is 

significant for argument mining, as it suggests that 

RST can be used to identify the inferential structure 

of discourse. When combined with systems for 

automated identification of RST structures, this 

would provide for an end-to-end process for 

 
1 https://www.sfu.ca/rst/01intro/definitions.html 

discovering generalized inferential structures in 

free texts. 

There are, however, some limitations and 

unsettled issues associated with this. Multiple 

annotation guidelines have been developed for use 

in performing RST analyses. The relation set for 

which logical generalization has been defined is the 

extended Mann and Thompson set.1  Because the 

relational definitions provided with these 

guidelines focus on the intended (rhetorical) effect 

of the relations, they appear to be well-suited for 

inference mining (Potter, 2019, 2020). However, 

these definitions are necessarily reliant on analyst 

intuition, and this makes the annotation task 

cumbersome, particularly for large corpuses. The 

annotation guidelines developed by Carlson and 

Marcu (2001) are generally more reliant on 

syntactical features, and therefore more suitable for 

automated analysis, and yet less appropriate for 

inference mining. Closer to Mann and Thompson’s 

approach are the guidelines defined by Stede et al. 

(2017). These provide both rhetorical and syntactic 

definitions, and a relation set somewhat larger than 

Mann and Thompson’s, but much smaller than that 

of Carlson and Marcu. Among these sets not only 

are there differences in relation identification, but 

their definitions are sometimes inconsistent with 

one another. Even within the fundamentals of 

segmentation there are differences of opinion as to 

what constitutes a discourse unit.  

There have been several efforts to clarify such 

issues (e.g., Nicholas, 1994; Stede, 2008; Wan, 

Kutschbach, Lüdeling, & Stede, 2019), but debate 

and disagreement continue unabated. Ultimately, if 

Rhetorical Structure Theory is to be used for 

inference mining, or indeed it is to continue to 

distinguish itself among theories of coherence 

relations, not only is a stable relation set needed, 
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syntactically defined relations must be subsumable 

by their pragmatic and semantic counterparts, and 

their inferential characteristics must be clearly 

specified.  

Although realization of these goals is beyond the 

scope of this paper, progress can be made through 

close examination and explication of some of the 

problematic relations. And this will shed light on 

how other issues might be approached. I have 

selected CIRCUMSTANCE, SOLUTIONHOOD, and 

ELABORATION for this analysis. While these 

relations are not alone in their need for attention, 

the issues associated with them are fundamental, 

not just with respect to their inferentiality, but to 

RST in general. CIRCUMSTANCE has been subject 

to various interpretations and definitions, and these 

have implications for when it should be used, what 

qualifies as a segment for these relations, and what 

inferences may be drawn from it. Stede et al. 

(2017) deprecated it in favor of the BACKGROUND 

relation, and similarly Carlson and Marcu (2001) 

classified it as a background subtype. Similarly, 

SOLUTIONHOOD can be difficult to distinguish 

from PREPARATION (Zeldes & Liu, 2020), and 

while defined by both Mann and Thompson and 

Stede, et al., it has no direct counterpart in Carlson 

and Marcu. ELABORATION is among the most 

frequently used of relations, and yet while there 

seems to be general agreement that its satellite will 

contain additional information about its nucleus, 

specifics as to how it should be defined diverge 

from there, with Mann and Thompson identifying 

six different ways this can occur, Stede et al., 

splitting the relation in two, and Carlson and Marcu 

subdividing it into eight separate relations.  

Moreover, much has been made about the 

distinction between presentational (pragmatic) and 

subject matter (semantic) relations. This distinction 

was introduced somewhat tentatively by Mann and 

Thompson, but has been treated as gospel ever 

since. Claims such as those of Azar (1995, 1997, 

1999) that only selected relations among the 

presentationals can be construed as argumentative 

have only served to strengthen this view. And while 

subject matter relations may not be interpersonal in 

the sense found in some of the presentational 

relations, this examination of CIRCUMSTANCE, 

SOLUTIONHOOD, and ELABORATION will show 

they are both inferential and instrumentally 

argumentative.  

The paper is organized as follows. The next 

section provides a brief review of related research. 

This is followed by an overview of the theoretical 

background for this study. Next, I examine the 

selected RST relations and their associated issues 

from the perspective of the logic of relational 

propositions with the aim of clarifying their 

inferential features. The paper closes with a 

discussion and summary of the results. 

2 Related work 

Studies in the relationship between RST and 

argumentation are numerous (e.g., Abelen, 

Redeker, & Thompson, 1993; Azar, 1995, 1997; 

Doronkina, 2017; Galitsky, Ilvovsky, & Kuznetsov, 

2018; Garcia-Villalba & Saint-Dizier, 2012; Green, 

2010; Imaz & Iruskieta, 2017; Mitrović, O’Reilly, 

Mladenović, & Handschuh, 2017; Musi, Ghosh, & 

Muresan, 2018; Peldszus, 2016; Peldszus & Stede, 

2013; Rocci, 2021; Stede, 2020; Wyner & 

Schneider, 2012), but without focus on the 

inferential characteristics of rhetorical relations.  

On the other hand, the relationship between 

coherence relations and logic has also been the 

subject of extensive study (e.g., Asher & 

Lascarides, 2003; Danlos, 2008; González & 

Ribas, 2008; Groenendijk, 2009; Hobbs, 1979, 

1985; Marcu, 2000; Potter, 2019, 2020, 2021; 

Sanders, Spooren, & Noordman, 1992; Wong, 

1986). Inevitably, the question arises: Why not 

Segmented Discourse Representation Theory? 

SDRT builds on the perspective of discourse as a 

dynamic phenomenon in which context is modified 

with each successive segment (Asher & 

Lascarides, 2003), and discourse structure is viewed 

as a systematic extension of truth-conditional 

semantics, whereas intentionality is fundamental to 

the RST perspective. That this intentionality lends 

 

Figure 1: Nested RST Structures (Mann & 

Thompson, 2000) 
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itself to argumentative, interpretation is apparent 

(Potter, 2007, 2008a, 2008b, 2009, 2010, 2019, 2020, 

2021), and as such is of interest to argument mining. 

So far as I know, other than  these studies, there 

have been no attempts to establish a specific 

alignment between RST and propositional logic. 

3 Theoretical Background 

The fundamental bases for this work are Rhetorical 

Structure Theory (RST), relational propositions, 

and the logic of relational propositions. Rhetorical 

Structure Theory (RST) is a theory of text 

organization (Mann & Thompson, 1988). It is used 

for analyzing texts in terms of the relations that 

hold among its discourse units. A relation consists 

of three parts: a satellite, a nucleus, and a relation. 

Figure 1 shows an RST analysis containing five 

discourse units related by the ELABORATION, 

EVIDENCE, CONCESSION, and INTERPRETATION 

relations. The distinction between satellite and 

nucleus arises as a result of the asymmetry of the 

relations. Within a relation, the nucleus is more 

central to the writer’s purpose than the satellite. 

Thus unit 3 is the satellite of 2, and span [2-3] is the 

satellite of 1. Unit 4 is the satellite of 5, and [4-5] is 

the satellite of [1-3]. A defining characteristic of 

RST relations is their intended effects. Each 

relation has a defined effect, representing the 

writer’s intention for the relation, as determined by 

the RST analyst. For example the intended effect of 

the EVIDENCE relation is acceptance of the 

situation presented in the nucleus. This effects field 

is what makes RST rhetorical.  

Relational propositions provide a propositional 

analog to RST structures, with relations being 

expressed as propositions. These propositions are 

implicit assertions occurring between clauses in a 

text and are essential to the effective functioning of 

the text (Mann & Thompson, 1986). A relational 

proposition consists of a relation (or predicate) and 

two variables, one of which corresponds to the RST 

satellite and the other to the nucleus. Complex 

relational propositions can be expressed using a 

predicate notation defined by Potter (2019). This 

supports the representation of complex RST 

structures in compact functional form. However, 

conceptualizing RST analyses as relational 

propositions provides more than a space-saving 

alternative to RST diagrams. Relational 

propositions provide a means for exploring texts as 

inferential structures, and this in turn sheds light on 

the nature of nuclearity and its role in discourse 

coherence—and as a side-effect, it exposes some 

issues in RST, hence providing motivation for the 

investigation that led to the writing of this paper.  

As developed by Potter (2019, 2021), each of the 

RST relations supports a logical interpretation, and 

most of these interpretations are not only 

inferential, and but tautological as well, which is to 

say, they implement a valid rule of inference. This 

can best be explained by way of example. The 

relational proposition for the EVIDENCE relation 

shown in Figure 1 is evidence(3,2). The intended 

effect is that the satellite, unit 3, provides evidence 

in support of 2. In the analysts’ estimation, the 

reader might not believe 2 without the supporting 

evidence provided by 3  So 3 gives credence to 2, 

leading to acceptance of 2. Thus the logical form of 

evidence(s, n) is realized as modus ponens, (((s → 

n) ∧ s) → n). The relation is not merely conditional, 

since s is asserted. Further, in the example, the 

relational proposition, evidence(3,2), is positioned 

as the satellite to unit 1, resulting in the relational 

proposition elaboration(evidence(3,2),1). As 

argued below in Section 6, elaboration is 

inferential insofar as the satellite supports the 

reader’s comprehension of the nucleus by 

providing additional information. Like evidence, 

the logical form of elaboration is modus ponens, 

(((s → n) ∧ s) → n). A couple of important things 

are happening here. The first is that the evidence 

modus ponens has been nested within the 

elaboration modus ponens, functioning as its 

satellite, and as a premise in the elaboration 

argument. So there is an inferential dependency of 

one upon the other, such that if fully realized, we 

have one valid argument as premise to another, i.e., 

a tautology within a tautology:  

 

((((((3 → 2) ∧ 3) → 2) → 1) ∧  

      (((3 → 2) ∧ 3) → 2)) → 1) 

 

The second point has to do with the integration 

of the Boolean domains of these tautologies. As 

thus far analyzed, the text consists of one argument 

that establishes acceptance, and this acceptance is 

then used in a second argument to establish 

comprehension. This relational proposition, 

elaboration(evidence(3,2),1), is then used as the 

nucleus of an interpretation predicate. Like 

elaboration, the interpretation predicate supports 

comprehension, yet not by extending the subject 

matter, but rather by introducing an additional 

conceptual framework, taking the subject matter to 
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another level. So the polarity of inference is 

reversed. As INTERPRETATION is defined, its 

nucleus is leveraged to support the satellite: (((n → 

s) ∧ n) → s). At this point, things begin to get a little 

more interesting. The s of the interpretation is also 

the n of a concession. With concession, the writer 

acknowledges the situation presented in the 

satellite but asserts that, although there might seem 

to be an incompatibility between the satellite and 

the nucleus, the satellite and nucleus are 

compatible. The writer holds the nucleus in 

positive regard, and by indicating a lack of 

incompatibility with the satellite, seeks to increase 

the reader’s positive regard for the nucleus (Potter, 

2019; Thompson & Mann, 1986). In other words, 

while the satellite might seem to indicate rejection 

of the nucleus, it does not do so, and recognition of 

their compatibility increases acceptance of the 

nucleus. In other words, since the satellite does not 

imply the negation of the nucleus, the nucleus 

holds:   

 

(((¬(s → ¬n) → n) ∧ ¬(s → ¬n)) → n) 

 

This is the logical structure of the nucleus of the 

interpretation relational proposition. It may seem a 

bit complicated, but it is actually just an odd modus 

ponens. So the full relational proposition of the text 

under examination is  

 

interpretation(concession(4,5), 

elaboration(evidence(3,2),1))  

 

which expands to the logical expression: 

 

(((((((((3 → 2) ∧ 3) → 2) → 1) ∧ (((3 → 2) ∧ 3) 

→ 2)) → 1) → (((¬(4 → ¬5) → 5) ∧ ¬(4 → 

¬5)) → 5)) ∧ ((((((3 → 2) ∧ 3) → 2) → 1) ∧ (((3 

→ 2) ∧ 3) → 2)) → 1)) → (((¬(4 → ¬5) → 5) 

∧ ¬(4 → ¬5)) → 5)) 

 

The evidence and concession predicates specify a 

Boolean domain of acceptance, elaboration of 

clarification, interpretation of illumination or 

insight, and the overarching logic is one of 

coherence rather than truth. Thus the logic of 

discursive coherence subsumes the Boolean 

domains of rhetorical relations. For each of the 

relations examined here, identification of the 

Boolean domain plays an important role. 

4 Circumscribing CIRCUMSTANCE 

In CIRCUMSTANCE, as defined by Mann and 

Thompson (1988), the satellite sets a framework 

for the subject matter within which the reader is 

intended to interpret the nucleus. Carlson and 

Marcu (2001) and Stede et al. (2017) concur in this 

definition. The inferentiality of CIRCUMSTANCE is 

supported in part by its affinity with the 

BACKGROUND relation. Stede et al. (2017) argued 

that the BACKGROUND relation should usually be 

preferred over CIRCUMSTANCE, because in their 

view, BACKGROUND is more informative. Potter 

(2019) defined CIRCUMSTANCE as a causal 

relation, with possible presentational features. 

Carlson and Marcu (2001) recognized the 

similarity between CIRCUMSTANCE and 

BACKGROUND, but noted that CIRCUMSTANCE 

tends to be more clearly delimited, and as such is 

stronger than BACKGROUND. As a pragmatic 

relation, the inferentiality of BACKGROUND, with a 

Boolean domain of comprehensibility, is well 

substantiated. To the extent that CIRCUMSTANCE 

presents as a special case of BACKGROUND, it too 

can be expected to be inferential. But I believe the 

case for inferentiality for CIRCUMSTANCE can 

stand on its own.  

CIRCUMSTANCE is categorized as a subject 

matter or semantic relation. That a relation might 

be designated as semantic indicates that since 

reader acceptance is presumed, this might seem to 

suggest no inferential activity would obtain. And 

yet the asymmetry of semantic relations indicates 

otherwise:  these are not merely conjunctions. That 

their intended effect may be realized without 

persuasion does not eliminate the necessity for 

reasoning. The intended effect of each of the 

semantic relations is predicated on a Boolean 

domain, albeit more subtle than one of truth and 

falsity. In CIRCUMSTANCE, the inferential feature, 

while subtle, is more pronounced than in some 

others. Its Boolean domain is a delimitation of 

context. The satellite circumscribes the universe of 

discourse within which the nucleus holds. In some 

cases, the strength of the circumscription may be 

sufficient that the designation of argumentative 

would be warranted. Figure 2 shows an example of 

CIRCUMSTANCE. The text is from US President 

Ronald Reagan’s first inaugural address. The 

nucleus is perhaps one of his most famous 

quotations. Giving it some context should be 

helpful both in clarifying what he really said and in 

explicating the CIRCUMSTANCE relation. The crisis 
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Reagan had in mind is described in some detail 

earlier in the address, that inflation is the worst in 

American history, that unemployment is high, that 

taxes and the deficit are too high, that personal 

freedoms have been curtailed, and in general things 

are tough all over. These are the circumstances 

under which we are asked to accept that 

government is not the solution to our problems, that 

government is the problem. 

 

The satellite of CIRCUMSTANCE circumscribes 

the conditions under which the nucleus holds. In 

this sense it is similar to CONDITION relation, 

except that the CONDITION satellite expresses a 

hypothetical, future, or otherwise unrealized 

situation, whereas with CIRCUMSTANCE the 

satellite is not unrealized. Thus while CONDITION 

is (s → n), CIRCUMSTANCE is (((s → n) ∧ s) → n), 

or modus ponens. Note that this differs from 

Potter’s (2019) description of the logic of 

CIRCUMSTANCE as subject matter implicative: (s ∧ 

(n ∧ (s → n))). That definition was intended to 

account for the relation as a semantic rather 

pragmatic, property of the relation. However, this 

is unnecessary and redundant and moreover an 

inaccurate rendering of the relation. The Boolean 

domain of CIRCUMSTANCE is one of contextual 

enablement. Anything outside the circumscribed 

universe of discourse cannot be presumed to hold. 

If the crisis Reagan alluded to no longer persists, 

then the role of government in solving problems 

may be in good stead. And a logical analysis of the 

text bears this out. The relational proposition for 

the RST analysis shown in Figure 2 is 

circumstance(1,antithesis(2,3)). With antithesis, 

the intended effect is to increase the reader’s 

positive regard for the situation presented in the 

nucleus. The satellite is incompatible with the 

nucleus, such that the reader cannot have positive 

regard for both the nucleus and the satellite: 

….government is not the solution to our problems; 

[on the contrary,] government is the problem. This 

incompatibility increases the reader’s positive 

regard for the nucleus. The satellite of the 

CIRCUMSTANCE relation identifies an enabling 

context through which the situation identified in 

the nuclear proposition is realized. Its logical 

analog as this nested modus ponens: 

 

(((1 → (((2 ∨ 3) ∧ ¬2) → 3)) ∧ 1) →  

            (((2 ∨ 3) ∧ ¬2) → 3)) 

 

Lest there be any doubt as to the implicativeness of 

the relation between the CIRCUMSTANCE satellite 

and the disjunctive syllogism, consider the effect of 

eliminating the satellite. The relational proposition 

is then antithesis(2,3), or (((2 ∨ 3) ∧ ¬2) → 3), with 

the corresponding text making a general claim 

about the inefficacy of government. This is not 

what Reagan said. In specifying an enabling 

context, the CIRCUMSTANCE relation delimits the 

scope of the situation identified by the nucleus. 

Anything beyond that scope is unspecified. Taking 

the nucleus out if its circumstantial context is to 

remove support for writer’s claim. 

As a valid argument within a valid argument, the 

logical expression is a tautology, that is to say, the 

expression (((1 → (((2 ∨ 3) ∧ ¬2) → 3)) ∧ 1) → 

(((2 ∨ 3) ∧ ¬2) → 3)) is true for all possible values 

of 1, 2, and 3. That these expressions are 

tautologies should be of no concern so long as it is 

the coherence of the text that is of interest. That is, 

the logical definitions are based on a presumed 

realization of the writer’s intended effect. While 

this is consistent with the expectation of coherence, 

for critical assessment, the presumed realization of 

intended effect amounts to begging the question. It 

is the soundness of the expression that is of interest. 

For an examination of soundness, it is the premises, 

and not what may be inferred from them, that is of 

interest. The premises of the argument are found, 

as expected, in the left hand side (LHS) of the 

logical expression, to the left of the outermost 

implication. Restating the logical expression, 

 

(((1 → (((2 ∨ 3) ∧ ¬2) → 3)) ∧ 1) →  

             (((2 ∨ 3) ∧ ¬2) → 3)) 

 

using only the LHS for each relation reduces to 

 

((1 → ((2 ∨ 3) ∧ ¬2)) ∧ 1) 

 

 

Figure 2: CIRCUMSTANCE as Delimiting 

Framework 
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Although negation of the LHS will not necessarily 

negate the RHS, an LHS once negated deprives the 

discourse of its intended effect. Since the burden of 

persuasion is on the LHS, negation is sufficient for 

rejection of the RHS. More specifically, negation 

of the CIRCUMSTANCE satellite is sufficient to 

imply negation of the LHS of the expression, such 

that (¬1 → ¬((1 → ((2 ∨ 3) ∧ ¬2)) ∧ 1)) is a valid 

argument. Thus one might challenge the claim that 

there was any crisis, e.g., arguing that the claim of 

crisis was a politically motivated fabrication, and 

this would suffice to weaken the generalization that 

government is the problem. Of further interest is 

the possibility of inferring 3 directly from 1. As it 

happens, (((1 → ((2 ∨ 3) ∧ ¬2)) ∧ 1) → (1 → 3)) 

and (((1 → ((2 ∨ 3) ∧ ¬2)) ∧ 1) → 3) are both valid. 

This shows that the satellite of the CIRCUMSTANCE 

relation enjoys a transitive relationship with the 

nucleus of the ANTITHESIS relation. That is to say, 

the reduced text 

 

   1) In this present crisis, 

3) government is the problem. 

 

is both logical and plausibly coherent. That this 

abridgement of the inferential path is readable, 

despite the loss of rhetorical force, lends support to 

the inferential interpretation of the CIRCUMSTANCE 

relation. 

5 SOLUTIONHOOD and its subtypes 

SOLUTIONHOOD as defined by Mann and 

Thompson the satellite presents a problem and the 

nucleus constitutes a solution. Problem as used 

here is broadly defined, and may be presented as a 

question, a request, a description of a desire or goal, 

or any one of a variety of other similar situations. 

The use of the interrogative in discourse, when the 

writer raises the question and follows it with a 

response, is quite different from raising a question 

and leaving it for the reader to answer. In this 

respect SOLUTIONHOOD is akin to the 

PREPARATION relation, but more focused. The 

satellite provides the setup or prompt for presenting 

the nucleus. The question or problem can be treated 

as a propositional function, or specification of a 

query (Hintikka, 2007). Solutions and answers 

provide the information needed to resolve the 

problem. From the query, the solution is 

instantiated (Potter, 2019). It is in this sense that the 

nucleus is inferred from the satellite, or that the 

answer follows coherently from the question.  

Instantiations of SOLUTIONHOOD may be 

simple, e.g., I'm hungry. Let's go to the Fuji 

Gardens, where the speaker’s announcement of 

hunger is given as sufficient reason for dinner at a 

Japanese restaurant. Or they may be complex. 

Figure 3 shows the satellite of a SOLUTIONHOOD 

relation in use as the setup for an extended 

argument. The argument is from Gilbert Ryle’s 

philosophical treatise, The Concept of Mind. 

Through multiple layers of EVIDENCE, the writer 

positions the argument as a response to the question 

posed in the satellite, but in going beyond simply 

satisfying the question, it seeks to affirm an 

assumption implicit in the question, that people are 

strongly drawn to believe the thesis of mind-body 

dualism. A case of complex question perhaps? Ryle 

could have begun with an assertion rather than a 

 

Figure 3: SOLUTIONHOOD as Setup for an Extended Argument (Ryle, 1949) 
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question (e.g., “People are strongly drawn to 

believe…”) followed by the support provided in 

span 2-9. But this would have shifted the locus of 

effect from segment 2 to segment 1. That is not the 

claim he sought to establish. That people ascribe to 

the dogma of the ghost in the machine is a core 

thesis of his critique of René Descartes. 

SOLUTIONHOOD is used as a maneuver to position 

the claim and its supporting argument. As 

structured, the locus of intended effect (segment 2), 

follows logically from the argument: 

 

solutionhood( 

   1, 

   evidence( 

      evidence( 

         cause( 

            circumstance( 

               5,6), 

            cause( 

               9, 

               means( 

                  7,8))), 

         cause( 

            3,4)), 

2)) 

 

Carlson and Marcu (2001) do not define a 

SOLUTIONHOOD relation per se, but rather specify 

an array of more finely-grained solution-oriented 

relations. Of particular concern are PROBLEM-

SOLUTION, QUESTION-ANSWER, and STATEMENT-

RESPONSE. For each of these, there are three 

subtypes. This, according to Carlson and Marcu, is 

necessary because sometimes the problem will be 

more important than the solution, sometimes the 

solution will be more important than the problem, 

and sometimes they will be of equal importance. 

Similar subtypes are specified for CONSEQUENCE, 

EVALUATION, and INTERPRETATION. That there 

should be such subtypes is not without precedent. 

Mann and Thompson used similar pairings for 

causal relations (VOLITIONAL-CAUSE, NON-

VOLITIONAL CAUSE, and VOLITIONAL-RESULT, 

NON-VOLITIONAL RESULT). More recently, Stede 

et al. (2017) specified satellite and nuclear subtypes 

for the EVALUATION relation.  

In SOLUTIONHOOD, the essence of the relation is 

that one part provides a solution to a problem 

presented by the second part (Mann & Thompson, 

1986). The reader recognizes that the nucleus is a 

solution to the problem presented in the satellite. 

Nothing is stipulated as to the importance of one 

part over the other. In Carlson and Marcu’s 

PROBLEM-SOLUTION, one part presents a problem, 

the other presents a solution. They do stipulate that 

one part might be more important than the other, 

and that this will determine the relation. 

Importance here has to do with how salient or 

essential each part is. So if the problem is deemed 

more important, it is coded as the nucleus, and if 

the solution is more important, then it is coded as 

the nucleus. This exemplifies a fundamental 

difference between Mann and Thompson’s vision 

for what RST is and Carlson and Marcu’s 

approach. For Mann and Thompson the nuclearity 

of a relation is determined by specific constraints 

on the spans. For SOLUTIONHOOD this means that 

one part must present a problem and the other must 

be a solution to the problem. From this the satellite 

and nucleus are determined. Any determination of 

importance, salience, or essentiality follows as a 

consequence of conformance to the defined 

constraints. For Carlson and Marcu, the nuclearity 

of a relation is determined by a identification of the 

relative importance, salience, or essentiality of the 

spans. This is amounts to saying that the nuclearity 

of the spans is determined by the nuclearity of the 

spans. The difficulty presented by this circular 

reasoning is not merely hypothetical. Determining 

relational salience on the basis of something other 

than functional constraints adds a subjective 

feature to the analysis. In their example of 

PROBLEM-SOLUTION-S, because the problem is 

deemed more important than the solution, Carlson 

and Marcu assigned the role of nucleus to the 

problem and satellite to the solution. Here is the 

text: 

 

1) Despite the drop in prices for thoroughbreds, 

owning one still isn't cheap. At the low end, 

investors can spend $15,000 or more to own a 

racehorse in partnership with others. At a 

yearling sale, a buyer can go solo and get a 

horse for a few thousand dollars. But that 

means paying the horse's maintenance; on 

average, it costs $25,000 a year to raise a 

horse.  

2) For those looking for something between a 

minority stake and total ownership,  the 

owners' group is considering a special sale 

where established horse breeders would sell a 

50% stake in horses to newcomers. 
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Clearly, the first span is the problem and the second 

span is the solution. So by definition, the relation is 

SOLUTIONHOOD, or some sort of PROBLEM-

SOLUTION. But it is unclear how this perception, 

that the satellite as more salient than the nucleus 

arises. On the contrary, the context in which this 

text is drawn suggests otherwise. The second span 

is the concluding paragraph from a Wall Street 

Journal article entitled Racehorse Breeders Bet the 

Average Joe Would Pay for a Piece of 

Thoroughbred. In my view, allowing the relational 

intentionality to determine the salience, and hence 

the relation, rather than an arbitrary designation of 

salience determining the relation, is the preferred 

approach for discovering rhetorical structure.  

While subtyping SOLUTIONHOOD in terms of 

salience seems questionable, even if accepted, the 

inferentiality of its relational propositions remains 

consistent. Within the Boolean domain of problem-

solution matchups, the solution follows from the 

problem, not the other way on. Although it makes 

sense to say  

 

I’m hungry.  

THEREFORE, let’s go to the Fuji Gardens 

 

the coherence of 

 

The owners' group is considering a special sale. 

 THEREFORE, owning one still isn't cheap. 

 

is questionable at best, except perhaps from a 

cynical perspective unsupported by the text. If the 

writer’s intent is that the solution is less than 

adequate, its relation to the problem may not be 

SOLUTIONHOOD at all, but possibly ELABORATION 

or even a causal relation. The bottom line then is 

that if the relation is SOLUTIONHOOD or any of its 

variants, then inferentiality flows from problem to 

solution, irrespective of nuclearity. 

6 Inferential ELABORATION 

ELABORATION is among the most frequently used 

relations (Cardoso, Taboada, & Pardo, 2013; 

Carlson & Marcu, 2001). It has also been the 

subject of controversy. Knott, Oberlander, 

O'Donnell, and Mellish (2001) have sometimes 

been cited as advocating that ELABORATION should 

be removed from the RST relations set (e.g., Louis 

& Nenkova, 2010; Marcu & Echihabi, 2002; 

Prévot, Vieu, & Asher, 2009; Taboada & Mann, 

2006); however, their concern was more limited 

than that. Their objection was to one particular 

ELABORATION subtype: Object-Attribute. They 

considered this relation to be idiosyncratic. The 

distinctive characteristic of this subtype is that, 

from their perspective, it is not really a relation 

among discourse units, but rather a relation 

between a clause and an element within another 

clause. Stede et al. (2017) addressed this objection 

at least in part by defining two types of elaboration. 

In the first type, called ELABORATION, the satellite 

provides details or more information on the state of 

a affairs described in the nucleus. The second type, 

called E-ELABORATION, the satellite may refer not 

to the situation presented in the nucleus but to some 

element or entity mentioned in the nucleus (Stede 

et al., 2017), as illustrated in Figure 4. This appears 

consistent with the definition provided by Mann 

and Thompson, with the exception that the Object-

Attribute subtype is set apart as its own relation. 

Carlson and Marcu treat ELABORATION as a 

general class, rather than a relation, subclassing it 

into eight separate relations. Although these are 

sufficiently distinct to be useful by an analyst or 

parser, from a rhetorical standpoint, they all 

accomplish the same thing – the assertion of the 

satellite is intended to increase the likelihood the 

reader will understand the nucleus. In this respect 

 

Figure 5: ELABORATION and/or EVIDENCE 

 

Figure 4: Example of E-ELABORATION, as 

defined by (Stede, Taboada, & Das, 2017). 
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these relations are similar to BACKGROUND, and 

have the same logical generalization—similar, but 

not identical. One obvious difference is that the 

BACKGROUND satellite usually precedes the 

nucleus, and thus anticipates the need for 

supportive information (in this way BACKGROUND 

is similar to PREPARATION, except its domain is 

comprehension rather than interest). A more 

fundamental difference is that BACKGROUND is 

more general than ELABORATION.  

Considered rhetorically we tend to reach one 

type of definition, based on writer intent, but 

considered solely from the perspective semantics, 

we arrive at something else. If in ELABORATION the 

satellite presents additional detail about the 

situation or some element presented in the nucleus, 

the question remains as to what the writer might 

hope to accomplish when employing the relation. 

We cannot look to Mann and Thompson, Stede, or 

Carlson for guidance there.  

Unfortunately, the definition provided in one of 

my earlier papers (Potter, 2019) is also less than 

helpful. There, the relation is said to include an 

inference between the nucleus and the satellite, (n 

→ s). The inference of s from n was due to the 

specification that the satellite be inferentially 

accessible in the nucleus, as originally defined by 

Mann and Thompson (1988). And since 

ELABORATION is a subject matter relation, neither 

n nor s are controversial, so both were treated as 

asserted, such that the definition given is (s ∧ n ∧ 

(n → s)). So there are a couple of problems here. 

First, regarding the inferential accessibility, this 

merely establishes relevance, not intended effect, 

and second, even the definition were discursively 

representative, it would be logically redundant, 

since anytime (s ∧ n), it will follow that (n → s). 

But more to the point, this definition is not 

discursively representative.  

As Hobbs (1979) observed, an elaboration 

enhances the reader’s understanding by providing 

additional information. Thus for RST, the Boolean 

domain of ELABORATION should be seen as one of 

clarification, and the inferential path is from 

satellite to nucleus, not nucleus to satellite. This is 

the case for all forms of ELABORATION. One way 

or another, the satellite supports the nucleus, 

making it more informative. That is its Boolean 

domain. Its logic is therefore modus ponens, (((s → 

n) ∧ s) → n). It is not always easy to determine 

whether an elaboration should be read semantically 

or pragmatically. The example shown in Figure 5, 

concerning the appearance of the African plant, 

Welwitschia, can be analyzed as elaboration(2,1), 

and this also may help resolve any doubts the 

reader might have as to the plant’s ugliness, hence 

evidence(2,1). Either way, the logic is the same. 

7 Conclusion 

The possibility that relational propositions might 

support an alignment of discourse with 

propositional logic appears to have occurred to 

Mann and Thompson in their development of RST. 

While refraining from commitment to this 

conceptualization, they hint at  its possibility in 

their early publications on relational propositions 

(Mann & Thompson, 1983, 1986). However, the 

logic of relational propositions maps readily from 

their original vision. The abstraction of RST 

analyses as logical expressions provides a means 

for mapping argumentative inference with high 

granularity, and with traceability back to the text. A 

key enabler for this process is the alignment of 

Boolean domains with writer intentionality. While 

this multiplicity of Boolean domains is, so far as I 

know, a novel concept for argument mining, 

applications of Boolean logic beyond truth 

functional domains are by no means new, having 

an extensive history in circuit design, set theory, 

digital logic, and database query languages.  

The inspirational notion here is of an interactive 

inference mining browser that would perform 

automated RST analysis of free texts, restate the 

RST analysis as a nested relational proposition, and 

generate a logical expression representing the 

inferential processes in the text. This could be 

integrated with other tools for identification of 

argumentative structures. There remain 

fundamental issues to be addressed. Problems with 

relation definition, such as those examined in this 

paper need to be resolved. As things stand, there are 

several de facto standards for RST analysis, none 

of them fully adequate and yet all seemingly frozen 

in time. Tall monuments cast long shadows. 

Hopefully what I have presented here will be 

useful, and if not in fully solving any problems then 

in at least in taking steps toward their solution.  
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Abstract
In targeted syntactic evaluations, the syntac-
tic competence of language models (LMs)
has been investigated through various syntac-
tic phenomena, among which one of the im-
portant domains has been argument structure.
Argument structures in head-initial languages
have been exclusively tested in the previous
literature, but may be readily predicted from
lexical information of verbs, potentially over-
estimating the syntactic competence of LMs.
In this paper, we explore whether argument
structures can be learned by LMs in head-final
languages, which could be more challenging
given that argument structures must be pre-
dicted before encountering verbs during incre-
mental sentence processing, so that the rel-
ative weight of syntactic information should
be heavier than lexical information. Specif-
ically, we examined double accusative con-
straint and double dative constraint in Japanese
with the sequential and hierarchical LMs: n-
gram model, LSTM, GPT-2, and Recurrent
Neural Network Grammar (RNNG). Our re-
sults demonstrated that the double accusative
constraint is captured by all LMs, whereas
the double dative constraint is successfully ex-
plained only by the hierarchical model. In ad-
dition, we probed incremental sentence pro-
cessing by LMs through the lens of surprisal,
and suggested that the hierarchical model may
capture deep semantic roles that verbs assign
to arguments, while the sequential models
seem to be influenced by surface case align-
ments. We conclude that the explicit hierarchi-
cal bias is essential for LMs to learn argument
structures like humans.

1 Introduction

Recently, artificial neural networks have had a great
impact on the field of Natural Language Processing.
Nevertheless, despite the improvement brought by
the neural network, it is an open question what lin-
guistic knowledge neural language models (LMs)

can learn from the next word prediction task. One
line of research peeking into the neural network
“black box” is the targeted syntax evaluations with
controlled sentences designed to reveal whether
the LMs have learned specific syntactic knowl-
edge consistent with human acceptability judge-
ments. (e.g., Lau et al., 2017). Using this method,
previous work has shown that these models suc-
cessfully learn a variety of syntactic knowledge
such as subject-verb number agreement (Linzen
et al., 2016; Marvin and Linzen, 2018; Wilcox et al.,
2018).

In targeted syntax evaluations, one of the impor-
tant domains has been argument structure. Pre-
vious work suggested that neural LMs have the
ability to capture argument structures (Kann et al.,
2019; Warstadt et al., 2020), but in head-initial lan-
guages exclusively tested in the previous literature,
argument structures may be predicted from lexical
information of verbs, potentially overestimating
the syntactic competence of the LMs. In addition,
although targeted syntax evaluation to test other lin-
guistic knowledge has confirmed the advantage of
syntactic bias (Kuncoro et al., 2018; Wilcox et al.,
2019; Futrell et al., 2019), hierarchical models such
as Recurrent Neural Network Grammars (RNNGs,
Dyer et al., 2016) have not been evaluated for verb
argument structures.

In this paper, we will examine the effect of
syntactic bias on learning verb argument struc-
tures, using more challenging head-final language,
Japanese. In Japanese, argument structures must be
predicted before encountering verbs during incre-
mental sentence processing, such that the relative
weight of syntactic information should be heav-
ier than lexical information. We specifically focus
on the double accusative constraint (e.g., Harada,
1975, 1986; Shibatani, 1978; Hiraiwa, 2002, 2010)
and the double dative constraint in Japanese. The
double accusative constraint prohibits the occur-
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Previous literature English Italian Russian French German Hebrew Basque Japanese
Linzen et al. (2016),
Marvin and Linzen (2018),
Jumelet and Hupkes (2018),
Chowdhury and Zamparelli (2018, 2019),
Wilcox et al. (2018, 2019),
Futrell et al. (2019),
Warstadt et al. (2019a,b, 2020),
Chaves (2020),
Da Costa and Chaves (2020),
Hu et al. (2020)

"

Gulordava et al. (2018) " " " "

Ravfogel et al. (2018) "

An et al. (2019) " "

Mueller et al. (2020) " " " " "

Table 1: Summary of the previous literature on targeted syntactic evaluations. Works for English are shown above
the horizontal line and works for other European languages are shown below the horizontal line.

rences of two or more NPs marked with the ac-
cusative case particle o within the same clause, and
the double dative constraint is the restriction on
the case taken by verbs. We will test these con-
straints with the sequential and hierarchical LMs,
n-gram, LSTM, GPT-2 (Radford et al., 2019) and
Recurrent Neural Network Grammars (RNNGs).
As a result, we demonstrated that the double ac-
cusative constraint could be captured by all LMs,
whereas the double dative constraint is successfully
explained only by the hierarchical model. In addi-
tion, we analyzed the phrase-by-phrase surprisal
of the LMs, and suggested that the hierarchical
model may capture deep semantic roles that verbs
assign to arguments, while the sequential models
are influenced by surface case alignments. This re-
sult suggests that the double accusative constraint,
which is a constraint to spell out the surface case,
can be solved well by the sequential model, but
the double dative constraint, which is a constraint
at the level of the deep semantic role that verbs
assign to arguments, can be solved well only by the
hierarchical model. Taken together, we conclude
that the explicit hierarchical bias is essential for
LMs to learn the human-like syntactic competence
to process argument structures.

Another important contribution of this paper is
that, to the best of our knowledge, it was the first
attempt to conduct targeted syntax evaluation using
Japanese. The goal of natural language processing
community is to build a LM having language inde-
pendent general language processing ability, but so
far targeted syntax evaluation has been done mainly
for English (above the horizontal line in Table 1)
and other European languages (below the horizon-
tal line in Table 1). In order to achieve the goal, it

is important to evaluate the syntactic competence
of LMs for non-European languages.

2 Methods

To investigate the effect of explicitly modeling hi-
erarchical structures, we train linear LMs and a
hierarchical LM. In order to eliminate the effect of
the amount of training data, we trained all LMs on
the same training data. In addition, we restricted
our evaluation to left-to-right LMs corresponding
to incremental sentence processing, to make LMs
predict the verb argument structure before they see
the verb. We used the same model sizes reported
in the papers proposing each model (Table 2).

2.1 Language Models

Long Short-Term Memory (LSTM): LSTMs
are a sequential model using the recurrent neural
network architecture (Hochreiter and Schmidhu-
ber, 1997). We used a 2-layer LSTM with 256
hidden and input dimensions. The implementation
by Gulordava et al. (2018) was employed.1

GPT-2: GPT-2 is a sequential model using the
Transformer architecture (Vaswani et al., 2017).
We used the same architecture of GPT-2 small (Rad-
ford et al., 2019) with 12 layers and 756 hidden
and input dimensions. The implementation by Hug-
gingface’s Transformer package (Wolf et al., 2020)
was employed.

Recurrent Neural Network Grammar (RNNG):
RNNGs are a hierarchical model which explicitly
models hierarchical structures (Dyer et al., 2016).

1https://github.com/facebookresearch/
colorlessgreenRNNs
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Language Model #Layers #Hidden dimensions #Input dimensions
LSTM 2 256 256
GPT-2 12 768 768
RNNG 2 256 256

Table 2: Model sizes of neural LMs evaluated in this paper.

Figure 1: The architecture of RNNGs used in this paper.
This figure is reproduced from Hale et al. (2018).

In this paper, we used stack-only RNNGs (Kuncoro
et al., 2017). RNNGs generate trees such as “(S
(NP The hungry cat) (VP meows))”; each of the
elements is encoded as a vector and stored in a
stack, which is illustrated inside the gray box in
Figure 1. At each step of generation, one of the
following three actions is selected based on the
current state of the stack, which is encoded as a
vector by stack LSTM:

• NT(X) introduces a nonterminal X that is en-
coded as a vector onto the top of the stack.
This action generates an open nonterminal
“(X”.

• GEN(x) introduces a terminal symbol x that
is encoded as a vector onto the top of the stack.
This action generates a terminal symbol “x”.

• REDUCE triggers “syntactic composition”
function, which creates a new single vector
that represents a phrase X from the elements

Figure 2: “Syntactic composition” function that is ex-
ecuted during a REDUCE action. This figure is repro-
duced from Dyer et al. (2016).

of its children in the stack. For example, “(NP
The hungry cat)” is represented by a new sin-
gle vector by this action.

If NT(X) or GEN(x) is selected, which open non-
terminal or word is generated is selected based on
the same vector that represents the current state of
the stack.

If REDUCE is selected, “syntactic composition”
function is executed by bidirectional LSTM (Fig-
ure 2). In both directions, a nonterminal vector
such as “(NP” is input first, and then its children
vectors such as “u”, “v” and “w” are input in for-
ward or reverse order. After all the children vectors
are input, the phrase vector ”x” is calculated from
the output of the forward and reverse LSTMs.

We used RNNGs that had a 2-layer stack LSTM
with 256 hidden and input dimensions. The im-
plementation by Noji and Oseki (2021) was em-
ployed.2 RNNGs were given the correct tree
structures only during training, so we used word-
synchronous beam search (Stern et al., 2017) to
inference tree structures behind terminal subwords
during evaluation. We set the action beam size to
100, the word beam size to 10, and the fast track to
1.

n-gram: As a baseline, we also train 5-gram LM
using KenLM.3

2https://github.com/aistairc/
rnng-pytorch

3https://github.com/kpu/kenlm
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2.2 Training data

All LMs were trained on the National Institute for
Japanese Language and Linguistics Parsed Cor-
pus of Modern Japanese (NPCMJ), that comprises
67,018 sentences annotated with tree structures.4

The sentences were split into subwords by a byte-
pair encoding (Sennrich et al., 2016).5 LSTM, GPT-
2, and n-gram used only terminal subwords, while
RNNGs used terminal subwords and tree structures.
All neural LMs (LSTM, GPT-2, and RNNGs) were
given one sentence at a time and were trained for 40
epochs and 3 times with different random seeds.6

2.3 Acceptability judgements with LMs

Recently, many efforts have been made on the
evaluation of the syntactic competence of LMs.
Previous work (e.g., Linzen et al., 2016; Marvin
and Linzen, 2018; Wilcox et al., 2018) evaluated
whether LMs assign a higher probability to an ac-
ceptable sentence than to an unacceptable one, us-
ing a minimal pair such as (1).

(1) a. The hungry cat meows.

b. *The hungry cat meow.

There are several methods to measure an LM’s pref-
erence between two sentences in a minimal pair.
One of them is prediction task, which compares a
probability of grammatically critical position. For
example, in the example in (1), we would expect
the model to predict p(meows|The hungry cat) >
p(meow|The hungry cat). However, the predic-
tion task setting is not applicable when grammat-
icality is determined by the interaction of several
words or when the information necessary to deter-
mine grammaticality does not appear in the left
context. In this paper, we use the more general
full-sentence setting (Marvin and Linzen, 2018;
Warstadt et al., 2020), which compares a prob-
ability of the two complete sentences. For ex-
ample, in the example in (1), we would expect
the model to predict p(The hungry cat meows) >
p(The hungry cat meow).

4http://npcmj.ninjal.ac.jp
5Implemented in sentencepiece (Kudo and Richardson,

2018). We set character coverage to 0.9995, and vocabulary
size to 8000

6Traces and semantic information were removed in the
way described in Manning and Schutze (1999).

3 Targeted argument structures

3.1 Double accusative constraint
Japanese has a constraint that prohibits the occur-
rences of two or more NPs marked with the ac-
cusative case particle o in the same clause. This
constraint is called “double accusative constraint”,
and have attracted considerable interest in the study
of Japanese syntax (e.g., Harada, 1975, 1986; Shi-
batani, 1978; Hiraiwa, 2002, 2010). One example
of double accusative constraint is given in (2):

(2) a. Ken-ga
Ken-Nom

Naomi-ni/o
Naomi-Dat/Acc

gakko-ni
school-Dat

ik-ase-ta
go-Caus-Past
‘Ken made Naomi go to school.’

b. Ken-ga
Ken-Nom

Naomi-ni
Naomi-Dat

sono-hon-o
Dem-book-Acc

yom-ase-ta
read-Caus-Past
‘Ken made Naomi read the book.’

c. *Ken-ga
Ken-Nom

Naomi-o
Naomi-Acc

sono-hon-o
Dem-book-Acc

yom-ase-ta
read-Caus-Past
‘Ken made Naomi read the book.’

As shown in (2a), when the object NP is marked
with the dative case particle ni, the causee NP can
be marked with either the dative case particle ni or
the accusative case particle o. However, as shown
in (2bc), when the object NP is marked with the
accusative case particle o, the causee NP cannot
be marked with the accusative case particle o (2c),
but must be marked with the dative case particle ni
(2b).

We can assess the syntactic competence of
LMs on double accusative constraint by examin-
ing whether LMs assign a higher probability to
(2b) than (2c), where both arguments are marked
with the accusative case particle o within the same
sentence. For this purpose, 22 minimal pairs of
the (2bc) pattern made by Tamaoka et al. (2018)
were collected and the probabilities of the two sen-
tences were compared for each minimal pair. We
confirmed that case markers are tokenized into in-
dividual subword tokens.

3.2 Double dative constraint
Now we turn to another phenomenon on argument
structures: double dative constraint. In Japanese,
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Language Model Accuracy (%)
n-gram 72.7
LSTM 97.0 (± 2.1)
GPT-2 95.5 (± 3.7)
RNNG 98.5 (± 2.1)

Table 3: The result of targeted syntactic evaluation on
double accusative constraint. Average accuracies with
standard deviations across different random seeds are
reported.

case is marked with particles, and different verbs
can take different case patterns. One example of
double dative constraint is given in (3):

(3) a. Ken-ga
Ken-Nom

Naomi-o
Naomi-Acc

gakko-ni
school-Dat

oku-tta
take-Past

‘Ken took Naomi to school.’

b. *Ken-ga
Ken-Nom

Naomi-ni
Naomi-Dat

gakko-ni
school-Dat

oku-tta
take-Past

‘Ken took Naomi to school.’

As shown in (3a), double object verbs take three
arguments: an NP marked with the nominative case
particle ga, an NP marked with the accusative case
particle o, and an NP marked with the dative case
particle ni. Double object verbs cannot take an
NP marked with the dative case instead of an NP
marked with the accusative case (3b), resulting in
unacceptable sentences.

We can assess the syntactic competence of LMs
on double dative constraint by examining whether
LMs assign a higher probability to (3a) than (3b).
In order to make the results comparable to the dou-
ble accusative constraint in the previous section,
we contrast (3a) with (3b), where both arguments
are marked with the dative case particle ni within
the same sentence. For this purpose, 22 minimal
pairs of the (3ab) pattern made by Tamaoka et al.
(2018) were collected and the probabilities of the
two sentences were compared for each minimal
pair. We confirmed that case markers are tokenized
into individual subword tokens.

4 Results

4.1 Double accusative constraint
The result of targeted syntactic evaluation on dou-
ble accusative constraint is shown in Table 3. Av-

Language Model Accuracy (%)
n-gram 81.8
LSTM 89.4 (± 8.6)
GPT-2 86.4 (± 3.7)
RNNG 100.0 (± 0.0)

Table 4: The result of targeted syntactic evaluation on
double dative constraint. Average accuracies with stan-
dard deviations across different random seeds are re-
ported.

erage accuracies with standard deviations across
different random seeds are reported. First, the base-
line n-gram model underperformed the neural LMs.
This result demonstrates that the dataset used to
test the double accusative constraint cannot merely
be solved with local information.

Second, among the neural LMs, the hierarchi-
cal model (RNNG) achieved the highest accuracy,
while the sequential models (LSTM and GPT-2)
also reached the near perfect performance. This
result provide evidence supporting that the neural
LMs can capture the double accusative constraint
without explicitly modeling hierarchical structures.

4.2 Double dative constraint

The result of targeted syntactic evaluation on dou-
ble dative constraint is shown in Table 4. Average
accuracies with standard deviations across different
random seeds are reported. First, the baseline n-
gram model performed relatively well, but the per-
formance is still lower than the neural LMs. This
result indicates that the dataset used to test the dou-
ble dative constraint can reasonably be solved with
local information alone, but neural architectures
may be required to reach the higher performance.

Second, among the neural LMs, the hierarchi-
cal model (RNNG) achieved the perfect accuracy,
whereas the sequential models (LSTM and GPT-2)
did not reach the near perfect performance with
only slight improvements over the baseline n-gram
model. This result provide evidence supporting
that, unlike the double accusative constraint, the
neural LMs can capture the double dative constraint
only when explicitly modeling hierarchical struc-
tures.

5 Probing sentence processing

Sections 3.1 and 3.2 demonstrated that the explicit
hierarchical bias may not be necessary for the dou-
ble accusative constraint, but crucial for the double
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dative constraint. Why can the sequential models
learn the double accusative constraint, but not the
double dative constraint? In this section, following
Futrell et al. (2019), we probe sentence processing
and identify the phrases where LMs make different
predictions for acceptable and unacceptable sen-
tences by computing phrase-by-phrase surprisal of
LMs. The following analyses include neural LMs
to the exclusion of the n-gram model.

5.1 Methods
We probed sentence processing of LMs through
the information-theoretic complexity metric
called surprisal (Hale, 2001; Levy, 2008):
− log p(segment|context) . In psycholinguistics,
it is well known that humans predict next segments
during incremental sentence processing, and the
less predictable the segment is, the more surprising
that segment is. The previous literature established
that cognitive efforts measured from humans are
proportional to surprisals computed from LMs
(e.g., Smith and Levy, 2013; Frank and Bod, 2011;
Frank et al., 2015). Building on this result, we
probe sentence processing by LMs through the
lens of surprisal.

5.2 Results
5.2.1 Double accusative constraint
Figure 3 shows phrase-by-phrase surprisal for the
double accusative constraint. Phrasal surprisal was
computed as the cumulative sum of surprisals of
its constituent subwords. Average surprisals with
standard errors across different items and random
seeds are reported.

We observe that all LMs show the largest sur-
prisal difference at the accusative case particle o
marking the third NP. This observation suggests
that the all LMs captured the double accusative
constraint through consecutive case marking on
the second and third NPs. Notice incidentally that
only RNNG shows larger surprisal at the end of
unacceptable sentences than acceptable sentences.

5.2.2 Double dative constraint
Figure 4 shows phrase-by-phrase surprisal for the
double dative constraint. Phrasal surprisal was
computed as the cumulative sum of surprisals of
its constituent subwords. Average surprisals with
standartd errors across different items and random
seeds are reported.

First, unlike the double accusative constraint, we
cannot observe the phrases where all LMs consis-

tently show a large surprisal difference. Second,
LSTM and GPT-2 show the largest surprisal differ-
ence at the dative case particle o marking the third
NP, while RNNG shows the largest surprisal dif-
ference at the case particle marking the second NP.
These observations suggest that the sequential mod-
els are more surprised when the dative case particle
ni marks two NPs consecutively, while the hierar-
chical model is more surprised when the dative case
particle ni marks the second NP incorrectly, which
should be marked by the accusative case particle o.

In order to confirm this result, we statistically
tested via paired-samples t-tests whether the “sur-
prisal differences between acceptable and unaccept-
able sentences” are significantly different between
the case particle marking the second NP (the phrase
where the dative case particle marks one NP incor-
rectly) and the case particle marking the third NP
(the phrase where the dative case particle marks
two NPs consecutively). The result revealed that
LSTM shows a significantly larger surprisal dif-
ference at the case particle marking the third NP
(p < 0.05), while RNNG shows a significantly
larger surprisal difference at the case particle mark-
ing the second NP (p < 0.05), but GPT-2 did not
show any significant difference (p = 0.067). In
other words, LSTM was more surprised when the
dative case particle ni marks two NPs consecutively,
while RNNGs were more surprised when the dative
case particle ni marks the second NP incorrectly,
which should be marked by the accusative case par-
ticle o, but GPT-2 was equally surprised at both
phrases. The important conclusion here is that the
hierarchical model (RNNG) not only achieved the
perfect accuracy but also captured the double da-
tive constraint for right reasons (i.e. incorrect case
marking on the second NP), while the sequential
models (LSTM and GPT-2) solved the double da-
tive constraint for wrong reasons (i.e. consecutive
case marking on the second and third NPs). In fact,
as in (4), it is possible to have consecutive dative
cases in Japanese, for example, when a NP marked
by the dative case expresses time, and it is wrong
to judge ungrammaticality on the basis of a series
of dative cases.

(4) Ken-ga
Ken-Nom

yoake-ni
dawn-Dat

gakko-ni
school-Dat

i-tta
go-Past

‘Ken went to school at dawn.’
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Figure 3: Phrase-by-phrase surprisal for the double accusative constraint. Phrasal surprisal was computed as the
cumulative sum of surprisals of its constituent subwords. Average surprisals with standard errors across different
items and random seeds are reported.
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Figure 4: Phrase-by-phrase surprisal for the double dative constraint. Phrasal surprisal was computed as the
cumulative sum of surprisals of its constituent subwords. Average surprisals with standard errors across different
items and random seeds are reported.
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6 General discussion

In summary, we demonstrated that all LMs can cap-
ture the double accusative constraint, while only
the hierarchical model can solve the double dative
constraint with the perfect accuracy. Moreover,
further analyses of incremental sentence process-
ing revealed that the double accusative constraint
can be attributed to the phrase where the second
and third NPs are marked consecutively, while the
double dative constraint seems to be adequately
captured by the hierarchical model at the phrase
where the second NP is marked incorrectly. In this
section, we discuss these results from the perspec-
tive of theoretical linguistics.

First, Hiraiwa (2010) proposes that the double
accusative constraint is not a pure syntactic con-
straint, but an interface constraint on the spell-out
of the accusative case; namely, the phonological
constraint against realizing multiple occurrences of
the accusative case value within the same domain.
Interestingly, this proposal is consistent with our
results in that the double accusative constraint is
modeled by LMs through surface case alignments
like consecutive case marking on the second and
third NPs.

Second, the double dative constraint, on the other
hand, seems to be a pure syntactic constraint, where
NPs should be marked with the accusative case
particle given deep semantic roles (i.e. theme)
that verbs assign to arguments. Among the neu-
ral LMs tested above, only RNNG distinguished
unacceptable sentences from acceptable sentences
at the phrase where the second NP is marked incor-
rectly. Although GPT-2 also shows a similar trend
to RNNG, the sequential models seem to be sur-
prised for wrong reasons by consecutive case mark-
ing on the second and third NPs, which is not the
critical point of the difference between acceptable
and unacceptable sentences. This result may sug-
gest that the sequential models cannot learn deep
semantic roles that verbs assign to arguments and,
alternatively, are strongly influenced by surface
heuristics (McCoy et al., 2019). In contrast, the
hierarchical model can learn those deep semantic
roles by explicitly modeling hierarchical structures
(Wilcox et al., 2020).

7 Limitations and future work

In this paper, we performed the targeted syntac-
tic evaluation of LMs on argument structure in
Japanese, which could be more challenging than

English given that argument structures must be
predicted before encountering verbs during incre-
mental sentence processing. However, our results
suggests that the dataset used in this paper may be
too easy: even the baseline n-gram model can solve
well (accuracy = 72.7% on double accusative con-
straint and 81.8% on double dative constraint). We
should evaluate LMs on more challenging dataset
to strengthen the argument in this paper.

In addition, in order to make the fair comparison
of different architectures of the LMs, we trained all
LMs on NPCMJ, the largest treebank in Japanese.
However, since NPCMJ is relatively small (67,000
sentences), and the previous literature has shown
that sequential models can reach the higher per-
formance comparable to hierarchical models when
trained on larger training data (Futrell et al., 2019),
whether the results scale or not remains to be ex-
plored in future work.

Finally, this paper was the first attempt to con-
duct the targeted evaluation in Japanese, but only
two syntactic phenomena on argument structures
were examined in this paper. In order to scale the
targeted syntactic evaluation, we plan to evaluate
the syntactic competence of LMs on a wider range
of syntactic phenomena in Japanese. We hope that
this paper will motivate the targeted evaluation of
the syntactic competence of LMs across languages.

8 Conclusion

In this paper, we explored whether argument struc-
tures can be learned by LMs in head-final lan-
guages, where argument structures must be pre-
dicted even before encountering following verbs
during incremental sentence processing. Specifi-
cally, we examined double accusative constraint
and double dative constraint in Japanese with the
sequential and hierarchical LMs: n-gram model,
LSTM, GPT-2, and RNNG. Our results demon-
strated that the double accusative constraint could
be captured by all LMs, whereas the double da-
tive constraint is successfully explained only by
the hierarchical model. In addition, we probed
sentence processing by LMs through the lens of
surprisal, and suggested that the hierarchical model
may capture deep semantic roles that verbs assign
to arguments, while the sequential models are in-
fluenced by surface case alignments. We conclude
that the explicit hierarchical bias is essential for
LMs to learn the human-like syntactic competence
to process argument structures.
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Abstract

We present the first application of modern neu-
ral networks to the well studied task of learn-
ing word stress systems. We tested our adap-
tation of a sequence-to-sequence network on
the Tesar and Smolensky test set of 124 “lan-
guages”, showing that it acquires generaliz-
able representations of stress patterns in a very
high proportion of runs. We also show that
it learns restricted lexically conditioned pat-
terns, known as stress windows. The ability
of this model to acquire lexical idiosyncracies,
which are very common in natural language
systems, sets it apart from past, non-neural
models tested on the Tesar and Smolensky data
set.

1 Introduction

Some of the earliest work in computational phonol-
ogy investigated the acquisition and representation
of word stress patterns (Dresher and Kaye, 1990;
Gupta and Touretzky, 1994). Stress is of interest
because the extent of typological variation is rel-
atively well understood, and because learning the
patterns is non-trivial in various ways. A consider-
able amount of more recent work has focused on
a data set created by Tesar and Smolensky (2000,
henceforth TS); see further Jarosz (2013), Jarosz
(2015) and Boersma and Pater (2016). The data
set includes 124 languages that can be represented
using 12 relatively standard Optimality Theoretic
(Prince and Smolensky, 2004) constraints. Past
work has tested various algorithms for weighting
and ranking constraints to see which performed
the best on this dataset (where performance was
measured by how many of the 124 languages the
models could learn with 100% accuracy).

In this paper, we explore how well a model with-
out constraints, namely a sequence-to-sequence
neural network, performs on the 124 languages.

Two factors motivate this departure from constraint-
based models: (i) a question of whether pre-
specified structures like constraints1 are necessary
to represent and learn the stress patterns in the TS
data set, and (ii) whether neural networks, which
have the expressive power to capture both general
and lexically specific patterns will be able to gener-
alize stress patterns to novel data. We find that the
sequence-to-sequence net does succeed in learn-
ing most of the languages, and that it generalizes
to novel data, both when trained on the 124 TS
languages and when trained on 6 novel patterns
involving lexically conditioned stress. No previous
research on the Dresher and Kaye parametric sys-
tems, or on the TS violable constraint systems, has
provided a mechanism for the learning of lexically
conditioned patterns – they can only acquire fully
general ones. These results thus provide new chal-
lenges for future research using non-neural frame-
works in this domain.

2 Background

The TS dataset was created to test an approach for
handling hidden structure in phonology: how does
a learner parse a form that it’s being trained on
when it hasn’t learned all of the grammatical infor-
mation needed for parsing in the first place? In the
TS languages, this takes the form of stress patterns
that are assumed to rely on foot-based structure to
place the primary and secondary stress in a word.
While the training data for a language includes map-
pings between underlying forms (strings of light
and heavy syllables) to correctly stressed surface
forms, that data does not include information about
where the feet occur in the correct surface forms.
An example of a piece of learning data in one of the
TS languages is shown in (1), with L representing

1For an approach to stress learning that involves constraints
that are not pre-specified, see Hayes and Wilson (2008).
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light syllables and L1 representing a syllable with
primary stress.

(1) /L L L/→ [L L1 L]

This datum illustrates the ambiguity present when
learning stress patterns like these in a foot-based
theory—this word could contain a left-aligned foot
with iambic stress like [(L L1) L] or a right-aligned
foot with trochaic stress like [L (L1 L)]. Each of
the 124 languages consists of 62 mappings like this.
The 62 input strings are all possible combinations
of Ls and Hs for strings of 2 to 5 syllables in length,
plus strings of 6 and 7 Ls. For each input string,
the candidate set of output strings consists of all
possible parsings of the syllables into unary and
binary feet, including ones where syllables are left
unparsed. There is a minimum of one foot for each
word. One of the stresses is designated as primary,
and the candidate set has all possible primary stress
placements.

Each output string has a corresponding vector of
constraint violations, for the 12 constraints shown
in (2). Each of the 124 languages in the test set
can be generated by some OT ranking of these
constraints. That is, some ranking can make a
parsed structure optimal that is consistent with the
stress pattern in the output of the learning datum,
for all 62 target mappings.

(2) Constraints from the TS Data Set (con-
straint definitions from Jarosz, 2013)
a. FtBin: Each foot must be either bi-

moraic or disyllabic.
b. Parse: Each syllable must be footed.
c. Iambic: The final syllable of a foot

must be the head.
d. FootNon-fin: A head syllable must not

be final in its foot.
e. Non-fin: The final syllable of a word

must not be footed.
f. WSP: Each heavy syllable must be

stressed.
g. WordFoot-R: Align right edge of the

word with a foot.
h. WordFoot-L: Align left edge of the

word with a foot.
i. Main-R: Align head foot with right

edge of the word.
j. Main-L: Align head foot with left edge

of the word.
k. AllFeet-R: Align each foot with right

edge of the word.
l. AllFeet-L: Align each foot with left

edge of the word.

TS proposed that a learner uses its current grammar
to parse a form and then updates its constraint rank-
ings according to that parse. Most subsequent work
(with the exception of Jarosz, 2015) has been based
on this general premise (Jarosz, 2013; Boersma and
Pater, 2016).

TS found that when they ran their model 10 times
on each of the 124 languages in the data set, it
achieved perfect accuracy on a language 60.48%
of the time. Boersma and Pater (2016) found that
when they used a similar parsing strategy, but with
numerically weighted constraints instead of ranked
ones, and with a stochastic component in the pars-
ing process, languages were learned fully correctly
88.63% of the time. Jarosz (2013) pushed perfor-
mance on this data set even further, showing that
by revising the parsing strategy, success could be
achieved 94.19% of the time over 10 runs of the
124 TS languages.

The state-of-the-art on the TS data for constraint-
based models (95.73%) was achieved by Jarosz
(2015) whose model used a pair-wise ranking gram-
mar with a learning algorithm inspired by expec-
tation maximization (Dempster et al., 1977). This
allowed the model to avoid the problem of parsing
altogether, since it was able to sample the map-
pings that various constraint rankings create over
the course of acquisition to see which were most
likely to improve its performance.

3 Our Model

While various neural network architectures have
been used in phonology, such as feedforward net-
works (e.g., Gupta and Touretzky, 1994; Moreton,
2012), simple recurrent networks (e.g., Hare, 1990),
and convolutional neural networks (e.g., Beguš,
2020), here we focus on the sequence-to-sequence
architecture (Seq2Seq Sutskever et al., 2014).

This architecture was originally constructed for
machine translation, but is convenient for model-
ing phonological mappings since it can straightfor-
wardly map between strings of differing lengths,
needed for dealing with processes like epenthesis
and deletion. This is accomplished by processing
the input and output strings with separate recur-
rent neural networks. The input is fed into the first
network (called the encoder), which has no output
layer. The recurrent connections of the encoder

113



then pass information about the input to the second
network (called the decoder), which has no input,
but does have an output layer.

A number of studies have shown that when ap-
plied to phonological patterns, Seq2Seq networks
display similar learning biases to humans (Prick-
ett, 2019, 2021) and also generalize in a human-
like way on phonological and morphological tasks
(Kirov and Cotterell, 2018; Prickett et al., 2018);
see Corkery et al. (2019) for some caveats.

In this paper, we test the Seq2Seq architecture
with both GRU (Cho et al., 2014) and LSTM (Ben-
gio et al., 1994) layers. While both were created to
help recurrent networks learn longer dependencies
(specifically by addressing the problem of vanish-
ing gradients; Bengio et al., 1994), past work has
found that some differences exist in the biases each
kind of layer has. For example, GRU layers have
been shown to be biased against learning counting-
based patterns that LSTMs easily acquire (Weiss
et al., 2018).

In all of the simulations presented here, the net-
work had 2 layers each in its encoder and decoder,
with 20 units in each layer, and hyperbolic tangent
activation functions throughout. The learning algo-
rithm Adam (Kingma and Ba, 2015), with a batch
size of 1, was used to minimize the mean squared
error between the model’s output and the correct
output throughout learning. We leave performing
a proper grid search to determine how well our re-
sults generalize to other hyperparameter settings to
future work.

4 Methods and results2

4.1 Original Tesar and Smolensky (2000)
Languages

We first tested our model to see how well it could
learn the 124 original languages in the TS data set.
In each input string, a timestep for the model rep-
resented a single syllable, with a [syllable weight]
feature distinguishing between light (= −1) and
heavy (= 1) syllables. In the output, timesteps
again represented individual syllables, with the fea-
tures [stress] and [primary] used to distinguish be-
tween syllables with primary stress (values of 1 and
1, respectively), secondary stress (values of 1 and
−1, respectively), and no stress (values of −1 and
−1, respectively).

2For the software used in the simulations presented here,
see https://github.com/blprickett/Neural-Network-Stress.

We ran the model with a learning rate of .0005
for 500 epochs once on each of the 124 languages
in the TS set. We tried versions of the Seq2Seq
architecture with both GRU and LSTM layers in
them and found that both layer types achieved
perfect accuracy3 in 98.39% (122/124) of the lan-
guages. This represents the highest rate of success
for any model on this test set. However, it’s unclear
whether the model was actually encoding gener-
alizable information, or just memorizing the 62
mappings present in each language, which would
be a fairly trivial task.

Previous research has used the constraints in (2),
which are all defined to hold for any string of a
particular phonological type. They provide no way
of encoding a situation in which two strings of a
given type behave differently, as occurs in many
real languages (in “exceptions”, or more generally
in lexically conditioned patterns). The acquired
constraint-based grammars are therefore guaran-
teed to generalize, though at the cost of not being
able to capture lexically conditioned patterns. In
what follows, we test whether our learner does
learn generalizable representations of the data by
including multiple tokens of each type of input
string. We then turn to the question of whether
it can learn lexically conditioned stress patterns,
including restrictions on the distribution of lexical
stress.

4.2 Generalization from Tesar and
Smolensky (2000) Languages

To test whether the Seq2Seq network was learn-
ing generalizable patterns or just memorizing the
mappings in each language, we introduced an ex-
tra set of “lexical” features to the inputs of the TS
data set. These features were implemented as a ran-
dom, base-2 label for each of the tokens in training,
representing the different tokens of each mapping
that one would expect in an actual language. For
example, the mapping from (1) would have multi-
ple copies in training, each of which had a unique,
non-zero label in their input, as illustrated in (3).
These are meant to represent multiple words in a
language with three light syllables and penultimate
stress (like English banana and cabana).

3Since the network’s output takes the form of a vector of
real-numbered feature values, each mapping was considered
correct if every feature in every timestep of its output had the
correct sign (positive or negative), given that mapping’s input.
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Table 1: Percent of languages with perfect accuracy in
training and testing.

Tokens per Type Training Testing
3 86.29 44.35
6 98.39 90.32

(3) Examples of Multiple Tokens of the Same
Mapping Type
a. /L L L/0101 → [L L1 L]
b. /L L L/1111 → [L L1 L]
c. /L L L/0001 → [L L1 L]

Crucially, each token that belonged to the same
mapping type had the same output in all of these
simulations (that is, there was no lexical condition-
ing in any of the stress patterns). We created two
sets of data using this system: one that had 3 tokens
for each of the 62 mapping types in each of the TS
languages and one that had 6 tokens for each of the
types.

We ran the GRU version of the Seq2Seq model
on these two data sets with a learning rate of .0005
for 200 epochs. At the end of training, we tested
the model on 62 novel pieces of data, each of which
represented one of the mapping types from training,
but with only 0’s for the lexical label features. If
the network learned a generalizable pattern from
training, it should correctly map all 62 of the novel
testing items. The results for training and testing
on both data sets are shown in Table 1.

These results suggest that, with enough tokens
per type, the Seq2Seq network does generalize cor-
rectly from almost all (112 out of 124) of the lan-
guages in the TS data. Additionally, the accuracy
on both training and testing increased with the num-
ber of tokens per type, suggesting that a number of
tokens higher than 6 might allow the model to do
even better on both. Natural languages of course
tend to have more than six words with a given type
of stress pattern, at least for shorter words.

4.3 Languages with Lexically Conditioned
Stress

The final test of our model did not directly use any
of the languages from the TS data set. Instead, we
used the 62 input syllable strings from the TS lan-
guages and created output stressings for them using
6 novel patterns. These patterns involved stress win-
dows (Kager, 2012), meaning they allowed stress
to appear on any of a set of contiguous syllables
at the word edge in the output, with the syllable

that’s stressed in a specific word being lexically
specified.

Our patterns involved two basic types of window:
right aligned and left aligned. Each pattern had win-
dows of size 2, meaning the right aligned languages
always had stress on their ultimate or penultimate
syllables and the left aligned languages always had
stress on the first or second syllables. The other
feature that varied across languages was how likely
stress was to occur on each of the two syllables
in a window. We created three conditions for this
variable: languages in which the first syllable of
a window was stressed 25% of the time and sec-
ond was stressed 75%, languages in which both
syllables in the window were equally likely to be
stressed, and languages in which the first syllable
of a window was stressed in 75% of words and the
second was stressed in 25% of them.

These two variables created 6 total languages to
test the model on. In every language, there were 4
tokens for each mapping type, with the proportion
of first syllable/second syllable stress in types’ win-
dows being the same as the language itself. This is
illustrated in (4) for the language with left-aligned
windows and stress on the first syllable of the win-
dow in 25% of words.

(4) Examples of Stress Window Data
a. /L L L L/0101 → [L1 L L L]
b. /L L L L/1111 → [L L1 L L]
c. /L L L L/0001 → [L L1 L L]
d. /L L L L/1001 → [L L1 L L]

We trained the model ten times on each of these 6
languages, with a learning rate of .005, until the
model reached perfect accuracy on the training data.
The LSTM model was able to reach this criterion
for all 6 languages, while the GRU was unable to
reach it for any of them in a reasonable number
of epochs (we tried a variety of values for this,
running the GRU model for up to 10,000 epochs
with no success). At the end of training, we tested
the model on novel data that had values of zero
for all of the lexical label features to see how it
generalized these lexically specified patterns. Table
2 shows the results on testing data for the LSTM
model (no GRU results are shown since that model
never succeeded in training).

With the exception of the language with left
aligned windows and stress on the second sylla-
ble 25% of the time, the model seems to generalize
to novel data in a way that reflects the statistics of
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Table 2: Proportion of words in each language in which
the window’s second syllable is stressed.

Edge of the Prob. in Model’s Results
Word Training on Testing (SD)
Left .75 0.874 (0.15)

Right .75 0.749 (0.22)
Left .5 0.706 (0.23)

Right .5 0.554 (0.27)
Left .25 0.123 (0.19)

Right .25 0.332 (0.26)

the language it was trained on (with perhaps a bias
toward stressing the second syllable more often).
These results suggest that the LSTM model not
only successfully learns these patterns that involve
lexically conditioned stress but also can keep track
of general statistical trends in the language, as has
been experimentally documented for humans (see,
e.g., Ernestus and Baayen, 2003).

5 Discussion

5.1 Comparison with earlier research

Our results on the TS data set with a Seq2Seq
model are comparable to the best achieved with
constraint based models. It is difficult to compare
directly, since the 98.39% accuracy achieved in the
first set of simulations, as well as on the training
data in the 6 lexical item condition, could be at-
tributable to the model simply representing each of
the individual mappings, rather than learning gener-
alizable representations. Nonetheless, the fact that
it generated the correct stress pattern for 90.32% of
the unseen tokens when there were 6 tokens of each
type in the training data shows that it is capable of
learning these patterns in a generalizable way with
a high degree of accuracy.

None of the prior research on the TS data set
provided a means for representing lexical idiosyn-
crasy, cases where two words of the same syllable
shape have different stress patterns. There is a
body of prior work on constraint-based approaches
to lexical idiosyncratic phonology, however. Tesar
(2006) presents an approach to learning exceptions
in terms of contrastive specification of underlying
features, Pater et al. (2012) propose an alternative
that uses constraints on Underlying Representa-
tions within a MaxEnt learning framework, Moore-
Cantwell and Pater (2016) explore the use of lexi-
cally specific constraints in MaxEnt, Hughto et al.
(2019) study similar lexically scaled constraints,

and Nazarov (2018) presents another approach to
learning lexically specific constraints. All of this
work has been done on very small systems, and it
is not immediately clear how well the proposals
will scale up to cases with even the number of con-
straints in the TS test set, let alone constraint sets
that are large enough to deal with the complexity of
less idealized individual languages, and of a fuller
typology.

5.2 Future Work

A number of avenues exist for future work. The
results presented in §4.2 made the TS data set more
realistic by introducing multiple lexical tokens for
each type of mapping. Making the TS data even
more realistic is one potential future direction, for
example, by representing inputs and outputs as
strings of phonemes rather than just strings of light
and heavy syllables.

Another question to investigate is how well this
model and previous computational models of stress
deal with other patterns involving exceptionality.
The stress window languages introduced in 4.3 are
a step in this direction, but more complex patterns
of lexically conditioned stress could be explored.
The constraint-based models previously tested on
the TS data set had no way to represent lexical
information, so equipping these simpler models
with a way to handle such patterns (with, e.g., lexi-
cally indexed constraints; Pater, 2009) could also
be fruitful.

A limitation of the TS data set is that it is based
on a factorial typology of constraints rather than a
real-world typology of stress-based patterns. Fu-
ture work should sort through these artificially con-
structed languages to see which of them have real-
world counterparts and which are unattested. At
that point, looking closer at the learning difficulty
across languages might help to explain why some
are absent from the typology. Gupta and Touretzky
(1994) provide an analysis of their learning results
with a neural model that gives an example of how
this research could proceed.

Finally, computational phonology often involves
comparing predictions made by models to human
behavior in artificial language learning studies (e.g.,
Wilson, 2006). Such studies involving stress pat-
terns do exist (e.g., Carpenter, 2016), and future
work should compare the aquisition and general-
ization observed in them to that of computational
models of stress learning.
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5.3 Conclusions

In this paper, we presented results showing that
a Seq2Seq neural network can successfully learn
a variety of stress patterns. Using the Tesar and
Smolensky (2000) data set (a commonly cited
benchmark for models of stress), we were able
to show that the network outperformed past models
when tested on how many of the languages in the
data set it could acquire perfectly.

We then created an extension of this data set that
included multiple tokens of each relevant mapping
type in the 124 languages, and differentiated these
tokens using lexically specific labels for each word.
When the model was given data that included six
tokens for each mapping type from the original
data set, its performance on novel test items was
comparable to past, state-of-the-art approaches.

Finally, we showed that the LSTM-based model
could successfully learn lexically-conditioned pat-
terns involving stress windows (Kager, 2012),
something that past constraint-based models of hid-
den structure do not have the expressive power to
do.

Taken together, these results show that (i) pre-
specified constraints are not necessary for a model
to succesfully learn and generalize stress-based
patterns and (ii) while the neural network we used
had the ability to simply memorize the mappings
we were training it on, it instead learned a general
pattern for most languages that could be applied to
novel forms.
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Abstract

Our study investigates the impact of linguis-
tic complexity and planning on word durations
in Hindi read aloud speech. Reading aloud
involves both comprehension and production
processes, and we use measures defined by two
influential theories of sentence comprehension,
Surprisal Theory and Dependency Locality
Theory, to model the time taken to enunciate in-
dividual words. We model planning processes
using an information-theoretic measure we call
FORWARD SURPRISAL, inspired by surprisal
theory which has been prominent in recent psy-
cholinguistic work. Forward surprisal aims to
capture articulatory planning when readers in-
corporate parafoveal viewing during reading
aloud. Using a Linear Mixed Model contain-
ing memory and surprisal costs as predictors of
word duration in read aloud speech (parts-of-
speech and speakers being intercept terms), we
investigate the following hypotheses: 1. High
values of linguistic complexity measures (lex-
ical+PCFG surprisal and DLT memory costs)
lead to high word durations. 2. High values of
forward lexical surprisal tend to induce high
word durations. 3. High-frequency words are
read aloud faster than low-frequency words.
We validate the above hypotheses using data
from the TDIL corpus of read aloud speech.
Further, using a Generalized Linear Model to
predict content and function word labels we
show that lexical surprisal measures do not
help distinguish between these 2 classes. Thus
reading aloud might not involve distinct access
strategies for content and function words, un-
like spontaneous speech.

1 Introduction

Prior work on language production (Ganushchak
and Chen, 2016; Navarrete et al., 2016) presents
a long-standing debate on the cognitive processes

involved in spontaneous speech and reading aloud.
Although both the modalities deal with language
production, their unifying accounts have been un-
derexplored in the literature (Sulpizio and Ki-
noshita, 2016). Spontaneous speech involves the
packaging of non-linear conceptual information
into linear (sequential) ordering of words in a sen-
tence. In this process, speakers optimize for words,
syntactic alternations, and memory load (Slevc,
2011). On the contrary, the cognitive mechanism in
reading aloud involves a two-step process, namely
word recognition and articulation. Therefore, var-
ious representational levels of words, such as or-
thographic, phonological, phonemic, and visual
information interact with on another to generate
the pronunciation of a word.

Motivated by a long of line of previous work in
both traditions, our current study investigates the
relationship of word duration with linguistic com-
plexity and planning effects in Hindi read aloud
speech. To this end, we quantified linguistic com-
plexity using contextual predictability measures
defined by Surprisal Theory (Hale, 2001; Levy,
2008) and memory costs stipulated by Dependency
Locality Theory (DLT, Gibson, 2000). Although
surprisal and DLT measures were originally pro-
posed for language comprehension, recent work
points towards their efficacy in modelling language
production. Mathematically, surprisal is the same
as information density. Jaeger (2010) showed that
the realization of the optional that-complementizer
in English spontaneous speech is influenced by
uniform information density considerations. More-
over, predictable words tend to be spoken fast (Bell
et al., 2003) with reduced emphasis on fine-grained
acoustic details (Pluymaekers et al., 2005). In order
to investigate planning effects, we used the model-
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ing framework proposed by Bell et al. (2009) for
spontaneous speech and adapted their following
bigram probability measure to capture production
planning when reading aloud. We investigated 3
hypotheses using Linear Mixed Models (LMMs,
Pinheiro and Bates, 2000) containing all the above
measures and low-level predictors generally used
in previous work (word frequency and length) to
predict word durations (parts-of-speech and speak-
ers being intercept terms). Our hypotheses and
their motivation are provided below :

1. High values of linguistic complexity measures
(lexical+PCFG surprisal and DLT integra-
tion+storage costs) lead to high word dura-
tions: Researchers have shown that such com-
plexity measures account for production diffi-
culties as well, such as disfluencies (Scontras
et al., 2014; Dammalapati et al., 2021) and
word duration (Demberg et al., 2012) in spon-
taneous speech.

2. High values of forward lexical surprisal
tend to induce high word durations: We de-
ployed a measure named forward surprisal,
inspired from Surprisal Theory) and origi-
nally proposed by Ranjan et al. (2020). Cog-
nitively, this measure (negative log probabil-
ity of a word given upcoming words) models
parafoveal preview in the reading part of read-
ing aloud, and thus such look-ahead helps in
articulatory planning during subsequent pro-
duction processes.

3. High-frequency words are read aloud faster
than low-frequency words: The Dual Route
Cascaded model (Coltheart et al., 2001, DRC)
of word recognition and reading aloud pre-
dicted and demonstrated this for isolated sin-
gle words by means of lexical decision and
reading aloud tasks.

All the above hypotheses were validated in our
experiments conducted on the publicly available
TDIL corpus of read-aloud Hindi speech. Forward
surprisal is a significant positive predictor of word
durations even in the presence of other factors,
pointing towards planning effects in reading aloud.
High values of trigram lexical surprisal and PCFG
syntactic surprisal along with DLT storage costs

induced high word durations. For English sponta-
neous speech, Bell et al. (2009) revealed asymmet-
ric behavior of lexical predictability measures on
function vs. content word duration. They attributed
this finding to differences in how content and func-
tion words are accessed in the mind (i.e.., lexical
access during spontaneous speech) apart from their
properties pertaining to grammatical function. For
reading aloud Hindi speech data, we found that
lexical predictability of both content and function
words have identical effects in predicting reading
aloud times. An increase in both backward and for-
ward surprisal measures of lexical surprisal led to
identical effects on word durations (i.e., increased
durations) of both content and function words in
read aloud speech. Going beyond Bell et al. (2009),
for the separate task of predicting content and func-
tion class labels for each word using a Generalized
Linear Model, we showed that trigram lexical sur-
prisal measures are not significant predictors of
word class. In contrast, PCFG surprisal induced
a significant boost in prediction accuracy for this
task. Thus we found differential effects of lexical
and surprisal measures in reading aloud.

Our main contribution is that we extend the prior
work motivating our hypotheses (as cited above) by
validating them in the presence of a comprehensive
host of factors in a language other than English.
To the best of our knowledge, this is the first work
that explores reading aloud production times in
Hindi. Both Ranjan et al. (2020) and Demberg et al.
(2012) did not incorporate DLT-based predictors,
while the former work did not include syntactic
surprisal in their regression models. Scontras et al.
(2014) did not factor in surprisal-based factors in
their spontaneous production experiments on rel-
ative clauses. Finally, the DRC model motivating
the third hypothesis above deals with the recog-
nition and production of isolated words. In this
work, we extend its prediction to entire sentences.
Based on the identical effects of both forward and
backward lexical surprisal measures, we offer pre-
liminary evidence that lexical access of items to the
extent of the full semantic representation of a word
may not be necessary during reading aloud pro-
cesses. This finding is compatible with the DRC
model assumption of word processing via the non-
semantic lexical route.

The paper is structured as follows. Section 2
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provides background on theories and models per-
taining to this work. Section 3 presents the details
about the dataset and methods used in this work.
Section 4 illustrates our main experiments and their
results. Section 5 summarizes our main findings
and discusses their implications along with point-
ers to future work.

2 Background

The following subsections provide essential back-
ground on the Hindi language and its orthography,
the Dual Route Cascaded (DRC) model, Depen-
dency Locality Theory, and Surprisal Theory.

2.1 Hindi Language and Script

Hindi is a head-final language with relatively free
word order (with Subject-Object-Verb being the
canonical order) compared to English, and has
a rich case-marking system realized as postposi-
tions (Agnihotri, 2007). Hindi adopts the Devana-
gari alphasyllabary-based writing system. The De-
vanagari script is composed of 47 characters con-
taining 33 consonants (k, K, g, etc.) and 14 vow-
els (a, aA, i, etc.). In terms of letter-sound cor-
respondence, the orthography of the script mostly
corresponds with grapheme pronunciation except
for cases when vowel diacritics, conjunct conso-
nants or ligatures are present (Vaid and Gupta,
2002). Further details of the script are provided in
Appendix C.

2.2 Dual Route Cascaded (DRC) Model

The DRC model is a computational model of the
visual word recognition and reading aloud. The
model posits two separate cognitive routes i.e., lex-
ical and sub-lexical that are involved in reading
aloud, and within each route, the information pro-
cessing occurs in a cascaded fashion (Coltheart
et al., 2001). It is a computational implementa-
tion of the dual-route theory of reading and fur-
ther stipulates three routes for word processing,
viz. Grapheme-Phoneme Correspondence (GPC)
route, Lexical Semantic route and Lexical Non-
semantic route. Figure 5 in Appendix B provides a
visual illustration of the DRC model. Empirical ev-
idence for the efficacy of the DRC model emerges
from its ability to simulate human latencies in the
tasks of reading aloud and lexical decision tasks.
DRC adapts the rationale for frequency effects from

earlier work on word processing. Morton (1969)
demonstrated that high frequency words required
lower evidence from visual input (i.e., letters in
reading) on account of their lower activation. Sub-
sequently, word naming occurs on account of a
lexical search procedure (Forster and Chambers,
1973) where activation levels affect search laten-
cies.

2.3 Dependency Locality Theory
Dependency Locality Theory is a theory of sen-
tence comprehension proposed by Gibson (2000)
which posits two processing costs at each word, viz,
INTEGRATION and STORAGE COSTS (defined and
exemplified in Section 3). DLT predictions about
the increased comprehension difficulty of object
relative clauses over subject relative clauses have
been validated using per-word reading time data
in a variety of languages. Scontras et al. (2014)
showed that object relative clauses are harder to
produce than subject relative clauses and relative
clause production times are connected to DLT-
based memory costs. For Hindi, the eye-tracking
based reading times in comprehension have been
known to be influenced by DLT-inspired costs (Hu-
sain et al., 2015; Agrawal et al., 2017).

2.4 Surprisal Theory
Surprisal Theory (Hale, 2001; Levy, 2008) posits
that comprehenders construct probabilistic knowl-
edge based on previously encountered structures.
Mathematically, surprisal of the (k + 1)th word,
wk+1, is defined as negative logarithm of condi-
tional probability of word, wk+1 given the preced-
ing context which can be either sequence of words
or a syntactic tree:

Sk+1 = − logP (wk+1|w1...k) = log
P (w1...wk)

P (w1...wk+1)
(1)

Both the versions of surprisal i.e., lexical and
syntactic configurations have been shown to ac-
count for eye-movements reading (Demberg and
Keller, 2008; Agrawal et al., 2017; Staub, 2015)
as well as self-paced reading time data (Smith and
Levy, 2013). Pioneering work by Demberg et al.
(2012) showed that both n-gram and PCFG-based
syntactic surprisal measures were significant pos-
itive predictors of word duration in spontaneous
speech. More recently, Dammalapati et al. (2021)
demonstrated that surprisal and DLT-based metrics
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predict speech disfluency using English sponta-
neous speech corpus.

3 Data and Methods

Our dataset consists of 1531 sentences (from sci-
entific and technical genre) from the TDIL corpus
of Hindi read aloud speech1. One male and one
female speaker were asked to record their speech
by reading aloud 341 sentences (4,444 words) and
1,190 sentences (11,163 words), respectively. Ta-
ble 4 in Appendix C illustrates pertinent word-level
properties (overall and grammatical category-wise).
Word durations were extracted from the recorded
speech using the PRAAT software package. We
estimated various word-level cognitive measures
as described below:

1. Word length: Total number of consonants
and vowels present in the word ( isEle –
isliye; therefore has word length of 4; 2 con-
sonants (s, l) and 2 vowels (i, e).

2. Word frequency: Count of each target word
as obtained from the EMILLE Hindi cor-
pus (Baker et al., 2002).

3. Unigram surprisal: Negative log probability
of individual target word.

4. Backward surprisal: Negative log of prob-
ability of target word given two preceding
words in the context (Equation 1).

5. Forward surprisal: Negative log of prob-
ability of target word given two follow-
ing words in the context. So the surprisal
of the kth word is estimated as: Sk =
− logP (wk | wk+1, wk+2)

6. PCFG surprisal: Negative log probability
of target word given contextual syntactic tree
(Equation 1).

7. Integration cost (IC): Backward looking
cost denoting the sum of distances be-
tween the word to be integrated into the
structure processed so far and its previous
heads/dependents. Distance is the number
of intervening words between each head and
dependent.

1https://tdil-dc.in

saumya ne ramesh ko ek kahani sunayi
SC: 1 1 1 0
IC: 0 0 0 8

5

3

0

Figure 1: Integration and storage cost calculations for the
sentence ‘Saumya narrated a story to Ramesh’, with head-
dependent distance indicated above each dependency link;
example sentence adapted from Husain et al. (2015)

8. Storage cost (SC): Forward-looking cost cor-
responding to the number of incomplete de-
pendencies in the upcoming structure.

Unigram and Trigram Surprisal measures for
each word in a sentence was computed using un-
igram and trigram language models respectively
trained on the EMILLE corpus of written text with
mixed genre (Baker et al., 2002) using the SRILM
toolkit (Stolcke, 2002) with Good-Turing discount-
ing smoothing algorithm. PCFG surprisal for
each word was estimated by training an incremen-
tal probabilistic left-corner parser (van Schijndel
et al., 2013) on 13,000 phrase structure trees (con-
verted from HUTB dependency trees) using Mod-
elBlocks toolkit2 (Refer Appendix D for more de-
tails on training data and settings). We calculated
DLT IC and SC costs automatically following the
definitions adopted by Husain et al. (2015). See
Figure 1 for an illustration. They computed DLT
costs by hand for a small corpus, while our DLT
SC and IC costs were computed from dependency
trees obtained by parsing TDIL sentences using
the ISC dependency parser3 (Bhat, 2017) trained
on HUTB gold standard dependency trees (parser
performance documented by Bhat: UAS of 93.52%
and a LAS of 87.77%).

4 Experiments and Results

In the following subsections we describe the spe-
cific experiments and results of this study.

4.1 Correlation Results
Prior to performing the regression experiments de-
scribed in the next few subsections, we computed

2https://github.com/modelblocks
3https://bitbucket.org/account/user/

iscnlp/projects/ISCNLP
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Figure 2: Pearson’s correlation coefficients amongst the
different predictors and word duration

the Pearson’s coefficient of correlation between
the different predictors. We also computed the
correlation between each predictor and the depen-
dent variable, word duration. Figure 2 displays the
correlation results. The high positive correlation
between word duration and all surprisal scores sug-
gests that the words which are easy to produce by
virtue of high predictability in context tend to have
lower reading time and vice versa. DLT-storage
costs display low correlation with other predictors,
while integration cost shows negligible correlation
with any other predictor, indicating their indepen-
dent impact. SC and IC costs show low negative
correlation with one another as they are forward
and backward-looking costs respectively and thus
might work differently. We also observe that word
length is highly correlated with word duration as is
observed in previous production (Bell et al., 2009)
and comprehension studies (Husain et al., 2015;
Agrawal et al., 2017).

4.2 Regression Experiments
We trained Linear Mixed Models (LMMs) to
predict per-word duration (transformed to a
logarithmic scale following previous work). The
logarithmic scaling of the independent variables,
viz. surprisal measures, took care of highly
varied frequencies during model training. All
the independent variables were normalised to
z-scores, i.e., the predictor’s value (centered
around its mean) was divided by its standard

Predictors Estimate Std. Error t-value
Intercept 5.525 0.098 56.364
Word length 0.217 0.003 62.430
Unigram surprisal 0.027 0.006 4.284
Word frequency -0.034 0.004 -7.643
SC 0.010 0.004 2.309
IC -0.016 0.003 -5.830
Backward 3g-surprisal 0.015 0.005 3.128
Forward 3g-surprisal 0.032 0.004 7.181
PCFG surprisal 0.051 0.005 10.412

Table 1: Fixed effects of an LMM predicting reading
aloud time (15607 data points; all predictors are signifi-
cant for the |t|=2 threshold)

deviation. We have used the Glm package in R
to perform our regression experiments using a
very basic model, given below in R GLM format
(independent variable ∼ dependent variables +
1| random intercept terms):

Duration ∼ word length + word frequency +

unigram surprisal + backward surprisal +

forward surprisal + PCFG surprisal + IC +

SC + 1|Speaker + 1|POS

The POS intercepts were based on tags obtained by
converting HUTB POS tags to 11 universal POS
tags corresponding to content words (verb, noun,
adjective, and adverb) as well function words (post-
position, pronoun, determiner, particle, conjunc-
tion, question, and quantifier).

Our regression results documented in Table 1
reveal that all the measures are significant in pre-
dicting the read-aloud word duration and their re-
gression coefficients are in the expected direction,
thus validating our original hypotheses stated in
Section 1. Frequency and unigram surprisal cap-
ture the frequency and predictability effects of in-
dividual words, i.e., frequent words require less
time and effort to activate phonemes for articula-
tion (as predicted by the DRC model). The posi-
tive coefficients of all surprisal and DLT SC mea-
sures show that with an increase in each predictor’s
value, the word duration in read-aloud speech in-
creases. However, DLT IC has an unexpected neg-
ative coefficient, an anomaly which has been also
reported in the comprehension literature (Demberg
and Keller, 2008; Husain et al., 2015). Demberg
and Keller (2008) analyzed this anomaly rigorously
and showed that in the presence of other predictors,
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integration cost works in the expected direction
(i.e., high integration costs induce high reading
times) only for higher range IC values. Future in-
quiries need to examine whether this result carries
over to the production setting and the implications
of such a finding for integrated models of both pro-
cesses (a theme we take up at the end of Section 5).
In the following subsections, we now discuss the
impact of selected measures on reading aloud word
duration.

4.2.1 Forward Surprisal

The positive regression coefficient of forward sur-
prisal (Table 1) suggests that the difficulty associ-
ated with the upcoming words has a role in deter-
mining the reading time of the current word. The
effect of forward surprisal on duration is illustrated
using the following examples (region of interest:
vidyalaye; school):

1. pahle pitaji bacchon=ko vidyalaye=se lene jaate
the
before father child=ACC school=ABL take go
be-PST.3SG
Earlier father used to take children from school

2. bacche vidyalaye=se aate hi khelne chale
gaye
children school=ABL come EMPH play go-
PST.PL
The children went to play as soon as they came from
school

In the first example above, the word vidyalaye
(550ms duration; 4.55 forward surprisal) has a
higher surprisal and longer duration compared to
the same word in the second sentence (510ms; 3.90
bits). This is because vidyalaye se aate is a much
more frequent sequence than vidyalaye se lene in
the trigram training corpus. Thus planning effects
are modelled by this measure, a theme we explore
in the next subsection.

The young man who chased the absconding thief was my uncle.

Figure 3: Parafoveal preview in reading; adapted from
Schotter et al. (2012)

Interactions Estimate Std. Error t-value
MODEL 1
Word length x Backward 3g-surp -0.024 0.004 -5.491
Word length x Forward 3g-surp -0.031 0.004 -8.061
Word length x PCFG surprisal 0.001 0.005 0.314
MODEL 2
Function word x Backward 3g-surp 0.028 0.009 2.936
Function word x Forward 3g-surp 0.041 0.008 4.855
Function word x PCFG surprisal -0.039 0.009 -3.953

Table 2: Two different LMMs displaying only the in-
teraction terms of surprisal with word length (top) and
function word (bottom) respectively predicting reading
aloud time; see full model results in Appendix E (15607
data points; all significant predictors denoted by |t|>2)

4.2.2 Parafoveal Preview and Word Length
Effects

It is well understood that the length of words influ-
ences the reader’s eye movements as long words
induce more fixations of greater duration than short
words (Just and Carpenter, 1980; Rayner et al.,
1996). In this context, Bicknell and Levy (2012)
argue that uncertainty about the length of words
affects the word reading duration. They posit that
the uncertainty increases proportionally with an in-
crease in word length, leading to more fixation and
longer word duration. We hypothesize that if the
forward surprisal effect is driven by parafoveal pre-
viewing (as illustrated in Figure 3), there should
be smaller predictability effects with longer tar-
get words. This is because longer target words
will lead to less linguistic material visible in the
parafoveal region, thus not allowing for informa-
tive computation of the target word’s forward sur-
prisal. We investigated the effect of word length on
word duration using another linear mixed model
containing word length and surprisal interaction
terms. Table 2 (top block) documents the interac-
tion results, which show that the effect of forward
trigram surprisal on reading-aloud times decreases
by 0.02 with every unit increase in the word length,
thus confirming our hypothesis. A similar result is
obtained in case of backward trigram surprisal as
well. See Table 5 in Appendix E for full regression
model results. The relative strengths of forward
and backward surprisal measures in both produc-
tion and comprehension needs to be systematically
investigated in future inquiries.

4.2.3 Word Class and Duration

This section and the next one are motivated by the
findings of Bell et al. (2009). For spontaneous
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speech, they showed that both function and con-
tent word duration were significantly predicted by
the following word (forward probability). How-
ever, unlike content words, function word duration
was determined significantly by the previous word
only (backward probability). Content words are
associated more with semantics, whereas function
words are linked to the syntactic aspects of the sen-
tence (see Table 4 of Appendix C for more details
about their properties). In order to investigate the
relationship between predictability measures and
word class in read-aloud speech, we deployed a
Linear Mixed Model with speaker and POS ran-
dom effect terms for duration prediction. Fixed
effects included all the predictors along with in-
teraction terms between word class and trigram
lexical+PCFG syntactic surprisal measures. Each
word in our dataset was annotated with a word
class label (viz., content or function word) derived
from its universal POS tag. Table 2 (see bottom
block of table) depicts the significant interaction
effects between both lexical surprisal measures and
word class. High values of both forward and back-
ward trigram surprisal induced high function word
duration in read aloud speech after controlling for
several other factors. This result is in contrast to
the asymmetric behavior observed by Bell et al.
(2009) for function words in conversational En-
glish speech. See Table 6 in Appendix E for full
regression model results.

Counter-intuitively, the interaction term between
word class and PCFG surprisal has a negative co-
efficent, signifying that high values of PCFG sur-
prisal result in low word durations for function
words. Examining this anomaly, we looked at
function word distributions in our dataset (TDIL
corpus) and the corpus used to train the PCFG
parser (HUTB corpus). Table 4 in Appendix C lists
grammatical category-wise distribution of HUTB
and TDIL words. Particles (3.73%) and question
words (1.38%) words have higher mean surprisal
and lower mean duration compared to the corre-
sponding mean values for the function word class
in TDIL corpus. The high surprisal of words be-
longing to these grammatical categories can be
attributed to the fact that the PCFG parser train-
ing data from the HUTB corpus (particles: 1.59%,
questions: 0.11%) has very few words belonging
to these categories, thus impacting PCFG surprisal

Predictor(s) 10-fold CV prediction
accuracy (%)

Word length 68.91
+Word frequency 76.10
+Unigram surp 77.65
+Backward 3g-surp 77.02
+Forward trigram surp 77.14
+PCFG surprisal 79.61
+SC 80.21
+IC 83.94

Table 3: Prediction accuracy for content and function
word classification (on the entire dataset of 15607 data
points) via Generalized LMs where features are added
incrementally (all differences between successive pairs
of models significant at p < 0.001 via McNemar’s test)

estimates. The following examples illustrate ques-
tion words like kis (183ms duration and 12.16bits
PCFG surprisal) and particles like toh (675ms and
9.5bits):

(1) a. yeh
this

aag
fire

kis
WHICH

hanuman
hanuman

dwara
by

lagayi
set

gayi hogi?
would?
Which Hanuman would have set this fire?

b. ab
by

tak
now

toh
PARTICLE

pitaji
father

so
sleep

gaye
must

honge

By now, father must have been asleep.

The information profiles and per-word read-
aloud word duration of the above examples from
our dataset are presented in Figure 4 of Ap-
pendix A. Cognitively, it is also conceivable that
WH-markers and particles might be easy to articu-
late being very common function words. How-
ever, they might potentially introduce complex
mental operations like movement (or linking to
other words in non-movement based accounts) in
the upcoming structure, which are reflected in the
duration of the next word (akin to spillover in read-
ing studies). This conjecture is supported by the
fact that words following question words and parti-
cles have higher duration on an average compared
to the mean duration of these target function words
themselves (question words: 225ms & next word
274ms; particles: 155ms & next word 292ms mean
duration).

4.2.4 Word Class Prediction and PCFG
Surprisal

Extending the work by Bell et al. (2009) (who do
not factor in syntactic predictability estimates) de-
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scribed in the previous section, we explored the im-
pact of all our measures for predicting word class
using Generalized Linear Models (GLMs). For
this binary classification task, function words were
coded as class 1, while content words were coded
as 0. Subsequently, we added each predictor incre-
mentally to a GLM and measured the prediction
accuracy of the model via 10-fold cross-validation
(CV). The corpus was divided into 10 sections and
10 models trained on 9 sections each were used
to generate predictions for the remaining section,
thus obtaining predictions over the entire dataset.
Table 3 provides CV prediction accuracies of all
our incremental models. Low-level predictors, fre-
quency and unigram surprisal, confer significant
gains over a basic word length baseline. However,
adding backward and forward surprisal actually
worsens model performance and hence these mea-
sures do not help distinguish between content and
function words. This result thus validates our find-
ings pertaining to word class and lexical surprisal
measures reported in Table 2 (bottom block). In
contrast, PCFG surprisal confers a 2% increase
in predicting the word class. PCFG surprisal is a
more powerful measure compared to word-based
surprisal models as it factors in POS tag informa-
tion and syntactic context and hence outperforms
word-based trigram models. DLT-costs also induce
significant gains over and above models contain-
ing low-level and all other surprisal predictors. In
particular, integration cost induces close to a 2.5%
increase over a model containing all the other pre-
dictors.

5 Discussion

Overall, our results validate our initial hypothe-
ses motivating the study. Linguistic complexity
measures (lexical+PCFG surprisal and DLT’s inte-
gration + storage costs) are significant positive pre-
dictors of word duration in reading aloud speech,
mirroring trends reported in the literature on spon-
taneous speech production (Demberg et al., 2012;
Dammalapati et al., 2021). Our measure of plan-
ning, FORWARD SURPRISAL, is also a positive
predictor of reading aloud times. It potentially
models parafoveal preview in the reading aspect
of reading aloud. Such look-ahead during reading
likely helps articulatory planning during the read-
ing aloud process. This finding advances further

support to the “involvement-in-planning” account,
as proposed by Pluymaekers et al. (2005). The
cited work shows that articulatory processes are
continuous and incremental in nature; upcoming
words affect the planning of the target word. Fi-
nally, our data and analyses validate the frequency
effects (high frequency words are read aloud faster
than low frequency words) predicted by the DRC
model of word recognition and reading aloud.

Going further, we show that an increase in both
our measures of lexical surprisal (viz., backward
and forward surprisal) led to identical effects on
word duration of content and function words in
read aloud speech, i.e., increased duration for both
classes of words. For the binary classification task
of predicting content and function words, PCFG
surprisal induces a notable boost in accuracy over a
baseline containing low-level predictors and lexical
surprisal measures. However, forward and back-
ward surprisal do not help discriminate between
content and function words. This is in direct con-
trast to the results reported by Bell et al. (2009) for
spontaneous speech (Switchboard corpus). They
show evidence for differential lexical access mech-
anisms for content and function words as attested
to by the long line of work in the production lit-
erature (Garrett, 1975, 1980; Lapointe and Dell,
1989). Thus via this work, we have compared the
cognitive processes in reading aloud with sponta-
neous speech production, an underexplored direc-
tion highlighted by Sulpizio and Kinoshita (2016)
whom we cited at the outset.

Our results indicate that both content and func-
tion words might rely on the non-semantic lexi-
cal route or grapheme-phoneme correspondence
(GPC) rules as hypothesized by the DRC model of
reading aloud. Speakers might not be doing seman-
tic processing during this task. The close symbol-
sound correspondence in Hindi orthography (Vaid
and Gupta, 2002) might be a factor contributing
to this effect, a conjecture that needs to be vali-
dated using further experiments. The measure of
word complexity proposed by Husain et al. (2015)
and character-based surprisal models of reading
difficulty proposed in recent work (Hahn et al.,
2019; Oh et al., 2021) might be viable approaches
towards this end. Situations where the connec-
tion between orthographic length and pronuncia-
tion length is complex (say “535” in written text
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articulated as panch sau paintis, i.e., “five hundred
and thirty five”) are best investigated using more
controlled experimental designs.4

In a recent survey, Staub (2015) summarized
that lexical predictability induces the graded acti-
vation of multiple upcoming words during read-
ing comprehension (as opposed to the prediction
of a single word). Moreover, lexical predictabil-
ity effects occur either at the very early stages of
lexical access or pre-lexical stages (processing vi-
sual features of letters in the script), rather than
at post-lexical stages involving meaning identifi-
cation. Based on insights from prior work, high
syntactic predictability (low PCFG surprisal values
in our setup) can be linked to high accessibility
and hence the ease of word retrieval from mem-
ory, which in turn facilitates production ease (Bock
and Warren, 1985; Arnold, 2010). Future inquiries
need to tease apart the contributions of lexical and
syntactic predictability in reading aloud, quantify-
ing the impact of language-specific properties of
the Hindi language on reading aloud durations. In
particular, the verb-final nature of Hindi and prior
findings about the interplay between expectation
and locality effects (Husain et al., 2014; Ranjan
et al., 2021) need to be explored. Other salient
aspects like predictability and case marking (Ran-
jan et al., 2019), and the impact of the argument-
adjunct distinction (Pandey et al., 2022), could also
be investigated to contribute to a comprehensive
theory of reading aloud, which accounts for data
from multiple language families.

We also plan to develop reading aloud speech
corpora with a larger number of participants. More-
over, the current task of reading the printed text
aloud can be modified to include comprehension
questions (à la reading studies) to ensure that par-
ticipants engage with the material. We also plan
to collect eye-tracking times to study comprehen-
sion during the reading phase prior to reading
aloud. Thus this paradigm can catalyze research
in integrated models of production and compre-
hension (MacDonald, 2013; Pickering and Garrod,
2013). Levy and Gibson (2013) point out that the
surprisal measure is an incremental and localized
measure of comprehension difficulty, which can be
used to formalize such integrated models. Since

4We are indebted to an anonymous reviewer for this sug-
gestion and the example.

this measure can be used to model production diffi-
culty as well, it facilitates cross-linguistic hypothe-
sis testing on both comprehension and production
as well as interactions between these processes.
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A Information Profile

Figure 4 depicts the information profiles of Examples 1a and 1b respectively from the TDIL corpus
discussed in Section 4.2.3 of the paper.
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Figure 4: Word duration and information profiles of sentences containing a question marker (kis; top figure) and
particle (toh; bottom figure)
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B Dual Route Cascaded (DRC) Model

The DRC model is shown in Figure 5. Each route consists of several interacting layers containing a set of
units (representing words in the orthographic lexicon or letters in the letters layer). Units of different
layers interact via inhibition (an activated unit impedes activation levels of other units) or excitation (an
activated unit facilitates activation of other units). Figure 3 shows a snapshot of parafoveal preview in
reading.

Figure 5: DRC modela of visual word recognition and reading aloud by Coltheart et al. (2001)

aReproduced from: https://maxcoltheart.wordpress.com/drc/

C Details of Hindi Script and Grammatical Categories

Unlike the Latin alphabet, Hindi has no concept of letter case (upper/lower) except for sinistrodextral
(left-to-write) writing system. Each unit of word is written in horizontal direction separated by space and
follows standard punctuation markers alike English except for full stop (.) where a pipe (। ) is used as
an end of sentence marker. Vowel diacritics (glyph) combines with consonants to form another syllabic
letter (aA + ? = kA). For example, the vowel –aA (ā) combines with consonant – ? (k) to give a letter kA
(kā) with added vowel sign in diacritic form. Conjunct consonants is understood to offer most difficulty
during reading consist of two consonants grouped together but with a missing vowel sound between them.
For example, the two consonants (c,C) when combined together (c +C = QC), the letter QC (as in the
word–aQCA) has a missing vowel (a) diacritic i.e., A between them.

Table 4 illustrates the distribution of various grammatical categories in TDIL and HUTB corpora
of Hindi written text as well as properties of content and function words. The mean word length of a
content word in the TDIL corpus was 2.66 (minimum: 1, maximum: 8), and the function word was 1.74
(minimum: 1, maximum: 5).
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Category %Freq %Freq Length PCFG RT
273013 words 15607 words characters surprisal ms

Corpus HUTB TDIL Mean values in TDIL
CONTENT
Verb 18.12 32.15 1.98 11.26 274.99
Noun 38.47 26.96 2.86 13.92 375.45
Adjective 5.91 3.71 3.01 14.53 399.65
Adverb 0.47 0.78 2.88 14.21 367.91
FUNCTION
Postposition 21.42 11.14 1.22 5.58 178.22
Pronoun 4.34 11.07 2.20 10.62 258.12
Det 4.65 4.64 1.86 8.87 242.32
Particle 1.59 3.73 1.16 8.42 155.02
Conjunction 4.13 3.17 1.87 7.65 206.01
Question 0.11 1.38 0.11 12.59 225.97
Quantifier 0.81 1.27 0.81 11.23 294.96
Content words 62.97 63.70 2.66 13.96 354.29
Function words 37.03 36.40 1.74 8.60 226.54
All words 100.00 100.00 2.17 11.10 286.17

Table 4: Grammatical category-wise descriptive statistics in TDIL and HUTB corpora

D PCFG Parser Training Procedures

Following steps were involved in training the Modelblocks parser using the HUTB corpus:

1. The parser training requires phrase-structure trees as input. Due to the unavailability of such
resources in Hindi, we created our own corpus by converting the existing dependency parsed trees
(Dependency structure; DS) of HUTB corpus (Bhatt et al., 2009) into constituency parsed trees
(Phrase structure; PS) using an approach described in Yadav et al. (2017).

2. However, we had to do some extra post-processing of the obtained phrase structure trees (removal
null nodes, unary nodes, punctation and coordination fixes, inter-alia) to make it compatible with the
format expected by the Berkeley parser. The corrected final phrase structures thus produced were
used to train the Berkeley parser model.

3. Parser training involved estimating a sophisticated grammar using 4 iterations of the split-merge
algorithm (Petrov et al., 2006) and a beamwidth of 5000 (shown to be effective for reading time
studies).

E Interaction analysis of word class and word length with surprisal

Predictors Estimate Std. Error t-value
Intercept 5.550 0.098 56.825
Word length 0.237 0.004 60.946
Unigram surprisal 0.039 0.006 6.118
Word frequency -0.004 0.005 -0.777
IC -0.018 0.003 -6.550
SC 0.005 0.004 1.106
Backward surprisal 0.028 0.005 5.556
Forward surprisal 0.044 0.005 9.653
PCFG surprisal 0.034 0.005 6.904
INTERACTIONS
Word length x Backward 3g-surp -0.024 0.004 -5.491
Word length x Forward 3g-surp -0.031 0.004 -8.061
Word length x PCFG surprisal 0.001 0.005 0.314

Table 5: Fixed effects of LMM (with word length as
interaction term) predicting reading aloud time (15607
data points; all significant predictors denoted by |t|>2)

Predictors Estimate Std. Error t-value
Intercept 5.512 0.099 55.652
Word length 0.216 0.003 62.147
Unigram surprisal 0.036 0.007 5.451
Word frequency -0.028 0.005 -6.038
SC 0.012 0.005 2.517
IC -0.016 0.003 -5.171
Backward 3g-surp 0.007 0.006 1.095
Forward 3g-surp 0.018 0.005 3.364
PCFG surprisal 0.065 0.007 9.192
Word class 0.024 0.011 2.264
INTERACTIONS
Function word x Backward 3g-surp 0.028 0.009 2.936
Function word x Forward 3g-surp 0.041 0.008 4.855
Function word x PCFG surprisal -0.039 0.009 -3.953

Table 6: Fixed effects of LMM (with word class as inter-
action term) predicting reading aloud time (15607 data
points; all significant predictors denoted by |t|>2)
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Abstract
We test a model of morphological prediction
based on analogical deduction using phonemic
similarity by applying it to German plural suf-
fix prediction for a set of 24 nonce forms for
which McCurdy et al. (2020) elicited human
judgements, and which they found were poorly
matched by productions of an encoder-decoder
model of Kirov and Cotterell (2018). Their re-
sults raise the question of what kinds of mod-
els best mirror human judgements. We show
that the predictions of the analogical models
we tested mirror human judgements better than
the encoder-decoder model.

1 Do neural models of morphological
prediction emulate human behaviour?

Despite the recent success of neural models of
morphological prediction such as the encoder-
decoder (ED) model of Kirov and Cotterell (2018)
(henceforth KC), two recent papers: Corkery et al.
(2019) and McCurdy et al. (2020) (henceforth
CMG and MGL) question how well these mod-
els’ predictions of nonce forms match those of
human judgements. Corkery et al. (2019) re-
examine KC’s application of their ED model
to English past-tense nonce forms developed
by Albright and Hayes (2003) (henceforth AH)
through multiple random initializations of their
model and find that KC’s model predictions do not
align with AH’s results as well as reported by KC.

MGL pursue this question further by elicit-
ing human judgements of possible German plu-
ral forms of 24 nonce words originally developed
by Marcus et al. (1995) (henceforth M95): 12
‘rhymes’ with regular phonotactic patterns and 12
phonologically atypical ‘non-rhymes’, shown in
table 1. As MGL put it, KC’s claim, that “modern
Encoder-Decoder (ED) architectures learn human-
like behavior when inflecting English verbs, such
as extending the regular past tense form to novel

words” does not address a point made by M95:
that neural models “may learn to extend not the
regular, but the most frequent class – and thus fail
on tasks like German number inflection, where
infrequent suffixes like /s/ can still be produc-
tively generalized.” As did CMG with AH’s En-
glish nonce forms, MGL apply KC’s ED model
to M95’s German nonce forms and compare them
with their elicited human judgements. They find
that the ED model fails to match human predic-
tion in German plural formation, where, unlike in
English, no class holds a majority.

Outline of the paper Here, we test to what
extent an alternative model that predicts forms
through analogical implicative relations can im-
prove on an ED model for matching human pre-
diction. In the rest of §1, we further discuss how
MGL’s wug test results compare with those of the
ED model. In §2 we present variations on an alter-
native model of nonce word prediction. In §3 we
compare the predictions of our model with MGL’s
human predictions. In §4 we compare our model
with other models. In §5 we report tests made on
real data. §6 concludes with a discussion.

Rhymes Non-Rhymes
pind fnahf
kach pläk
spand pnähf
spert plaupf
klot pröng
bral fnöhk
raun fneik
mur bnöhk
vag snauk
nuhl pleik
pund bnaupf
pisch bneik

Table 1: 24 nonce forms developed by M95 and tested
by MGL
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MGL’s wug test results Table 2, reproduced
from MGL, shows MGL’s wug-test results in per-
centages for each suffix. They find a high degree
of variability among speaker data, where no plural
class dominates, and /e/ is the most common suffix
at around 45%. /en/ and /s/ are more common in
non-rhymes than in rhymes. /er/ is less common in
non-rhymes. Relatively low ratings for /s/ conflict
with M95 who claim that /s/ is a default suffix that
can apply in any environment.

Plural Prod %

/-e/
R 45.3
NR 44.4

/-(e)n/
R 25.0
NR 34.7

/-er/
R 17.4
NR 6.7

/-s/
R 4.2
NR 6.4

/-∅/
R 2.7
NR 2.7

other
R 5.4
NR 4.8

Table 2: MGL’s survey results (R=rhymes, NR=non-
rhymes

The coloured bar graphs in figure 1 (p. 5), re-
produced from MGL, illustrate the differences in
suffix prediction between the speaker data and
their test of KC’s ED model on the same nonce
forms. The graphs show that the ED model pre-
dicts /en/ (purple) on the nonce forms way less
than speakers. MGL suggest that the ED model
over-predicts /e/ (blue) because of its frequency
and does not capture minor patterns. They also
observe that speaker production of /(e)n/ (purple)
and /s/ (orange) is greater for Non-Rhymes rela-
tive to Rhymes. In the ED model, the tendency is
reversed, where /e/ occurs for over 90% of Non-
Rhymes.

2 An alternative model

As an alternative to an ED model, we explore
morphological prediction through implica-
tional relations (Bonami and Beniamine, 2016;
Ackerman and Malouf, 2016; Ackerman et al.,
2009b,a) based on phonological similarity. Be-
cause we are trying to predict a plural from an
affixless singular, we can’t use principal parts
and we can only guess an inflectional class

through phonological clues and possibly what
the phonology might suggest about semantics. If
a speaker knows both the singular and plural of
lexeme A, they can predict the plural of lexeme B
from the singular if lexeme B is similar to A and
forms the plural in the same way. e.g.: Fisch →
Fische (‘fish(es)’), Tisch → Tische (‘table(s)’)

We adopt a Vector Symbolic Architecture
(VSA) model (Kanerva, 2009, 1988, 2017)1 for
representing sequences of phonemes, in which
vectors are binary, with a typical dimension of
10,000. A phonological feature is represented by
a randomly chosen sparse binary vector. The vec-
tor for each feature will be nearly orthogonal to
all other features’ vectors. A phoneme is repre-
sented by the sum of the feature vectors that com-
pose it: for example, k = cons + dorsal, with fea-
tures sonor, voi, cont at zero. (Bolded terms are
vectors.) g differs from k just by the addition of
feature voi. Each phoneme needs no more than 7
features to be represented. Basing phonemes on
features means that the vectors of phonologically
similar segments in the same position will be rela-
tively close in the space (e.g., /k/ and /g/), if they
differ by just one feature and relatively far (e.g., /k/
and /o/) if their features are mostly different.

k

g

k

o

To represent a sequence of phonemes, we super-
pose the encodings of all the phonemes, but each
phoneme vector is cyclically permuted by one bit
for each step in the sequence. Permutation moves
a vector to a part of the space where it is nearly
orthogonal to its non-permuted position and thus
to where it will not interfere with other vectors as
shown below. In this framework we can use phono-
logical features in order to make deductions based
on feature similarity.

vec(k ⊗ πi)

vec(k ⊗ πj)

Implicative relations (Ackerman and Malouf
2016, inter alia): e.g., Bratsche : Bratschen ::

1As noted by an anonymous reviewer, nothing in the anal-
ysis hinges on the particular model we are using for represent-
ing sequences of phonemes. We adopt the VSA model here
for convenience, but what is crucial is the idea of predicting
by feature-based similarity and (to be discussed below) word
frequency.

134



Patsche : Patschen (‘viola’ sg : pl :: ‘paw’ sg
: pl) are predicted by vector differences where
ypl ≃ ysg + xpl − xsg for lexemes x and y whose
phonological-feature-based vector encodings are
similar according to some similarity metric. Un-
like conventional neural models, our model has
no network and requires no training. Although
the scores for choosing predictors have continuous
values, the vector representations are effectively
discrete.2

Nouns from the Unimorph dataset are used
in conjunction with two frequency archives:
Institut für Deutsche Sprache (2014) and
Gambolputty. We convert both singular and
plural forms to a phonemic representation using
the German version of Bernard and eliminate a
handful of words given non-German phonemes
such as psychothriller (T) or chance (ã) to
end up with 36 phonemes, encodable with 16
phonological features.

Encoding German words To predict an un-
known plural form3 of lexeme A from its singu-
lar, we look for a lexeme B whose plural form is
known and whose representation of the singular
is close to lexeme A’s. For example, Kind ‘child’
is a possible candidate for predicting the plural of
nonce pind. If the two singular forms being com-
pared are unequal in length, we pad the left edge
of the shorter one with dummy phonemes repre-
sented by zero vectors so that their right edges
align.

Calculating the score of a predicted suffix for a
given word We explored different possible com-
binations of hyperparameters for the model to see
how well the results of each marched MGL’s hu-
man predictions. The hyperparameters included
the following, where the hyperparameter choice
for the results given below is starred:

1. The similarity metric for choosing predictive
best neighbours of a nonce form. Calculat-
ing on raw cosine similarity between the vec-
tor for the nonce word and a candidate word

2MGL trained the ED model on nouns in orthographic
form and say “Unlike English, the phonological-orthographic
mapping is straightforward in German, so we can use a writ-
ten corpus for model training.” This isn’t quite true, given
the non-negligible occurrence of foreign words in the corpus
like Babysitter, Boutique or Clique, whose German pronunci-
ations are idiosyncratic or mutually inconsistent.

3MGL abstract away from questions of umlaut. See
Trommer (2021) for a detailed analysis of the interaction be-
tween gender, plural allomorphy and umlaut.

did not spread out the values enough to suf-
ficiently distinguish similar words from dis-
similar ones.

• Reciprocal of sum squared vector differ-
ence.

• Further squaring the above value.
• Reciprocal of sum of the absolute values

of the difference of vectors.
• *log 1

1−s , where s is the cosine similar-
ity of the vectors.

2. The frequency score for each candidate word.
We tried:

• *Raw frequency.
• Log frequency.
• Squared raw frequency to spread the val-

ues out more and penalize infrequent
words more as candidates.

3. The width of a beam search (*beam=6)
among top-scoring neighbour candidates.

4. *Comparing the best candidate(s) for each
possible suffix rather than just the suffixes
that appear among the top candidates.4

5. *Scaling the similarity score to increase to-
wards the end of the word. When taking
the cosine distance between the vectors of a
nonce word and a neighbour we take not the
raw vectors but vectors where the values of
the component for each phoneme in the string
are boosted by factor si, where s is a scaling
factor such as 1.2 and i is the ordinal posi-
tion of the phoneme in the string. e.g., for
nonce word spand, Pfand ‘pledge, deposit’
and Brand ‘fire’ would be better predictors
than Spalt ‘crack’ or Spatz ‘sparrow’.

6. *Weighting the score by the negative expo-
nential of the syllable count difference be-
tween the candidate and the source word
so that analogies are biased to be based on
prosodically similar words. (e.g., quadri-
syllabic Geburtstagskind ‘birthday child’ is
scored lower than Kind as a predictor for
nonce pind.)

7. *Adding a score for each suffix based on
the probability of each suffix in the candi-
date nonce word as assigned by a single-layer

4The former option was suggested by Matı́as Guzmán
Naranjo (p.c.) and yielded better results.
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RNN trained on all the plurals of words in the
database with frequencies above 100,000.

As noted by an anonymous reviewer, it is pos-
sible to engineer the choice of the above hyperpa-
rameters to make the results match MGL’s human
predictions as closely as possible. If it is the case
that the mode of human prediction of nonce forms
closely mirrors human prediction of real data, then
these engineered choices are overfitting to the ex-
tent that they diverge from a model that is trained
on and best predicts real data. On the other hand,
it may not be the case that human speakers predict
nonce words the same way they predict real words.
The difficulty in getting a model to work equally
well on prediction of real words and on nonce
forms is noted by CMG (p. 3874 §5.1), who write:
“It seems that the ED model displays a fundamen-
tal tension between correctly modelling humans
on real words and nonce words.” (p. 3874) A possi-
ble reason for this tension is given by Schmitz et al.
(2021), who propose that nonce words are not
“semantically empty shells” and that “[t]he reso-
nance of morphologically simplex and complex
pseudowords with the words in the mental lexicon
influences the processing of these pseudowords.”
(slide 8) If their hypothesis is correct, then speak-
ers judging these 24 nonce words may be using
associations between these words and real words
that are based not on the kinds of phonological
similarities that our model measures, but instead
on the kinds of onomatopoeic or phonaesthematic
associations that Schmitz et al. (2021) suggest. In
fact, we find that the hyperparameter choice that
best predicts suffixes of real data does not neces-
sarily best mirror MGL’s human prediction results.
As an illustration of the mismatch between nonce
word and real data prediction, figure 3 graphs the
nonce word predictions made by the same model
that performed best (85% accuracy) on real data.
This model over-predicts that /-s/, null and in some
cases the ‘other’ and /-er/ suffixes. It should be
understood then, that the results shown below il-
lustrate how an ideal choice of hyperparameters
can mirror MGL’s nonce word predictions but they
should not be considered as a held-out test set of
real-data training.

Table 3 shows the normalized scores and top
candidate for each suffix for the first nonce word
pind under one hyperparameter combination.

5This word was incorrectly given a suffix [ee] instead of
[@] by the phonemizer.

Suffix Best neighbour Gloss Score
er Kind ‘child’ 0.474
e Wind ‘wind’ 0.392
en Mensch ‘human’ 0.081
s Trend ‘trend’ 0.025
null Cent ‘cent’ 0.020
oth Konzern5 ‘corporation’ 0.004

Table 3: Top neighbour and normalized score for each
suffix for MGL’s first nonce word pind.

3 Graphical inter-model comparisons

Figure 1 compares predictions of MGL’s human
subjects with the ED model and Fig. 2 with one
variation of the implicational model. The ED
model greatly over-predicts the /e/ suffix at the
expense of the other suffixes. The implicational
model does not exactly match MGL’s human pre-
dictions but we can see some patterns in common.
A strong score of the /er/ suffix (green) in the first
two nonce words occurs in both, but the implica-
tional model is weaker on /er/ than human predic-
tion on the third and fourth nonce words. The /e/
suffix (blue) is strong in the last two rhymes in
both but is slightly weaker overall in the implica-
tional model than in MGL’s human judgements.

The /s/ suffix (orange) is somewhat over-
predicted by the implicational model but mirrors
the human judgements with a stronger overall pre-
diction in non-rhymes than in rhymes. Overall
over-prediction of /s/ by the implicational model
is likely due to an abundance of foreign bor-
rowings with this plural form in the Unimorph
dataset. This can be seen if we calculate the fre-
quencies of suffixes in the dataset and compare
with the figures given by MGL, as shown in ta-
ble 4. These calculations, using the frequency
score from Institut für Deutsche Sprache (2014),
are fairly close to the numbers given by MGL but
/s/ is slightly higher.
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Figure 1: MGL’s plural class productions compared to those of the ED model
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Figure 2: MGL’s plural class productions compared to those of the implicational model
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Suffix Type (MGL) Token (MGL) Calculated here
/-(e)n/ .48 .45 .450
/-e/ .27 .21 .265
/-∅/ .17 .29 .189
/-er/ .04 .03 .035
/-s/ .04 .02 .048
other .013

Table 4: Frequencies of suffixes in MGL’s results and
those produced by the current model

Calculating Spearman rank correlations
MGL calculate the Spearman rank correlations
between ED model production ranks and those of
human speakers for each suffix across all nonce
forms. They conclude from their results that there
is no “statistically significant difference from the
null hypothesis of no correlation.” Following
their approach, we perform a similar calculation
to compare one set of implicational model results
with MGL’s speaker judgements. Table 5 shows
the rank of each suffix for each nonce word for
the implicational model’s predictions and MGL’s
speaker judgements (IMP:MGL).

PPPPPPPPPNonce
Suffix

oth ∅ er s en e

pind 6:6 5:5 1:1 4:4 3:3 2:2
kach 6:5 5:6 1:1 4:4 2:2 3:3
spand 5:5 6:6 4:2 3:4 2:3 1:1
spert 5:6 6:4 4:2 3:5 2:3 1:1
klot 6:3 5:6 3:4 2:5 2:2 1:1
bral 6:5 5:6 3:3 4:4 1:2 2:1
raun 5:5 6:3 3:4 4:6 2:2 1:1
mur 6:3 5:5 4:6 3:4 2:2 1:1
vag 6:5 5:6 4:4 3:3 1:1 2:2
nuhl 6:6 5:4 3:3 4:5 2:2 1:1
pind 6:6 4:5 3:2 5:4 2:3 1:1
pisch 6:6 5:5 3:3 4:4 2:2 1:1
fnahf 6:3 5:6 3:5 4:4 1:2 2:1
pläk 6:5 5:6 4:3 3:4 2:2 1:1
pnähf 6:4 5:6 3:3 4:5 2:2 1:1
plaupf 6:3 4:6 3:4 5:5 2:2 1:1
pröng 5:6 4:5 6:3 3:4 2:2 1:1
fnöhk 6:5 5:6 3:3 4:4 2:2 1:1
fneik 5:6 6:5 4:4 3:3 2:1 1:2
bnöhk 5:3 6:6 3:5 4:4 2:2 1:1
snauk 6:6 5:5 4:4 3:3 2:2 1:1
pleik 6:6 5:5 4:4 3:3 2:1 1:2
bnaupf 6:3 4:5 3:4 5:6 2:2 1:1
bneik 6:6 5:5 4:4 3:3 2:2 1:1∑

ds 59 28 37 19 7 4

Table 5: Rank comparisons: speaker judgements and
implicational model

Calculating the Spearman rank correlation be-
tween MGL’s speaker judgements and model pro-

ductions for each suffix, we get the correla-
tions shown in table 6 for those calculated by
MGL (ρED) and for the implicational productions
(ρIMP ). The results show that the relative ranks
for each suffix for each nonce word mirror those
of MGL’s wug tests fairly closely.

Suffix ρED ρIMP pIMP

oth n.a. 0.972 < 0.001
∅ n.a. 0.987 < 0.001
er 0.05 0.983 < 0.001
s 0.33 0.991 < 0.001
en 0.28 0.997 < 0.001
e 0.13 0.998 < 0.001

Table 6: Rank correlations for each suffix

Pearson correlations Table 7 shows the calcu-
lated Pearson correlation between MGL’s produc-
tion scores and the implicational model’s for each
of the six suffixes. Calculated individually, 3 of the
6 suffixes show significant correlation. But calcu-
lated across all suffixes we see strong correlation.

Suffix r p-value significant
oth 0.159 .458 no
∅ 0.318 .096 no
er 0.748 .00001 yes
s 0.578 .003 yes
en 0.340 .103 no
e 0.713 .0001 yes
all suffs. 0.902 ≃ 0 yes

Table 7: Pearson correlations

A possible reason for the model’s poorer cor-
relation for suffix ∅ is corpus noise. For the
first six nonce words the highest scoring predic-
tive words are dominated by spurious referents:
(a) non-nouns such as zweifel ‘second’ or drittel
‘third’ with null plurals, (b) words given an incor-
rect null plural such as cent ‘cent’, or (c) proper
names like Siemens or Lutz. And /en/’s poorer cor-
relation is due to nonce words that got low scores
for /en/ in MGL’s wug tests in which our model
over-predicts /en/ as a result of measuring similar-
ity by featural closeness rather than an exact struc-
tural description. For example, spand gets a low
score for /en/ from speakers but a high score from
top candidate with an /en/ plural Mensch ‘human’,
whose vowel and final consonant differ minimally
from those of spand in their features.
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Figure 3: MGL’s plural class productions compared to those of a variation implicational model that worked well
on real data
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Figure 4: MGL’s plural class productions compared to those of Albright and Hayes’ rule-based model
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In summary, our Spearman and Pearson corre-
lation results indicate that the implicational model
aligns moderately well with the rankings of suf-
fixes for each nonce word but doesn’t always re-
flect the differences in suffix preferences by speak-
ers among the nonce words – especially for the
suffixes ‘oth’, ‘null’ and /en/.

4 Other models

Testing with Albright and Hayes’ rule-based
model We also ran the nonce words through the
rule-based model of Albright and Hayes (2003)
trained on the Unimorph corpus. Graphical results
are shown in figure 4. We found that the model
over-predicts the null suffix at the expense of the
/er/ suffix, which hardly occurs at all. A possible
reason is that the rule-based model requires an ex-
act structural description to trigger a rule. The null
suffix occurs abundantly, e.g., in nonce word pind
because of a default rule with strength 0.396 that
makes no changes to a stem ending in one of {d, l,
n, r, s, t, z} if no other rules are triggered. For the
/er/ suffix to occur requires a very specific rule or
else a default rule with strength 0.001.

Other rule-based and symbolic models Fur-
ther testing with other rule-based models could
determine how well rule-based models can model
MGL’s human wug prediction. Payne et al. (2021)
test a rule-based model based on Yang (2016)’s
Tolerance Principle using morphosemantic and
phonological features that include gender features
when tested on German plural formation. They
test stochastically sampled nouns from German
CELEX, so it remains to be tested what their
model would predict for MGL’s wug forms.

Beniamine and Naranjo (2021) take an ap-
proach to morphological prediction that shares
some common elements with ours. They use multi-
ple alignments of forms in inflectional paradigms.
Versions of our model that do not truncate a can-
didate word to equalize its length with the nonce
word do predict stem changes such as umlaut6,
but because we are comparing with MGL’s results,
which abstract away from stem changes, we do not
allow for possible gaps in alignment. On the other
hand, because our VSA model uses binary vectors
in a distributed representation, graded, continuous
degrees of similarity can be used in a way that is
not possible with purely symbolic models.

6For example, some predictions for nonce word kach with
the /-er/ suffix produce /kEçEr/ with umlauted /a/.

Calderone et al. (2021) report on their mor-
phological prediction experiments on nonce verb
forms in English, German and Dutch, using sev-
eral variations of a model that combines a bidi-
rectional LSTM with ‘fine alternation patterns’
that figure in analogical deduction of word forms.
They report Pearson correlations for regular and
irregular verbs for their best-performing model
along with Albright and Hayes’ Minimal Gener-
alization Learner and a purely analogical model of
Nosofsky (1990). It is difficult to compare their re-
sults with ours because they are dealing with verb
inflection rather than noun plurals and systems that
have a clear regular/irregular split. They report rat-
ings of 0.583 and 0.595 for regulars and irregulars
respectively, which roughly compares with our re-
sults for the /s/ suffix and are lower than our result
for /e/ and /er/. The results of their model, which,
like ours, uses analogical deduction, but in a dif-
ferent way, provides further support for the role of
analogical deduction in morphological prediction.

One approach that we did not take was to
present all the nonce forms as neuter as MGL
appear to have done. Among the 17,488 neuter
nouns in the dataset, only 83, or 0.48% have an
/(e)n/ suffix. Given the relatively strong presence
of this suffix in MGL’s wug predictions, it is not
clear how presenting each nonce form as neuter
would produce such results.

5 Testing on real data

The Unimorph dataset As mentioned above,
we found that there was an inconsistency between
model variations that best predicted the suffixes of
real words in the Unimorph dataset and those that
best matched MGL’s results for nonce word predic-
tion. We found that using log frequencies rather
than raw frequencies gave better results for real-
word prediction, so that infrequent words would
have more weight, since many infrequent words
in the dataset that we are testing will also have in-
frequent phonological neighbours. For real-word
prediction, we also did not use RNN-generated
perplexities which were specifically tailored to the
wug words and whose main purpose was to allow
suffixes that were a not a first choice for a wug
word to have non-zero scores. The model achieves
85.6% accuracy on a sample of 3,390 items as
compared with 88.8% reported by MGL with the
ED model. The ED model arguably has an advan-
tage in identifying foreign words in that it used
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orthographic rather than phonemic input, which
gives clues to a word’s foreignness. For example a
word spelled with c followed by a letter other than
h or k is likely foreign. Foreign words make up
a sizeable portion of words our model misses: for
example mustang, body, kanu ‘canoe’, strip, gun,
overtime.

6 Discussion

As discussed above, we tested many variations of
the model, for which there is not space to list the
details of each one’s result. The variation that
made the most difference to the results was the in-
clusion of frequency scores. A further step with
this model is introduce learning, so that instead
of having positional vectors intentionally orthogo-
nal, they are allowed to move together closer in the
space so that a phoneme in one position can have
some measured similarity with the same phoneme
in a nearby position.

Given that right-aligned edge calculation, fea-
tures of segments and prosodic shape of implica-
tional candidates were all found to contribute to
predicting plurals of nonce forms based on word
similarity, it is notable, as observed by an anony-
mous reviewer, that word similarity appears to be
a multidimensional calculation that involves all of
these properties.

The fact that MGL’s wug tests results give non-
negligible scores to all the suffix classes for most
of the 24 items suggests that each suffix has found
some niche or set of niches in the sense of Aronoff
(2021), who gives the example of the ongoing
niche competition between English /-er/ ∼ /-est/
and adverbs more ∼ most as a very complex one
in its distribution. Moreover, the fact that no suf-
fix behaves like an overpowering default choice in
MGL’s results suggests that the niche distribution
of the German plural suffixes is also complex. Fur-
ther tests will help determine to what extent this
implicational model may have an advantage over
purely symbolic models by being able to capture
subtle distinctions between niches through its dis-
tributed representations of word forms.
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Abstract

This work addresses the question of whether
the output of a state-of-the-art parser is accu-
rate enough to support research in theoretical
linguistics. In order to build reliable models of
syntactic change, we aim to eventually parse
the 1.5-billion-word Early English Books On-
line (EEBO) corpus. But since EEBO is not
yet parsed, we begin by constructing and test-
ing a parser on the 1.7-million-word Penn-
Helsinki Parsed Corpus of Early Modern Eng-
lish (PPCEME). In order to obtain robust re-
sults, we define an 8-fold split on PPCEME.
We then evaluate the parser with evalb and,
more relevantly for us, with a task-specific
metric - namely, its accuracy in parsing 6 sen-
tence types necessary to track the rise of aux-
iliary do (as in They did not come vs. its
historical precursor They came not). Retriev-
ing the relevant sentences from the gold and
test versions with CorpusSearch queries (Ran-
dall, 2010), we find that the parser’s accuracy
promises to be sufficient for our purposes. A
remaining concern is the variability of the out-
put, which we plan to address with three pieces
of future work sketched in the conclusion.

1 Introduction

The Penn-Helsinki Parsed Corpus of Early Mod-
ern English (PPCEME) (Kroch et al., 2004) con-
sists of over 1.7 million words of text from 1500
to 1712, manually annotated for phrase structure.
It belongs to a family of treebanks of historical
English (Taylor et al., 2003; Kroch et al., 2000b;
Taylor et al., 2006; Kroch et al., 2016) and other
languages (Wallenberg et al., 2011; Galves et al.,
2017; Martineau et al., 2021; Kroch and Santorini,
2021) with a shared annotation philosophy and sim-
ilar guidelines across languages, which form the
basis for reproducible studies of syntactic change
(Kroch et al., 2000a; Ecay, 2015; Wallenberg, 2016;
Galves, 2020; Wallenberg et al., 2021).

While all of these corpora are relatively large
for manually annotated corpora, there are impor-
tant limits on their usefulness - notably, the fact
that even relatively common phenomena still occur
too rarely to support reliable statistical models of
how they change over time. We therefore wish to
parse and search the much larger corpora that are
becoming publicly available. For instance, with
its 1.5 billion words of text from 1475 to 1700,
the Early English Books Online (EEBO) corpus
(Text Creation Partnership, 2019) dwarfs PPCEME.
However, its potential as a resource for linguistic
research remains unrealized because it is not lin-
guistically annotated and its size renders manual
annotation infeasible. Our eventual goal is there-
fore to parse EEBO automatically.

This paper reports on a first step in that direc-
tion - namely, building a parser whose accuracy
we can evaluate on the gold standard provided by
PPCEME. For our purposes, the standard evalua-
tion metric, evalb (Sekine and Collins, 2008), is
not specific enough. Evaluation measures based
on joint effects of parser output with other factors
are also inappropriate, since retrieving the sentence
types of interest to us is a direct function of the
parse, without any intervening processing. It is
clear that the most useful evaluation metric for our
purposes involves scoring the retrieval of the diag-
nostic sentence types. Here, we report on negative
declarative sentences, on negative imperatives, and
on direct questions, each in two variants. The first
variants are the ones that were dominant in 1500
(They drank not the ale, Drink not the ale, Drank
they the ale?), and the second ones are their mod-
ern counterparts, which had become dominant by
1700 (They did not drink the ale, Do not drink the
ale, Did they drink the ale?). We choose these sen-
tence types because we hope that large datasets like
EEBO will eventually allow us to decide between
different conceptual models of the change - specif-
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ically, competition (Kroch, 1989; Zimmermann,
2017) versus drift (Karjus, 2020).

The remainder of the paper is structured as
follows. Section 2 discusses some features of
PPCEME’s source material and annotation that
present challenges for state-of-the-art parsers, es-
pecially as compared to more widely used tree-
banks such as the Penn Treebank (PTB) (Mar-
cus et al., 1993). Sections 3 and 4 describe our
cross-validation split of PPCEME for evaluating
the parser and our use of EEBO to create contextu-
alized word embeddings for the parser. Section 5
presents the parser model, along with results based
on evalb, which we include for general compara-
bility beyond our task-specific evaluation metric.
Section 6 illustrates the diagnostic sentence types
and the queries that we use for retrieving them,
which are formulated in the CorpusSearch query
language (Randall, 2010). Section 7 presents the re-
sults from the task-specific evaluation, and Section
8 summarizes with an eye towards future work.

2 PPCEME Issues

PPCEME differs from PTB in several important
ways, making it an excellent test case for domain
adaptation of modern parsing technology. However,
there has been relatively little work in the NLP
community using PPCEME and its sister corpora,
the Penn Parsed Corpus of Middle English, 2nd
edition (PPCME2) and the Penn Parsed Corpus of
Modern British English (PPCMBE).1 Kulick et al.
(2014) describe parsing PPCMBE, while Moon and
Baldridge (2007) and Yang and Eisenstein (2016)
focus on POS-tagging (the former on PPCME2,
and the latter on PPCEME and PPCMBE).

In addition to the nonstandard orthography and
the different and variable syntax of the source mate-
rial, PPCEME is annotated according to guidelines
arising in part from its purpose for linguistic re-
search that require explicit consideration.

2.1 PPCEME Part-of-Speech Tags

2.1.1 Complex Tags
Although we generally attempt to avoid modify-
ing the existing annotation, PPCEME’s very large
set of POS tags (N = 353) requires trimming to a
computationally more tractable size.

Of the 353 tags just mentioned, 213 are complex
tags intended to facilitate tracking changes in or-

1These two corpora and PPCEME are collected in Kroch
(2020).

thographic conventions over time - for instance, the
development of (ADJ gentle) (NS men) to
(ADJ+NS gentlemen). Since these changes
are irrelevant for present purposes, we prune such
tags in accordance with the Righthand Head Rule,
yielding (NS gentlemen).2 Certain rare cases,
such as (WPRO+ADV+ADV whatsoever) or
(Q+BEP+PRO albeit), are exceptions to the
Righthand Head Rule. In such cases, the best sim-
ple tag is sometimes the leftmost tag and sometimes
another tag entirely ((WPRO whatsoever),
(P albeit)). We simply ignore this compli-
cation on the grounds that these cases are a small
subset of the complex tags, which themselves are
used for only about 1% of the words in the cor-
pus. After pruning and some other minor changes
discussed in Appendix A, 85 POS tags remain.

2.1.2 Distinctions among Verb Classes
PTB makes no distinction between main verbs and
the auxiliary verbs be, do and have, but this dis-
tinction is vital for us, since it is exactly the syntax
of main (but not auxiliary) verbs that changes over
the course of Early Modern English. In fact, even
among the verbs with auxiliary uses, we need to
distinguish do from the other auxiliaries in order
to track the rise of auxiliary do. For this reason,
we do not follow Yang and Eisenstein (2016) in
mapping the PPCEME tags for verbs to the smaller
set used in PTB.

2.2 PPCEME Phrase Structure

2.2.1 Function Tags
In phrase-structure treebanks, function tags can be
appended to syntactic category labels in order to
provide information about a constituent’s grammat-
ical or semantic role. The PTB uses 20 function
tags in this way, while exploiting structural differ-
ences to distinguish other constituent roles. By con-
trast, PPCEME relies on function tags uniformly,
largely because it has neither base NPs or VPs. As
a result, PPCEME’s set of function tags is larger
than PTB’s. Omitting a few rare types, we use 31
in the work reported below.3 The following tree
illustrates PPCEME’s use of function tags to en-
code central grammatical roles. The subject and
indirect object are sisters, but distinguished by the

2Yang and Eisenstein (2016) simplify the complex tags for
the same reason as we do, but keep the leftmost tag, which for
English is incorrect in the general case.

3See Appendix B for the details, along with some informa-
tion on function tag frequency.
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function tags SBJ and OB2, respectively. MAT and
SUB on the two IPs identify the higher one as a
matrix clause and the lower one as a subordinate
clause. Finally, THT indicates that the CP is a that
complement clause (rather than, say, a relative or
adverbial clause).
(IP-MAT (CONJ and)

(NP-SBJ (D the) (N schereffe))
(VBD shewed)
(NP-OB2 (PRO$ my) (N servant))
(CP-THT (C that)

(IP-SUB ...)))

There has been some work on recovering func-
tion tags in PTB (Blaheta and Charniak, 2000;
Blaheta, 2003; Gabbard et al., 2006; Merlo and
Musillo, 2005), but overall they have received only
limited attention. We are not aware of any work
to recover the function tags in the historical cor-
pora. Given the centrality of certain function tags
(notably, SBJ) for retrieving the sentence types of
interest to us, we are constrained to include them
in the parsing model.

2.2.2 Empty Categories
PPCEME indicates discontinuous dependencies by
means of empty categories that are coindexed with
a displaced constituent. Following common NLP
practice, we remove both the empty categories and
the co-indexing from the parser training material,
and thus from the parser output. This simplifies
the parsing model, and for present purposes, the
absence of empty categories is irrelevant. However,
if we wish to include linguistic queries in future
work that make reference to empty categories, as
is necessary in the general case, the parsing model
will need to be augmented appropriately.

3 Cross-validation Splits

Parsing work relies on train/dev/test splits of the
source material used for training and evaluation.
Recently, concerns have been raised over the va-
lidity of inferences drawn from static train/dev/test
splits; for instance, see Gorman and Bedrick
(2019), who evaluate the consistency of rankings
of POS taggers across 20 random splits of the
WSJ section of PTB. For us, this issue is partic-
ularly pressing because PPCEME contains rela-
tively few individual source texts, thus increasing
the chance that a single particularly difficult or non-
representative source text will greatly skew perfor-
mance on the dev/test partitions. Even more seri-
ously, certain constructions might be completely

absent from one particular split. This is of particu-
lar concern to us because direct questions, though
common in ordinary conversation, are rare or com-
pletely absent in many written genres. We return
to this point in Section 7.2.2.

We therefore define an 8-fold cross-validation
split, with each component split roughly matching
the 90%-5%-5% distribution in the standard single
PTB split. Within each partition (train, dev, test) of
a split, we attempted to equally represent (in terms
of equal word counts) each of PPCEME’s three
time periods, as indicated by “e1”, “e2”, and “e3”
in the filenames. Given our eventual goal of parsing
all of EEBO, which encompasses all of these time
periods, this step is necessary in order to adequately
predict performance on that corpus.4 Finally, in
cases where PPCEME distributes a single source
text over several annotated files, we were careful
to assign all such files to the same partition. As
PPCEME contains 448 annotated files, but only
232 distinct source texts, this greatly constrained
how we could define the partitions. Nevertheless,
we succeeded in including 209 (90%) of the 232
source texts in either a dev or test partition of one of
the 8 splits. For more details on the split definitions,
see Appendix C.

4 ELMo Embeddings Trained on EEBO

In recent years, contextualized word embeddings
such as ELMo (Peters et al., 2018) and BERT (De-
vlin et al., 2019) have driven significant improve-
ments on downstream NLP tasks, including POS
tagging and parsing. Due to the significant over-
head involved in training these representations, re-
searchers often use pretrained models distributed
by large companies, sometimes fine-tuned to the
domain of interest. Although this often produces
perfectly satisfactory results, in cases of significant
mismatch between a test domain and standard train-
ing domains - usually sources such as text scraped
from Wikipedia, BooksCorpus (Zhu et al., 2015),
and news text from Common Crawl (Nagel, 2016)
- pretraining on the novel domain yields signifi-
cant improvements (Lee et al., 2019; Beltagy et al.,
2019; Jin et al., 2019).

Because of the orthographic and syntactic differ-
ences between Early Modern English and contem-
porary English mentioned in Section 2, our current

4By contrast, Yang and Eisenstein (2016), split PPCEME
into thirds by time period (rather than across time periods) for
the different purpose of studying domain adaptation.
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work involves exactly such a mismatch, and so we
pretrained ELMo embeddings on EEBO.5

We used the same model configuration as Peters
et al. (2018) for 11 epochs6 using all of EEBO. We
then integrated the resulting embeddings, which
have 1,024 dimensions, into the parser model, as
discussed in Section 5. Here, we describe some
main aspects of creating the embeddings, which
we will make public. See Appendix D for further
details.

4.1 Text Extraction, Normalization, and
Tokenization

EEBO’s XML files contain a great deal of metadata
and markup in addition to the text. For each file, we
extracted the core source information (title, author,
date) and kept the text within <P> tags, which gives
at least a rough sense of the document divisions.
Following Ecay (2015, pp. 105-6), we excluded
some metadata and other material embedded in
the text. We also adopted his handling of GAP
tags for OCR errors, which consists of mapping
these tags to word-internal bullet characters - e.g.,
Eccl•siasticall.

After normalizing the extracted text with Uni-
code NFC form in order to eliminate spurious sur-
face differences between tokens, we tokenized the
EEBO text in accordance with PPCEME’s tokeniza-
tion guidelines as best we could:

1. Possessive morphemes are not separated from
their host (e.g., Queen's) (unlike in PTB).

2. Punctuation is separated except in the case of
abbreviations (e.g., Mr.), token-internal hy-
phens (e.g., Fitz-Morris), or certain spe-
cial cases (e.g., &c).

3. Roman numerals can include leading, internal,
or trailing periods (e.g., .xiiii.C.).

PPCEME tokenization is straightforward in prin-
ciple, but the non-standardized nature of the his-
torical material raises various difficulties. For
instance, it is easy to tell that the elided article

5Space constraints prevent us from presenting full details
here, but we find that using ELMo embeddings trained on
EEBO improves evalb scores by about 2 points over the stan-
dard ELMo embeddings trained on modern English and still
by about 0.5 points over BERT embeddings trained on modern
English. At present, we lack the computational resources for
the obvious next step of pretraining BERT embeddings on
EEBO, but we are pursuing access to them.

6This corresponds to 2 weeks of training using 4 GTX
1080 GPUs.

th' should be split off (e.g., th'exchaung is
tokenized as th' exchaung). But when the
apostrophe is missing, the status of th is un-
clear (e.g., thafternoone is tokenized as th
afternoone, but thynkyth remains a single
token). Another example of pervasive ambiguity
is its and it's; in PPCEME, these forms were
tokenized manually as one token or two, depending
on whether the spelling represents the possessive
form of the pronoun it or the contracted form of it
is. Since EEBO’s size rules out manual processing,
we resolved such ambiguities by defaulting to the
more common case. In the above examples, this
resulted in splitting the variants with apostrophes
and not splitting the ones without.7

5 Model and Evaluation

5.1 Parser Architecture

We use the parser model of Kitaev et al. (2019),
which represents a constituency tree T as a set of
labeled spans (i, j, l), where i and j are a span’s be-
ginning and ending positions and l is its label. Each
tree is assigned a score s(T ), which is decomposed
as a sum of per-span scores:

s(T ) =
∑

(i,j,l)∈T
s(i, j, l) (1)

The per-span scores s(i, j, l) themselves are as-
signed using a neural network that takes a sequence
of per-word embeddings as input, processes these
embeddings using a transformer-based encoder
(Vaswani et al., 2017), and produces a span score
from an MLP classifier (Stern et al., 2017). The
highest-scoring valid tree is then found using a vari-
ant of the CKY algorithm. POS tags are recovered
using a separate classifier operating on top of the
encoder output, which is jointly optimized with the
span classifier. For more details, see Kitaev and
Klein (2018). As already mentioned in Section 4,
we use ELMo embeddings pre-trained on EEBO.

Our implementation is based on version 0.2.0
of the Berkeley Neural Parser8 modified to accept
ELMo.9 We train each of the 8 models (one for
each cross-validation split) for 50 epochs, using the
evalb score on the dev section as our criterion for

7Future work could consider a joint tokenization-POS-
tagging model.

8https://github.com/nikitakit/
self-attentive-parser

9These modifications and other relevant software are avail-
able at https://github.com/skulick/emeparse.
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Parser Part-of-Speech
dev 90.89 (1.8) 98.14 (0.7)

test 90.53 (0.7) 98.30 (0.4)

Table 1: Cross-validation Parser and Part-of-Speech
Results. Each result is the mean for the relevant par-
tition (dev or test) over the 8 splits, with the standard
deviation in parentheses.

saving as the best model. For more details regard-
ing training and hyperparameters, see Appendix E.

5.2 Function Tags
Following the approach of Gabbard et al. (2006)
to function tag recovery, we do not delete func-
tion tags in preprocessing, and so nonterminals like
NP-SBJ are treated as atomic units. Since the de-
cision whether to delete is part of the preprocessing,
this approach does not require modification to the
parser.

5.3 Evalb Results
Table 1 gives our parsing and part-of-speech results
by the standard NLP measures, combined over the
8 cross-validation splits, as scored by evalb (match-
ing brackets for the parsing score and POS accuracy
for the tagging score).10

The evalb parsing score falls within the general
range of parsing scores for PTB, though a few
points lower. As Kulick et al. (2014) point out, all
of the English historical corpora lack certain brack-
ets present in PTB (base NPs and VPs) that are
relatively “easy to get”, and this tends to adversely
affect their parsing scores. Specifically, Kulick et al.
(2014) find the f1 score for PPCMBE to be lower
than for PTB by about 2 points, and we would
expect that effect to carry over to PPCEME.11

6 Diagnostic Sentence Types and
Query-based Retrieval

Having obtained a rough idea of the parser’s per-
formance from the evalb scores, we now turn to
the question of greater interest to us - the evalu-
ation of the parser in task-specific terms. Recall

10Evalb removes tokens (punctuation) from consideration
based on their POS tags, and since our model predicts POS
tags, this can result in inconsistent sentence lengths for the
gold and parsed trees if there are POS tag errors, resulting
in “Error” sentences in the evalb output. We therefore use
the modified evalb supplied with the Berkeley parser, due to
Seddah et al. (2014), which does not delete any words, so that
any POS tag differences have no effect on sentence length.

11For some discussion of function tag accuracy from an
NLP perspective, see Appendix F.

that we wish to identify certain sentence types that
allow us to track the rise of auxiliary do over the
course of Early Modern English. For expository
reasons, we present these sentence types in reverse
chronological order.12

6.1 Sentence Types with Auxiliary Do

Modern English is unusual in requiring the auxil-
iary verb do in certain sentence types, notably in
negative declarative sentences, in negative impera-
tives, and in all direct questions (whether positive
or negative).
Do-not-decl. In negative declarative sen-

tences, the main verb appears in uninflected form.
Such sentences also contain auxiliary do in either
the present or past tense, and the negative marker
not appears between the auxiliary and the main
verb.

(IP-SUB (NP-SBJ (PRO they))
(DOP do)
(NEG not)
(NP-MSR (Q much))
(VB minde)
(NP-OB1 (PRO them))

As the above example shows, the IP in this sen-
tence type (and also its historical counterpart) can
be either an independent matrix (MAT) clause or,
as here, a subordinate (SUB) clause.
Do-not-imp. Negative imperatives are anal-

ogous, except for the IMP function tag on IP, and
the imperative POS tag (DOI) on the auxiliary.

(IP-IMP (PP (P For)
(NP (NPR$ God’s)

(N sake)))
(DOI do)
(NEG not)
(VB overlay)
(NP-OB1 (PRO me))
(PP (P with)

(NP (ADJ superfluous)
(N Matter)))

(. .))

Do-sbj. Finally, in direct questions, auxiliary
do precedes the subject instead of following it, as in
declaratives. This inversion occurs in both positive
and negative questions, and so retrieving this sen-
tence type relies crucially on the parser correctly
identifying the subject via the SBJ function tag.
In the following example, note that the annotation
guidelines for PPCEME require direct questions to

12We are concerned only with sentences without modal
verbs (can, will, etc.), aspectual auxiliaries have and be, or
main verb be; sentences containing these elements were not
affected by the change.
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be annotated as CP-QUE-MAT immediately domi-
nating IP-SUB. In this context, the IP-SUB is un-
derstood as part of the direct question rather than
an ordinary subordinate clause.

(CP-QUE-MAT (WADVP (WADV How))
(IP-SUB (DOP do’s)

(NP-SBJ (D this) (N Sute))
(VB fit)
(NP-OB1 (PRO me)))

(NP-VOC (NPR Dauy))
(. ?))

6.2 Sentence Types Without Auxiliary Do

We now illustrate the historical precursors of the
modern sentence types just discussed. In all 3
old forms, it is the main verb (rather than aux-
iliary do) that appears in a past or present tense
form, and it occupies the same position as auxiliary
do. Thus, we have negative declarative sentences
(verb-decl-not) like:

(IP-SUB (NP-SBJ (PRO I))
(VBD sent)
(NEG not)
(PP (P to)

(NP (PRO you))))

negative imperatives (verb-not-imp) like:

(IP-IMP (VBI let)
(NEG not)
(IP-INF (NP-SBJ (D that))

(VB hurt)
(NP-OB1 (PRO me)))

(. .))

and questions (verb-sbj) like:

(CP-QUE-MAT
(WADVP (WADV When))
(IP-SUB (VBP comes)

(NP-SBJ (PRO$ your)
(N Taylor))

(ADVP-DIR (ADV hither)))
(. ?))

6.3 Sample CorpusSearch Query

In order to retrieve the 6 diagnostic sentence types,
we formulate queries in CorpusSearch (Randall,
2010), a query language for querying, editing, and
coding tree structures. Each query is a sequence
of boolean conditions on the parser output. For
instance, the following query retrieves direct ques-
tions with auxiliary do (do-sbj).

(CP-QUE-MAT* iDoms IP-SUB*)
AND (IP-SUB* iDoms DOD|DOP)
AND (IP-SUB* iDoms NP-SBJ*)
AND (IP-SUB* iDoms DO|VB)
AND (DOD|DOP precedes NP-SBJ*)
AND (NP-SBJ* precedes DO|VB)

The asterisks on the labels allow the query to
match tokens with further trailing function tags
(say, -SPE to indicate direct speech or -RSP for
resumptive subjects). In concluding this section,
we draw the reader’s attention to the fact that our
queries are all formulated assuming that the parser
has constructed the relevant clause boundaries cor-
rectly. In Section 7.2.1, we discuss an attempt
to improve parser performance by allowing struc-
tures without IP-SUB or with a recursive IP-SUB
to count as matches.

7 Query-Based Results and Analysis

7.1 Results

We evaluated the parser in task-specific terms as
follows. For each split, we (1) trained the parser
on that split’s training section and (2) parsed the
split’s dev and test sections. We then (3) ran 6
CorpusSearch queries, one for each of the diagnos-
tic sentence types just presented, over the parsed
sections. Cases where the queries retrieved “hits”
in both the gold and the parsed tree were matches.
Hits in the gold, but not the parsed tree, were clas-
sified as misses. The converse case of hits in the
parsed tree, but not in the gold, were false alarms.
From the results for these categories, we calculated
the recall, precision, and f-measure for each split.

We calculated the mean and standard deviation
of the recall, precision and f-measure over each
split’s dev section and over each split’s test section.
These results are shown in Table 2, with the associ-
ated standard deviations in parentheses. For each
query, we also include the number (#) of hits in the
gold version of the trees. These results are anal-
ogous to the cross-validation results using evalb
in Table 1, but with the individual cross-validated
query-based scores instead of the evalb metric.

7.2 Analysis

The overall f1 scores based on the queries are for
the most part high enough for the overall project
to remain promising. We neither expect complete
parser accuracy, nor do we require it, since we can
include an estimated error rate in any statistical
models that we build.

However, the results exhibit a degree of variabil-
ity that calls for investigation. The standard devi-
ations are all higher than for the evalb results in
Table 1, even for negative declarative sentences (the
best case). This follows from the relative sparse-
ness of the diagnostic structures in the corpus, as
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dev test
query # recall prec f1 # recall prec f1

Negative declarative sentences
do-not-decl 338 94.97 (3.7) 98.92 (1.7) 96.86 (1.9) 405 93.39 (4.3) 98.40 (2.3) 95.74 (1.9)
verb-not-decl 717 93.79 (4.9) 93.71 (3.3) 93.72 (3.8) 653 92.94 (4.0) 93.42 (3.4) 93.10 (2.5)

Negative imperative sentences
do-not-imp 41 72.37 (45.3) 71.72 (44.8) 71.83 (44.7) 23 77.71 (34.1) 87.50 (35.4) 81.83 (34.0)
verb-not-imp 120 86.03 (10.4) 91.91 (7.4) 88.22 (4.2) 142 75.61 (20.0) 92.10 (6.8) 82.24 (14.9)

Questions
do-sbj 564 89.29 (6.3) 98.32 (2.3) 93.47 (3.8) 329 84.48 (16.5) 93.75 (17.7) 86.57 (13.0)
verb-sbj 387 81.01 (13.2) 95.39 (3.8) 87.10 (8.1) 190 69.68 (19.7) 87.29 (10.9) 75.67 (14.4)

Augmented questions
do-sbj+ 564 92.23 (5.8) 98.36 (2.3) 95.10 (3.4) 329 85.92 (16.2) 93.75 (17.7) 87.44 (13.3)
verb-sbj+ 387 84.16 (11.9) 94.00 (5.1) 88.35 (7.0) 190 74.39 (19.6) 83.10 (11.2) 76.26 (13.0)

Table 2: Query-based Results for the Dev and Test Sections. The first 6 sentence types are illustrated in Section 6.
Augmented questions are discussed in Section 7.2.1.

compared to the much higher number of brackets
evaluated by evalb. We turn now to two dimensions
of this variability.

7.2.1 Recall vs. Precision and Parser Errors

In general, the recall results are lower than the
precision results across all sentence types. By ex-
amining recall errors in the dev section, we have
identified two of the more frequent error types.13

The first is an unfortunate tendency for the parser
to produce nonsensical structures rather than to
build parenthetical clauses. For example, for this
gold question:

(CP-QUE-MAT
(IP-SUB (IP-MAT-PRN (NP-SBJ (PRO I))

(VBP pray)
(NP-OB2 (PRO you)))

(VBP speketh)
(NP-SBJ (PRO he))
(PP (P vnto)

(NP (PRO vs)))))

the parser generates a flat structure with two sub-
jects and two finite verbs, which is neither reason-
able nor found in the training data (nor, for that
matter, in the entire corpus).14

(CP-QUE-MAT
(IP-SUB (NP-SBJ (PRO I))

(VBP pray)
(NP-OB2 (PRO you))
(VBP speketh)
(NP-SBJ (PRO he))
(PP (P vnto)

(NP (PRO vs)))))

13Future work could benefit from adapting the parser error
analysis technique in Kummerfeld et al. (2012).

14It may be worth noting that parentheticals are encoded
by a PRN function tag in PPCEME, whereas PTB encodes
them by a separate PRN node. It may be worth investigating
whether the PTB convention would improve accuracy in the
cases at hand.

A second problem that became apparent in con-
nection with questions, both with and without aux-
iliary do, is that the parser sometimes violates the
PPCEME’s annotation guidelines by either omit-
ting IP-SUB under CP-QUE-MAT or adding a re-
dundant one. For example, instead of the gold
(CP-QUE-MAT (WNP (WPRO What)

(IP-SUB (ADVP (ADV then))
(VBP think)
(NP-SBJ (PRO you))))

the parser omits the IP-SUB node:
(CP-QUE-MAT (WNP (WPRO What))

(ADVP (ADV then))
(VBP think)
(NP-SBJ (PRO you)))

In this case, the parser’s miss actually contains
enough information for us to identify the output
as an instance of verb-sbj. We therefore wrote
4 queries to retrieve systematic errors of this sort
(missing vs. superfluous IP crossed with presence
vs. absence of auxiliary do). Combining the re-
sults obtained in this way with the original results
for questions tends to yield modest score improve-
ments, as shown in the last two rows of Table 2
labeled do-sbj+ and verb-sbj+.

7.2.2 Differences in Dev and Test Results
The results for the questions are significantly higher
for the dev than for the test section. Since the dev
section was used in training to determine the best
model, as mentioned in Section 5.1, it might be
thought that the results are naturally biased in favor
of that section. But this idea is not consistent with
the results in Table 1, where the evalb scores for
the dev and test sections are quite similar.

A closer look at Table 2 suggests that the dis-
crepancy between the dev and the test scores is an
artifact of how the sentences types are distributed

149



split # recall prec f1
dev

0 43 67.44 90.62 77.33
1 36 94.44 94.44 94.44
2 51 74.51 97.44 84.44
3 49 67.35 91.67 77.65
4 22 95.45 91.30 93.33
5 3 66.67 100.00 80.00
6 84 89.29 98.68 93.75
7 99 92.93 98.92 95.83

test
0 29 79.31 79.31 79.31
1 36 75.00 93.10 83.08
2 38 63.16 75.00 68.57
3 15 53.33 72.73 61.54
4 3 33.33 100.00 50.00
5 17 94.12 84.21 88.89
6 17 70.59 100.00 82.76
7 35 88.57 93.94 91.18

Table 3: Breakdown of the verb-sbj Scores for the
Dev and Test Sections. The # of occurrences adds up
to 387 for the dev section and 190 for the test section.

in the dev/test sections of each split. In contrast to
the questions, the dev and test scores for negative
declaratives are roughly equal. The numbers of
tokens in each split are well-balanced across the
two sections, and the standard deviations are low
by comparison to the other sentence types. For the
other queries, though, the number of gold struc-
tures is either very low (negative imperatives) or
badly distributed across the dev/test sections (ques-
tions). In both cases, a better result correlates with
a lower standard deviation rather than with a con-
sistently better result on either the dev or the test
section. For do-not-imp, the test section has a
higher score (81.83) than the dev section (71.83),
and its standard deviation, though still high (34.0),
is lower than that for the dev (44.7). By contrast, for
verb-not-imp, it is the dev section that has a
higher score (88.22 vs. 82.24) with a lower standard
deviation (4.2 vs. 14.9). This pattern is repeated for
the questions (both do-subj and verb-sbj),
where the dev sections have higher scores and lower
standard deviations than do the test sections.

A more detailed look at the verb-sbj scores
in the dev section sheds even further light on the
matter. Table 3 breaks down the scores for the dev
and test sections by split. The dev results benefit
from the scores for splits 6 and 7, which are both
relatively numerous and high-scoring. In particular,
in split 7, the dev section contains excerpts from
the New Testament (authnew-e2) and a transcript
of a trial (oates-e3). In both of these source texts,
questions occur at a higher rate than they do in

other sources, and they tend to be simple questions
without parentheticals (unlike those sort discussed
in Section 7.2.1). In other words, split 7 contains
many easy questions.

8 Conclusion

We have presented the first results on parsing
PPCEME, defined an 8-fold cross-validation split,
and evaluated the parser using a query-based mea-
sure connected to an overarching project in theoret-
ical linguistics. The precision scores are generally
very good, but we identified some of the problem-
atic structures for recall and noted that even with
the use of cross-validation for evaluation, the re-
sults are highly variable. In future work, we plan
to use BERT embeddings and experiment with dif-
ferent parser models to improve parser accuracy,
even though, as noted in Section 7.2, we are able to
accept limits on parser accuracy for our purposes,
as long as the parser’s erorrs are unbiased. It is
possible that parsers based on well-defined gram-
matical structures, such as Flickinger (2011) or
(Kasai et al., 2018) will eliminate the nonsensical
structures discussed in Section 7.2.1. Another al-
ternative, in a different direction, is to use sentence
embeddings derived from word embeddings, as in
Arora et al. (2017), to identify the desired sentences
directly, without using a parser at all.

At the same time, we recognize that the high vari-
ability revealed by our cross-validation procedure
calls for evaluation on an extended set of diagnostic
sentences - a task that we plan to tackle in three
ways:
(1) We will extend query-based precision testing
to Santorini (2021), a corpus of roughly 325,000
words of Early Modern English consisting entirely
of diagnostic sentence types.
(2) We will further extend query-based testing to a
representative sample of EEBO. Though we have
no gold trees for EEBO, we can evaluate precision
by manually checking the query hits found in the
sample. This will also allow us to compare parser
performance across EEBO and PPCEME. While
we would expect roughly similar scores, it would
not be surprising to find a decline in accuracy due
in part to the tokenization approximations and OCR
errors in EEBO mentioned in Section 4.
(3) In the latter case, we find ourselves in a position
to give a quite rigorous quantitative estimate of the
size of such a decline. As it turns out, about 40%
of PPCEME overlaps roughly in underlying source
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text with EEBO, and we have carried out a word
alignment between the parallel texts. Thus, after
training the parser on the non-overlapping 60% of
PPCEME and running our queries on the parser
output for both parallel texts, comparing the query-
based results should give us the desired estimate
for any performance dropoff to be expected when
parsing the rest of EEBO.
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A PPCEME Part-of-Speech
Modifications

In addition to the changes described in the main
text, we changed the tag MD0 to MD. MD0 is an
untensed modal, as in he will can or to can
do something. There are only 4 cases, as this
is an option that had mostly died out by the time of
Early Modern English.

There are also cases where words that are ordi-
narily spelled as a single orthographic token are
sometimes split into several tokens. PPCEME rep-
resents the former case with a single POS tag and
the latter as a constituent whose non-terminal is
the POS tag, with the words given numbered seg-
mented POS tags - for example, (ADJ alone)
vs. (ADJ (ADJ21 a) (ADJ22 lone)). We
modified all such tags by removing the numbers,
and appending NT to the nonterminals, in order to
more clearly distinguish between POS tags and non-
terminals. In this example, the resulting structure
would be (ADJ NT (ADJ a) (ADJ lone)).

B PPCEME Issues

B.1 Metadata

In addition to the changes described in Section
2.2.1, we removed the metadata under CODE,
META, and REF nodes. In cases where CODE dom-
inated a leaf, removing the leaf resulted in an ill-
formed tree. The 267 trees in question were re-
moved, as were 576 trees rooted in META (usually
stage directions for a play) and 9 trees containing
BREAK.

In addition, before carrying out the above
modifications, we changed all instances of
(CODE <paren>) and CODE <$$paren>)
to (OPAREN -LRB-) and (CPAREN -RRB-),
respectively. We did this in order to retain the paren-
theses that otherwise, being daughters of CODE,
would have been deleted.

Our counts of number of words and sentences
differ slightly from Yang and Eisenstein (2016).
We aim to resolve these discrepancies, which are
probably related to small differences of preparation
of the type just discussed.

B.2 Function Tags

We exclude certain tags that occur very rarely in
PPCEME (ADT, CLF, COM, ELAB, EXL, RFL,
TAG, TMC, TPC, XXX, YYY). Table 4 shows
the frequency for each of the remaining 31 tags

Tag Description Frequency
Syntactic 37.23

SBJ subject 21.00
OB1 direct object 11.96
OB2 indirect object 1.20
SPR secondary predicate 0.28

MSR measure 1.17
POS possessive 0.86
VOC vocative 0.77

Semantic 7.93
DIR directional 0.50

LOC locative 0.84
TMP temporal 3.09
ADV adverbial 3.50

CP only 8.83
CAR clause-adjoined 0.55
REL relative clause 3.36
THT THAT clause 2.52
CMP comparative 0.53
QUE question 1.35
FRL free relative 0.33
EOP empty operator 0.19

IP only 9.67
INF infinitive 4.59
PPL participial 2.18
IMP imperative 1.12

SMC small clause 0.90
PRP purpose 0.46
ABS absolute 0.42

CP or IP 33.10
SUB subordinate 14.52
MAT matrix 12.66
SPE direct speech 5.64

DEG degree 0.28
Miscellaneous 3.23

PRN parenthetical 2.60
RSP resumptive 0.33
LFD left-dislocated 0.30

Table 4: Function Tags in PPCEME with Their Fre-
quencies. The tags are organized into 6 groups, with
combined frequency by group in boldface.

in the entire corpus, for nonterminals with a non-
empty yield. For convenience, the tags are orga-
nized into six groups. The syntactic and seman-
tic groups are roughly similar to those groups for
the PTB, as presented in Gabbard et al. (2006).
The other groups include tags that differ signif-
icantly from those in the PTB, as noted in Sec-
tion 2.2.1. For the full set of PPCEME func-
tion tags, see https://www.ling.upenn.edu/

hist-corpora/annotation/labels.htm.

C Train/Dev/Test Split

Table 5 summarizes the composition of the
train/dev/test sections across the cross-validation
8 splits; specifically, the total number of docu-
ments, the total number of tokens, and the per-
centage of total tokens in each section. Since the

154



section # files # tokens % of split
train 205.88 (13.34) 1743211.25 (10441.53) 89.65 (0.54)
dev 12.50 (7.15) 101000.12 (4081.82) 5.19 (0.21)
test 13.62 (7.91) 100268.62 (7832.66) 5.16 (0.40)
OVERALL 232 (0.00) 1944480 (0.00) 100 (0.00)

Table 5: Mean number of files and tokens for train/dev/test sections across the 8 cross-validation splits (standard
deviations are presented in parentheses). The percentage of tokens in each section is also presented (in the % of
split column).

partitioning process is performed at the level of
PPCEME source files, and these files differ sub-
stantially in size, there is some variation in these
numbers across the splits. For this reason, we re-
port standard deviations as well as means. The final
row (“OVERALL”) gives numbers for a complete
split (i.e., the train/dev/test sections combined); as
these are constant across each split, the entries in
this row have a standard deviation of zero. As can
be seen, overall the splits attain the target 90-5-5
breakdown; e.g., the train section on average com-
prises 89.65% of the total tokens with a standard
deviation of 0.54%.

As mentioned in the main text, the corpus con-
sists of text from three main time periods (e1, e2,
e3),15 and we aimed to balance the time periods
equally within each split, to the extent possible
given that we treated the files as atomic units. Ta-
ble 6 shows the breakdown by period. Similar to
Table 5, mean/standard deviation for total number
of documents/tokens are presented for each time
period in each section. Additionally, for each time
period, the table reports the mean percentage of
each split (in tokens) from each time period. The
marginals provide numbers combining across time
periods (the “ALL PERIODS” row) and sections
(the “ENTIRE SPLIT” column). For example, the
training section contains on average 1,743,211.25
tokens, with on average 32.85% coming from time
period e1, 36.61% from e2, and 30.53% from e3.

D ELMo Embeddings Trained on EEBO

In addition to the normalizations discussed in Sec-
tion 4, we follow (Ecay, 2015) in removing infor-
mation under NOTE, SPEAKER, and GAP, as well
as L (“line of verse”) which was not appropriate for
our searches. In future work, we will likely revise

15For details regarding the PPCEME time periods
(e1, e2 and e3) see https://www.ling.upenn.
edu/hist-corpora/PPCEME-RELEASE-3/
description.html

this to keep the text but with some meta-tags to
indicate its origin.

The extracted text underwent Unicode normal-
ization to NFC form in order to eliminate spurious
surface differences between tokens. The resulting
text contained 642 unique characters, 381 of which
occurred fewer than 200 times. Manual inspection
of these uncommon characters revealed that while
some of them made sense in context (e.g., within
sections of Greek or Latin text), many seemed to be
spurious characters due to OCR errors (e.g., WHITE

RECTANGLE 0X25AD). Consequently, we elected
to filter out all sentences containing characters oc-
curring fewer than 200 times. This eliminated 4139
lines, with 9,341,966 remaining for training (con-
sisting of 1,168,749,620 tokens).

The ELMo embeddings were trained using Ten-
sorFlow maintained and distributed by AllenNLP
at https://github.com/allenai/bilm-tf us-
ing the default model configuration.

E Model and Evaluation

Table 7 shows the hyperparameter settings used
in the Berkeley Neural Parser. These are all the
default settings for these parameters. We added a
parameter max epochs, used to set the maximum
number of epochs. For the cross-validation training
reported, we set max epochs=50.

F Function Tag Evaluation

Function tags are typically removed by evalb before
it compares bracket labels, and we have not mod-
ified this. To evaluate function tag recovery, we
follow the approach of Gabbard et al. (2006). who
in turn follow Blaheta (2003). Under this approach,
function tags are evaluated only for nonterminals
that evalb counts as matches. For example, an NP-
SBJ in the parsed tree corresponding to an NP-SBJ
in the gold tree counts as a match for SBJ. But an
NP-OB1 in the parsed tree corresponding to an NP-
SBJ node in the gold tree (which is possible since
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train section dev section test section ENTIRE SPLIT
period # files # tokens % train # files # tokens % dev # files # tokens % test # files # tokens % split
e1 72.88 572672.62 32.85 4.25 33178.50 32.98 4.88 31369.88 31.50 82 637221 32.77

(6.51) (11974.31) (0.79) (3.01) (7078.50) (7.36) (4.55) (8193.65) (8.67) (0.00) (0.00) (0.00)
e2 66.00 638269.88 36.61 4.00 34844.62 34.40 4.00 35186.50 34.89 74 708301 36.43

(4.38) (13490.18) (0.60) (2.51) (6382.81) (5.41) (2.14) (7767.44) (6.18) (0.00) (0.00) (0.00)
e3 67.00 532268.75 30.53 4.25 32977.00 32.63 4.75 33712.25 33.60 76 598958 30.80

(5.18) (7066.41) (0.35) (3.96) (5211.71) (4.65) (3.45) (5592.81) (4.70) (0.00) (0.00) (0.00)
ALL 205.88 1743211.25 100 12.50 101000.12 100 13.62 100268.62 100 232 1944480 100
PERIODS (13.34) (10441.53) (0.00) (7.15) (4081.82) (0.00) (7.91) (7832.66) (0.00) (0.00) (0.00) (0.00)

Table 6: Mean number of files and tokens for train/dev/test sections within each of three time periods (e1, e2, and
e3) across the 8 cross-validation splits. The % train/dev/test columns indicate the % of total train/dev/test tokens
for each time period. Standard deviations are presented in parentheses.

hyperparameter value
attention dropout 0.2
batch size 32
char lstm input dropout 0.2
checks per epoch 4
clip grad norm 0.0
d char emb 64
d ff 2048
d kv 64
d label hidden 256
d model 1024
d tag hidden 256
elmo dropout 0.5
encoder max len 512
force root constituent ’auto’
learning rate 5e-05
learning rate warmup steps 160
max consecutive decays 3
max len dev 0
max len train 0
morpho emb dropout 0.2
num heads 8
num layers 8
predict tags True
relu dropout 0.1
residual dropout 0.2
step decay factor 0.5
step decay patience 5
tag loss scale 5.0
max epochs 50

Table 7: Hyperparameters Used with the Berkeley Neu-
ral Parser.

the function tags do not count for evalb) counts as
a recall error for SBJ and as a precision error for
OB1.

Table 8 shows dev and test section scores for
the function tags using this scoring method, anal-
ogously to Table 1. To explore these numbers in
greater depth, Table 9 breaks down the function tag
results for the first cross-validation split, organized
as in Table 4. By far the most significant cause
for a decreased score is the SPE tag indicating
direct speech. Though one of the most common
tags, with a frequency of 8.21%, it attains an f1
score of only 50.75. The discrepancy reflects the
absence in PPCEME of consistent clues for direct

Function Tags
dev 94.90± 1.54

test 95.55± 0.87

Table 8: Cross-validation Function Tag Results.

speech (such as quotation marks) that are available,
say, in modern newswire text subject to strict style
guidelines. Fortunately, however, SPE is not highly
relevant for the purposes at hand.
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Tag Description Frequency F1
Syntactic 37.03 96.57

SBJ subject 21.57 98.06
OB1 direct object 11.63 95.33
MSR measure 1.18 92.42
OB2 indirect object 1.06 92.10
POS possessive 0.75 96.31
VOC vocative 0.52 92.82
SPR secondary predicate 0.32 76.07

Semantic 7.81 95.57
ADV adverbial 4.38 97.03
TMP temporal 2.43 93.44
DIR directional 0.52 95.78
LOC locative 0.48 93.19

CP only 8.18 91.86
REL relative clause 3.04 92.03
THT THAT clause 1.80 95.07
QUE question 1.46 95.23
CAR clause-adjoined 0.67 76.78
CMP comparative 0.63 96.97
FRL free relative 0.48 81.57
EOP empty operator 0.11 88.61

IP only 9.98 95.72
INF infinitive 4.92 98.24
PPL participial 2.35 98.59
IMP imperative 1.26 90.83
SMC small clause 0.83 95.68
PRP purpose 0.46 75.98
ABS absolute 0.17 69.92

CP or IP 34.38 88.24
SUB subordinate 14.94 98.72
MAT matrix 10.92 98.07
SPE direct speech 8.21 50.75
DEG degree 0.31 86.31

Miscellaneous 2.62 81.45
PRN parenthetical 1.77 87.99
RSP resumptive 0.47 58.62
LFD left-dislocated 0.37 73.65

Total 100.00 92.83

Table 9: Function Tag Results for the Dev Section.
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Abstract
Existing (experimental and computational) lin-
guistic work uses participant paraphrases as
a stand-in for event interpretation in comple-
ment coercion sentences (e.g. she finished the
coffee → she finished drinking the coffee). We
present crowdsourcing data and modelling that
supports broadening this conception. In partic-
ular, our results suggest that sentences where
many participants do not give a paraphrase,
or where many different paraphrases are given
are informative about to how complement co-
ercion is interpreted in naturalistic contexts.

1 Interpreting word meanings in context

A central aspect of pragmatic reasoning is to con-
strue utterance meaning which is not overly given
in the sentence (Grice, 1975). This paper uses
crowdsourcing and computational modeling to ex-
plore the range of possible interpretations in a par-
ticular grammatical construction in which implicit
meaning is (frequently) to be inferred, namely com-
plement coercion sentences. These are sentences
like they finished the coffee or she began a book,
where the entity-type direct object is ‘coerced’ into
an event-type interpretation applying to that direct
object (e.g., ‘they finished drinking the coffee’ or
‘she began writing the book’).

The traditional treatment is that these sentences
involve a case of type-shifting, where the direct
object whose extension is a physical entity is in-
stead interpreted as an event involving that direct
object (Pustejovsky and Bouillon, 1995). On this
account, readers leverage the lexical-semantic in-
formation of the direct object itself to arrive at a
specific event (e.g., drink for ‘they finished the
coffee’). In contrast to the type-shifting account,
the pragmatic account of Piñango and Deo (2016)
suggests that readers instead pragmatically retrieve
a relevant scale to enrich the interpretation of as-
pectual verbs that have entity-type direct objects.

This scale can be temporal in the case of an even-
tive interpretation (e.g. I sat down and began the
book) but also spatial (e.g. The marker begins the
trail). Crucially for our purposes, pragmatic enrich-
ment is not a lexical process resolving a specific
verb. This enrichment can take place to a greater or
lesser extent, in principle even allowing for a lack
of enrichment, although that option is not presented
explicitly in their paper.

Complement coercion has drawn attention from
different communities of scholars. Psycholin-
guists found that (simply put) complement coer-
cion incurs a processing cost (McElree et al., 2001;
Traxler et al., 2002), while computational linguists
have shown an interest in complement coercion
as a challenging case of automatically retrieving
implicit aspects of sentence interpretation (Lap-
ata and Lascarides, 2003; Roberts and Harabagiu,
2011; Zarcone et al., 2012; Chersoni et al., 2017).
Interestingly, both lines of research inherit the as-
sumption from the type-shifting account that com-
plement coercion sentences have a verb paraphrase
that represents the interpreted event, and largely
design test items based on this assumption. In
our paper, we focus on the computational task of
modeling the interpretation of sentences containing
complement coercion and the light it can shed on
the two theoretical accounts, but we briefly touch
on the implications for experimental work in §7.

For computational formulations of the task of
complement coercion interpretation, inheriting the
‘obligatory (semantic) resolution’ property from
the type-shifting account means that coercion in-
terpretation is conceptualized as a case of multi-
label classification in which models predict a single
event label (verb) which is then evaluated against
annotator consensus about the correct event label
(Lapata and Lascarides, 2003; Zarcone and Padó,
2010; Zarcone et al., 2012). In §2, we demonstrate
that this conception obscures many relevant and
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interesting cases of complement coercion where
verb paraphrase is not sufficient to represent in-
terpretation. Then, in §3 and §4, we introduce
models for complement coercion interpretation de-
signed for the simple verb prediction task. In §5
and §6, we highlight two types of cases which break
from the typical examples shown in the theoreti-
cal literature – cases where participants prefer not
to give any verb paraphrase (‘blanks’) and cases
where participants are divided on which verb to
use (‘low-consensus’). By building improvements
to our models to handle these two cases, we sug-
gest that complement coercion is best modeled as
a form of (optional, or at least gradient) pragmatic
enrichment rather than as obligatory semantic com-
pletion.

2 Elicitation study

2.1 Crowdsourcing with Blank responses

Existing experimental and computational work
relies on (crowdsourced) norming data to deter-
mine how complement coercion sentences are in-
terpreted (Zarcone and Padó, 2010; McElree et al.,
2001; Traxler et al., 2002; Frisson and McElree,
2008). Comparing the sentences in experimental
and computational studies with cases of comple-
ment coercion from a corpus of naturally occurring
text (the Corpus of Contemporary American En-
glish, or COCA: Davies, 2009), we observed that
the interpretation of naturally occurring cases often
differs from the hand-crafted examples used in ex-
perimental and computational work, in particular
in that hand-crafted examples typically allow for a
clear verb paraphrase, often a single one, whereas
naturally-occurring sentences often seem to lack
this property.

This exploratory observation led us to design
a new elicitation experiment in which we used
naturally-occurring cases of complement coercion.
First, candidate complement coercion sentences,
containing an aspectual verb (begin, end, start, fin-
ish, complete) and a likely coerced entity object
were extracted from COCA using heuristics dis-
cussed in Appendix A. 300 of the 4, 583 likely
instances were sampled for an elicitation experi-
ment, in which we asked participants to fill a blank
between the verb and the direct object (e.g., She
finished ____ her book), similar to the papers cited
above. In contrast to these approaches, and in line
with our expectation that not all cases readily elicit
verb paraphrases, participants were instructed that

blanks should be left empty if no verb was felt to
fit it. Appendix B presents an example of the elici-
tation prompt and several participants responses. 1

Using Testable (Testable), we gathered on average
19 (range: 15–20) responses per item.

In line with our initial intuition, our data dis-
played a large amount of ‘blank’ responses. In
138/300 sentences (46%), the most common re-
sponse was a blank one. The remaining 162 sen-
tences displayed substantial variation in the degree
to which participants agreed with each other. Defin-
ing the consensus of an item as the proportion of
participants who gave the dominant response, our
data displays a median consensus of 55% (IQR:
40%–74%). To illustrate: an example such as (1-a)
has a similar direct object as (1-b), yet received
a majority of blank responses (12/19, vs. 1/15
for the latter). Similarly, example (1-c) received
4/19 paint responses, versus 9/15 for example (1-b),
both again with similar direct objects. In contrast,
constructed cases often have a high consensus com-
pared to naturalistic examples (e.g., example (1-d)
had 58% of participants in the norming study of
(Frisson and McElree, 2008) respond with paint).

(1) a. Lordier began ___ the painting with a
very light sketch of the major shapes...

b. In 1951 he began ___ a second mural,
a portrayal of St. Joseph as the master
craftsman...

c. You will see the final texture effect
when you click OK. You have just
completed ___ your textured picture.

d. The artist began ___ the portrait in his
studio in the city.

2.2 Interpretive strategies vary across cases

We believe the prevalence of blank responses and
low-consensus responses is not an effect of poor an-
notator training or different annotator conceptions
of the target event, as Elazar et al. (2020) suggest,
but instead an effect of the varying demands on the
pragmatic resolution of the event that different ex-
amples bring about. In cases like (1-a), the implicit
event is not critical to understanding the sentence;
rather, the manner of the event (with a very light
sketch . . . ) is more salient to interpretation. Partici-

1This final 300 includes 16 (5.3%) with an inanimate sub-
ject, e.g. A pretty bow completes the picture. We kept these
sentences to compare participant responses as they fit the com-
plement coercion pattern by definition, recognizing they po-
tentially form a subcategory or separate aspectual verb sense.
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pants may consider the specific nature of the event
to be backgrounded, and for that reason elect to
leave the response blank.

Similarly, in (1-c), the act of completion seems
to be the primary message of the sentence rather
than the specific nature of what is completed. Un-
like in (1-a), blank responses do not dominate, but
participants display a lower degree of consensus
about which verb to fill out than for (1-b): for
(1-c), 4/15 respond with paint, but we also find
highly similar responses like edit (3/15), make, de-
sign, print and render (all 1/15), that all convey
a sense of creation.2 Elazar et al. (2020) argue
that such low-consensus cases potentially reflect
respondents’ different construals of the same situ-
ation. We propose instead that the fact that 11/15
responses reflect a general sense of creation is in-
dicative of speakers agreeing on the broad sense of
the coerced event (here: ‘creation’), but disagree-
ing when forced to come up with a specific verb to
fit that broad event.

Other cases are found in the data where no verb
is dominant, but where participants still give some
verb responses sharing the same broad sense. For
example, both sentences (2-a) and (2-b) receive ma-
jority blank responses (12/20 and 11/19 responses,
respectively), but other responses include verbs
about creation like make and build. Similarly, the
sentences in (3) all had the most popular response
write, but none had it as a majority (4/20, 6/19,
and 7/19 responses, respectively). Less popular
responses included publish, make, and compile.

(2) a. Lau next inserts a set of wire filaments
into the chamber... He completes ___
the setup by fitting a quartz cover on
the top of the reactor.

b. Complete ___ the rig by threading a
double-length of wire leader through
the tube and egg sinkers.

(3) a. Together with Sky Telescope’s Roger
W. Sinnott, Tirion has just finished ___
a new edition of his classic Sky Atlas
2000.

b. McGruder began ___ his politically
charged hip-hop comic strip for his
college newspaper.

c. He did finish ___ Harvard Man - a
story, he says, about sex, drugs, mad-

2For completeness: two further responses were blank, and
click and prepare were both given once.

ness, orgasm, philosophy, and college
basketball fixing.

An anonymous reviewer points out that some
sentences may receive blank responses due to fac-
tors besides the event interpretation. Specifically,
the fill-in-the-blank style of crowdsourcing may
discourage responses which are valid verb inter-
pretations but which cause grammaticality issues
or redundancy when given overtly. For example,
in sentence (4-a), 15/19 participants give a blank
response, compared to 3/19 who give the verb ‘in-
stall’ and 1/19 with the verb ‘make.’ It is likely
that some participants leave this sentence blank to
avoid an ungrammatical double-gerund construc-
tion. However, a grammatically similar sentence,
like (4-b), receives a 90% consensus response in
eat. Similarly, the presence of a direct object end-
ing in -ing may keep participants from presenting
verbs ending in -ing. While we are certain that
these low-level factors impact consensus rates to
some extent, there are many counter-examples to
such explanation, among cases like (2-a) and (3),
where an explanation in terms of grammaticality or
redundancy avoidance cannot be given.

(4) a. FINISHING ___ THE ROLL-OFF
ROOF RAILS

b. Pauline and Juliet are finishing their
grapes as they watch Hilda and Walter
on the tennis court .

Overall, we take inconsistent and blank responses
to be information (rather than noise) about how
participants actually resolve these sentences when
reading. For sentences which receive many blank
responses or low-consensus among responses, we
suggest that participants only resolve the interpreta-
tion to a specific verb because the task formulation
forces or nudges them to do so.

This leads us to suggest a novel account for the
two new types of cases introduced in this paper.
For both types, the presence of complement co-
ercion does not obligatorily lead to a particular
event interpretation, as implicated by the account
of Pustejovsky and Bouillon (1995). Rather, they
fit better the account of Piñango and Deo (2016),
where speakers are said to interpret an aspectual
verb as related to some pragmatically determined
scale but not necessarily to resolve that interpre-
tation to the level of a specific event. Note that it
is only this property of ‘obligatory resolution’ on
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which we compare the two accounts – this paper
does not make claims about any further differing
properties of the two accounts.

Overall, we take sentences where the top re-
sponse is a blank and sentences with a low con-
sensus rate as indicative that not all cases of com-
plement coercion need to be ‘resolved’ to a spe-
cific event, as labeled by a specific verb. Com-
munication can succeed even when the interpre-
tated event is left vague or underspecified (Frisson,
2009), and models of complement coercion inter-
pretation should capture the proposed variation in
the interpretation process, as evidenced by partici-
pants’ diverse types of responses. In other words,
we seek to build models which make more informa-
tive predictions than a single verb paraphrase, and
we argue that re-conceptualizing the task allows
us to better understand the linguistic (pragmatic)
properties of complement coercion in return.

3 Modeling complement coercion

3.1 Redefining the modelling task

To recapitulate: previous work defines the mod-
eling task of complement coercion interpretation
as the prediction of a single, high-consensus verb
paraphrase for a given sentence in line with the
theoretical conception of complement coercion as
involving obligatory resolution to the level of a par-
ticular event. Our annotation data show that only
a minority of all sentences display a consensus of
over 50%, and for almost half the items a blank
response is dominant – two effects we argued not
to be due to poor annotation or improperly trained
annotators, but instead to the varying pragmatic
demands on the resolution of apparent cases of
complement coercion. In the following sections,
we evaluate complement coercion interpretation
models on our new dataset.

Crucially, the gold labels derived from our
dataset differ in two ways from from those as
formulated by similar tasks (e.g., Zarcone et al.
(2012); Chersoni et al. (2017)): (1) the correct la-
bel for items is taken to be ‘blank’ if the dominant
response was ‘blank’, and (2) all the low-consensus
cases are included, using the dominant response
as their label. We consider these changes to see
how models that follow the ‘predict-the-verb’ task
formulation fare on these two groups of cases in
§4, after which we look at two extensions that ex-
plicitly take the varying pragmatic demands on
interpretation into account in §5 and §6.

3.2 Models of complement coercion

Several models have been defined to model com-
plement coercion detection (whether a case of an
aspectual verb plus direct object is coercive or not)
and interpretation (which event is to be inferred to
‘fill the blank’). Existing models build on the intu-
ition that the direct object of a sentence is uniquely
informative for constructing a coercion interpre-
tation (Lapata and Lascarides, 2003; Roberts and
Harabagiu, 2011; Zarcone et al., 2012). First, we
use the Example Based Learning model, or EBL
(broadened from McGregor et al., 2017’s coercion
identification model). EBL is our only supervised
model. For a given test sentence S, EBL predicts
the interpretation to be the most common interpreta-
tion of training sentences that have the same direct
object as S. For example, if 6/9 of the training sen-
tences containing the direct object book have the
top response write, 2/9 read, and 1/9 ‘blank’, EBL
will predict the answer write when presented with
a test sentence containing the direct object book. If
a direct object of a test sentence does not occur in
the training set, EBL predicts a blank.

A second model, the Co-occurrence counts
model (COOC) operates on the same intuition but
leverages raw unlabeled corpus data instead of la-
beled training data. This model is a simple applica-
tion of similar models from other verb-prediction
tasks (Lenci, 2011; Zarcone et al., 2012). It as-
sumes that the verb a particular direct object occurs
with in a corpus (as a direct object) will also be the
most likely coercion interpretation. More specif-
ically, the COOC model predicts the top corpus
verb for a specific direct object.

Finally, we define the Prototype vector model
(Chersoni et al., 2017) (PROTO). For a given direct
object, instead of predicting the top verb by co-
occurrence in a corpus, average word vectors for
the top k verbs that the direct object co-occurs with
into a prototype vector P, and predict the closest
verb in that vector space to P. Here we use pre-
trained word2vec (Mikolov et al., 2013) vectors
from the gensim implementation in Python.

All three models rest on the assumption that a
specific direct object (type) will predict a single
recurrent interpretation. This approach has the dis-
advantage that it is unable to predict different inter-
pretations for different tokens of the same direct ob-
ject (such as ‘make’ vs ‘drink’ for finish the coffee).
As a point of comparison to the models above, we
furthermore used a large language model (BERT;
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Devlin et al., 2019) to predict based on the context
of the entire sentence rather than the direct object
alone, thus allowing for different interpretation for
different tokens. We adapt BERT as a model for
coercion interpretation by treating the fill-in-the-
blank position as a masked token to be predicted.
BERT yields a distribution of relative confidences
for each item in its vocabulary when used for this
task. This means for each sentence, we define our
BERT model to predict the top verb from the top k
items in this distribution.

3.3 Experimental set-up

For this study, we split the 300 sentences in our
dataset randomly into 150 training and 150 testing
sentences. Within the 150 test items, we evalu-
ate the accuracy of the models in predicting the
response (either a single verb or a blank). To as-
sess whether model performance is the same for
the different cases as discussed in §2, we also re-
port the accuracy scores for three salient groups
of test items: items with a ‘blank’ top response
(n = 69), cases with a non-blank top response at or
above the median of 55% consensus (High Consen-
sus, or HC, n = 41), and cases with a non-blank
top response below the median consensus (Low
Consensus, or LC, n = 40). In line with Roberts
and Harabagiu (2011), we skipped predictions of
semantically general verbs like have and say.

4 Modelling dominant verb responses

4.1 Results & Discussion

Accuracy for each model is reported in Table 1 as
the -T ([T]op verb predicting) models. We expect
models to be unable to predict Blanks, as they are
defined to find the top-ranked verb. Interestingly,
we observe that EBL performs well on this subset

Overall Blanks HC LC

EBL-T .620 .870 .512 .300

COOC-T .233 .058 .439 .317
COOC-B .480 .710 .293 .275

PROTO-T .200 .000 .488 .250
PROTO-B .333 .623 .073 .100

BERT-T .327 .029 .731 .425
BERT-B .493 .435 .682 .400

Table 1: Accuracy for 4 models and variants for the
entire dataset as well as the three subsets.

of the data at .870 accuracy, compared to near-zero
scores for the other models. EBL’s high perfor-
mance, however, seems to be an artefact of data
scarcity: many direct objects in the test set do not
exist in the (small) training set and therefore cannot
be predicted for, so EBL performs well by accident
rather than by design. The non-zero scores for the
other models can similarly be attributed to a few
cases in which no verb among the co-occurrence
data or top model predictions could be found.

Turning to the degree of consensus next, we
see, that all models perform worse on LC items
than on HC items. In line with our analysis of LC
items in §2, we take this difference to be indica-
tive of the difficulty of predicting a single specific
verb when LC items may have underspecified (or
possibly ambiguous) meanings. Given that other
datasets use deliberately high-consensus items, we
believe this furthermore illustrates the challenge
of modelling when using a more naturalistic sam-
ple of complement coercion sentences. For the LC
sentence in example (5) each model makes a dif-
ferent prediction (COOC: plant, PROTO: produce,
BERT: grow) all of which are incorrect for the dom-
inant answer sow (given by 8/20 participants). The
comparable closeness of some answers, however,
suggests that rethinking the modeling task might
be insightful, which we will do in §6.

(5) ...for a fall crop. Start ___ seeds in pots
in early to midsummer, setting out six- to
eight-week-old transplants in late summer
or early fall in full sun and enriched soil.

Finally, focusing on a between-model comparison,
we note that BERT outscores the other models on
both HC and LC items. We believe this is be-
cause (1) BERT doesn’t suffer from data scarcity
as much as the other models by being trained on
larger amounts of data, and (2) it is a token level
model and can thereby make different predictions
for sentences with the same direct object. This lat-
ter property leads BERT to correctly distinguish
cases like Nikolai finished a piece of stewed rabbit
(eat) from Annie finishes the piece, lowering the
bow (play), where EBL predicts see in both cases,
and the other models predict take. The fact that the
use of contextualized, token-level representations
leads to an increased performance on non-Blank
responses suggests that information beyond direct-
object noun is relevant in establishing the inferred
event, where there is one (i.e., for the HC and LC
cases).
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Sentence Responses Predict top
verb (§4;
-T)

Allow for
blanks
(§5; -B)

Predict
broad sense
(§6; -S)

Lordier began the painting with a
very light sketch...

BLANK (12), draw
(2), redecorate, sketch,
create, brush, paint

draw
(11%)

BLANK

(63%)
BLANK

(63%)

Those so inclined can start the meal
with vodka and tonic...

eat (7), BLANK (6),
have (5), pair

eat (37%) eat (37%) CONSUME

(63%)

She finished his back, then rear-
ranged the sheet to do his legs. The
top half of him was loose as a fish...

massage (11), BLANK

(4), stretch (2), do (2),
cover

massage
(55%)

massage
(55%)

OTHER

(80%)

Although she was in residence for
only about ten months she probably
completed as many as ninety vases.

make (5), sculpt (3),
BLANK (3), build,
craft, create, shape

make
(33%)

make
(33%)

CREATE

(73%)

Table 2: Example sentences, responses, and gold-standard answers for each dataset

5 Modelling blank responses

In a way, the approach taken in §4 set the models up
to fail, as they have no mechanism to recognize that
in cases such as (1-a) and (1-c), the interpretation
does not ‘need’ to be resolved. In the remainder
of this paper, we present two simple steps in the
direction of broadening models’ ability to interpret
these cases in a way that is in line with their anal-
ysis as presented in §2. First, in this section, we
update the models to explicitly predict the label
to be ‘blank’ for items whose dominant response
was blank. Then, in §6, we consider low-consensus
items as cases where a broad sense is available for
the event interpretation, but no specific verb res-
olution is necessary. These two strategies differ
significantly from other datasets that approach this
issue. Our changes in the nature of the correct label
are illustrated in Table 2.

5.1 Updating models to predict ‘blanks’

If we accept ‘blanks’ as valid modal participant
responses to complement coercion interpretation
cases, we need to allow models of complement co-
ercion to have decision mechanisms to predict that
response. For all unsupervised models, it is rela-
tively straightforward to extend the unsupervised
models by building in a threshold of confidence
below which the models predict a blank response,
reflecting the intuition that there is no single good
verb the model can predict in response to the item.
We call these models as a group -B ([B]lank predict-
ing) models. As each model uses a different type

of metric, applying a confidence threshold looks
different for each one. We tuned specific thresholds
by maximizing overall accuracy on our training set.

For the COOC model, for a given direct object
and all uses of a verb with that direct object in the
corpus, calculate the percentage p of all uses com-
prised by the top verb. If p is above a set threshold
k, predict the top verb. Otherwise, predict a blank.
We report results for an optimal k=12%. For the
PROTO model, we build in a threshold based on
the cosine similarity of the prototype vector to its
nearest verb neighbor. If the similarity exceeds
k, predict the verb corresponding to that nearest
neighbor. Otherwise, predict a blank. (Optimal
k=0.79). Finally, for BERT, we currently predict
the verb with the highest confidence from BERT’s
masked prediction. To build in a threshold, we
manually limit the number of predictions for the
blank to check – if no verb is found in the top k
words, predict a blank instead (Optimal k=5).

5.2 Results & Discussion

Table 1 presents the results for the blank-predicting
models on the rows marked as -B. The addition of
a tuned threshold mechanism to predict blanks im-
proves accuracy on the Blanks subset (and thereby
on the Overall accuracy) for all three models. For
example, on the sentence Some people with en-
trepreneurial spirit are still starting ___ farms, all
three blank-predicting models correctly predict a
blank where their original versions incorrectly at-
tempted verb responses.

However, this improvement comes at a cost for
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the COOC model (a drop from .439 to .293 for HC
and .317 to .275 for LC items) and the PROTO
model (a drop from .488 to .073 for HC and .250
to .100 for LC items). Looking at the model predic-
tions, the tuned threshold leaves these two models
with a very good recall for predicting Blank re-
sponses, but a low precision: both models mark
many cases that have a dominant verb response as
‘blanks’. For instance, in The others are already
finishing their granola the dominant response eat
is correctly predicted by the original COOC model,
but the updated model wrongly predicts a blank.
The decrease in performance on HC and LC cases
is much smaller for BERT, with accuracies drop-
ping only from .731 to .682 (HC) and from .425
to .400 (LC). However, BERT only predicts 43.5%
of the Blank items correctly, compared to 71%
(COOC) and 62.3% (PROTO) of cases.

What we take this to mean is that sentences with
a dominant ‘blank’ response have a particular con-
textual profile: they may have different kinds of
direct objects, or they may contain more adjunct
phrases of the kind of with a very light sketch in
example (1-a). Such properties could make models
recognize comparably reliably that the interpreta-
tion should be a blank. (A further investigation
of these contextual properties is left for future re-
search.) Simple unsupervised models overgener-
alize that blank-prediction, but for BERT the ex-
plicit prediction of blanks comes at a comparably
low cost, suggesting that there is contextual sig-
nal that correlates with participant responses being
dominantly ‘blank’. We take this to be converging
evidence for the coherence of a group of ‘blank-
dominant responses’ as a distinct type of comple-
ment coercion responses.

6 Modelling low-consensus responses

We next consider expanding the interpretation of
our models to better handle low-consensus cases.
Just as we modelled ‘blank’ interpretations by ex-
panding the possible predictions of models, we
adapt our task to low-consensus cases by changing
the possible predicted classes.

One practical problem with these cases is that
the task of predicting a single verb might penalize
a model which guesses a different but semantically
very similar token from the correct top response.
For example, in sentence (6), our BERT-B model
incorrectly guessed construct instead of the top re-
sponse build given by 7/19 participants. Although

intuitively these answers both involve creation of
an object through handiwork, our dataset judges
one correct and one incorrect.

(6) Amtrak has recently announced that it will
begin ___ a high-speed rail system connect-
ing New York, Boston, and Washington,
D.C., in 1998.

In the case of these low consensus sentences, pre-
dicting a single verb might be too restrictive. In-
stead, we consider a second change to the evalu-
ation and models. Namely, we replace individual
verb answers with broad senses of meaning that
cover a shared property of multiple verb responses
across items.

A few approaches have previously modelled the
concept of broader senses in complement coercion
interpretations. For example, Shutova and Teufel
(2009) clustered many possible interpretations to
short verb+object phrases. For the pair finish video,
this includes film, shoot, take, produce, make. . . as
one cluster, watch, view, see, examine. . . as an-
other, and edit, cut, redact, screen. . . as a third.
Models were then evaluated on how closely their
unsupervised clustering of the same items matched
annotator clusters. Our modelling differs from this
unsupervised clustering in two key ways. First, we
pre-define senses that apply across many coercion
phrases, rather than creating clusters for specific
verb+object combinations. Second, we test predic-
tions on individual sentences rather than predicting
one cluster over all possible sentences for ambigu-
ous phrases.

6.1 Updating models to capture broad senses

Modeling responses with broad meaning senses
requires two updates: (1) reworking our dataset
where correct answers consist of broad senses, and
(2) updating our models to be able to predict these
new classes. Among the responses to our elicitation
task, we found two coherent groups of broad senses
of verbs: verbs that involve some form of creation
(CREATE; e.g., make, build, write) and verbs in-
volving some form of consumption (CONSUME;
e.g., read, eat, drink, watch). All unique responses
were manually assigned to one of these two groups,
or tagged as OTHER (e.g., destroy, massage, hold)
if they didn’t belong to either group. For each sen-
tence, we then define the “correct" broad sense as
the most popular broad sense category among all
participant responses to the sentence.
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In order to update our models so that they pre-
dicted broad senses rather than individual verbs,
we needed a procedure to map a model’s single
verb prediction into a broad sense category. We
used the hand-labels of senses for the gold standard
answers to automate the prediction of a broad sense
based on a model’s originally predicted verb. For
each category, we combined word vectors for all
tagged examples into a single averaged vector rep-
resenting that sense. When a model would predict
a single verb V , it instead predicts the category
whose average vector is closest to the vector for V .
In this way, we update the verb predicting models
to instead predict broad sense labels.

6.2 Results & Discussion

We report performance of each model in Table 3.
We used the same training/test split as in the origi-
nal dataset, and kept all sentences where the domi-
nant response was a ‘blank.’ As in §4 and §5, we
report the accuracy overall and on the three subsets
of the data. This means the gold-standard for our
updated dataset includes only 4 possible classes to
predict: the 3 broad senses CREATE, CONSUME,
OTHER, as well as BLANK.

Given the different inventory of categories, a
direct comparison with the results in §5 is not pos-
sible; instead we compare relative increases of per-
formance across models and subsets of the data. Be-
cause the broad sense predictions are derived from
the verb prediction of the same models, we do note
that sentences where a -T or -B model predicted
incorrectly but a -S model predicted correctly are
cases where the model predicted the correct sense
but failed to match the exact verb. Sentences where
all models were incorrect are sentences where the
prediction belongs to an entirely different event
sense (e.g., predicting cook/CREATE when the gold
standard is eat/CONSUME).

High-consensus vs low-consensus: For BERT
and EBL, the two best performing models on the
broad sense dataset, we remark that the HC and
LC cases show similar accuracies. In contrast to
other modelling in §4 and §5, where accuracy was
low for low-consensus items in particular, the broad
sense prediction task shows less difference between
the categories.

This improvement for low-consensus cases can
be attributed to low-consensus sentences which
received incorrect single verb predictions on the
previous task but now received the correct broad

Overall Blanks HC LC

EBL-S .673 .870 .561 .450

COOC-S .487 .710 .317 .275

PROTO-S .393 .623 .219 .225

BERT-S .547 .435 .634 .650

Table 3: Accuracy for 4 models on the modified broad-
senses dataset as well as its three subsets.

interpretation. For example, in sentence (7), BERT-
B predicts draw which was incorrect for the verb
prediction task (correct: write, 6/19 participants).
However, draw is categorized under the sense CRE-
ATE for the broad sense task, which is correct with
11/19 responses.

(7) McGruder began ___ his politically charged
hip-hop comic strip for his college newspa-
per

The close performance for HC and LC cases on
the broad senses task supports our intuition that
many coercion sentences involve broad sense in-
terpretation. We suggest that individual verb para-
phrases for interpretations may be an artefact of
tasks that prompt specific verb responses. That is,
participants may be able to provide specific verb
interpretations when prompted, but outside of the
context of the elicitation task only resolve the broad
sense and leave the specific nature of the event un-
specified.

7 Discussion

By reframing the possible classes predicted in a
coercion interpretation task, we break from the typ-
ical paradigm of considering complement coercion
as analogous to verb paraphrase, that is: as an oblig-
atory (semantic) resolution of a particular event. In
redefining the computational task we also recon-
sider how complement coercion has traditionally
been represented – as a type-shift from object to
event, or a pragmatic process of interpreting a rele-
vant scale. We acknowledge that neither of these
accounts is formulated for modeling interpretation
as a predictive task, and as such our work does not
constitute a full comparison of all aspects of these
accounts. Nonetheless, the fit with these accounts
differs for the property at issue in our work, namely
whether event resolution is obligatory.

The type-shifting account of Pustejovsky and
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Bouillon (1995) forwards that each direct object
contains within its lexical-semantic qualia the pos-
sible event interpretations for a coercion sentence.
This translates readily to a single-verb prediction
task. Under a generous reading, we could broaden
this account to explain cases like (6) where mul-
tiple semantically similar verbs (e.g., construct,
build) make valid interpretations. That is, we can
rethink the type-shift accounts to consider broad
event senses rather than specific paraphrases, just
as we did for low-consensus cases in §6.

Still, the prevalence of sentences where a blank
response was dominant suggests there are many
coercion sentences where a verb paraphrase is dif-
ficult to access or absent altogether. Building mod-
els that predict blanks is difficult to link to a type-
shifting account, which builds on the assumption of
complement coercion as a process of event interpre-
tation based on the direct object noun. In contrast
these examples are well covered by the scalar in-
terpretation account of Piñango and Deo (2016)
which does not necessitate an event interpretation.

Although our work is not intended as a model of
the psycholinguistic result that complement coer-
cion incurs processing cost, we remark that most
experimental work has used stimuli which are delib-
erately high-consensus constructed examples. Our
present work illustrates the breadth of complement
coercion sentences and outlines three general pat-
terns – high-consensus, low-consensus, and ma-
jority blank responses – only the first of which is
represented in experimental stimuli.

Noteably, Frisson and McElree (2008) investi-
gate the effect of response consensus on process-
ing cost, finding no difference in cost for reading
sentences with high vs. low consensus. This find-
ing is used to show that ambiguity between inter-
pretations does not modulate the processing cost.
Our introduction of low-consensus cases which
share a broad sense complicates this picture by
suggesting that not all low-consensus coercion sen-
tences involve ambiguity between broad senses. As
well, even norming work from Frisson and McElree
(2008) forced participants to choose a verb, leav-
ing potential blank cases unexplored. While our
findings do not make predictions for the processing
cost observed in experimental work, they suggest
potential new classes of experimental stimuli for fu-
ture work in the form of low-consensus items with
a single broad sense and blank-dominant cases.

Overall, the broad spectrum of coercion exam-

ples covering multiple sub-classes illustrates that
the process of interpretation goes beyond selecting
a single appropriate verb paraphrase. Indeed, the
presence of many blank responses suggests that it
may go beyond event interpretation as well. As
such, our work suggests that using naturalistic data
and analyzing the semantic-pragmatic properties of
observed cases is critical to developing a more com-
plete insight into a phenomenon like complement
coercion.
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A Appendix - Corpus Extraction
Heuristics

For extracting likely complement coercion candi-
dates in §2, we used a series of heuristics to narrow
from corpus sentences to coercion candidates.

First, we extracted all sentences which used one
of five aspectual verbs (begin, complete, end, finish,
start) if the sentence also included an overt direct
object. We then eliminated uses which included an
overt complement verb (I had just finished washing
the dishes). This left 44,810 aspectual verb sen-
tences from the corpus. We further removed sen-
tences at the beginning or end of a passage in the
corpus, i.e., sentences where we could not present
at least one other sentence of context on either side.
This left 41,372 aspectual verb sentences.

Next, we used information about the direct ob-
ject in the ontological database WordNet to remove
non-coercion uses of aspectual verbs (Miller, 1995).
While we suspect there is common ground between
many aspectual verb uses regardless of direct ob-
ject type, other work leaves out specific direct ob-
jects as separate senses (Verspoor, 1997; Elazar
et al., 2020). We choose to narrow the field here
for maximum analogy to past work. Specifically,
we removed all sentences where the direct object
had no extension which was a physical entity. This
included unclear cases where a physical meaning
was possible but not certain – for example, "work,"
"school," or "company" and any direct object end-
ing in -ion, those being event nouns. We also re-
moved sentences where the aspectual verb start
took a direct object with a "motor vehicle" sense
in WordNet, (e.g., ...start the car/engine). This left
5,088 candidate coercion sentences.

Finally, we removed sentences with a particle,
e.g., (finish up the tea). While these sentences do
resemble complement coercion in most respects,
we expected they would introduce grammaticality
issues with the fill-in-the-blank paraphrase task,
potentially discouraging paraphrases when a clear
interpretation was available.

This process left 4,583 sentences where an as-
pectual verb takes a clear entity object, resembling
complement coercion by all definitions in the liter-
ature. Of these, we randomly selected 300 to use
for crowdsourcing.
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B Appendix - Dataset Materials

B.1 Materials
For our crowdsourcing experiment, we recruited
online via Testable, under approval from Anony-
mous Institution. Participants were paid at a rate
of $15CAD per hour, for annotating 50 items tak-
ing approximately 20 minutes.

Participants were initially given the following
instructions asking them either provide a verb para-
phrase or leave a blank (boldface as presented to
participants):

In a sentence like “The thirsty athlete
finished a bottle of water,” we know that
the athlete drank the bottle of water, even
though the verb “drinking” is not present.
We are interested in sentences where
such “silent verbs” are and aren’t present.

In this survey, you will be shown sen-
tences which may or may not have this
kind of silent verb meaning. We have
added a blank line to the sentence where
a verb might go if available. You will
have the option to “fill in the blank” to
make the meaning explicit or character-
ize the event occurring. For example,
given sentence (A). . .

(A) The thirsty athlete finished
___ a bottle of water.

. . . you might choose to fill in the blank
with “drinking” Given sentence (B). . .

(B) The construction company
completed ___ a new condo.

. . . you might choose to fill in the blank
with “building” If you choose to fill in
the blank, please fill it with a single
verb with an “-ing” ending. Some sen-
tences might not have any reasonable in-
put. In these cases, you may leave the
input blank. For example, in (C). . .

(C) I began ___ the day by stretch-
ing.

. . . the sentence is fine as is, and doesn’t
necessarily imply a specific verb. You
might choose to leave the sentence blank
if you cannot think of any reasonable
verb. Don’t spend too much time on any
one item – your gut feeling is most im-
portant. If you don’t think of any verb

after a few seconds, leave it blank and
move on to the next question.

Items were presented in groups of 5. Participants
were reminded of the instructions after every block
of 5 items. An example of 5 items as displayed in
a browser is shown in Figure 1.

B.2 Example items and responses

In this section we include 3 item examples from
each of the 3 categories discussed in §2: high-
consensus (top response above median consensus),
low-consensus (top response below median consen-
sus), or blank (top response was a blank).

B.2.1 High-consensus examples
(8) All this attention The Third Policeman is

getting would’ve stunned its author. He
finished ___ the book in 1940 at the dawn
of World War II. Bad timing for a comic
novel.
TOP RESPONSE: write, 100% (15/15)
ALL RESPONSES: writing (15)

(9) Yet a closer look reveals subtle touches of
Sikes’ brush. He finished ___ the walls in
an aged plaster texture in warm shades of
light gold and gray. He marbleized a pair of
columns in similar neutral tones yet made
them pop with metallic gold accents.
TOP RESPONSE: paint, 93.3% (14/15)
ALL RESPONSES: painting (14), building
(1)

(10) Have I done something before 9/11 or af-
ter? When did I start ___ guitar? That was
after.
TOP RESPONSE: play, 73.7% (14/19)
ALL RESPONSES: playing (14), learning
(4), practicing (1)

B.3 Majority blank examples

(11) The peace has proven lasting, much to
WIPNET’s surprise. Gradually Liberia
has started ___ the long road back from
war. The country was absolutely devas-
tated by 13 years of war, says Bushkofsky.
TOP RESPONSE: BLANK, 70.0% (14/20)
ALL RESPONSES: BLANK (14), taking
(2), recovering (2), walking (1), building
(1)

(12) Ants far exceed human beings in nastiness,
Wilson has written. If ants had nuclear
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Figure 1: Screenshot of 5 items as displayed to a participant during annotation.
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weapons, they would probably end ___ the
world in a week. He told me there were
only 20 people in the world who knew
enough to identify and classify ants...
TOP RESPONSE: BLANK, 65.0% (13/20)
ALL RESPONSES: BLANK (13), destroy-
ing(4), annihilating(1), fighting(1), liv-
ing(1)

(13) ...is the similar-size Keystone of Hercules.
We complete our ___ circuit around the
rim of the sky by looking southwest. Here
dramatic Scorpius is well past its prime
height, but it’s still not too late for good
looks at twinkling Antares and other illus-
trious Scorpius treasures.
TOP RESPONSE: BLANK, 65.0% (14/20)
ALL RESPONSES: BLANK (14), building
(2), developing (1), doing (1), making (1),
walking (1)

B.4 Low-consensus examples

(14) Erica became unconscious immediately.
The technicians completed ___ the X-ray.
Despite the Portlock’s concerns, the tech-
nicians told them it was okay to take Erica
home, even though she was still uncon-
scious.
TOP RESPONSE: take, 30.0% (6/20)
ALL RESPONSES: taking (6), BLANK (5),
analyzing (3), scanning (2), examining (1),
making (1), performing (1), running (1)

(15) “He must like you a lot.” Tyla finished
___ Julienne’s hair, went to pick up her
half-boots, and knelt to put them on her.
Julienne was smiling, a dreamy, private
softening of her lips.
TOP RESPONSE: braid, 21.1% (4/19)
ALL RESPONSES: braiding (4), combing
(4), tying (3), brushing (2), BLANK (1),
cutting (1), doing (1), making (1), styling
(1), weaving (1)

(16) Painting outdoors allows me to capture
light and color with much greater accu-
racy, he notes. He may complete ___ a
piece during his first outing or return to
the location the next day, but he often fin-
ishes paintings in his studio, as he did with
Carmel Mission Bell Tower. Durborow
especially enjoys the friendly competi-
tion and camaraderie of paint-outs, where

artists work together on location, and he
attends at least four such events a year.
TOP RESPONSE: paint, 33.3% (5/15)
ALL RESPONSES: painting (5), BLANK
(3), drawing (3), assembling (1), building
(1), making (1), writing (1)
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Abstract

Association of tones to prosodic trees was
introduced in Pierrehumbert and Beckman
(1988). This included: (i) tonal association
to higher-level prosodic nodes such as intona-
tional phrases, and (ii) multiple association of
a tone to a higher-level prosodic node in addi-
tion to a tone bearing unit such as a syllable.
Since then, these concepts have been broadly
assumed in intonational phonology without
much comment, even though Pierrehumbert
and Beckman (1988)’s stipulation that tones as-
sociated to higher-level prosodic nodes are pe-
ripherally realized does not fit all the empirical
data. We show that peripherally-realized tones
associated to prosodic nodes can be naturally
represented with bottom-up tree transducers.
Additionally, multi bottom-up tree transduc-
ers provide a way to represent non-peripheral
boundary tones and multiple tonal association,
as well as multiple dependencies in prosodic
structures in general, including prosodically-
conditioned segmental allophony.

1 Introduction

It is widely accepted that describing segmental and
tonal distributions and processes over trees built
with prosodic constituents (e.g., syllables (σ), feet
(Ft), prosodic words (ω), accentual phrases (α),
phonological phrases (φ), and intonational phrases
(ι)) can help capture phonological generalizations.
A classic example exemplifying this comes from
Bengali (Hayes and Lahiri, 1991). As exemplified
in Fig. 1, adapted from Khan (2008, p. 101)1, rises
in the pitch contour delineate phonological chunks
in Bengali. In the example in Fig. 1, these chunks
happen to be the size of a morphosyntactic word

1The Bengali case study presented in this paper is based on
Hayes and Lahiri (1991)’s analysis of a Kolkata variety, but
we show a pitch track example from Khan (2008)’s analysis
of a Bangladeshi variety since recordings from Khan (2008)
are readily available.

plus affixes, but chunk size can vary depending on
speech rate. For example, Hayes and Lahiri (1991,
(54)) provides the example in (1), where we indi-
cate phonological chunks delineated by melodic
rises using square brackets. In (1a), one melodic
rise occurs per word as in Fig. 1. However, at faster
speech rates, a speakermay utter the same sentence
with the prosodic chunkings in (1b) or (1c), or at
an even faster speech rate, as (1d).

(1) Variation in prosodic domains

a. [ɔmor]
Amor

[t͡ ʃador]
scarf

[tara-ke]
Tara-obj

[diet͡ ʃʰe]
gave

‘Amor gave a scarf to Tara’

b. [ɔmot͡ ʃ t͡ ʃador] [tara-ke] [diet͡ ʃʰe]

c. [ɔmor] [t͡ ʃadot tara-ke] [diet͡ ʃʰe]

d. [ɔmot͡ ʃ t͡ ʃadot tara-ke] [diet͡ ʃʰe]

Time (s)

H𝛂H𝛂

L%

L*
L* L*L*L*

L*
L*

H𝛂 H𝛂
H𝛂

H𝛂

Figure 1: Melodic rises in Bengali analyzed as tonal se-
quences. Fundamental frequency (Hz) on y-axis, time
(s) on x-axis. ‘Rumu couldn’t remember the names of
the gardeners of the queen of Nepal.’ Example from
Khan (2008, p. 101).

It would be difficult to characterize all of these
possible chunkings of the same sentence under the
same information structural conditions as being
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morphosyntactically-conditioned. Moreover, the
same chunks delineated by melodic rises also de-
termine whether two other segmental processes oc-
cur (Hayes and Lahiri, 1991, §§9.1, 9.2): (i) to-
tal assimilation of /r/ to an immediately following
coronal consonant, and (ii) voicing assimilation of
a stop to an immediately following stop. These
two segmental processes occur when both the seg-
ment that gets changed as well as its conditioning
environment occur within the same chunk, as ex-
emplified for the final [r]s in [ɔmor] and [t͡ ʃador] in
(1), which are underlined when they assimilate to
[t͡ ʃ] and [t], respectively. (Note: Hayes and Lahiri
(1991) calls these prosodic constituents phonolog-
ical phrases, while Khan (2008) calls them accen-
tual phrases; here we use ‘accentual phrase’).

The generalization that melodic patterns de-
lineate the edges of prosodic constituents also
motivated one of the foundational assumptions
of Autosegmental-Metrical (AM) Theory (Pier-
rehumbert, 1980; Pierrehumbert and Beckman,
1988; Ladd, 1996; Arvaniti and Fletcher, 2020), a
theory that dominates work on intonational phonol-
ogy: the assumption that tones can associate not
only to tone-bearing units (TBUs) “at the bottom
of the tree” (i.e., non-terminal nodes that immedi-
ately dominate terminals) such as moras (μ) and
syllables (σ), but also to any higher-level node in
the prosodic tree, e.g., the accentual phrase or the
intonational phrase (Pierrehumbert and Beckman,
1988, p. 21). While the concept of tones associat-
ing to TBUs was carried over from Autosegmental
Theory (Goldsmith, 1976), the concept of tones as-
sociating to prosodic constituents in general was
an innovation of AM theory, as well as the notion
that tones can be multiply associated—both to a
higher-level prosodic node as well as a TBU (Pier-
rehumbert and Beckman, 1988).

In Fig. 1, each melodic rise is analyzed as the
phonetic realization of a sequence of two discrete
tones: a low pitch accent (L*), and a high accen-
tual phrase tone (Hα). The ‘*’ diacritic indicates
a pitch accent; the ‘α’ diacritic indicates an accen-
tual phrase tone. The entire sentence comprises an
intonational phrase, with a low intonational phrase
tone, L%, at the right edge (the ‘%’ diacritic indi-
cates an intonational phrase tone). In AM Theory,
a pitch accent like L* is a tone whose appearance
and temporal location are determined by accented
TBUs, i.e., TBUs with “an abstract phonological
location indicator of tone” (Gussenhoven, To ap-

pear, §1.2) and is represented as being associated
to an accented TBU. An edge tone like Hα or L%
is a tone whose appearance and location is deter-
mined by prosodic constituent edges and is repre-
sented as being associated to a prosodic node at a
higher-level node than the TBU.
The L* appears at the left edge of an accentual

phrase, while theHα appears at the right edge of an
accentual phrase. Sowhy is the L defined as a pitch
accent rather than an edge tone? In Bengali, ac-
cented TBUs are syllables that receive stress, and
Bengali has word-initial stress—thus, the L tones
are always word-initial in Fig. 1. However, Hayes
and Lahiri (1991, p. 56) shows that when a word is
preceded by a clitic, the L tone is not phrase-initial
and appears instead on the initial syllable of the
word, after the clitic—thus tracking the accented
TBU rather than the left edge of accentual phrases.

The Bengali example in Fig. 1 exemplifies the
distinction between pitch accents and edge tones,
but what about the concept of the association of
a single tone to both a TBU as well as a higher-
level prosodic node? Multiple association of this
kind was first motivated by Pierrehumbert and
Beckman (1988) for Tokyo Japanese due to dif-
ferences in the phonetic realization of Lα tones
systematically conditioned by the position of lex-
ical accent. In Japanese, accented syllables are
lexically specified and receive a bitonal H*+L
tone, cf. hasi ‘edge’ vs. hási ‘chopsticks’ vs. hasí
‘bridge’ (Gussenhoven, 2004, p. 186), where ac-
cent is indicated with an acute accent mark. The
comparison between unaccented hasi and initially-
accented hási is represented in (2) using associ-
ation of tones to labeled brackets for singly as-
sociated accentual phrase and intonational phrase
tones, following notational conventions popular-
ized by Hayes and Lahiri (1991). The analysis
shown follows Gussenhoven (2004, 2014).

(2) Tonal associations for hasi vs. hási
[ι [α h a

Lα

s i

Hα

]α ]ι

L%

[ι [α

Lα

h á

H∗

s i

L

]α ]ι

L%

In words like hásiwhere a tone occupies the first
TBU, i.e., the first mora, the word-initial Lα is pro-
nounced with a mid pitch, but in words like hasi
where no lexical accent occupies the first TBU,
the Lα is pronounced fully low, see Pierrehumbert
and Beckman (1988, §5.5); Gussenhoven (2004,
p. 189). This difference is attributed to a differ-
ence in association: in hasi, the first TBU is avail-
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able for the Lα to associate and so it associates not
only to the α node but also this TBU; in hási, the
first TBU is unavailable so the Lα is associated
only to the α node. Similarly, phonetic evidence
shows that the L of the lexical accent associates to
an unoccupied TBU immediately following the ac-
cented TBU (Gussenhoven, 2014, §2), as shown
for hási in (2). There is also an Hα following the
peripheral (i.e., at the left edge) Lα. In hasi, the
second TBU is available for the Hα to associate
to, but since the second TBU of hási is occupied
by the L of the lexical accent, the Hα is deleted.
Non-peripheral, unassociated tones are deleted in
Japanese (Gussenhoven, 2014, §2).

The concepts of association of tones to higher-
level prosodic nodes andmultiple tonal association
introduced in Pierrehumbert and Beckman (1988)
have been broadly assumed in intonational phonol-
ogy without much comment (but see, e.g., Prieto
et al. (2005); Gussenhoven (2018) for exceptions).
However, while the computational properties of as-
sociation of tones to TBUs have received much
attention, e.g., Chandlee and Jardine (2021) and
references therein, the computational properties of
tones associating to prosodic trees, i.e., tones as
terminals participating in dominance relations in
prosodic trees, as well as multiple tonal association
to TBUs and prosodic nodes, have not. In fact, as
noted in Pierrehumbert (2011, p. 5), prosodic trees
with multiple tonal associations are technically not
trees anymore, since terminal nodes can have more
than one parent.

Moreover, the formal properties of tones as-
sociating to prosodic trees defined in Pierrehum-
bert and Beckman (1988, Ch. 6) have not been
revisited, although Pierrehumbert and Beckman
(1988, Ch. 6) stipulates the temporal location of
tones associated to prosodic nodes (i.e., edge tones,
or boundary tones) to be at the periphery of the
constituent they are associated to. The stipula-
tion is problematic because Gussenhoven (2000)
provides examples from Roermond Dutch where
edge tones are not peripherally realized, i.e., a
lexical accent tone is sequenced to appear after
a right-edge aligned intonational phrase boundary
tone. Gussenhoven (2000)’s response to the prob-
lematic peripherality stipulation (see also Gussen-
hoven (2018, §4)) is to abandon the idea of tonal
association to higher-level prosodic nodes alto-
gether in favor of Align constraints between tones
and prosodic constituents. But the theory of

tonal association to higher-level prosodic nodes as
proposed in Pierrehumbert and Beckman (1988,
Ch. 6) has remained a fundamental assumption
of Autosegmental-Metrical Theory (Arvaniti and
Fletcher, 2020), despite its inability to allow for
non-peripheral prosodic boundary tones.
This paper shows that standard tools from for-

mal language theory can be used to formalize the
notion of tonal association to prosodic trees and
handle both multiple tonal association and non-
peripheral boundary tones. To define tonal asso-
ciation in prosodic trees, we make use of finite
state tree rewrite grammars, which can be recog-
nized by bottom-up tree transducers (Baker, 1978;
Comon et al., 2007), and in the paper, we use the
notation of finite state tree transducers to define
our tree grammars (Rounds, 1970). The bottom-
up tree transductions provide a natural mechanism
for prosodic boundary tones to be sequenced pe-
ripherally, without stipulation.
Moreover, we show that a standard extension

of bottom-up tree transducers—multi bottom-up
tree transducers (mbutts) (Lilin, 1978; Fülöp et al.,
2004; Maletti, 2008), see Maletti (2008, §4) for
a formal definition—can represent multiple tonal
association and allow non-peripheral edge tones.
String yields from trees that can be built with fi-
nite state bottom-up tree transducers are context-
free, i.e., strings that can be derived with CFG
grammars (Comon et al., 2007, §2.4). String yields
from trees that can be built with multi finite state
bottom-up tree transducers are strings that can
be derived with multiple CFGs (Engelfriet et al.,
2009), grammars that that aremore expressive than
CFGs, in which one constituent can enter into rela-
tionships with two of its ancestors, e.g., in syntac-
tic movement, see Clark (2014).
While mbutts have been used to express syn-

tactic relations (Kobele et al., 2007; Graf, 2012)
and also syntax-prosody mapping (Dolatian et al.,
2021), we show here—building on Yu (2021)—
that mbutts are of interest as representations for
phonological phenomena in general. Multiple
tonal association is only one instance of multi-
ple dependencies in prosodic trees, but we show
that so are prosodically-conditioned segmental pro-
cesses such as Bengali r-assimilation, and that
mbutts can handle these processes as well. The
next section, §2, introduces a first tree transduc-
tion for single tonal associations in a single word
of Bengali. §3 introduces mbutts in tree transduc-
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tions for tone association in Japanese for hasi and
hási in (2), and §4 shows howmbutts can represent
r-assimilation in Bengali, too. §5 discusses issues
raised by using mbutt representations.

2 A first tree transduction

A finite state bottom-up tree transducer can be
thought of as a generalization of a string finite
state transducer that can process multiple branches
rather than a single branch (a string). A string fi-
nite state transducer processes a string from left
to right, one symbol at a time, and enters one of
finitely many states after each step. A string trans-
duction is recognized as well-formed if and only if
the transducer enters a final state after processing
the entire string. A finite state bottom-up tree trans-
ducer processes a tree from leaves towards the root,
one subtree at a time, and enters one of finitely
many states after each step. A tree transduction is
recognized as well-formed if and only if the trans-
ducer enters a final state after processing the tree
all the way up to the root. A tree transduction step
can re-label nodes, delete subtrees, or insert new
material. However, bottom-up tree transductions
cannot change structures that have already been
built.
As a first introduction to tree transductions, we

show the grammar and steps to insert the pitch ac-
cent (L*) and accentual phrase tone (Hα) and as-
sign stress in an accentual (α) phrase of a single
two-syllable prosodic word (ω) in Bengali, e.g.,
/t͡ ʃador/ or /ɔmor/ from (1). (An even simpler
warm-up transduction that inserts just the Hα and
ignores stress and pitch accent assignment is given
in Table 5 and (7) in Appendix A.) For this first
transduction, we make the simplification that the
pitch accent insertion rule in Bengali is only ω-
based, i.e., a pitch accent is assigned to the stressed
syllable in each ω. A transduction that assigns an
L* to the stressed syllable of only an α-initial ω is
shown in Appendix B.
Since the segments play no role in these pro-

cesses, we leave them out and only show tonal as-
sociation to the syllabic TBUs (σ) and α node. The
rules in (3) take the input tree shown as the left-
most tree in the derivation in Table 1 and returns
the rightmost tree in Table 1 as the output tree (ig-
noring the green filled circle at the moment). We
assume a lexicon of low and high tones and a place-
holder symbol, ε, that indicates a location where a
tone can be filled, {L,H, ε}, and we define qα to

be a final state. A green filled circle decorating a
tree in Table 1 indicates which state the transducer
enters after the application of the transition rule la-
beling the rewrite arrow to the left of the tree, and
the output at each step is shown as the subtree un-
der the state. By convention, a state is positioned
as the mother node of the subtree that has just been
processed, but isn’t actually part of the tree—it’s
just an annotation like a “you are here” marker.

(3) Grammar fragment for tree transduction of
single-ω accentual phrase; qα final state

[B1] ε()→ qε(ε())
[B2] σ(qε(t))→ qζ(t)
[B3]ω(qζ(t1), qζ(t2))→ qω(ω(str(σ(L)), σ(t2)))
[B4] α(qω(t))→ qα(α(t,H))
The left-hand side of a rule shows the structure

required for the rule to be applied, and its format
differs depending on whether the transducer is at
a leaf or not. When the transducer is at a leaf,
e.g., Rule [B1], the left-hand side of the rule is
just the leaf, which by definition, has no daughters
underneath—indicated by the empty parentheses
following the leaf label, e.g., ε() in Rule [B1]. If
the transducer is at an ε leaf, then Rule [B1] can ap-
ply, as shown in the first step in Table 1. The right-
hand side shows the state entered, as well as the
output, shown in the immediately following paren-
theses. For example, when the transducer applies
Rule [B1], it processes the leaf ε(), enters state qε,
and returns the input leaf ε() unaltered, as output.
And the first step in Table 1 shows the transducer
processing both ε leaves with Rule [B1] (which is
shown as applying twice with the notation [B1]2)
to enter state qε on both the left and right branches
and output back ε on each branch, which is shown
as the daughter of the qε node. The green circles
in the derivation move from the leaves towards the
root over the course of the derivation since the tree
is processed bottom-up. When the transducer is at
a non-terminal node (all rules but Rule [B1]), the
current node label and the state(s) that the trans-
ducer is in must match the left-hand side of a rule
for the rule to apply.
Rule [B2] states that if the transducer is at a

unary σ node with its single daughter (variable t) in
state qε, then the transducer can enter qζ, deleting
the σ node but leaving its daughter (t) unchanged.
The second step in Table 1 shows the transducer ap-
plying this rule for both the left and right branches;
here, t is ε. Rule [B3] is a merge rule that states that
if the transducer is at a binary-branching ω node
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α

ω

σ

ε

σ

ε

−−−→
[B1]2

α

ω

σ

qε

ε

σ

qε

ε

−−−→
[B2]2

α

ω

qζ

ε

qζ

ε

−−→
[B3]

α

qω

ω

str(σ)

L

σ

ε

−−→
[B4]

qα

α

ω

str(σ)

L

σ

ε

H

Table 1: Transduction of tone insertion and stress assignment in single-word accentual phrase using rules in (3)

with its left daughter (t1) in state qζ and its right
daughter (t2) also in state qζ, then the transducer
can enter qω and output back the ω subtree with
σ nodes inserted above both daughters. Moreover,
the σ dominating the first daughter (t1) is assigned
stress, str(σ),2 following Bengali’s ω-initial stress
assignment rule, and its associated ε tone is re-
placed with a L tone, i.e., an L* pitch accent. Since
the L pitch accent is already defined by where it is
associated in the tree, there is no need to also add
a ‘*’ diacritic. The third step in Table 1 shows the
transducer applying Rule [B3]. The replacement
of εwith L in Rule [B3] is whyRule [B2] is defined
to delete the σ node. The bottom-up transducer can
modify the daughter tone of a σ node only if the σ
node has not already been built. The L* associates
to the stressed syllable, which is defined to be the
ω-initial syllable. So stress assignment, and con-
sequently pitch accent assignment, can only occur
when the ω node is processed.

The transduction of the input tree can end suc-
cessfully if the transducer completes processing
the tree up to the root node and enters a final state—
a state where the derivation can optionally termi-
nate. Rule [B4] states that if the transducer is at
an α node with a single daughter (t) in state qω,
then the transducer can enter qα and output back
the α subtree with its daughter (t) unaltered and in-
sert a new daughter H accentual phrase tone to the
right. No tonal α diacritic is needed since the H
tone is defined by where it associates in the tree.
For the purposes of processing just an accentual
phrase, we designate qα as a final state.
Upon the application of Rule [B4], the trans-

2We indicate a stressed syllable with str(σ) rather than a
diacritic σ́ to make it explicit that the σ in str(σ) is copied
and that a stressed σ isn’t just another symbol with arbitrary
relation to σ.

ducer has processed the entire tree up to the root,
enters final state qα (positioned as the mother node
of the root node), and returns the output tree, which
is shown as the daughter of qα. Thus, the tree gram-
mar in (3) recognizes that the transduction in Table
1 is well-formed. In fact, the transduction in Ta-
ble 1 is the only transduction that (3) recognizes as
well-formed. For instance, an output tree like the
rightmost tree in Table 1, but with the second syl-
lable under ω stressed rather than the first, is not
well-formed under (3).

The rule to insert an accentual phrase tone in
Table 1, Rule [B4], exemplifies how peripheral-
ity of tones associated to higher-level prosodic
nodes is a natural consequence of the definition
of bottom-up tree transducers. Since a bottom-
up tree transducer cannot make changes to a sub-
tree that has already been built, no rule in place
of Rule [B4] can be defined to insert a tone inside
the already-built ω-subtree. Rather, Rule [B4] in-
serts a tonal daughter of α that is a sister to the
right of the already-built ω-subtree. Another pos-
sible rule in place of Rule [B4] could insert an H
tone to the left of the ω-subtree, e.g., by replac-
ing the right-hand side of Rule [B4], qα(α(t,H)),
with qα(α(H, t)). The possible placements of an
inserted tone are confined to the periphery of the
accentual phrase. Non-peripheral boundary tones
can be defined with multi bottom-up tree transduc-
tions, which we introduce in the next section.

3 Multiple dependencies in tonal
associations

While the association of L* pitch accent in Table 1
is determined at the word-level, it does not have a
multiple dependency because the L is inserted only
at the step when the ω is processed (Rule [B3])—
the L is not carried up the derivation over multi-
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ι

α

μ

L

μ

H

L

ι

α

L μ

H

μ

L

L

(a) Unaccented hasi (b) Accented hási

Figure 2: Derived trees showing tonal associations for
hasi and hási described in (2).

ple steps. Multiple dependencies do, however, oc-
cur in the tonal associations of two-syllable words
in Japanese such as hasi and hási (2), and mbutts
give us a way to express them, as we show in this
section. Since the transductions here involve only
unary (and no bimoraic) syllables and tonal inser-
tion is not conditioned on the prosodic word, we
omit those constituents in the prosodic trees to con-
serve space. The final output trees to be derived,
following (2), are shown in Figure 2. As is done in
AMTheory as well as similar syntactic derivations,
we explicitly indicate the multiple associations of
the L and H tones in hasi by showing them each
as having two mothers—the mora and the accen-
tual phrase node. These kind of structures, where
a single terminal node has two parents—can be
interpreted as multidominance structures (Gärtner,
2002). (The multiple dependencies of the tones in
accented hási are not explicitly represented in the
same way in Figure 2 because they occur only in
the course of the derivation and not also in the final
output derived tree like for hasi.)
A transduction for tone assignment in an intona-

tional phrase consisting of an unaccented 2σ word,
e.g., hasi, is given in Table 2 and (4), and a trans-
duction for tone assignment in hási is given in Ta-
ble 3 and (5). State labels in common with those
for the Bengali in §2 shouldn’t be taken to identify
shared states between the transductions.
The transduction for /hasi/ (Table 2, using the

rules in (4)) must define L and H accentual phrase
tones, meaning that L and H tones are to be in-
serted only once the α node is processed, as daugh-
ters of α. But these tones are also to be daughters
of μ’s, which themselves are daughters of α, and
there cannot be any modifications to subtrees al-
ready built under the α node. Thus, much like in
Table 1, after the ε leaves are processed without
change (Rule [J1a]), the μ nodes are processed and

deleted (Rule [J3a]).

(4) Grammar fragment for /hasi/ transduction;
qι final state

[J1a] ε()→ qε(ε())
[J3a] μ(qε(t))→ qE(t)
[J4a] α(qE(t1), qE(t2))→ qδ(L,H)
[J5a] qδ(t1, t2)→

qα(α(t1, t2, μ(t1), μ(t2)))
[J6] ι(qα(t))→ qι(ι(t, L))

When the α node is processed in Rule [J4a],
the L and H tones are inserted. We could
change the right-hand side of Rule [J4a] to
qα(α(L,H, μ(L), μ(H))), skip Rule [J5a] entirely,
and still generate the output of Rule [J5a]. But then
the L tone that is daughter to theα nodewould have
no specified relation to the L tone that is daughter
to the left μ node; nor would the two H tones have
a specified relation. Having instead the intermedi-
ate step of Rule [J4a] as written in (4) first inserts
the L and H tones as lexical items and then carries
them up the derivation to the next step as separate
subtrees, without merging them at the α node.
Rule [J4a], which transitions the transducer to

state qδ, is our first example of a “multi” step—a
step that carries multiple subtrees up the derivation
rather than just one. The output of Rule [J4a] has a
qδ green circle that is not positioned as a mother
node to a constituent because L and H have not
beenmerged to build a constituent. The two daugh-
ter subtrees under qδ in the input to Rule [J5a] also
make that rule a “multi” rule. With L andH carried
up as separate subtrees, Rule [J5a] builds μ con-
stituents and an α constituent, associates the left
daughter under qδ (t1) as both the leftmost daugh-
ter of the new α node and the daughter to the new
leftmost μ node, and associates the right daugh-
ter under qδ (t2) as both the peninitial daughter of
the new α node and the daughter to the new right-
most μ node. These multiple associations are rep-
resented with a multidominance structure, as dis-
cussed for Figure 2a. To end the derivation, Rule
[J6] processes the ι node and adds an L sister to the
right of the α subtree under ι.
“Multi” rules appear in the transduction for tonal

assignment in hasi because the L and H tones each
have multiple (two) dependencies in the course of
the derivation. They each enter in Rule [J4a], when
the α node is processed, but then they also enter
relations with mother α and μ nodes in Rule [J5a].
While the output in Figure 2a derived by the hasi
transduction shows multiple tonal associations, it
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ι
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qε

ε

μ
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ε

−−−→
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ι

α
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ε

qE
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[J4a]

ι

qδ

L H

−−→
[J5a]

ι

qα

α

μ

L

μ

H

−−→
[J6]

qι

ι

α

μ

L

μ

H

L

Table 2: Transduction for tonal association in unaccented /hasi/ using rules in (4)

is the multiple dependencies in the derivation steps
that we are defining by including “multi” steps.
The next transduction we show, which derives the
output in Figure 2b, also has “multi” steps.
A transduction for a 2σ word with initial accent,

e.g., hási, is given in Table 3—following rules al-
ready given in (4) and the additional rules in (5).
As proposed in Pierrehumbert and Beckman (1988,
p. 124-5), a T “tone” constituent is introduced. It
keeps the two tones of the H*+L lexical accent
as separate leaves so that the tones can dock onto
separate TBUs. We assume here that the T node
is deleted when the two tones dock onto separate
TBUs, although alternative assumptions could be
explored as well, see, e.g., Grice (1995).

(5) Grammar fragment for /hási/ transduction,
not including rules in (4); qι final state

[J1b] H()→ qH(H())
[J1c] L()→ qL(L())
[J2] T(qH(t1), qL(t2))→ qA(t1, t2)
[J3b] μ(qA(t1, t2))→ qB((t1, t2))
[J4b] α(qB(t1, t2), qE(t3))→

qα(α(L, μ(t1), μ(t2)))
Since accent in Japanese is lexical, unlike the

Bengali pitch accent, the input tree to the transduc-
tion already has the first mora associated to a T sub-
tree with H and L daughters, i.e., a lexical accent.
The tonal leaves enter via Rules [J1a,b,c]. “Multi”
Rule [J2] processes the T node and deletes it to ex-
pose the tonal daughters for tonal re-association,
carrying the H and L leaves separately up the
derivation. “Multi” Rule [J3b] processes the left
μ node, deletes it, and continues to carry the H
and L leaves up the derivation. Rule [J3a] pro-
cesses the right μ node and deletes it. The H and
L leaves have been carried up separately via the
“multi” rules up to this point so that they can asso-
ciate to separate moras in the next step. Rule [J4b]
then shifts the L to the right branch to replace the

placeholder ε, rebuilds the moras, and inserts an L
accentual phrase tone as the leftmost sister to the
μ’s. Finally, Rule [J6] processes the ι node and in-
serts an L to the right of the α subtree as a daughter
of ι, just like in the transduction for hasi.
The final output tree from Table 3 has no mul-

tiple tonal associations. Nevertheless, the trans-
ducer defined in (5) is an mbutt because “multi”
steps arise from multiple dependencies in the
derivation steps. Each tone of the lexical accent
has two dependencies: (i) to the T node, where it
enters as a daughter leaf, and (ii) to the μ node,
where it re-associates as as daughter leaf. Note
that the last “multi” step, Rule [J4b], can be eas-
ily modified to demonstrate how “multi” steps can
accommodate non-peripheral temporal sequencing
of edge tones. For example, the right-hand side
could be changed to qα(α(μ(t1), L, μ(t2))) to in-
sert the Lα between the two lexical accent tones.

4 Multiple dependencies in segmental
associations

Multiple dependencies don’t occur only with
tonal association in prosodic trees, but also with
prosodically-conditioned segmental processes. A
segment enters as a leaf (location one in a prosodic
tree) but then it cannot be merged into the prosodic
tree until the prosodic constituent that conditions
its realization is processed (location two). We illus-
trate this for the transduction of /r/-assimilation in
the Bengali accentual phrase /t͡ ʃador/, shown in Ta-
ble 4, following (6). Recall from §1 that /r/ under-
goes total assimilation to an immediately follow-
ing coronal consonant within the same α. There-
fore, the realization of any /r/ in Bengali can’t be
determined until α is processed. Moreover, any
coronal consonant must also be carried up all the
way to the α node, in case it may be immediately
preceded by an /r/ within the same α.
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H
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Table 3: Transduction for tonal association in accented /hási/ using rules in (5)
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[5a], [5b]

y
qΑ

α

ω

σ

Ons

t͡ ʃ

R

N

a

σ
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←−
[7]
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t͡ ʃ R
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d N

o
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α

ω

q4

t͡ ʃ R

N

a
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d N

o

r

Table 4: Transduction for /r/-assimilation in /t͡ ʃador/ using rules in (6)
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(6) Grammar fragment for /t͡ ʃador/; qΑ final
state

[0a] t͡ ʃ()→ qt(t͡ ʃ()) [0b] a()→ qs(a())
[0c] d()→ qt(d()) [0d] o()→ qs(o())
[0e] r()→ qr(r()) [1a] Ons(qt(t))→ q1(t)
[2] N(qs(t))→ qN(N(t)) [3a] C(qr(t))→ q2(t)

[4a] R(qN(t))→ qR(R(t))
[4c] R(qN(t1), q2(t2))→ q3(t1, t2)
[5a] σ(q1(t1), qR(t2))→ q4(t1, t2)
[5b] σ(q1(t1), q3(t2, t3))→ q5(t1, t2, t3)
[6a]ω(q4(t1, t2), q5(t3, t4, t5))→ q6(t1, t2, t3, t4, t5)
[7] α(q6(t1, t2, t3, t4, t5))→

qΑ(α(ω(σ(O(t1), t2), σ(O(t3),R(t4,C(t5))))))
The transduction in Table 4 begins by process-

ing each segmental leaf via Rules [0a-e] to enter
one of three states on each branch: qt (coronals
/t͡ ʃ, d/), qr (/r/), or qs (vowels /a, o/). Then, each
of the two branches with a nucleus (N) node with
a daughter in state qs can be processed to fix the
realization of the segment and finish building the
nucleus to enter state qN (Rule [2]). However, any
branch with a coronal or /r/ is processed to delete
the onset (Ons) or coda (C) node and carry up
the segment via Rules [1a, 3a]. A unary rime (R)
can then be built (Rule [4a]), since it doesn’t have
coronals or /r/. But the /r/ must continue to be
passed up, so we delete its Rmother node and then
hold the /r/ together with a nucleus subtree without
merging to enter state q3 (“multi” Rule [4c]).
The coronals and /r/ (and already-built nuclei

and rime) continue to be passed up as the σ nodes
are processed and deleted (“multi” Rules [5a,b]) to
reach states q4 on the left branch (carrying up 2 sub-
trees) and q5 on the right (carrying up 3 subtrees).
Similarly, theω node is then processed and deleted
and the coronals and /r/ (and already-built nuclei
and rime) are passed up again to enter q6 with 5
subtree daughters (“multi” Rule [6a]). Finally, we
are ready to process the α node and can stop pass-
ing up the coronals and /r/. Rule [7] (with Ons
abbreviated as O) processes the α node and out-
puts an α tree with the remaining prosodic struc-
ture built in a single step, including no change to
the final /r/, since the /r/ has no coronal sister to
the immediate right under state q6. Although /r/-
assimilation does not apply when /t͡ ʃador/ is in its
own α, the transduction we just stepped through
underscores that even if a coronal does not immedi-
ately follows an /r/ within the sameα and even if an
/r/ does not immediately precede a coronal within
the same α, the dependency to the α node for these
types of segments is always there. Appendix §C

shows the tree transduction for /ɔmor t͡ ʃador/ →
[ɔmot͡ ʃ t͡ ʃador] when /ɔmor t͡ ʃador/ is within the
same α as in (1b,d).

5 Conclusion

We’ve shown that tree grammars defined via
bottom-up tree transductions—standard and well-
studied tools from formal language theory—
provide a way to represent tonal association to
higher-level nodes in prosodic trees. The periph-
erality of prosodic boundary tones follows without
further stipulation (unlike Pierrehumbert andBeck-
man (1988)), since bottom-up tree transductions
cannot change structures that have already been
created. Extension to mbutts provides a mech-
anism to define non-peripheral boundary tones,
which cannot be handled by Pierrehumbert and
Beckman (1988). Since non-peripheral bound-
ary tones such as Gussenhoven (2000)’s case in
Roermond Dutch appear to be typologically rare,
it seems desirable that non-peripheral boundary
tones come in with the additional expressivity of
“multi” steps in the grammar. More generally,
mbutts can represent the pervasive multiple de-
pendencies in prosodic structures including those
arising in tonal association and from prosodically-
conditioned segmental allophony. They offer a
way to precisely state and probe proposals in
phonological analyses of tone and intonation, at
a time when the fundamental assumptions of AM
theory are being revisited (Grice, 2021).
(M)butts are a good starting point since

their computational properties are relatively well-
understood, but the sample transductions shown
here already reveal issues with using them for
phonology. For one, the transductions exempli-
fied here only define bounded structures, e.g., two-
syllable prosodic words. We can introduce recur-
sion into the grammar to build words and phrases
of arbitrary length (Yu, 2021), but it remains to
be seen how resulting self-embedded structures
fit with phonological patterns. Another issue
is that the restriction that (m)butts cannot mod-
ify already-built structure—while potentially de-
sirable for making non-peripheral boundary tones
possible but exceptional—results in mass dele-
tion of structure in the derivation followed by re-
building this structure in a single step. Much
more work is needed to refine, restrict, and adapt
(m)butts to capture and identify generalizations
about prosodic structure.
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A Warm-up tree transduction for only
accentual phrase tone insertion

This “warm-up” bottom-up tree transduction in-
serts only an accentual phrase tone in a singleword-
accentual phrase in Bengali, while ignoring stress
assignment and pitch accent assignment. We in-
clude it to show an example of a bottom-up tree
transduction that only inserts material in building
the output tree. In contrast, the transduction given
in Table 1 and (3) includes the step of Rule [B2]
which deletes the σ node.

(7) Grammar fragment for tree transduction of
single-ω accentual phrase without pitch ac-
cent; qα final state

[B1] ε()→ qε(ε())
[B2a] σ(qε(t)→ qσ(σ(t))
[B3a]ω(qσ(t1), qσ(t2))→ qω(ω(t1, t2))
[B4] α(qω(t))→ qα(α(t,H))

Rules [B1, B4] are already discussed in §2 and
we do not repeat discussion of them here. Rule
[B2a] states that if the transducer is at a unary σ
node with its single daughter (the variable t) in
state qε, then the transducer can process the σ node
and enter state qσ , leaving its daughter (the vari-
able t, and in this case, ε) unchanged. The second
step in Table 5 shows the transducer applying Rule
[B2a] for both the left and right branches. Rule
[B3a] is a merge rule that states that if the trans-
ducer is at a binary-branching ω node with its left
daughter (t1) in state qσ and its right daughter (t2)
also in state qσ , then the transducer can process the
ω node to enter qω and output back the ω subtree
without any change to daughters t1, t2.

B Tree transduction for tonal association
in two-ω accentual phrase

Table 1 and (3) in §2 made the simplification that
the pitch accent insertion rule in Bengali is only ω-
based, i.e., a pitch accent is assigned to the stressed
syllable in each ω. But in fact, pitch accent assign-
ment is both ω- and accentual-phrase based, i.e.,
a pitch accent is only assigned to the stressed syl-
lable of an α-initial ω. The rules in (8) and the
tree transduction in Table 6 show one way this can
be done. The leftmost ω that is pitch-accented is
built with steps in Table 1, but the rightmost ω,
which is unaccented, uses another rule, Rule [B3b].
Note that since Rules [B3] and [B3b] share the
same left hand side, there is non-determinism in
the grammar and either of the rules could apply

when an ω node is processed in the second step
of the transduction. However, Rule [B4b] restricts
well-formed two-ω accentual phrases to being ini-
tially accented.

(8) Grammar fragment for tree transduction of
two-ω accentual phrase, repeating rules al-
ready in (3); qα final state

[B1] ε()→ qε(ε())
[B2] σ(qε(t))→ qζ(t)
[B3] ω(qζ(t1), qζ(t2))→ qω(ω(str(σ(L)), σ(t2)))
[B3b] ω(qζ(t1), qζ(t2))→ qΩ(ω(str(σ(t1)), σ(t2)))
[B4b] α(qω(t1), qΩ(t2))→ qα(α(t1, t2,H))

C Tree transduction for /r/-assimilation
in /ɔmor t͡ʃador/→ [ɔmot͡ʃ t͡ʃador]

Some rules below are repeated from the rules for
the /t͡ ʃador/ transduction in (6).
First, we show the transduction for a single-

word accentual phrase for /ɔmor/ in Table 7, using
the rules in (9). Like /t͡ ʃador/, /ɔmor/ has a /r/ that
needs to be passed up to the α node.

(9) Grammar fragment for /ɔmor/ transduc-
tion; qα final state;

[0d] o()→ qs(o())
[0e] r()→ qr(r())
[0h] ɔ()→ qs(ɔ())
[0i] m()→ qs(m())
[1] Ons(qs(t))→ qO(Ons(t))
[2] N(qs(t))→ qN(N(t))
[3a] C(qr(t))→ q2(t)
[4a] R(qN(t))→ qR(R(t))
[4c] R(qN(t1), q2(t2))→ q3(t1, t2)
[5c] σ(qO(t1), q3(t2, t3))→ q7(t1, t2, t3)
[5d] σ(qR(t))→ qσ(σ(t))
[6c] ω(qσ(t1), q7(t2, t3, t4))→ q9(t1, t2, t3, t4)
[7b] α(q9(t1, t2, t3, t4))→

qα(α(ω(str(t1), σ(Ons(t2),R(t3,C(t4)))))))

Putting together the tranductions of /ɔmor/ and
/t͡ ʃador/ in Tables 7 and 4 up through the penulti-
mate steps, we can define the transduction of /r/-
assimilation in the single accentual phrase /ɔmor
t͡ ʃador/ in Table 8 with the additional rule in (10).

(10) Grammar fragment for transduction of /r/-
assimilation in /ɔmor t͡ ʃador/; qα final state

[7c] (q9(t1, t2, t3, t4), q6(t5, t6, t7, t8, t9))→
qα(α(ω(t1, σ(t2,R(t3,C(t5)))),

ω(σ(Ons(t5), t6), σ(Ons(t7),R(t8,C(t9))))))
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α

ω

σ

ε

σ

ε

−−−→
[B1]2

α

ω

σ

qε

ε

σ

qε

ε

−−−→
[B2a]2

α

ω

qσ

σ

ε

qσ

σ

ε

−−−→
[B3a]

α

qω

ω

σ

ε

σ

ε

−−→
[B4]

qα

α

ω

σ

ε

σ

ε

H

Table 5: Transduction of accentual phrase tone insertion in single-word accentual phrase using rules in (7)
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ω

σ

ε

σ

ε

ω

σ

ε

σ

ε

−−−→
[B1]4,
[B2]4

α

ω

qζ

ε

qζ

ε

ω

qζ

ε

qζ

ε

−−−→
[B3],
[B3b]

α

qω

ω

str(σ)

L

σ

ε

qΩ

ω

str(σ)

ε

σ

ε

−−−→
[B4b]

qα

α

ω

str(σ)

L

σ

ε

ω

str(σ)

ε

σ

ε

H

Table 6: Transduction of tone insertion and stress assignment in two-word accentual phrase using rules in (8)
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N

o

r

[5c], [5d]
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α

ω
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R

N

ɔ

σ
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m

R

N

o
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[7b]

α

q9

σ

R

N

ɔ

Ons

m

N

o
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←−−
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α

ω

qσ

σ

R

N

ɔ

q7
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m

N

o

r

Table 7: Transduction for /r/-assimilation in /ɔmor/ using rules in (9)
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ω
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(Table 7)
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N
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o
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α
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Table 8: Transduction for /r/-assimilation in /ɔmor t͡ ʃador/ using rules in (10)
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Abstract

Earlier work has shown that movement, which
forms the backbone of Minimalist syntax, be-
longs in the subregular class of TSL-2 depen-
dencies over trees. The central idea is that
movement, albeit unbounded, boils down to
local mother-daughter dependencies on a spe-
cific substructure called a tree tier. This re-
veals interesting parallels between syntax and
phonology, but it also looks very different
from the standard view of movement. One
may wonder, then, whether the TSL-2 charac-
terization is linguistically natural. I argue that
this is indeed the case because TSL-2 furnishes
a unified analysis of a variety of phenom-
ena: multiple wh-movement, expletive con-
structions, the that-trace effect and the anti-
that-trace effect, islands, and wh-agreement.
In addition, TSL-2 explains the absence of
many logically feasible yet unattested phenom-
ena. Far from a mere mathematical curiosity,
TSL-2 is a conceptually pleasing and empiri-
cally fertile characterization of movement.

1 Introduction

A number of recent works (Graf 2018; Graf and
De Santo 2019; Vu et al. 2019; Shafiei and Graf
2020; Graf and Kostyszyn 2021, a.o.) have inves-
tigated the complexity of syntax from a subreg-
ular perspective. One of the central findings is
that movement as formalized in Minimalist gram-
mars (Stabler, 1997, 2011) is tier-based strictly 2-
local (TSL-2). This means that one can determine
whether a movement step in a syntactic deriva-
tion is well-formed by I) constructing a tree tier
that only contains material relevant to this kind
of movement, and ii) checking mother-daughter
configurations over this tree tier. But the specific
system for movement is just one among many op-
tions that could be expressed in TSL-2. This raises
questions about the empirical status of those other
options, and whether they ever occur in language.

In this paper, I argue that TSL-2 provides a broad
typology of movement in the sense that every ar-
chitectural option it provides is actually used with
some movement-related phenomenon: multiple wh-
movement, expletive constructions, the that-trace
effect and the anti-that-trace effect, islands, and
wh-agreement in Irish.

All of these phenomena, many of which are
puzzling under the standard conception of Mini-
malist movement, fall out naturally from the TSL-
perspective. The central argument is that if a cog-
nitive system must be TSL-2 to handle movement,
then we should expect to see these TSL-2 resources
be used in a variety of ways. For instance, if the
complexity of a system with movement and island
constraints is not higher than that of the movement
system without island constraints, additional ex-
planations would be needed if no language ever
exhibited island effects. Island constraints would
inevitably be part of a linguistic ecosystem of free
variation that is limited only by the available cog-
nitive resources. Free variation limited to TSL-2
thus carves out a space within which we find some
of the most surprising movement phenomena.

The paper is primarily a progression of case stud-
ies. The necessary background of TSL-2 move-
ment is covered in §2. I then summarize earlier
arguments by Graf and Kostyszyn (2021) that mul-
tiple wh-movement and expletive constructions are
also TSL-2 (§3.1) before I turn to a new TSL-2 anal-
ysis of the that-trace effect (§3.2) that, among other
things, hinges on the ability to put non-movers on
movement tiers. I subsequently generalize this tech-
nique to also handle island effects (§4.1) and even
wh-agreement (§4.2). All of this establishes that
the space of TSL-2 dependencies includes a large
variety of movement phenomena. But as discussed
in §5, there is still overgeneration within this space,
and some movement phenomena do seem to fall
outside TSL-2. This should not prove to be an insur-

184
Proceedings of the Society for Computation in Linguistics (SCiL) 2022, pages 184-193.

Held on-line February 7-9, 2022



mountable challenge, though, and I propose several
ways this could be addressed in future research.

2 Tier-based strictly local movement

The TSL-view of syntax builds on Minimalist gram-
mars (MGs; Stabler, 1997, 2011), which are a for-
malization of Minimalist syntax. Every lexical item
(LI) is annotated with features that determine its
syntactic behavior. At the very least, each LI has
some category feature F−, for instance in the noun
party :: N−. An LI may also have a string of
selector features F+1 · · · F+m that determine which
arguments it takes. An example would be the di-
transitive verb introduce :: P+D+D+V− as in
John introduced Mary to Sue. In addition, an LI
may carry licensor features f+1 · · · f+n , which pro-
vide a landing site for movement. In this paper, no
LI will ever have more than one licensor feature
— consider for instance the empty topicalization
head ε :: T+top+C−, with a single licensor fea-
ture top+ that attracts a topicalized phrase. Finally,
an LI may carry a set

{
f−1 , . . . , f

−
n

}
of unordered

licensee features (standard MGs assume that li-
censee features are also linearly ordered, but this
is incompatible with the TSL-view of syntax; as is
already implicit in Graf et al. 2016, the use of un-
ordered licensee features does not alter the weak or
strong generative capacity of MGs). Each licensee
feature f− on LI l indicates that the phrase headed
by l moves to the closest landing site provided by
an LI with f+. Each LI thus has a feature anno-
tation of the form γF−δ, where γ is a (possibly
empty) string of selector and licensor features, F−

is some category feature, and δ is either the empty
string or a set of licensee features.

The syntactic derivations driven by those fea-
tures can be succinctly represented in the form of a
dependency tree as shown in Fig. 1. Movement in
this formalism is tier-based strictly 2-local (TSL-
2). A full definition of TSL-2 over trees is given in
Graf and Kostyszyn (2021), but an intuitive discus-
sion suffices for the purposes of this paper. I will
first discuss TSL-2 over strings and then explain
how this idea is generalized to trees.

TSL-2 over strings was first defined in Heinz
et al. (2011) and is a generalization of the class
strictly 2-local (SL-2). A stringset L is SL-2 iff
there is a finite (and possibly empty) set G of for-
bidden bigrams such that L contains all strings s,
and only those, such that osn does not contain
any of G’s forbidden bigrams. Here o and n are

distinguished symbols that mark the beginning and
end of the string, respectively. A well-known SL-2
stringset is (ab)+, which contains ab, abab, and
so on. It is SL-2 because it can be described by 5
forbidden bigrams (assuming that the alphabet is
already limited to just a and b, otherwise additional
bigrams are needed):

(1) a. on: the string must contain at least
one symbol

b. ob: the string must not start with b

c. aa: a must not be followed by a

d. bb: b must not be followed by b

e. an: the string must not end with a

As another example, suppose that we only consider
strings over the symbol a. Then all of the following
stringsets are SL-2:

(2) a. the set of all strings over a (G := ∅)
b. the set of all strings with no a (G con-

tains at least oa or an)
c. the set of all strings with at least one a

(G := {on})
d. the set of all strings with at most one a

(G := {aa})
e. the set of all strings with exactly one a

(G := {on, aa})
Intuitively, SL-2 models string dependencies that
can be expressed as a finite number of constraints
where one symbol restricts what other symbols may
immediately occur to its right. TSL-2 over strings
enriches SL-2 with a tier projection mechanism to
allow for limited types of long-distance dependen-
cies. Formally, tier projection is expressed as a
function ET that takes a string s as its input and
deletes all symbols in s that do not belong to T .
For example, E{a,b} would map caccbac to aba .
A stringset L is TSL-2 iff there is some finite tier
alphabet T such that the image of L under ET is
SL-2. For instance, the set of strings over a and b
that contain exactly one a is not SL-2, but it is TSL-
2: we set T := {a} and G := {on, aa}. Then
the well-formed babbb has the well-formed tier a
(or oan with explicit edge markers), whereas the
illicit babab has the ill-formed tier aa . TSL-2 thus
captures the notion that long-distance dependencies
are still local when irrelevant material is ignored.

TSL-2 over trees follows a very similar system
of combining an SL-mechanism with a tier pro-
jection. Given a finite set T of tier symbols, one
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Phrase structure tree

CP

DPi

which formalism

C′

does TP

Johnj T′

T VP

tj V′

think CP

C TP

ti T′

T VP

pleases Mary

Dependency tree

does :: T+wh+C−

ε :: V+nom+T−

think :: C+D+V−

John :: D− {nom−} ε :: T+C−

ε :: V+nom+T−

pleases :: D+D+V−

which :: N+D− {nom−, wh−}

formalism :: N−

Mary :: D−

nom-tier

o

ε :: V+nom+T−

John :: D− {nom−}

n

ε :: V+nom+T−

which :: N+D− {nom−, wh−}

n

wh-tier

o

does :: T+wh+C−

which :: N+D− {nom−, wh−}

n

Figure 1: Phrase structure tree (left) with corresponding annotated derivation tree (middle) and two well-formed
movement tiers (right), each one containing exactly one LI with f− among the daughters of each LI with f+; note
that intermediate movement of which formalism to Spec,CP of the embedded clause is not encoded via features; o
and n on tiers will be omitted for the rest of the paper

removes from the tree all nodes whose labels do
not belong to T , while preserving dominance rela-
tions between the remaining nodes. On the tree tier,
each mother may restrict the shape of its daugh-
ters, similar to how in SL-2 over strings a symbol
may restrict the shape of the symbol immediately
following it. Formally, each tier symbol σ in T is
associated with a stringset Lσ, and if a node on the
tier is labeled σ, then its daughters on the tier must
form a string that belongs to Lσ.

MG movement fits into this general system as
follows: For each movement type f (nom, wh, and
so on) one removes all nodes from the dependency
tree that do not carry at least one of f+ and f−. The
result is the tree tier for f (cf. Fig. 1). In analogy
to the string case, the tier also has a distinguished
root o, and each leaf is made a mother of n. On
the tier, each tier symbol σ is associated with a
particular daughter stringset Lσ that is TSL-2: If
n is a node on an f-tier and n has a label that
includes f+, then the daughter string of n must
contain exactly one node whose label includes f−.
If n is labeled o, instead, then its daughter string
must not contain any f−. This results in a system
where both of the following hold for each f-tier: I)
every f+-node has exactly one f−-daughter, and
II) every f−-daughter has a f+-mother. That is

exactly how movement behaves in MGs, making
it “doubly TSL-2”: it is TSL-2 over trees, and on
each movement tier it holds for every node that its
set of well-formed daughter strings is TSL-2.

But this TSL-2 view of movement allows for
several alternatives of the same formal complex-
ity. As previously illustrated in (2), TSL-2 can
perform limited counting, distinguishing between
0, “at least 1”, “at most 1”, and “exactly 1”. In
standard MGs, the daughter string of an LI with
f+ must contain exactly one LI with f−, but from
the view of TSL-2 one could just as well require at
least one f−, at most one, or none at all. In addi-
tion, f+ and f− are meaningless symbols from the
perspective of TSL-2, and thus there is no inherent
reason why only LIs with those features should be
present on a tier. And once these LIs appear on a
tier, they could behave like LIs with f+ in that they
put constraints on their daughters, or like LIs with
f− in that they can satisfy those constraints. The
rest of this paper explores this typology of gram-
matical options carved out by TSL-2. I will show
how varying these TSL-2 parameters yields various
phenomena related to movement, which suggests
that the TSL-2 characterization of movement isn’t
just a mathematical coincidence but touches on
fundamental properties of movement.
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3 Varying the number of dependents

I first consider the configurations that arise if one
changes how many f− have to occur in the daugh-
ter string. I argue that this yields multiple wh-
movement, optional movement, and the that-trace
effect in English (including exceptions brought
about by adjuncts). The first two were already
discussed in Graf and Kostyszyn (2021), so I will
sketch them only briefly.

3.1 Multiple wh-movement and optional
movement

Multiple wh-movement refers to the phenomenon
where multiple wh-phrases move to the left edge
of the clause

(3) Multiple wh-movement in Bulgarian
(Bošković, 2002, p.353)

[Koi
who

kogaj
whom

[ti voli
loves

tj]]?

‘Who loves whom?’

In terms of TSL, this can be analyzed as a re-
laxation of movement where the matrix C-head
ε :: T+wh+C− still carries only one instance of
wh+, but its string of daughters on the wh-tier may
contain any number of wh-movers with f−, as long
as it contains at least one (see Fig. 2). Since this is a

wh-tier

ε :: T+wh+C−

who :: D− {wh−} what :: D− {wh−}

Figure 2: Example of wh-tier with multiple wh-
movement

weakening of the standard constraint (“exactly one”
is equivalent “at least one and at most one”), the
TSL-2 account of movement tells us that multiple
wh-movement is unremarkable in the sense that a
system that can require the presence of exactly one
mover can also enforce the presence of at least one.

If, on the other hand, the requirement is loosened
to “at most one”, one gets a landing site that does
not need a mover but can accommodate one if nec-
essary — in other words, optional movement. Graf
and Kostyszyn (2021) argue that this provides an
alternative explanation of expletive constructions.

(4) a. A man is in the garden.
b. There is a man in the garden.

In (4a), the T-head ε :: V+nom+T− has a matching
nom-tier daughter a :: N+D− {nom−}, and move-
ment takes place as usual. If a loses its licensee
feature, one gets (4b) instead, where the T-head has
no suitable daughter on the nom-tier, causing the
unmatched nom+ to be spelled out as the expletive
there. Again a well-known movement phenomenon
has a natural place in the TSL-2 formalism.

3.2 The that-trace effect

The that-trace effect refers to the phenomenon that
even though English allows for long-distance ex-
traction from an embedded clause, subjects may
not be extracted if the complementizer is that. Cu-
riously, this effect disappears if that is followed by
an adverb (cf. Browning, 1996, p.238).

(5) a. Whoi do you think (that) John should
have met ti?

b. Whoi do you think (∗that) ti should
have ti met John?

c. Whoi do you think (that) under normal
circumstances ti should have ti met
John?

This can be analyzed in various ways, e.g. as a
string constraint against that t. But TSL can ac-
commodate this phenomenon without additional
machinery.

Let us ignore the effect of adverbs for now. Sup-
pose that we construct a wh-tier in the usual manner
to verify that there is a match between wh-mover
and wh-landing site. But in addition, we also con-
struct another tier whose job it is to further restrict
the behavior of subjects, thus giving rise to the that-
trace effect. This that-trace tier (TTT) contains all
of the following: I) every LI with wh+, II) every
LI with both nom− and wh−, and III) every C-head,
including that :: T+C−. Only one constraint is
active on TTT, namely that the complementizer
that must not have any LI among its daughters that
carries nom−.

As shown in Fig. 3, this system correctly rules
out the illicit Who do you think that met John while
still allowing for well-formed counterparts that do
not involve extraction of a subject wh-phrase. This
account works thanks to the interaction of three fac-
tors. First, we can correctly pick out wh-subjects by
their features nom− and wh−, so that only subjects
(but not objects) are projected onto TTT. Second,
by also projecting wh+ nodes we introduce a safety
buffer on TTT that pushes wh-subjects out of the

187



ε :: T+wh+C−

that :: T+C−

who :: D− {nom−, wh−}

ε :: T+wh+C−

that :: T+C−

ε :: T+C−

that :: T+C−

ε :: T+wh+C−

who :: D− {nom−, wh−}

Figure 3: Ill-formed TTT for illicit Who do you think
that met John (left) and well-formed TTTs for licit Who
do you think that John met and I know that Mary won-
dered who met Bill (middle and right)

daughter string of that if their wh-movement does
not actually cross the complementizer. Finally, by
projecting every C-head, including empty ones, we
allow subject-wh phrases to cross that as long as
their immediately containing clause has a differ-
ent complementizer. This allows for well-formed
examples such as the one below.

(6) Whoi do you think that Mary said that John
believes [C ti met Bill]?

As the reader might have already noticed, the
ameliorating effect of adverbs could be captured
by projecting them onto TTT so that they sepa-
rate subject wh-phrases from that. The big puzzle
is how one wants to represent adverbs, which are
adjuncts, in dependency trees. While the MG liter-
ature furnishes many different implementations of
adjunction (see Frey and Gärtner 2002, Graf 2014,
and Hunter 2015, a.o.), the easiest option in this
case is category-preserving selection. That is to say,
adjunction of some YP to XP is expressed as selec-
tion by an empty head ε :: X+Y+X− that projects
another XP. This is illustrated in Fig. 4. Since no
other empty heads ever seem to display the particu-
lar feature pattern T+X+T−, the projection for TTT
can correctly single out these TP-adjunction heads.
But projecting TP-adjunction heads onto TTT can
push the wh-subject out of the daughter string of
that, and in this case TTT will be well-formed.

The reader may object that this is a highly stip-
ulative proposal, but quite the opposite is the case.
No stipulations are involved at all. TSL-2 carves
out a space of options, and what this section shows
is that both the that-trace effect and its exceptions
are already part of this space. Individual points
within the space may look highly peculiar, but the
whole space itself is very natural.

Overall, then, the existence of the that-trace ef-
fect is unsurprising in the sense that it requires no
additional machinery, assumptions, or stipulations

do :: T+wh+C−

ε :: V+nom+T−

think :: C+D+V−

you :: D− {nom+} that :: T+C−

ε :: T+Adv+T−

allegedly :: Adv− ε :: V+nom+T−

met :: D+D+V−

who :: D+ {nom−, wh−} John :: D−

do :: T+wh+C−

that :: T+C−

ε :: T+Adv+T−

who :: D+ {nom−, wh−}

Figure 4: In the dependency tree for whoi do you think
that allegedly ti met John (left), projecting ∼ creates a
buffer between that and who (right).

beyond what is already furnished by TSL-2. It ad-
mittedly requires a very particular choice of tier
projections and constraints on daughter strings, but
this is simply one among myriads of possible com-
binations of tier projections and constraints. The
very marked nature of TTT might actually serve
as an explanation for why the that-trace effect is
attested in very few languages.

In addition, the TSL-2 view also makes it less
surprising that we find anti-that-trace effects with
other movement types (Douglas, 2017):

(7) I met [the woman]i ∗(that/who) ti saw
John.

TSL-2 can treat this as a simple variation of the
that-trace effect such that I) we now operate on
a TTT-like variant of the rel-tier, where rel is
the movement feature that extracts head nouns
from their relative clause, and II) it is the unpro-
nounced complementizer, not the pronounced one,
that bans wh-subjects in its string of tier daugh-
ters. A long-standing puzzle reduces to accidental
variation across tiers.

4 Opaque and transparent tier buffers

The account of the that-trace effect uses two tricks.
By setting the number of allowed elements of a
specific type to 0, we enforce the absence of those
elements in specific daughter strings. But at the
same time, additional elements are projected to act
as a kind of tier buffer that blocks the constraint
from applying in specific circumstances. In this
section, we will see two additional uses of buffers.
Buffers that interrupt licensing conditions give rise
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to islands (§4.1). Buffers that daisychain licensing
conditions give rise to wh-agreement (§4.2).

4.1 Islands: opaque tier buffers
Islands are constituents that are opaque to (certain
types of) extraction. A phrase contained within an
island may not move to positions outside that island.
Some common examples of islands in English are
shown in (8).

(8) a. Well-formed extraction without island
Whati did John complain that Mary
brought ti to the party?

b. Adjunct island
∗Whati did John complain because
Mary brought ti to the party?

c. Whether island
∗Whati did John wonder whether Mary
brought ti to the party?

d. Complex NP island
∗Whati did John complain about the
fact that Mary brought ti to the party?

e. Relative clause island
∗Whati did John complain about the
person that brought ti to the party?

The specific configurations that induce island ef-
fects vary across languages and even speakers, and
so does what types of movement are subject to
island effects (see Szabolcsi and Lohndal 2017
and references therein). Hence any good theory of
movement must solve multiple puzzles: I) why do
island effects exist in the first place, II) why aren’t
all movement types subject to the same island ef-
fects, and III) why aren’t island effects uniform
across languages and speakers?

The TSL view of movement provides natural an-
swers to all those questions, and it does so without
any extra stipulations. Quite simply, islands arise
when a tier contains elements that cannot satisfy the
need of nodes with f+ for a daughter with f−. Just
like seemingly irrelevant nodes on a tier prevent a
constraint violation with the that-trace effect, with
islands such nodes prevent constraint satisfaction.

Consider the dependency tree for sentence (8d)
with a complex NP island, as depicted in Fig. 5.
The observed island effect is unexpected under the
standard tier projection for wh-tiers, which projects
all LIs, and only those, that carry wh+ and wh−. As
can be seen in Fig. 5 (middle), the resulting tier is
well-formed. With the default tier projection, then,
the complex NP island effect is entirely unexpected.

But there is nothing that prevents English from us-
ing a different tier projection where the wh-tier
contains not just LIs that carry wh+ or wh−. The
wh-tier could just as well contain complex NPs,
which are exactly those LIs whose feature annota-
tion starts with C+N−. The resulting tier, depicted
in Fig. 5 (right), now has the two movement nodes
separated by fact :: C+N−. Since this LI carries
no movement features at all, f+ is missing a match-
ing f− among its daughters. This renders the tier
ill-formed, and a single ill-formed tier is sufficient
to rule out the entire derivation.

Other island constraints similarly reduce to the
projection of specific LIs that interrupt licensing
relations. Adjunct islands arise whenever adjuncts
are projected (in contrast to the that-trace effect,
here one has to project the adjunct itself instead
of the empty adjunction head as extraction from
the adjoinee is still permitted). This also includes
relative clause islands, which can be analyzed as
NP and DP adjuncts. Similarly, whether islands are
the result of projecting the LI whether :: T+C−,
which once again poses no computational chal-
lenges. The same strategy even accounts for subject
islands.

(9) Subject island constraint
[Which student]i did [the advisor of ti]
study island constraints?

As long as all subjects carry some nom− that en-
forces (overt or covert) subject movement, and as
long as nom− can only occur on subjects, the sub-
ject island constraint is the result of projecting ev-
ery LI with nom− on every tier. We see, then, that
TSL readily accommodates island effects because
there is no a priori ban against projecting specific
LIs onto movement tiers, including those with no
movement features at all.

The TSL account also explains why island ef-
fects can vary across movement types, and why
they aren’t universal across languages and speak-
ers. Since every movement tier uses its own tier
projection, there is no reason why all tier projec-
tions should project the same LIs. By extension,
there is also no reason why all languages have to
have exactly the same tier projections for every
movement type. Note that this even includes excep-
tions to island constraints, e.g. Truswell sentences
(Truswell, 2007).

(10) a. * [Which car]i did John drive Mary
crazy while he tried to fix ti?
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Dependency tree

did :: T+wh+C−

ε :: V+nom+T−

complain :: P+D+V−

John :: D− {nom−} about :: D+P−

the :: N+D−

fact :: C+N−

that :: T+C−

ε :: V+nom+T−

brought :: P+D+D+V−

Mary :: D− {nom−} what :: D− {wh−} to :: D+P−

the :: N+D−

party :: N−

Default wh-tier

did :: T+wh+C−

what :: D− {wh−}

Island wh-tier

did :: T+wh+C−

fact :: C+N−

what :: D− {wh−}

Figure 5: Dependency tree for the complex NP island in (8d) and two choices of wh-tier

b. [Which car]i did John drive Mary
crazy while trying to fix ti?

Under the plausible assumption that the category
feature T− should actually be split into T−fin and
T−inf for finite and infinitival TPs, respectively, this
split boils down the fact that while :: V+T−fin

projects onto movement tiers whereas while ::
V+T−inf does not. For TSL-2, Truswell sentences
are no more remarkable than the fact that whether
induces islands while if does not.

(11) a. * Whati did John wonder whether
Mary brought ti to the party?

b. Whati did John wonder if Mary
brought ti to the party?

Without additional restrictions, TSL allows for free
variation in tier projections, and this explains the
variability we find across movement types, lan-
guages, and speakers.

What more, TSL provides a natural upper bound
on the complexity of islands. All of the following
are logically feasible island constraints, yet none
of them are attested:

(12) a. Gang-up island effects
A mover can escape n islands, but not
n+ 1.

b. Configurational island effects
XP is an island iff it is inside an em-
bedded clause.

c. Cowardly island effects
XP is an island iff there are at least n
XPs in the same clause.

d. Narcissist island effects
XP is an island iff there are no other
XPs in the same clause.

e. Rationed island effects
At most n phrases per clause can be an
island.

f. Discerning islands
XP is an island only for movers that
contain a PP.

What they all have in common is that the TSL
tier projection, which only considers individual
nodes/LIs and never their structural context, cannot
project nodes in a manner that would match these
island effects. A cognitive device that is limited
to TSL-2 is simply incapable of expressing such
constraints on movement.

4.2 Wh-agreement: Transparent tier buffers

We just saw that islands arise from tier nodes that
lack both f+ and f− and thus interrupt all licensing
relations related to those features. But one could
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aL :: T+wh+C−

aL :: T+wh+C−

ce :: D−wh−

aL :: T+wh+C−

aL :: T+C−

aL :: T+C−

ce :: D−wh−

+−

+−

+−

Figure 6: Left: ill-formed tier for (13) where the em-
bedded complementizer carries wh+; Right: tier with
licensing relations if aL acts as if it had both wh+ and
wh−

also imagine the opposite: a node that lacks both
features yet acts as if it had both. More than just a
technical curiosity, this allows for a novel analysis
of wh-agreement in Irish (McCloskey, 1979, 2001)
and Chamorro (Chung, 1998), among others.

The example below (McCloskey, 2001, p.94)
shows how complementizers in Irish change their
phonetic exponent from go to a or aL if a wh-phrase
moves across them (the phenomenon also happens
with other kinds of movement, but the proposed
TSL-2 analysis generalizes to those, too).

(13) Cé
who

aL/∗go
C-wh/C

dúradh
was-said

léithi
with-her

a/∗go
C-wh/C

cheannódh
would-buy

é?
it

‘Who was she told would buy it?’

Crucially, this happens to all complementizers
along the movement path, no matter how many
there are.

The alternation in the first complementizer is
easily captured by having two separate lexical en-
tries aL :: T+wh+C− and go :: T+C− that differ
in the presence of wh+. But the complementizer
of the embedded clause cannot carry wh+ — if it
did, the wh-tier would be ill-formed (see Fig. 6,
left). How, then, can TSL possibly capture the
movement-sensitive distribution of aL and go?

As with the that-trace effect and islands, the
answer is that projection onto an f-tier need not be
limited to LIs with f+ or f−. Suppose that both
aL :: T+C− and go :: T+C− project onto the wh-
tier, but exhibit very different types of behavior on
this tier. The default complementizer go acts like
an island for wh-movement: if a clause is headed
by go, no phrase can wh-move out of it. Hence go
can never occur along a wh-movement path.

The agreeing complementizer aL, on the other
hand, behaves as if it carried both wh+ and wh−.
Because aL acts as if it carried wh+, it requires

a negative daughter with wh−. But since aL also
acts as if it carried wh−, the daughter can be just
another instance of aL. Eventually, though, the low-
est element must be a wh-mover that only carries
wh+ and thus puts no requirements on its daughter
string. At the same time, the fact that aL behaves
as if it carried wh− also means that it must have
a mother with wh+. Again this can be another in-
stance of aL because aL also acts like wh+. But
eventually there has to be a node at the very top
that only carries wh+ and no wh− — in other words,
a wh-landing site with wh+. Putting all of this to-
gether, a sequence of one or more instances of aL
can only occur sandwiched between wh+ and wh−,
i.e. along a wh-movement path.

The TSL-2 account of Irish thus posits a com-
plementizer go, which can never occur along a
wh-path, and a separate complementizer aL, which
can occur only along a wh-path. What is usually
analyzed as a single complementizer agreeing with
a successive-cyclic wh-mover is actually two dis-
tinct complementizers that are in complementary
distribution due to how they differ in their behavior
on the wh-tier.

5 Discussion

We have seen that the TSL-2 characterization not
only captures movement in a simple manner, it
also accounts for a number of seemingly unrelated
phenomena that arise with movement: multiple wh-
movement (§3.1), optional movement and exple-
tive constructions (§3.1), that-trace effects and anti-
that-trace effects (§3.2), adjunct islands, complex
NP islands, whether islands, relative clause islands,
subject islands (§4.1), and finally wh-agreement
(§4.2). Most importantly, these phenomena require
no additional machinery or assumptions. A cogni-
tive system that can handle the TSL-2 dependencies
of standard movement has all the computational re-
sources to also handle these phenomena. If we
assume free variation in the lexicon and the tier
projections, each one of these phenomena is bound
to eventually show up in some language. But this
is also the shortcoming of the current TSL-2 per-
spective: languages are much more principled and
systematic than the free variation account predicts.

If tier projections vary freely across tiers, lan-
guages, and speakers, why then do we find no lan-
guages that completely lack the adjunct island con-
straint? Why do even those languages where rela-
tive clauses do not induce island effects still show
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processing effects that suggest that they are islands
(Tutunjian et al., 2017)? Why isn’t there a language
where the facts for Truswell sentences are exactly
the other way around, with infinitival T opaque to
extraction whereas finite T allows for it? And why
isn’t there an analogue of the that-trace effect that
targets objects instead of subjects? While TSL-2
rules out many unnatural kinds of movement de-
pendencies (cf. (12)), it still allows for any kind
of unnatural phenomenon that can be expressed as
the projection of a finite subset of the lexicon, no
matter how idiosyncratic that subset.

This shows that TSL-2 in its current form still
overgenerates and is too lax a restriction on the
typology of island constraints. However, the TSL
tier projection also provides a natural locus for
addressing this overgeneration. What TSL-2 needs
is a theory of tier projections. This could come in
the form of substantive universals, perhaps coupled
with abstract notions like monotonicity (Graf, 2019,
2020; Moradi, 2019, 2020, 2021). Alternatively,
there may be restrictions on the relation of tiers
to each other, akin to the constraints on harmony
tiers identified by Aksënova and Deshmukh (2018).
The key point is that while the issue is still open,
TSL already furnishes a path towards its solution
— in contrast to other analyses of islands, which
usually have to add on new machinery to account
for unexpected variation rather than pruning down
the already predicted typology.

That said, TSL-2 isn’t a uniform account of all
attested movement constraints, either. As far as I
can tell, some conditions on movement simply are
beyond the purview of TSL-2, e.g. freezing effects
and the Coordinate Structure Constraint. Whether
this is an isufficiency of TSL-2 or my own analyti-
cal abilities remains to be seen, and it may still be
possible to come up with, say, a TSL-3 account of
freezing effects. In addition, there are alternative
models of subregular dependencies in syntax, fore-
most constraints on string representations obtained
from dependency trees (Graf and Shafiei, 2019;
Shafiei and Graf, 2020) and the class of constraints
recognizable by sensing tree automata (Graf and
De Santo, 2019). Even though these were devel-
oped for constraints that do not directly regulate
movement, for instance Principle A of binding the-
ory, there is no obvious reason why well-attested
conditions on movement cannot come from this
class instead. Again the logic is that if these com-
putational resources are already available to handle

phenomena like Principle A, it would be surpris-
ing if this machinery were never applied to move-
ment. Perhaps, then, TSL-2 covers a large portion
of movement, but not the full space, with other sub-
regular classes picking up the slack. Overall, TSL
is far from the final word on movement, but it pro-
vides a surprisingly versatile starting point that can
be refined in various ways (tier projection, going
beyond TSL-2) to improve its empirical adequacy.

Conclusion

I have argued that the TSL-2 characterization of
Minimalist movement is not a purely mathemati-
cal curiosity but an empirically fertile perspective
that readily accommodates a large variety of phe-
nomena related to movement. This is a unique
conceptual advantage of TSL-2. Whereas other
syntactic proposals require additional machinery
to go from the basic mechanism of movement to
multiple wh-movement, island effects, that-trace
effects, and wh-agreement, all of them come for
free with TSL-2. Any cognitive system capable
of movement also has the computational resources
to handle these phenomena. Similarly, TSL-2 also
predicts that we should never see unnatural things
like the gang-up islands from (12) because they
are not TSL-2, whereas the non-existence of such
islands is puzzling under standard Minimalist ac-
counts. Despite all these advantages, TSL-2 is not
the final word on movement because it predicts too
much variation across movement types, languages,
and speakers. Future work should strive to identify
abstract properties of tier projections that separate
natural from unnatural movement phenomena.
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treatment of scrambling and adjunction in Minimal-
ist grammars. In Proceedings of the Conference on
Formal Grammar, pages 41–52.

Thomas Graf. 2014. Models of adjunction in Minimal-
ist grammars. In Formal Grammar 2014, volume
8612 of Lecture Notes in Computer Science, pages
52–68, Heidelberg. Springer.

Thomas Graf. 2018. Why movement comes for free
once you have adjunction. In Proceedings of CLS
53, pages 117–136.

Thomas Graf. 2019. Monotonicity as an effective the-
ory of morphosyntactic variation. Journal of Lan-
guage Modelling, 7:3–47.

Thomas Graf. 2020. Monotonicity in syntax. In Mono-
tonicity in Logic and Language, volume 12564 of
Lecture Notes in Computer Science, pages 35–53,
Berlin, Heidelberg. Springer.
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1 Introduction

Community language change in situated collabora-
tive task-oriented scenarios has been studied with
focus on reference games (Krauss and Weinheimer,
1964; Clark and Wilkes-Gibbs, 1986; Hawkins
et al., 2017, 2020a,b), where two participants co-
ordinate using language to select to a single item
from a set of available items. These studies found
that utility-maximizing participants trade surface-
form linguistic complexity with established norms,
as the familiarity and expertise of the interaction
partners increase. In practice, this emerges as a
reduction in utterance length and vocabulary size.

We study the generality of these observations by
analyzing language change in a collaborative in-
structional task, where instructors can specify mul-
tiple goals within a single instruction to increase
their utility. This option, not present in reference
games, creates competing incentives: increasing
utility by issuing more goals in a single instruction
versus decreasing language effort by utilizing es-
tablished norms (e.g., by shortening instructions).

We use the CEREALBAR game environment and
its accompanying dataset (Figure 1; Suhr et al.,
2019). CEREALBAR is a two-player, collaborative
language game where players work together to col-
lect sets of matching cards. A leader plans which
cards to include in the next set, and writes instruc-
tions to a follower describing tasks to accomplish.
In contrast to reference games (Krauss and Wein-
heimer, 1964), the language in CEREALBAR is
primarily instructional rather than referential, and
the game allows players to complete a dynamic
number of tasks per instruction and game.

Similar to previous studies, we observe language
change over time along the same dimensions. But,
unlike in reference games, we observe utterance-
level linguistic complexity increases. Our study
illustrates that the formation of common ground

*Equal contribution.

Decile 1: get the card in front

Decile 5: Collect the green square card in front of you.

Decile 10: turn around on the trail, go straight and
get 2 green circles, continue straight on the trail to the
right side of the glacier and get 1 black triangle.

Leader view

Leader view

Follower view

Follower view

Figure 1: Leader instructions in CEREALBAR from
games played at the beginning (Decile 1), middle
(Decile 5), and end (Decile 10) of the community life.
The differences between the instructions illustrate the
linguistic change observed in the data. The instruction
from Decile 10 is paired with a snapshot from the game
as the follower begins to execute it. The leader (left)
and follower (right) are highlighted in the center-left of
the leader’s view of the game, and the top right shows
the follower’s first-person view of the environment.

among interaction participants does not necessarily
reduce language complexity, and may even come
with an increase in complexity. Understanding
how humans use language to collaborate in set-
tings with flexible utility is key to building natural
language systems that effectively collaborate with
users over time. Our analysis code can be found at
github.com/lil-lab/CB-analysis.

2 Scenario and Data Overview

We use the CEREALBAR game and accompanying
dataset (Suhr et al., 2019) in our analysis. CERE-
ALBAR is a collaborative, two-player game, where
a leader and a follower collect matching sets of
cards by moving in an environment. The game is
turn-based, and each player has a limited number
of steps per turn. The leader both collects cards and
instructs the follower using natural language.1 The

1All utterances are in English.
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Mean Median Max

Interaction Score (# Card Sets) 8.8 10.0 19
# Instructions / Interaction 22.0 26.0 41
# Tokens / Instruction 14.4 13.0 55

Vocabulary Size 3,499
Total # Instructions 17,524

Table 1: Statistics of analyzed data.

follower executes leader instructions. The players’
abilities differ: the leader observes the complete
environment and plans sets to collect; the follower
only observes what is ahead, but has more steps per
turn. For each set made, players receive one point
and additional turns, allowing them to complete
more sets. Success requires the players to collab-
orate via natural language: the leader must write
informative instructions to the follower, and the
follower must efficiently follow these instructions.
Figure 1 shows a snapshot of the game.

The CEREALBAR dataset contains 1,202 human-
human game interactions collected over the course
of four months. Workers were randomly assigned
as leader or follower for each interaction. The col-
lection process created a Wizard-of-Oz setup: the
system user, as the leader, provides instructions and
acts in the world, and the human follower is a wiz-
ard, executing instructions to emulate the desired
system behavior. We only use interactions from the
training split for our analysis. We prune interac-
tions by inexperienced workers, as classified when
the data was collected, to focus on the impact of
experience.2 In total, we consider 795 interactions.
Table 1 provides basic statistics of the data we use.
Suhr et al. (2019) used these data to train models,
while we study how the language changes.

3 Data Analysis

To analyze trends over the data collection period,
we split the data chronologically into 10 deciles
of roughly equal size (79 or 80 interactions). An
average of 40 workers participated in each decile
(Figure 2, left). The community stabilized after
Decile 4, as worker recruitment slowed and the
community was split by expertise.3

Interaction goals are increasingly achieved over
time. Mean score per game increases from 3.8 to
12.3 (p < 0.0001) (Figure 2, right).4 Execution
efficiency and game expertise also improve.5 Our

2Appendix B.1 describes this pruning process.
3Appendix B.2 provides decile details.
4We use a two-sided t test at α = 0.05 for all calculations

of significance when comparing means.
5Appendix C.1 details this improvement.
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Figure 2: Community size (left) and mean game score
(right) over deciles of community lifetime. On the left,
the bars show total active players and the curve shows
only the number of new players that joined per decile.
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Figure 3: Vocabulary and utterance length over deciles.

focus is how leader language - the sole communi-
cation conduit - changes to enable these gains.

We design our analysis to be as similar as possi-
ble to existing work on reference games (Hawkins
et al., 2020a), which shows that certain language
aspects are simplified as community conventions
form. CEREALBAR allows for a different realiza-
tion of common ground development than previ-
ously studied reference games, and we observe
trends that are in contrast to this line of prior work.

Instruction Length and Vocabulary Mean6 in-
struction length increases from 11.9 to 14.1 tokens7

(p < 0.0001) over time, while vocabulary size in-
creases from 752 to 1,070 unique tokens (Figure 3).
This contrasts with reference games, where utter-
ance length and vocabulary size reduce (Clark and
Wilkes-Gibbs, 1986; Hawkins et al., 2017). Some
of the words added more specifically describe props
or movements. However, the overall trend is rela-
tively complex, and identifying clear patterns likely
requires a more targeted scenario design.

Syntactic Complexity We analyze syntactic
trends using parts-of-speech (POS) tags and de-
pendency trees.8 We do not observe a significant
difference in usage of closed- and open-class POS
tags, as seen in reference games (Hawkins et al.,
2017). We observe change in the relative use

6All means over instructions are first computed within
each game, then across games. This weighs all games equally,
rather than upweighing longer, higher-scoring games.

7We use NLTK for tokenization, lowercase all tokens, and
use the autocorrect library for typo correction.

8We use spaCy (Honnibal and Montani, 2017) for POS
tagging and dependency parsing.
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of verbs, nouns, conjunctions, determiners, and
numerals.9 Notably, the proportion of conjunc-
tions of all tokens increases from 0.060 to 0.067
(p = 0.0026).10 The proportion of instructions that
contain a conjunction also increases from 0.0495
to 0.0707 (p = 0.0113). Qualitatively, this ac-
companies an increased use of ordered sentential
conjunctions, often to specify multiple tasks in a
single utterance (e.g., once you get that card, turn
around and go left and get the 1 green circle card).

We compute three measures of syntactic com-
plexity using dependency trees (Xu and Reitter,
2016): (a) maximum depth: the longest path from
root to a leaf; (b) maximum width: the maximum
out-degree of any node; and (c) average branching
factor: the average out-degree of non-leaf nodes.11

We normalize to control for utterance length. Fig-
ure 4 shows these statistics over time. Maximum
width and branching factor increased from 0.941
to 0.987 (p = 0.0483) and from 0.934 to 1.00
(p = 0.0051), indicating increased descriptiveness.
Maximum depth did not significantly change, indi-
cating embedded clause use proportional to length,
as expected when increasingly combining instruc-
tions with conjunctions. We observe similar trends
when comparing these statistics between low- and
high-scoring games (Appendix C.2).

Overall, our syntactic analysis shows an increase
in language complexity is required to describe more
tasks within a single instruction. We do not observe
a gradual drop of redundant modifiers and descrip-
tors (Hawkins et al., 2017). This may be because
potential referents do not pose as much ambigu-
ity as the abstract shapes often used in reference
games (Clark and Wilkes-Gibbs, 1986).

Changes in References We see no significant de-
velopment of niche idioms, in contrast to reference
games with abstract shapes (Hawkins et al., 2020a).
This is likely due to concreteness and familiarity of
the referents in CEREALBAR, allowing players to
rely on common background knowledge with little
ambiguity. We observe change in the relative fre-
quency of references to specific objects over time.
We consider seven object classes: building, road,
foliage, rock, ice, water, and light.12 The propor-
tion of instructions containing a reference to ice,

9Appendix C.2 provides details.
10We use a one-sided z test at α = 0.05 for calculations of

significance when comparing proportions.
11We further explain the syntactic measures and provide

example instructions for illustration in Appendix C.2.
12Appendix C.3 describes this classification process.
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Figure 4: Average syntactic branching factor, maximum
depth, and maximum width across deciles. We also plot
the mean utterance length for reference.

light, and buildings increase from 0.006 to 0.022
(p = 0.0006), from 0.015 to 0.027 (p = 0.0188),
and from 0.056 to 0.073 (p = 0.0436). The ra-
tios of other references are stable. Leaders likely
choose references to balance informativity and
effort. Foliage objects are common and require
more effort to differentiate, while buildings and ice
clearly vary. Lights, though common, were often
referred to with other objects to clarify location.

Language Effort Leaders in CEREALBAR

mainly instruct followers to complete card events
to ultimately select valid card sets. We measure
language effort with respect to this objective as
the number of tokens and instructions per card
event (Figure 5). This notion of effort is similar to
utterance cost in speaker-listener pragmatic mod-
els (Goodman and Frank, 2016). The number of
instructions per card event decreases from 0.879 to
0.783 (p = 0.0102), indicating leaders effectively
pack more tasks into fewer instructions – often mul-
tiple card events into one instruction in later deciles
(Figure 1). This change correlates with structural
changes. For example, conjunctions are useful to
pack more tasks into single instructions; the corre-
lation across deciles between the proportion of in-
structions containing a conjunction and the number
of instructions per card event is r = −0.8243. The
high negative correlation indicates that the change
in conjunction use aligns with the increase in goals
(i.e., cards to select) packed per instruction. The
number of tokens per card event initially increases
from 9.9 to 11.8, then decreases to 10.7. This may
be because, initially, followers require more ver-
bose instructions and leaders experiment with the
level of description, but as conventions form, this
verbosity is less needed to understand instructions.

The reduction in the number of tokens per goal
later on corresponds to the reduction in utter-
ance length observed in reference games (Hawkins
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Figure 5: The number of instructions and tokens re-
quired for a card event over deciles. Analysis considers
only instructions marked complete by the follower.

et al., 2017), although it is manifested differently
as the overall surface-form is not simplified (i.e.,
via shorter utterances), unlike in reference games.
Given the opportunity to increase utility, leaders
choose to take advantage of followers’ increased
expertise and efficiency by using more complex
language to pack more goals into each instruction.

4 Discussion and Related Work

The CEREALBAR scenario is related to reference
games (Krauss and Weinheimer, 1964; Clark and
Wilkes-Gibbs, 1986; Hawkins et al., 2017; Monroe
et al., 2017; He et al., 2017; Udagawa and Aizawa,
2019; Haber et al., 2019), which require two play-
ers to agree on a single referent from a set via
dialogue. CEREALBAR differs in several ways. It
allows only unidirectional language communica-
tion,13 and utterances in CEREALBAR are instruc-
tions specifying desired follower behavior with any
number of tasks to complete (i.e., with flexible util-
ity), not a description of a single target referent.

These differences lead to different language dy-
namics. In reference games, Hawkins et al. (2020a)
observed the development of specialized reference
phrases for ambiguous shapes, which allows play-
ers to reduce their utterances’ length and syntactic
complexity. Given that CEREALBAR objects are
generally unambiguous and familiar, players do
not begin with overly verbose references, and have
less potential for reduction to more concise refer-
ences. In contrast, we observe increased instruction
length and complexity. Leaders issue an increas-
ing number of tasks to the follower per instruction,
utilizing the flexibility afforded by CEREALBAR’s
design. This less constrained scenario better re-
flects real-life collaborations, where participants
complete many tasks to achieve complex goals.

13Language change in unidirectional reference games was
also studied by Krauss and Weinheimer (1966), who found
that when task-completion feedback is provided, references
simplify over time.

Our observations show the competing effects of
cost-minimization and utility-maximization. The
formation of common ground and expectations on
partners’ behavior enables leaders to use language
differently to convey more information-dense in-
structions to optimize game performance. This is
aligned with the expectation of better communica-
tion grounding between community members in
Clark and Marshall (1981), and with how ground-
ing in Clark and Wilkes-Gibbs (1986) manifests as
reduced complexity when utterance utility is fixed.
Because there are conflicting forces at work in CE-
REALBAR, common ground is realized differently.

The most related setup to CEREALBAR is the
Cards task (Djalali et al., 2012; Potts, 2012), where
two players collect a single set of cards. It uses
four static environments and studies dialogue, not
instructions. Djalali et al. (2011) showed Cards
players increase the interaction complexity by de-
veloping a rich common ground, including terms
for the fixed board locations. This is less likely
with the randomly generated CEREALBAR envi-
ronments. Utterances in Cards also become shorter,
potentially due to the predefined number of goals.

The language dynamics observed in CEREAL-
BAR contrast with those previously observed in
reference games, providing evidence that gradual
formation of common ground among interaction
participants does not necessarily result in reduced
complexity of sentences, and may even result in
increased complexity. Our conclusions do not void
nor mutually exclude previous work, but illustrate
the complexity of language change over time in a
community. An important direction for future work
is controlled studies to observe the effects of sce-
nario design on the interaction between the devel-
opment of common ground and language change.
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A Reproducibility Checklist Details

All computation was done on a personal laptop.
The CEREALBAR data was acquired from https:
//github.com/lil-lab/cerealbar.

B Data Details

B.1 Selection of Interactions for Analysis
The data we use was not collected specifically for
this analysis, but during data collection for model
development by Suhr et al. (2019). We use 795 of
the 960 interactions in the original training split of
the data for our analysis, pruning the rest to avoid
games that include inexperienced players later in
the community’s life. This prevents the language
of novice workers from affecting our analysis after
the more experienced community had stabilized,
which would potentially suppress convention for-
mation trends observed in existing literature about
reference games (Hawkins et al., 2020a). During
the original data collection process, after 367 of the
960 total training interactions were collected, the
community was split into junior and senior workers.
Junior workers became senior upon gaining ade-
quate experience. A junior worker could request to
be moved to the senior pool after they had played at
least one game as a follower and at least one game
as a leader where they earned at least one point
with their partner, and they seemed to be following
the game rules. Workers who performed well be-
fore the split were included in the senior pool. We
do not consider games from the junior pool.

B.2 Decile Details
All deciles span a relatively short period of time
except the sixth decile, which includes a pause in
data collection (Table 2). The pause did not sig-
nificantly effect community membership or perfor-
mance. Figure 6 shows the number of instructions
per decile, distinguished by complete and incom-
plete instructions. Incomplete instructions occur at
the end of an interaction, when there is insufficient
time or turns to complete the instruction. Figure 7
shows mean interaction length in each decile. Fig-
ure 8 shows follower path lengths per instruction
across each decile.

C Additional Analysis Details

C.1 Interaction Performance
Several measures demonstrate an increase in player
expertise. We analyze interaction performance
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Figure 6: The number of instructions for each decile,
distinguished by whether they were marked as complete
by the follower.
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Figure 7: Mean interaction length, measured by the
number of instructions, in each decile. We include in-
complete instructions in these counts.

through how many moves are taken per each
instruction, the occurrence of de-selection card
events, and instruction queuing behavior. We find
that followers become better at following instruc-
tions and leaders at creating efficient plans.

Optimal Path Length Deviations We measure
how leaders utilize the larger number of steps per
turn available to followers through the length of
the shortest possible path corresponding to each in-
struction. We compute this shortest path using the
observed start and end positions of the human fol-
lower, ensuring that the path avoids obstacles and
completes card events completed by the original
follower. The mean length of the shortest path per
instruction increases over the community lifetime
from 6.66 to 7.97 moves (p < 0.0001). This cor-
responds to the increase we observe in the number
of goals described in each instruction, which likely
requires more steps.

Concurrently, we see improvements in follower
instruction execution, measured through the excess
moves taken by follower: the difference between
the number of moves the follower took and the
shortest possible path corresponding to each com-
pleted instruction. Over time, the number of excess
steps compared to the shortest paths decreased from
3.67 to 2.36 moves (p < 0.0001). Figure 9 visu-
alizes this increase in average optimal path length
per instruction and decrease in moves taken in ex-
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Decile Game IDs Lower Time Limit Upper Time Limit Time (Days)

1 1-79 2019-01-27 20:05:00 UTC 2019-02-02 15:39:00 UTC 5.815278
2 80-159 2019-02-02 15:39:00 UTC 2019-02-02 20:24:00 UTC 0.197917
3 160-238 2019-02-02 20:24:00 UTC 2019-02-03 00:25:00 UTC 0.167361
4 239-318 2019-02-03 00:25:00 UTC 2019-02-04 00:15:00 UTC 0.993055
5 319-397 2019-02-04 00:15:00 UTC 2019-02-04 03:09:00 UTC 0.120833
6 398-477 2019-02-04 03:09:00 UTC 2019-04-15 19:27:00 UTC 70.6375
7 478-556 2019-04-15 19:27:00 UTC 2019-04-15 23:44:00 UTC 0.178472
8 557-636 2019-04-15 23:44:00 UTC 2019-04-16 20:06:00 UTC 0.848611
9 637-715 2019-04-16 20:06:00 UTC 2019-04-16 22:50:00 UTC 0.113889
10 716-795 2019-04-16 22:50:00 UTC 2019-04-17 03:43:00 UTC 0.203472

Table 2: Time limits of the division into deciles. The last column is the total amount of time elapsed during a decile.
All lower time limits are inclusive. All upper time limits are exclusive, except the last one, which is inclusive.
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Figure 8: Mean length of observed follower paths for
complete instructions in each decile. We measure length
in the number of steps recorded per instruction.
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Figure 9: Excess follower moves and shortest possible
distance per leader instruction.

cess of this optimal path. The reduction in excess
moves is especially notable given the increase in
the moves required per instruction, indicating the
absolute decrease observed is due to an even higher
decrease in the probability of follower errors.

Card De-selections We also study the occur-
rence of card de-selections, which often reflect er-
ror correction. In ideal gameplay, no de-selection
events should be observed, as they require addi-
tional steps and only correct for a mistakenly se-
lected card not to be part of the current target set.
We observe that player errors decrease: the propor-
tion of card events (the selection or de-selection of
a single card) that are de-selections decreases from
7.86% to 4.52% (p = 0.0018). Figure 10 shows the
percentage of card events initiated by either player
that are de-selections.

Instruction Queuing The CEREALBAR setup al-
lows a leader to plan ahead by queuing multiple
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Figure 10: Proportion of all card events, initiated by
both followers and leaders, that were de-selections.
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Figure 11: Instruction-queuing behavior over time.

instructions to the follower at a time. For exam-
ple, to efficiently use all of the follower’s moves, a
leader may send two instructions: one which tells
them to complete the set, and another that tells
them to move towards a card which will make up
the next set. A larger queue indicates longer-term
leader planning. Alternatively, the leader could in-
clude the additional information in one instruction
without queuing more instructions. We analyze
this queuing behavior as a potential alternative ex-
planation: the leaders may improve how they relay
information with better planning, rather than chang-
ing the content of their instructions.

We measure the size of the queue at the be-
ginning and end of follower turns, and the max-
imum queue size reached during a game. Fig-
ure 11 shows queue statistics over time. Begin-turn
queue size directly measures how leaders plan via
queuing instructions, as no instructions are queued
during the follower’s turn. Begin-turn and maxi-
mum queue size did not change significantly over
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Figure 12: Ratio of language that is a specified part of
speech over time. Parts of speech of particular interest
are plotted with filled markers.

Dep = 0.83, Wid = 0.93, Bch = 0.83
turn to the left to see one yellow sqaure

Dep = 1.14, Wid = 1.03, Bch = 0.96
go forward one and to your left is orange

Dep = 1.58, Wid = 0.66, Bch = 0.65
take the green card with 3 symbols in front of you

Dep = 0.79, Wid = 1.26, Bch = 1.01
Head straight towards the blue plus card, but don’t pick it
up. Continue past it, on the left of it.

Figure 13: Selected instructions to illustrate the different
measures of complexity, namely: maximum depth (dep),
maximum width (wid), and average branching factor
(bch). All measures normalized for length.

time. This relative stability indicates that game play
improvements were not primarily due to leaders
planning ahead across separate instructions; rather,
they can be attributed more to the changes of lan-
guage within instructions. End-turn queue size
sampling indicates the efficiency of player collab-
oration. From the first to last decile, the average
end-turn queue size decreases from 0.694 to 0.592
instructions. This indicates that followers become
more efficient over time, completing more instruc-
tions per turn. This aligns with our analysis of
follower efficiency (Section C.1 and Figure 9).

C.2 Syntactic Complexity

Part-of-Speech Analysis To compute the ratio
of POS use, we treat each decile of community life
as a bag of words, dividing the total tag count of
each POS by the total token count in each decile.
In our analysis, we combine the spaCy tags ⟨sconj⟩
(subordinating conjunction) and ⟨cconj⟩ (coordinat-
ing conjunction) into one conjunction class, and the
tags nouns and proper nouns into one noun class.
Figure 12 shows the proportion of the nine most
common POS tags used in CEREALBAR instruc-
tions: verbs, determiners, prepositions, adjectives,
adverbs, conjunctions, numerals, auxiliary verbs,

1 2 3 4 5 6 7 8 910
0.9

1

1.1

1 2 3 4 5 6 7 8 910

Community Lifetime Decile
Figure 14: Average dependency branching factor (left)
and maximum width (right) over deciles split to games
that were above (blue) / below (orange) that decile’s
median game score.

and nouns.

Syntactic Complexity Analysis For each utter-
ance, we measure the branching factor, maximum
width, and maximum depth of its dependency parse.
Dependency tree depth indicates how many em-
bedded clauses the utterance has, whereas width-
related measures indicate how many modifiers are
stacked in one sub-tree. Intuitively, increased
width-related metrics indicate more descriptive ut-
terances, whereas increased depth indicates more
compounded phrases. Figure 13 provide examples
to illustrate these differences.

We normalize these measures by the utterance
length following Xu and Reitter (2016). Formally,
let Xn be the set of all utterances in our data with
a length of n tokens. The average of metric S (e.g.,
maximum width) across all utterances of length n
in our data is:

S(n) =
1

|Xn|
∑

x∈Xn

s(x) . (1)

For each utterance x with length n, we compute
the normalized measure for the utterance:

s′(x) =
s(x)

S(n)
. (2)

Syntactic Complexity and Score We observe
similar trends when measuring these statistics
when comparing low- and high-scoring games (Fig-
ure 14). Higher scoring games had, on average,
instructions with significantly higher width and
branching factor. In Decile 1, language in games
scoring 1 point and 16 points had an average nor-
malized branch factor of 0.915 and 1.02. However,
games in the lower 50% of scores showed a higher
increase in syntactic complexity over time.

C.3 Reference Change
We divide environmental objects in the CerealBar
game into six classes: road, foliage, building, water,
rock, ice, and light class objects. We use regular
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Class Keywords

Road road, fork, path, intersect, trail, cross-
road, crosspath, walkway

Foliage palm, flower, tree, shrub, grass, pine,
bush, grove, plant, conif, field, foliag,
wasteland, forest, clearing, patch, lawn

Building tower, building, house, tent, barn, fort,
doghouse, hut, village, cabin, shack,
structure, shed, tower

Water lake, pond, water, sea, river, coast, is-
land, shore

Rock rock, cliff, boulder, mountain, hill, log,
stone

Ice glacier, ice, iceberg
Light post, lamp, pole, light

Table 3: Reference class keywords

expressions to automate if an utterance refers to a
class of objects, defined by if it contains at least
one of the class keywords in Table 3.
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When classifying arguments, BERT doesn’t care about word order . . .
except when it matters
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While contextual embedding models are often
praised for capturing rich grammatical structure,
a spate of recent work has shown that they are
surprisingly invariant to scrambling word order
(Sinha et al., 2021; Hessel and Schofield, 2021;
Pham et al., 2020; Gupta et al., 2021; O’Connor
and Andreas, 2021) and that grammatical knowl-
edge like part of speech, often attributed to con-
textual embeddings, is actually also captured by
fixed embeddings (Pimentel et al., 2020). These
results point to a puzzle: how can syntactic con-
textual information be important for language un-
derstanding when the words themselves, not their
order, are what matter?

We argue that this apparent paradox arises be-
cause of the redundant structure of language itself.
Lexical distributional information alone captures
a great deal of meaning (Erk, 2012; Mitchell and
Lapata, 2010), and the local coherence of words
is crucial for constructing meaning in both hu-
mans (Mollica et al., 2020) and machines (Cloua-
tre et al., 2021). Viewing this redundancy from
the perspective of grammatical role (whether a
noun is the subject or the object of a clause),
most clauses are prototypical: in a sentence
like “the chef cut the onion”, the grammatical
roles of chef and onion are clear to humans from
the words alone, without word order or context
(Futrell et al., 2019, experiments in English and
Russian). This means syntactic word order is re-
dundant with lexical semantics. Whether hand-
constructed or corpus-based, most studies probing
contextual representations have used prototypical
sentences as input, where syntactic context does
not have much information to contribute to core
meaning beyond the words themselves.

Yet human language can use syntax to deviate
from the expectations generated by lexical items
alone: we can also understand the absurd mean-
ing of a rare non-prototypical sentence like “The
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Figure 1: Probabilities of probes trained to differen-
tiate subjects from objects in BERT embeddings. We
separate our evaluation examples by prototypicality:
whether the grammatical role is what we would expect
given the word out of context. The majority of natural
examples are prototypical (solid lines), and so if we av-
erage all cases we cannot see that grammatical informa-
tion is gradually acquired in the first half of the network
for cases where lexical information is non-prototypical.

onion cut the chef” (Gibson et al., 2013). We ar-
gue that a linguistically informed understanding of
the role of word order information in human lan-
guage can illuminate the role of context in contex-
tual embedding models.

Our primary experimental method consists of
training probing classifiers on the hidden layer
embeddings of English BERT (a separate classi-
fier for each layer), to identify whether a noun
token is the subject or the object of a transitive
sentence. Our experiments rest on comparing the
grammatical subjecthood of a noun in a sentence
(as annotated in the English GUM and EWT UD
treebanks) with the type-level (fixed embedding)
subjecthood prediction: what role we would ex-
pect that noun to have if we did not have any con-
text. This allows us to separate prototypical sen-
tences, where the subjects are animate, agentive
words (eg, “The man held the umbrella”) from
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non-prototypical sentences where the subjects are
words generally more likely to be objects (eg,
“The umbrella protected the man”). We also per-
form word order ablations to further understand
how structural information arises in the embed-
dings of non-prototypical examples.

Result 1: Subjecthood is recovered at different
layers of BERT, depending on context Pro-
totypical and non-prototypical subjects differ in
their probing behaviors between layers (the solid
lines in Figure 1). For prototypical subjects, syn-
tactic information is conflated with type-level in-
formation and so probe accuracy is high starting
from layer 0 (word embeddings + position em-
beddings), and this stays consistent throughout
the network. However, when we look at non-
prototypical subjects, we see that the embeddings
from layer to layer have very different grammat-
ical encodings, with type-level semantics domi-
nating in the early layers and more general syn-
tactic knowledge only becoming extractable later.
Since prototypical subjects dominate in frequency
in any corpus, if we were to take the average
of all examples, we would see a very moderate
change in accuracy through layers. Separating
out non-prototypical examples clearly illustrates
how the syntax of a phrase arises independently
from type-level information through transformer
layers, while also showcasing the importance of
lexical semantics in forming early layer embed-
ding spaces.

Result 2: Word-order information influences
grammatical embedding In our first set of re-
sults, we do not differentiate between grammat-
ical information that comes from syntactic word
order, and that which is derived from distributional
co-occurence information. To address this con-
found, we repeat our experiment with sentence
pairs of the type “The chef cut the onion” →
“The onion cut the chef”, where we take a sen-
tence from the treebank data and swap the posi-
tions of the subject and the object, thus swapping
their roles. As shown in Figure 2, it is possible
to extract accurate subjecthood information from
these examples, which consist of the same words
in the same distributional context. This shows how
grammatical-semantic information in embeddings
is in fact independently influenced by syntactic
word order.

Figure 2: Probe probabilities for the same words when
they are the object of an original treebank sentence
(blue line) versus being the subject of that sentence af-
ter manual swapping (dashed red line). The same words
in the same distributional contexts are clearly differ-
entiated throughout contextualization in BERT layers,
due to the impact of syntactic word order.

Result 3: Fine-grained position information
matters for the difficult cases A question still
remains: does grammatiacal subjecthood embed-
ding stem from the fine-grained ways in which
word order influences syntax in English, or from
heuristics based on general primacy (whether a
word is earlier or later in a sentence)? To fur-
ther investigate this, we train and test probes on
treebank sentences where we randomly scram-
ble the local word order so that no word moves
more than 2 slots, and so general primacy is pre-
served. For non-prototypical cases, probes trained
on these locally shuffled sentences cannot fare bet-
ter than chance (prototypical cases can be classi-
fied with relatively high accuracy from just word
identity). This demonstrates that general primacy
information is not sufficient to cause the grammat-
ical representation of non-prototypical cases that
we demonstrate in our previous results.

Conclusion BERT takes advantage of type-level
information when it is available, in order to repre-
sent information about grammatical role. But, just
as humans can understand sentences like “Man
bites dog,” our probing task on non-prototypical
subjects and objects reveals that, in higher lay-
ers of BERT, contextual information can override
type-level biases using fine-grained syntactic word
order information.
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1 Introduction

Recent studies have shown that language mod-
els (LMs) have the ability to capture many long-
distance dependencies such as filler-gap dependen-
cies (Wilcox et al., 2018) and subject-verb agree-
ment (Linzen et al., 2016) despite only learning
from surface strings. However, this ability has
primarily been shown for constructions for which
the surface strings frequently provide information
about dependencies in the form of agreement pat-
terns. For example, if a model has access to sen-
tences with and without a noun phrase intervening
between the subject and the main verb (1), it is of-
ten able to infer the agreement dependencies from
the surface string alone: (Linzen et al., 2016; Mar-
vin and Linzen, 2018; Goldberg, 2019; Gulordava
et al., 2018; Hu et al., 2020b). The surface cues are
boldfaced in (1):

(1) The girls who the boy likes are smiling.

Importantly, such agreement patterns are not avail-
able for all constructions. Consider, for example,
English control constructions with non-finite em-
bedded clauses (2-3). The main verb in the em-
bedded clause cannot be inflected and therefore the
clause generally lacks agreement information. The
main exception to this is when the embedded clause
contains a reflexive anaphor (e.g., himself ). In such
cases, the anaphor refers to either the subject or
the object in the higher clause (the controller) and
thus has to agree with the controller. In (2), the
anaphor himself is co-referential with the subject
under the subject control predicate promise. In (3),
the anaphor is co-referential with the object under
the object control predicate persuade.

(2) The artist promised the lawyers to make
fun of himself. (Subject control)

(3) The artists persuaded the lawyer to make
fun of himself. (Object control)

Given the lack of agreement information on the
verb, it is difficult to infer whether the controller
should be the subject or the object of the matrix
clause from the surface string alone, unless the em-
bedded clause contains a reflexive anaphor. Such
constructions, however, are almost non-existent in
corpora.1 Hence, LMs trained on naturalistic cor-
pora likely fail to capture this type of dependency.

In this work, we examine a Transformer-based
LM, namely Generative Pre-trained Transformer
2 (GPT-2) (Radford et al., 2019), which is trained
only on surface strings, to see whether or not the
model makes correct predictions about the agree-
ment patterns of reflexive pronouns in subject and
object control constructions. Our findings show
that GPT-2 struggles with subject control construc-
tions such as (2), but does quite well on object con-
trol constructions such as (3). One reason might
be that the model tries to associate the anaphor
with the closest noun phrase. Moreover, while we
find that a model with a larger number of parame-
ters shows higher accuracy on the tasks related to
subject control constructions, performance remains
below chance and the model does not mimic human
behavior.

2 Language model

We evaluated to what extent an LM predicts the
correct agreement patterns for subject and object
control constructions involving a reflexive anaphor.
Given its strong performance on many other syn-
tactic tasks (Warstadt et al., 2020), we used GPT-2
(Radford et al., 2019) through the HuggingFace
Transformer library (Wolf et al., 2020). GPT-2
uses a self-attention mechanism that enables it to
learn to focus on certain parts of the input that are

1For example, the Corpus of Contemporary American
English (Davies, 2008), which contains more than 1 billion
words, includes exactly one example with promise in which a
reflexive agrees with the controller.

206
Proceedings of the Society for Computation in Linguistics (SCiL) 2022, pages 206-211.

Held on-line February 7-9, 2022



Condition Example

With object SUBJECT CONTROL
Promise Baseline The lawyer promised the artist to make fun of himself.

Distractor The lawyer promised the artists to make fun of himself.
Ungrammatical *The lawyers promised the artist to make fun of himself.

Offer Baseline The lawyer offered the artist to make fun of himself.
Distractor The lawyer offered the artists to make fun of himself.
Ungrammatical *The lawyers offered the artist to make fun of himself.

Guarantee Baseline The lawyer guaranteed the artist to make fun of himself.
Distractor The lawyer guaranteed the artists to make fun of himself.
Ungrammatical *The lawyers guaranteed the artist to make fun of himself.

OBJECT CONTROL
Persuade Baseline The lawyer persuaded the artist to make fun of himself.

Distractor The lawyers persuaded the artist to make fun of himself.
Ungrammatical *The lawyer persuaded the artists to make fun of himself.

Tell Baseline The lawyer told the artist to make fun of himself.
Distractor The lawyers told the artist to make fun of himself.
Ungrammatical *The lawyer told the artists to make fun of himself.

Force Baseline The lawyer forced the artist to make fun of himself.
Distractor The lawyers forced the artist to make fun of himself.
Ungrammatical *The lawyer forced the artists to make fun of himself.

No object SUBJECT CONTROL
Promise Baseline The lawyer promised to make fun of himself.

Ungrammatical *The lawyers promised to make fun of himself.
Offer Baseline The lawyer offered to make fun of himself.

Ungrammatical *The lawyers offered to make fun of himself.
Guarantee Baseline The lawyer guaranteed to make fun of himself.

Ungrammatical *The lawyers guaranteed to make fun of himself.

Table 1: Associates are boldfaced. Baseline, Distractor, Ungrammatical conditions are based on Hu et al. (2020a).

recognized to be more important for predicting the
next word than others. The model is pre-trained on
the WebText dataset (Radford et al., 2019) which is
estimated to contain 8 billion tokens (see Warstadt
et al., 2020). The corpus is tokenized into sub-word
units using the byte pair encoding compression al-
gorithm (Sennrich et al., 2016). GPT-2 is an autore-
gressive language model, that is, its pre-training
objective is a next-token prediction task in which
it aims to maximize the probability of each token
given its previous tokens.

To examine whether an increase in the number of
parameters affects performance on the agreement
task, we evaluated two differently sized pre-trained
GPT-2 models: GPT-2 (small) with ∼117 million
parameters and GPT-2 XL with∼1.5 billion param-
eters. Both models were trained on the same corpus
and only differ in their number of parameters.

3 Experimental design

The frequency of each reflexive pronoun in En-
glish (e.g., himself, herself, and themselves) differs
greatly from one another in many standard corpora
(Hu et al., 2020a). In order to minimize this con-
found, we keep the reflexive word constant in all
of our stimuli and vary the preceding context as
little as possible. Table 1 shows our example stim-

uli with the reflexive anaphor, himself, embedded
in a non-finite clause. We used himself instead of
herself, since himself is usually more frequent than
herself in corpora. We avoided using themselves
mainly due to its number-neutral usage. Under
our experimental design, the anaphor himself is
associated with either the subject or the object in
the matrix clause depending on the matrix predi-
cate (e.g., promise or persuade). We used 5 noun
phrases for subjects and objects, 3 matrix verbs for
subject control, 3 matrix verbs for object control,
and 5 embedded clauses (see Appendix A).

Adapting Hu et al.’s (2020a) experimental de-
sign, we generated grammatical sentences by
matching the number of the reflexive anaphor and
the controller (the associates) while being flexible
about the number of the non-associate. The ‘Base-
line’ condition consists of (non-)associates that al-
ways match in number. The ‘Distractor’ condition
consists of a non-associate that differs from the
associates in number. The associates are boldfaced
and the non-associates are underlined in (4-5):

(4) The lawyer promised the artist to make fun
of himself. (Baseline)

(5) The lawyer promised the artists to make
fun of himself. (Distractor)
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For the ‘Ungrammatical’ condition, the number of
the associates are mismatched while the number of
the anaphor and the non-associate are matched as
shown in (6):

(6) *The lawyers promised the artist to make
fun of himself. (Ungrammatical)

As mentioned in the previous section, GPT-2 as-
signs a probability to every token in a sentence
based on its preceding tokens. For minimal pairs
such as (4-6), we expect the probability assigned to
himself, P (himself), in the ‘Ungrammatical’ condi-
tion to be lower than P (himself) in both the ‘Base-
line’ and ‘Distractor’ conditions. Hence, chance
accuracy is 33%. We constructed 100 minimal
pairs for each of the matrix verbs shown in Table 1.

Since LM performance on reflexive anaphor li-
censing has generally been mixed (Marvin and
Linzen, 2018; Futrell et al., 2019; Hu et al., 2020a),
we also examined whether GPT-2 can make correct
associations between the reflexive anaphor and the
controller when there is no distracting noun (non-
associate) intervening between the two. Hence,
we examined simple control cases where the non-
associate is absent using subject control construc-
tions (7-8). Note that this is not possible with object
control constructions, since neither the subject nor
the object can be omitted.

(7) The lawyer promised to make fun of him-
self. (Baseline)

(8) *The lawyers promised to make fun of
himself. (Ungrammatical)

We constructed 25 minimal pairs: 25 sentences for
the ‘Baseline’ condition and 25 sentences for the
‘Ungrammatical’ condition. We expect P (himself)
in the ‘Ungrammatical’ condition to be lower than
P (himself) in the ‘Baseline’ condition. Hence,
chance accuracy is 50%.

4 Results

Table 2 shows that GPT-2 (small)’s mean accuracy
on subject control constructions with objects (4%)
is significantly lower than its mean accuracy on ob-
ject control constructions (100%). The larger GPT-
2 XL shows higher accuracy on subject control
constructions used with the matrix verbs promise
(13%→ 47%) and offer (0%→ 20%). However,
GPT-2 XL’s accuracy on subject control construc-
tions used with the matrix verb guarantee more or
less remains the same (0%→ 3%). The model’s

GPT-2 (small) GPT-2 XL

Promise 0.13 0.47
Offer 0.00 0.20
Guarantee 0.00 0.03
Mean 0.04 0.23
Persuade 1.00 0.95
Tell 1.00 0.95
Force 1.00 1.00
Mean 1.00 0.97

Table 2: GPT-2 performance on transitive subject and
object control constructions (with object). Mean accu-
racy for each type of constructions is included. Chance
accuracy is 0.33.

GPT-2 (small) GPT-2 XL

Promise 1.00 1.00
Offer 1.00 1.00
Guarantee 1.00 1.00
Mean 1.00 1.00

Table 3: GPT-2 performance on intransitive subject
control constructions (no object). Mean accuracy is in-
cluded. Chance accuracy is 0.50.

mean accuracy on subject control constructions
with objects (23%) is thus still below chance accu-
racy (33%) and is significantly lower than its mean
accuracy on object control constructions (97%).
The results from the control experiment in Table 3
show that the poor performance on subject control
with objects cannot be attributed to the issues re-
lated to reflexive anaphor licensing per se. Both
models perform at ceiling on sentences without ob-
jects (100%), which suggests that the models are
generally able to predict licensing patterns between
reflexives and noun phrases based on number.

Taken together, the results suggest that both ver-
sions of GPT-2 primarily rely on the heuristic to
associate the reflexive anaphor with the object NP.
One likely reason for this behavior is that the re-
flexive anaphor is linearly closer to the object than
to the subject. Given that syntactically complex
sentences are not commonly represented in cor-
pora (Marvin and Linzen, 2018), it is likely that
the model learned to associate reflexives with the
linearly closest noun phrase from naturalistic train-
ing corpora. Further, that both versions of GPT-2
perform similarly poorly suggests that an increase
in the number of parameters does not lead to a
considerable increase in accuracy.
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Figure 1: Mean negative log probability at the reflex-
ive anaphor in transitive subject control constructions.
Error bars indicate 95% confidence intervals.
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Figure 2: Mean negative log probability at the reflexive
anaphor in transitive object control constructions. Error
bars indicate 95% confidence intervals.

To further investigate the reason for the low per-
formance on the agreement task for the transitive
subject control constructions, we computed the
mean surprisal values at the reflexive word him-
self for each of the 3 conditions. Figure 1 shows
that, for the subject control constructions, both ver-
sions of GPT-2 have higher surprisal values in the
‘Distractor’ condition than in the ‘Ungrammatical’
condition, which provides additional evidence that
the model adopts the strategy of agreeing with the
closest NP. For object control constructions, on the
other hand, both versions of GPT-2 show higher

surprisal values in the ‘Ungrammatical’ condition
than in the ‘Distractor’ condition (Figure 2), as al-
ready indicated by the near-perfect accuracy on the
object control tasks. Moreover, we find that the
surprisal of himself is almost identical in the condi-
tions in which the object NP is singular (‘Baseline’
and ‘Ungrammatical’ for subject control construc-
tions, and ‘Baseline’ and ‘Distractor’ for object
control constructions), which further suggests that
the model bases its predictions primarily on the
number of the object NP in both types of construc-
tions.

5 Discussion

The results from our experiments suggest that GPT-
2 is unable to correctly distinguish subject control
from object control constructions.2 One potential
strategy for increasing model accuracy is to aug-
ment the training data with examples of the form
that we used for evaluation, which may lead mod-
els such as GPT-2 to learn the correct generaliza-
tions. However, while such a strategy may solve
the problem for these specific constructions, the
results that we presented here also highlight im-
portant limitations of training models from surface
strings present in naturalistic corpora alone. This
suggests that successfully mimicking human lin-
guistic behavior may require a model that has ac-
cess to meaning during training, as recently argued
by Bender and Koller (2020), so that for example,
it can learn the differences between subject and ob-
ject control verbs (e.g., promise versus persuade).
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A Stimuli

Noun phrases We manually constructed the fol-
lowing list of noun phrases: the professor, the
lawyer, the artist, the student, and the child. The
plural versions of the noun phrases were also used
to generate grammatical and ungrammatical sen-
tences. Each noun phrase is realized in the subject
and object positions equally often in transitive sen-
tences. Each noun phrase is realized with each of
their matrix verbs equally often as well.

Matrix verbs The matrix verbs determine
whether a given construction is subject or object
control. For subject control verbs, we used promise,
offer, and guarantee. For object control verbs, we
used persuade, tell, and force.

Embedded clauses We manually constructed a
list of non-finite embedded clauses hosting the re-
flexive anaphor himself : to make fun of himself, to
examine himself, to diagnose himself, to embarrass
himself, and to disguise himself. The embedded
anaphor refers back to either the subject or the ob-
ject depending on the matrix verb.
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Incremental Acquisition of a Minimalist Grammar using an SMT-Solver
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A central question in cognitive linguistics is how
children everywhere can readily acquire Knowl-
edge of Language (KoL) from (restrictive) Primary
Linguistic Data (PLD) (Chomsky, 1986; Berwick
et al., 2011; Chomsky, 2013). This study addresses
this question by introducing a novel procedure, im-
plemented as a working computer program, that
uses an interactive theorem prover to incrementally
infer a Minimalist Grammar (MG) (Stabler, 1996).
The procedure, which is inspired by (Rayner et al.,
1988) and builds on earlier work by (Indurkhya,
2020), takes the form of a computational model of
child language acquisition (Berwick, 1985; Chom-
sky, 1965). The procedure takes as input a se-
quence of paired interface conditions - i.e. each
entry is a Phonological Form (PF), encoding a sen-
tence, paired with a Logical Form (LF), which en-
codes thematic roles for each predicate as well as
agreement relations; the input sequence, which cor-
responds to the PLD that a child is exposed to,
is organized into a sequence of batches that the
procedure consumes incrementally. The procedure
outputs an MG lexicon, consisting of a set of (word,
feature-sequence) pairings, that yields, for each en-
try in the input sequence, a minimalist derivation
that satisfies the listed interface conditions; the out-
put MG lexicon corresponds to the KoL that the
child acquires from processing the PLD.

The procedure, which models a child language
learner, operates as follows. The initial state of the
the learner is an empty MG lexicon. The procedure
incrementally constructs an MG lexicon: at each
step the procedure takes as input a batch of the PLD
and the lexicon that constitutes the current state of
the learner, and then it augments the input lexicon
with the minimal set of additional lexical entries
needed to ensure that the augmented lexicon will
yield, for each entry in the batch of PLD, a mini-
malist derivation that satisfies the listed interface
conditions.1 When processing a batch of the PLD,

1Each iteration of this process corresponds to an appli-

the learner first constructs a set of logical formulae,
expressed using the logic of Satisfiability Modulo
Theories (SMT) (De Moura and Bjørner, 2011),
that encodes: (i) an SMT-model of an MG lexicon
that is required to have at least the lexical entries
in the input lexicon; (ii) for each entry in the batch
of PLD, an SMT-model of an MG derivation that
must be derivable from the lexicon and that must
satisfy the interface conditions listed for that entry.2

The procedure then employs the Z3 SMT-solver
(De Moura and Bjørner, 2008) to identify a solu-
tion to this set of SMT formulae that corresponds
to the smallest3 lexicon, and from this solution the
“augmented” lexicon, which is the new state of the
learner, is automatically recovered.4 The final out-
put of the procedure – i.e. the MG lexicon yielded
after consuming the full PLD – corresponds to the
KoL that the learner has acquired. Importantly, at
a given step of the procedure, the size of the SMT-
model of the lexicon is constrained by the size of
the input lexicon (and a small, fixed, number of
lexical entries that may be added), and the number
of SMT-models of derivations is constrained by the
size of the PLD-batch - thus, the procedure can
iteratively consume a large PLD without blowing
up the size of the constructed SMT-models, thereby
avoiding computational intractibility.

cation of the instantaneous MG acquisition procedure intro-
duced in (Indurkhya, 2020) and detailed in §3.2 of (Indurkhya,
2021a).

2The SMT-model of the lexicon is linked to each SMT-
model of a derivation via common free-variables. See Ch. 2
of (Indurkhya, 2021a) for a complete presentations of these
SMT-models.

3As measured by (firstly) the number of distinct feature
sequences that appear in the lexicon, and (secondly) the total
number of features that appear in the lexicon. Unlike (In-
durkhya, 2020), here the acquisition procedure is restricted
to work with a single selectional feature, x0, which has the
benefit of reducing the size of the SMT model, but yields a lex-
icon that is underconstrained w.r.t. c-selection; see (Indurkhya,
2021b) for a discussion of how model based collaborative fil-
tering could be used to constrain which arguments a predicate
can select within a derivation.

4This augmented lexicon is a superset of the input lexicon.
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Figure 1: The acquisition procedure incrementally inferred the grammar listed in Fig. 2 after (successively) con-
suming four batches of primary linguistic data (PLD), the latter three of which are shown here (see Table 3.2 in
(Indurkhya, 2021a) for the first batch). Each of the input sentences listed here has one degree (level) of embedding.
The second batch consist of sentences in which the embedded clause is a declarative (e.g. I31) or an interrogative
(e.g. I34). The third and fourth batch consists of sentences with an embedded (restrictive) relative clause. Notably,
in the case of LF interface conditions that mark an embedded clause as an argument, the tokens making up the
embedded clause are interpreted as a multi-set of phonological forms - e.g. the LF interface conditions for I35
indicate that the phrase to be formed from the multi-set of phonological forms { everything, that, mary, was, asked
}will serve as an internal argument of the (lexical) verb “told”. Hence, the LF interface conditions do not explicitly
encode any information about the linear ordering of the phonological forms that form the sentence, and only serve
to constrain the hierarchical relations that establish predicate-argument structure.

Figure 2: A factored representation of an MG lexicon inferred by the acquisition procedure - an X indicates that
a lexical entry pairing a feature sequence with phonological form. Bold horizontal-lines dividing the feature-
sequences indicate which of the four (successive) PLD batches was processed when those feature-sequences were
added; notably, the lexicon was augmented with only four feature-sequences (L17 - L20) to handle the embedded
clauses found in PLD batches 2-4. Bolded phonological forms appeared after the first PLD batch - e.g. “she” first
appears in the second PLD batch, and is paired with L15 (that was added upon processing the first PLD batch).
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Figure 3: Presentations of two MG derivations identified by the acquisition procedure that satisfy the inter-
face conditions listed in I32 and I38 respectively and that may be yielded by the lexicon listed in Fig. 2.
The derivation for I32, which derives a sentence with an embedded question, employs feature-sequences
{L1,L2,L3,L7,L13,L15,L16,L17}, and the derivation for I38, which derives a sentence with an embedded re-
strictive relative clause, employs feature-sequences {L1,L3,L7,L13,L15,L16,L18,L20}. The leaf nodes (indi-
cated by absence of rounded corners) are lexical items selected from the lexicon. The derivation is assembled in
a bottom-up manner via repeated applications of the structure-building operation merge. The feature sequences
displayed in non-leaf nodes (indicated by rounded corners) have a dot, · , that separates those features that have
already been consumed (on the left) from those that have not (on the right) - see (Stabler, 2001) for details the MG
feature system. Nodes with the same head have the same color. Head-movement is indicated by the dotted-arrows,
and phrasal movement is indicated by the dashed arrows. Note that as the system is only provided with two types
of complementizers, Cdecl. and Cques., the system re-uses the declarative complementizer sub-category for both
types of embedded clauses; expanding the set of (sub-)categories available to the system is one possible avenue of
future improvement to the system.
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Figure 4: A demonstration of how, by repeated application of a substitution-rule to a base-case derivation, the
lexicon (listed in Fig. 2) that the acquisition procedured inferred from a PLD restricted to sentences with degree-
0/1 embedding can yield a sentence with degree-n embedding for any n ≥ 0. Note that these derivations only show
what external merge operations would be applied, with internal merge assumed to immediately and automatically
be applied whenever possible in the course of a derivation.

We demonstrate the capabilities of the acquisi-
tion procedure by using it to infer an MG lexicon
from a PLD consisting of 39 simple sentences that
were divided into four consecutive batches (having
28, 6, 2 and 3 entries respectively), with the first
batch having sentences without any embedding,
and the remaining batches (presented in Table 1)
consisting of sentences with at most one degree of
embedding (i.e. embedded declaratives or relative
clauses). The procedure outputs an MG lexicon
(see Fig. 2) that yields derivations for declaratives,
yes/no-questions, and wh-questions in both active
and passive voice; these derivations involve various
forms of syntactic movement including wh-raising,
subject-raising, T-to-C head-movement and V-to-v
head-movement; the lexicon also includes entries
for covert complementizers and light-verbs. The
inferred lexicon aligns with contemporary theo-
ries of minimalist syntax5 in so far as: (i) the lexi-
con yields the prescribed derivations for a variety
of syntactic structures, utilizing syntactic move-
ment (including head-movement) and covert lex-
ical items as needed (see Fig. 3 for examples);
(ii) expressions with related interpretations are as-
signed derivations systematically related by struc-
tural transformations. Furthermore, this lexicon
can generate a countably infinite set of minimal-

5As presented in (Adger, 2003; Hornstein et al., 2005;
Radford, 2009; Collins and Stabler, 2016).

ist derivations, including derivations with n-levels
of embedding for any n ≥ 0, thereby generaliz-
ing beyond the input PLD (see Fig. 4 for more
details).6 Notably, the procedure does this without
being provided a treebank of minimalist derivations
that serve as examples of what the acquired lexicon
should be able to yield, and to that end, the proce-
dure constitutes a novel scheme for unsupervised
inference of MGs.

The acquisition procedure demonstrates how an
SMT-solver can aid in the study of linguistic the-
ory: the solver enables us to separate out the ques-
tions of what KoL the learner acquires and how
the learner acquires it – i.e. we can setup compu-
tational experiments in which we focus on speci-
fying the learner’s initial state and the conditions
that the learner’s final state must satisfy (w.r.t. the
PLD), and leave to the solver questions of how the
language-acquisition device goes from the initial
state to the final state and what that final state is.
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Introduction

Across languages, it is common for words to be
associated with multiple meanings. Moreover, cer-
tain meanings are expressed by the same form more
often than others (Jackson et al., 2019; Xu et al.,
2020). For instance, the colexification –i.e., the
conventional association of multiple meanings with
the same form– of TOE and FINGER is found in at
least 135 languages (Rzymski et al., 2020). These
languages are spoken throughout the world and
span multiple unrelated language families.

Recent research suggests that semantic related-
ness increases colexification likelihood (Xu et al.,
2020). Semantic memory may favor colexifying
meanings that are easy to relate to one another.
This, in turn, may aid vocabulary acquisition, lexi-
cal retrieval and interpretation. Building on these
findings, we investigate the interplay between this
and another major force: pressure for the lexicon
to be informative, in the sense of supporting accu-
rate information transfer (e.g., Regier et al., 2015).
We hypothesize that languages strike a balance be-
tween these two forces. In particular, we expect
colexification likelihood to increase with seman-
tic relatedness, until a point is reached at which
meanings are too related; for these highly related
meanings, we expect pressure for informativeness
to counteract the increasing trend, because these
meanings would not be easy to disambiguate even
in context. We find support for this hypothesis in
two large scale analyses.1

Analysis 1

To study the relationship between semantic relat-
edness and colexification, we fit three generalized
additive logistic models to colexification data span-
ning over 1200 languages and more than 1400

1The manuscript that this abstract is based on is found at
https://psyarxiv.com/efs4p

meanings, totaling 203056 data points. This data
comes from CLICS3 (Rzymski et al., 2020), the
largest cross-linguistic database of colexifications
available to date. The models characterize how
likely a pair of meanings is to colexify in a given
language as a function of one of three data-induced
estimates of relatedness: distributional similarity,
using pre-trained embeddings (Grave et al., 2018);
associativity data (De Deyne et al., 2018); and the
first principal component of these two measures
(PC1). Both distributional and associative infor-
mation are based on Dutch and English glosses of
the meanings found in CLICS3; that is, Dutch and
English words are used as surrogates for meanings
to estimate the latter’s relatedness. Since language
contact and common linguistic ancestry influence
colexification (Jackson et al., 2019; Xu et al., 2020),
the models are also passed information about how
often a pair of meanings colexifies in other lan-
guages. This information is weighted by the phy-
logenetic/geographic distance to the response lan-
guage. An indicator codifies whether a relatedness
estimate stems from Dutch or English data.

Model comparison using approximate leave-one-
out cross-validation suggests that PC1 is the best
predictor of colexification, with a difference of
−715 in expected log pointwise predictive den-
sity to the second highest ranked model. Figure 1
shows its estimated marginal effects. These results
largely support to our hypothesis: colexification
increases with relatedness until meanings are “too
related”, which makes their colexification decrease.
Note, however, that the data are also consistent
with a plateau rather than a decrease for highly
related meanings (see shaded area in the figure).
This is still consistent with the main hypothesis –
informativeness counteracting simplicity for highly
related meanings–, with a smaller effect of infor-
mativeness than we had expected.
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Figure 1: A: Marginal effects of standardized PC1. Shading shows 95% credible intervals. The smooth function
s(·) characterizes how PC1’s contribution to colexification likelihood changes across values. B: Mean posterior
predictions for exemplary meaning pairs across PC1 values.

Analysis 2

Our hypothesis specifically predicts that the de-
crease in colexification likelihood for highly re-
lated meanings is due to their confusability. We
next probe confusability more directly, focusing on
the kind of relationship meanings stand in.

Pressure for informativeness should make colex-
ifying opposites (e.g., LEFT and RIGHT) less likely
than colexifying meanings in other kinds of rela-
tionships. Opposite meanings express contrasts,
being maximally similar in every respect but one
(e.g., Kliegr and Zamazal, 2018). Therefore, losing
the distinction they encode can be expected to be
particularly harmful in communicative terms. We
compare opposites to meaning pairs standing in
two semantic relations that do not necessarily lead
to high confusability: part-whole (e.g., TOE-FOOT)
and subsumption (e.g., CALF-CATTLE).

Colexification rates were estimated from 1416
meanings and 2279 languages from CLICS3. Se-
mantic relations are from WordNet (Fellbaum,
2015), using English words as proxies for mean-
ings. Pairs in none of the three relations were
classified as ‘none/other’. As expected, this group
has the lowest mean percentage of colexification
(0.06, with a 95% CI of [0.06, 0.06]), followed
by opposites (1.4 [1.3, 1.5]), then by subsumption
(3.1 [3.0, 3.3]) and part-whole pairs (3.7 [3.5, 3.8]).
These results suggest, first, that standing in one of
the three relations increases the odds for meanings
to colexify compared to ‘none/other’; and second,
that not all relations are equally conducive to colexi-
fication, with opposites being less likely to colexify.

We thus again find that relatedness makes colexifi-
cation more likely, but that the need to distinguish
confusable meanings can counteract this trend. Un-
der our interpretation, simplicity makes colexifi-
cation likelihood for opposites increase, whereas
informativeness makes them decrease, resulting in
their position in the middle compared to the other
relations.

Conclusions

A growing body of research supports the idea that
languages are efficient in the sense that they strike
a good balance between informativeness and sim-
plicity (e.g., Christiansen and Chater, 2008; Regier
et al., 2015). Our large scale analyses suggest such
a balance in the lexicon. We find that colexifica-
tion likelihood increases with semantic relatedness,
until an inflection point is reached, after which it
decreases or flattens out (Analysis 1). This shift
may be a consequence of a need for meanings to
be distinguishable in context (Analysis 2).
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1 Introduction

It’s hotly contested how children learn constraints
on the allowed forms in their language, such as
constraints on wh-dependencies (these constraints
are sometimes called syntactic islands: Chomsky
1973; Pearl and Sprouse 2013). When learning this
knowledge, a prerequisite is knowing how to repre-
sent wh-dependencies – constraints can then be hy-
pothesized over these dependency representations.
Previous work (Pearl and Sprouse, 2013; Liu et al.,
2019) explained disparate sets of syntactic island
constraints by assuming different wh-dependency
representations, without a unified dependency rep-
resentation capturing all these constraints. Here,
we implement a modeled learner attempting to
learn a Fragment Grammar (FG) representation
(O’Donnell et al., 2011; O’Donnell, 2015) of wh-
dependencies—a representation comprised of po-
tentially different-sized fragments that combine to
form full dependencies—that best accounts for the
input while being as compact as possible. In par-
ticular, FG implements a theory of efficiency that
balances the size of the fragments in the resulting
grammar while also maximizing the probability
of the dependency structures comprised of these
fragments. So, when deciding on the fragments
to represent from linguistic input, a learner can
choose between smaller fragments of the input that
may be reused often in different contexts and larger
fragments that can be accessed without building
up the structure from smaller pieces. The result-
ing fragment-based wh-dependency representation
can then be used to generate any wh-dependency’s
probability on the basis of its fragments, and so
predict acceptability patterns for stimuli sets that
reveal syntactic island knowledge. We find that the
identified FG, learned from a realistic sample of
wh-dependencies from English-learning children’s
input, can generate the attested acceptability judg-

ment patterns for all syntactic islands previously in-
vestigated, highlighting how implicit knowledge of
wh-dependency constraints can emerge from trying
to learn to efficiently represent wh-dependencies
more generally. We additionally compare the FG
representation’s performance against baselines in-
spired by previous proposals, finding that one base-
line also yields equivalent performance. We discuss
how this baseline is similar to and different from
the FG representation.

2 Wh-dependency representation

We assume wh-dependencies are represented as
sequences of phrase structure nodes that indicate
the path from the gap to the wh-word (Pearl and
Sprouse, 2013) (1a)-(1b). However, it’s unknown
whether the phrasal categories (e.g., CP, VP) in this
representation need to be lexically subcategorized.
For instance, does the dependency path for a wh-
dependency with claim need to include that the
verb is claim (1d) or not (1e)?

(1) What did Lily claim that Jack forgot?
a. What did [IP Lily [V P claim [CP that [IP

Jack [V P forgot what]]]]]?
b. phrase-structure nodes in syntactic path:

IP-VP-CP-IP-VP
c. lexical information for those nodes:

IP=past, VP=claim, CP=that, IP=past,
VP=forget

d. possible representations with lexically-
subcategorized VP claim:
IP-VPclaim-CP-IP-VP, IPpast-VPclaim-
CP-IPpast-VP, IP-VPclaim-CPthat-IP-
VPforget, ...

e. possible representations without lexically-
subcategorized VP claim:
IP-VP-CP-IP-VP, IP-VP-CPthat-IP-VP,
IPpast-VP-CPthat-IPpast-VPforget, ...
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Figure 1 illustrates the consequences of lexical
subcategorization and the related balance of frag-
ment size mentioned earlier, showing two extremes
of how to represent the example dependency path
from (1). The leftmost representation uses minimal-
sized fragments (phrasal-only like IP-VP, and lex-
icalized like IPpast) that may be reused often be-
cause they can appear in many different dependen-
cies. This representation has no lexical subcatego-
rization because the lexical information is separate
from the phrasal structure. The rightmost represen-
tation uses a maximal-sized fragment (representing
the entire dependency with both its phrasal struc-
ture and lexical pieces) that will only be reused if
this exact dependency occurs. This representation
has complete lexical subcategorization because all
the lexical information is included in this phrase
structure fragment. In terms of maximizing the
probability of the dependency, each extreme has its
drawbacks: the representation relying on minimal-
sized fragments requires combining many individ-
ual fragments, which can lead to a lower probability
even if the individual fragments have higher proba-
bilities; the representation relying on the maximal-
sized fragment likely has a fairly low probability
unless this particular dependency happens to oc-
cur very frequently (and even if it does, this won’t
be true for all dependencies). To maximize the
probability of a dependency in general, a better
approach is to find some intermediate representa-
tion, such as the middle one in Figure 1, that in-
volves some larger phrasal fragments incorporating
lexical subcategorization (e.g., IPpast-VP), as well
as some lexical-only fragments (e.g., VPforget).
In this example intermediate representation, there
is thus a tradeoff between larger fragments that
don’t have to be built every time from smaller frag-
ments (e.g., IPpast-VP from IPpast and IP-VP) and
smaller, more frequently-reused fragments (e.g.,
VPforget). Of course, there are many possible inter-
mediate representations, and the goal for a learner
is to identify the best one that maximizes this trade-
off and so yields high probabilities collectively for
the dependencies in the input.

3 Previous representation proposals

Previous developmental modeling work by Pearl
and Sprouse (2013) predicted attested adult judg-
ment patterns for 4 islands (Complex NP, Subject,
Adjunct, Whether)—see Figure 2a—by assuming
only CPs were lexically subcategorized (i.e., only

Figure 1: Example wh-dependency path as a syntactic tree
and possible ways to build it from fragments.

the lexical information of CPs was included with
the phrasal structure). Previous empirical work by
Liu et al. (2019) predicted attested judgment pat-
terns for 14 bridge (e.g, say), factive (e.g., know),
and manner-of-speaking (e.g., whisper) verbs—see
Figure 2c—in terms of the lexical frequency of the
main-clause VP. While Liu et al. didn’t explicitly
propose a theory of representation, their results are
compatible with a representation that lexically sub-
categorizes main-clause VPs (i.e., only the lexical
information of the main verb is included with the
phrasal structure). Yet, these are only two of many
possible types of hypotheses for how the phrasal
structure of wh-dependencies could be represented
(i.e., different intermediate representations). Using
an FG, we can explore the entire hypothesis space
that investigates not only which lexical information
should be included (e.g., CPs or main VPs), but
also what size fragments are the most efficient for
the phrasal structure of the dependency to be built
from. Importantly, instead of telling the learner
beforehand what phrase structure nodes are lexi-
calized and what size fragments to use, the learner
using FGs infers both on the basis of its input.

4 Learning efficient representations that
underlie wh-dependency constraints

We implement a computational-level modeled
learner that attempts to identify an FG encoding the
most efficient dependency path representation. The
model uses Bayesian inference to identify the best
representation. In particular, the modeled learner
uses a Metropolis-Hastings-based inference algo-
rithm to find the set of fragments that best explains
the input, by yielding a high probability for the de-
pendencies in the input. To identify this FG repre-
sentation, the modeled learner uses the Metropolis-
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(a) From Pearl & Sprouse (2013).

(b) The same superadditive pattern.

(c) Left: From Liu et al. (2019). Right: The same positive correlation.

Figure 2: The top row shows (a) the modeled judgment patterns, matching empirical judgment patterns, from Pearl
& Sprouse (2013), and (b) the judgment patterns (log probabilities) generated by the Fragment Grammar (FG)
identified by the modeled learner, given realistic samples of child-directed speech. The bottom row shows (c) left:
the empirical judgment patterns from Liu et al. (2019), and right: the judgment patterns generated by the FG.

Hastings algorithm to iteratively resample a poten-
tial FG representation for each item in the input
and then accepts or rejects the representation to
increase the probability of the input data.

To approximate the wh-dependency input that
children learn from, we collected 12,704 wh-
dependencies from the CHILDES Treebank (Pearl
and Sprouse, 2013) and extracted the dependency
path from each.1 We then estimated the counts of
the dependencies that children would encounter
by four years old, when some syntactic island
knowledge seems to be present (De Villiers et al.,
2008).2 From this input, the modeled learner infers

1See Supplemental Section A.1 for more details.
2We drew on estimations by Bates and Pearl (2021)

the best fragments for the wh-dependencies in its
input, which may or may not include lexically-
subcategorized phrasal structures for any given
fragment. This model allows us to explore all the
possibilities of lexically subcategorizing different
phrasal categories as opposed to implementing a
particular hypothesis (i.e. main verbs are always
lexicalized or CPs are always lexicalized).

We find that the learned FG dependency rep-
resentation can be used to correctly generate all
previously-attested acceptability judgment patterns

that consider waking hours, utterances per hour, and wh-
dependency frequency in children’s input between 20 months
(when wh-dependencies are reliably processed) and 4 years.

222



(Figure 2b and d).3 Notably, the FG representa-
tion’s fragments lexically subcategorize phrasal
structures only for some more-frequent items (e.g.,
VPthink, CPthat, VPsay-CP). This means the mod-
eled learner automatically determined the best fre-
quency threshold for lexically subcategorizing each
individual phrase structure type, due to the goal of
efficient representation.

5 Comparison representations

We compared the FG representation’s performance
against several trigram-based baseline representa-
tions (2), all of which used the same input as the
FG model.4 We chose trigram-based representa-
tions, as n-grams are common representations in
language modeling (see Manning and Schutze 1999
for a review), and trigram-based representations
have been used in prior successful models that pre-
dict adult judgement patterns of wh-dependencies
(Pearl and Sprouse, 2013). A trigram-based repre-
sentation also can (i) be paired with a straightfor-
ward learning algorithm (e.g., tracking frequencies
of the trigrams in the input), and (ii) can transpar-
ently reflect different proposals for lexical subcate-
gorization, as in (2).

(2) Baseline trigam representations
a. no-lexicalization: phrase labels only, e.g.,

“IP-VP-CP”
b. fully-lexicalized: subcategorized phrase

labels, e.g., “IPpast-VPclaim- CPthat”
c. CP-lexicalized (from Pearl and Sprouse

2013): only CP is subcategorized, e.g.,
“IP-VP-CPthat”

d. main-V-lexicalized (in line with Liu et al.
2019): only main V is subcategorized,
e.g., “IP-VPclaim-CP”

We selected the no-lexicalization and the fully-
lexicalized representations as the two extremes of
our hypothesis space; we can include no lexical in-
formation or all the lexical information for phrase
structure nodes in a trigram-based dependency rep-
resentation. The remaining two representations
each implement a hypothesis about what lexical
information should be included in the phrasal struc-
ture, inspired by previous work: the CP-lexicalized

3See Supplemental Section A.4 for details.
4These baselines additionally had a “Start” and “End” sym-

bol in their dependency paths to ensure each dependency cre-
ated at least one trigram. For instance, a main clause subject
dependency like “What happened?” would be represented with
the trigram “Start-IP-End”.

representation from Pearl and Sprouse (2013), and
the main-V-lexicalized representation from Liu
et al. (2019).

Most baselines failed to capture the full range of
acceptability judgment patterns: the no-lexicalized
failed to capture Adjunct and Whether islands,
as well as the verb frequency effect; the fully-
lexicalized failed to capture Adjunct islands; and
the CP-lexicalized failed to capture the verb fre-
quency effect. However, the main-V-lexicalized did
capture all the acceptability patterns. We note that
the FG representation also lexicalized main verbs
(though only those that were more frequent), and
so has this in common with the main-V-lexicalized
baseline (which lexicalized all main verbs, irrespec-
tive of frequency). We note that one advantage of
the inferred FG representation over the main-V-
lexicalized representation is that the FG representa-
tion was automatically learned – including which
parts are lexicalized and how large the pieces are
that comprise a dependency path – rather than need-
ing to be specified beforehand, as the trigram-based
main-V-lexicalized baseline was.

6 Conclusion

Here we have explored how children could learn
constraints on English wh-dependencies by focus-
ing their learning efforts on how to efficiently rep-
resent wh-dependencies, rather than trying to ex-
plicitly learn the constraints. The specific approach
we explored involved a modeled learner attempt-
ing to identify the best Fragment Grammar (FG)
for efficiently representing the wh-dependencies
encountered in English child-directed speech. The
FG representation allowed the modeled learner to
generate all the acceptability judgement patterns
previously attested to reflect knowledge of different
constraints on wh-dependencies, known as syntac-
tic islands. Because the modeled learner learned
from input that four-year-olds would encounter,
one testable prediction that future behavioral work
can investigate is that four-year-olds should in fact
have acquired all the syntactic knowledge assessed
via the acceptability judgment patterns used here
if four-year-olds are in fact using an FG represen-
tation. Additionally, future work can investigate
predictions for other wh-dependency constraints
known to be acquired by children around age four
(De Villiers et al., 2008), comparing the FG repre-
sentation against other representational possibili-
ties, such as the main-V-lexicalized baseline.
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A Supplemental Material

A.1 Preprocessing from CHILDES
Using NLTK and Python, we extracted the wh-
dependency trees from the CHILDES Treebank.
Using the trace annotations in the corpora, we ex-
tracted the path from the gap position to the wh-
word, including the phrase label (e.g., VP) and its
lexical child (e.g., think) in the resulting sequences.
When a VP followed the IP in a dependency path,
tense was added as the lexical child of IP nodes
(e.g., thought would yield IPpast-VPthink).

A.2 Preprocessing
Preprocessing for the FG grammar input: We
created the tree structures of the dependency paths
from these sequences in a form that the FG learner
can process (e.g. the wh-dependency “What are
you eating?” would be encoded as “((IP (LEX

present) (VP (LEX eat))))”). We note also that
IP-only dependencies like “What happened?” did
not have the IP lexicalized with tense (e.g., the FG
input representation would be (IP null)).

Preprocessing for the trigram baseline mod-
els: The baseline trigram models took the final de-
pendency path, extracted from CHILDES and pre-
processed to include tense (e.g., IPpast-VPthink),
and extracted appropriate trigrams, depending on
the baseline. We included a “Start” and “End” sym-
bol in our dependency paths for the baselines in
order for all paths to be one trigram at a minimum.
This allowed IP-only dependencies to be handled
by trigram-based models (i.e., the trigram would
be Start-IP-End).

A.3 Inference of the best FG grammar
The inference algorithm used to identify the best
FG was implemented using code provided by Tim
O’Donnell. We used the default parameter values:
pitman-Yor (PY) a set to 0 and PY b set to 1; sticky
concentration parameter set to 1 and sticky distribu-
tion parameter set to 0.5; the Dirichlet-multinomial
pseudo-counts (pi parameter) were set to 1; the
model performed 1000 sweeps.

A.4 Generating predictions of acceptability
using the FG representation

When generating predictions for wh-dependencies,
based on the FG representation, we extracted the
same form of the wh-dependency path from the
Pearl and Sprouse (2013) and Liu et al. (2019) stim-
uli. Due to the design of the code, structures that
required rules the FG did not hypothesize would
yield no output (i.e., cause a code crash). To cir-
cumvent this and be able to generate predictions
for structures like those that cross syntactic islands,
we needed to add all possible phrase rules to the
FG representation. So, we added all possible rules
(in the form “Label1 – Label2 Label3”, where a
Label was a phrase structure node like IP or PP)
that the FG representation did not create through
inference. We then gave these rules “counts” of 0.5
(as opposed to any seen structure having a count of
at least 1) and re-normalized the log probabilities
of all rules.
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1 Introduction

Recent advances in human language processing
research have suggested that the predictive power of
large language models (LLMs) can serve as cognitive
models of human language processing. Evidence
for this comes from LLMs’ close fit to human
psychophysical data, such as reaction times or brain
responses in language comprehension experiments.
Those adopting LLM architectures as models of
human language processing frame the problem of
language comprehension as prediction of the next
linguistic event (Goodkind and Bicknell, 2018; Eisape
et al., 2020), in particular focusing on lexical or
syntactic surprisal. However, this approach fails
to consider that comprehenders make predictions
using some representation of the content of an
utterance. That is, in contrast to surprisal, readers
make use of a mental model that creates an evolving
understanding of who is doing what to whom and
how. In contrast to comprehenders, surprisal measures
do not make predictions about the content, as surprisal
simply measures the conditional probability of some
linguistic event given the surrounding context.

Many convergent cues in the upstream context,
such as the frequencies of words in a sentence
so far, will affect hidden state representations of
models, which may then influence the predictability
of upcoming words. The present work deviates from
the surprisal paradigm by assessing how much the
hidden state representations of LLMs, which are the
source of the predictive power that LLMs have over
symbolic representations, encode human language
processing-relevant uncertainty. We specifically
assess this possibility using the stimulus set from
Federmeier et al. (2007), which contains sentences
that manipulated the predictability of a final word by
designing the sentences to be either strongly or weakly
constraining. We therefore sought to test whether
it is possible to predict constraint from the sentence

embeddings directly to better understand whether and
how linguistic uncertainty is encoded in hidden states.

2 Cloze completion dataset

We constructed a cloze completion dataset (Taylor,
1953) to compare one LLM (RoBERTa; (Liu et al.,
2019)) to human predictions of final words in Fed-
ermeier et al. (2007). This stimulus set contains 282
sentence stimuli that differ in the constraint of the
sentence, or the degree to which the preamble leads
the reader in a specific direction. Broadly, strongly
constraining sentences consistently lead readers in
one semantic direction and the final word (critical)
is highly predictable; weakly constraining sentences
are less specific, which we summarize below.

• Strong Constraint: Sharon dried the bowls with
a towel.

• Weak Constraint: He always seemed to be
interested in looking at the sky.

One property of these stimuli is that constraint is
partly defined by the predictability of the final word.
Cloze probability is defined as the percentage of
completions produced by participants that end in a
particular final word. For example, if towel is guessed
by 30% of participants, then its cloze probability is .3.
Effects of constraint have sometimes been assessed
by categorizing sentences using the cloze probability
of the most expected completion, as in Federmeier
et al. (2007) [strong constraint: cloze > 67%; weak
constraint: cloze < 42%]. Constraint is therefore
both a product of the vagueness or specificity of
the preamble, and the predictability of the (bolded)
critical word given the preamble.

The present cloze dataset includes 109,225
word-by-word predictions for all non-initial words
from 158 participants recruited from the Prolific
platform. All participants self-reported as having
acquired American English before age 5 and received
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$8 for 30 minutes of their time. Here we are interested
in whether the preamble encodes the predictability
(constraint) of the final word.

In general, the cloze probability when participants
produced the intended final word from Federmeier
et al. (2007) was higher when the sentence was
strongly constraining (SC; µ̂SC = 0.71) than when
it was weakly constraining (WC; µ̂WC = 0.21),
t(266) = 25.1, p < .001. We therefore largely
replicated the original divisions of Federmeier et al.
(2007). However, the current cloze dataset differs
from the original stimulus set in that we are able to
leverage the probabilities of all cloze completions to
assess uncertainty across these categories. Participants
provided more varied responses as evidenced by
higher entropy in WC sentences (µ̂WC =0.87) than
in SC ones (µ̂SC = 0.36), t(200) = 21.8, p < .001,
a result we discuss further in Section 3.2. In the
next section, we describe our masking procedure
for assessing the degree to which cloze probabilities
and response entropies correlate with embedding
representation-derived measures.

3 Probing the predictability of final words

Given the clear difference in cloze probabilities of
critical words in the strongly and weakly constraining
stimuli in Section 2, we reasoned that strongly and
weakly constraining sentences are relatively easy for
participants to distinguish. In this section, however,
we sought to test whether the unpredictability of
a word as defined by the original cloze labels in
Federmeier et al. (2007) is recoverable directly from
sentence embeddings, as outlined in Section 2. While
this may seem trivial, it is not obvious exactly what
factors influence the predictability of a final word –
individually or jointly. For example, it is possible that
comprehenders rely predominantly on immediately
preceding information when completing cloze tasks,
but they may also incorporate linguistic properties
of words or combinations of words earlier in the
sentence (MacDonald and Seidenberg, 2006).

To test whether constraint is recoverable from sen-
tence embeddings, we leveraged the masked language
model RoBERTa (Liu et al., 2019), which enabled us
to hide the critical words from the model’s representa-
tion of the sentence and obtain sentence embeddings
for a downstream probing model. RoBERTa deviates
from human language processing in that it processes
the entire sentence simultaneously, rather than
incrementally as in recurrent neural networks (Elman,
1990). However, we can present sentences except

the final word to RoBERTa, which can mimic any
forward predictions and higher-order integration that
readers will have done up until that point. Importantly,
a masked language model like RoBERTa allows us
to mask the final word, and obtain a representation
of only the upstream (preamble) part of the sentence.

We then transformed the sentence into a single
vector for our classification procedure, taking the
original sentence from the Federmeier et al. (2007)
stimuli, except we replaced the critical final word
with a <mask> token. Embedding the sentence
using RoBERTa produces a fixed-length vector
for each token (roughly, word), from which we
computed a sentence embedding vector by averaging
all token vectors within each layer, excluding the
<mask> token. This embedding process produced
a 282× 13× 768-dimensional matrix. From these
embeddings, we then constructed 282 leave-one-out
regularized logistic regression probing classifiers
(one for each critical sentence) trained on 281 of the
sentence embeddings to predict strong (SC) or weak
constraint (WC) from the original Federmeier et al.
(2007) labels. We then treat the remaining sentence
as a test item and obtain a predicted probability of the
sentence being strongly constraining.

3.1 Cloze surprisal

In contrast to using raw percentages of completions
of the Federmeier et al. (2007) cloze stimuli, we
can alternately quantify constraint using either the
surprisal of a particular completion (Eq. 1) or estimate
entropy (H; Eq. 2) over allK cloze completions:

surprisal=−log(p(x)) (1)

H=

K∑
p(x)·logK(p(x)) (2)

If constraint is encoded in both the final resulting
sentence and the context, then we expect to see a
positive relationship between the model’s belief that
the sentence is strongly constraining and participants’
ability to guess the target word. However, constraint
may also be measured using cloze probabilities, or
the conditional probability of participants producing a
word given a context. In the Federmeier et al. (2007)
work, strongly and weakly constraining sentences
were designed to have high and low cloze probability
completions, respectively. Therefore, we tested for a
correlation between linguistic uncertainty as estimated
by the cloze probability of the critical word and the
predicted probabilities obtained from the classifiers.
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Figure 1: Plotted relationship between critical final word cloze and classifier probability of constraint (ρ̂=0.43, p<.001).
Line represents perfect correlation.

Figure 2: Plotted relationship between final word entropy and classifier probability of constraint. Line represents fitted
slope (ρ̂=−.32, p<.001).

With these predicted probabilities, we then tested for
a relationship between the log odds of a predicted SC
label as a function of the cloze probability of the final
completion and found a strong correlation between
the two (ρ̂=0.43, p<.001). We plot this relationship
in Figure 1.

3.2 Cloze entropy

Like cloze probability, we can also compute the uncer-
tainty of participants’ final responses by computing

the entropy of the outcomes. This uncertainty captures
the intuition that if participants vary in what they
expect, then their guesses will be relatively uniformly
distributed across many outcomes. Indeed, the weakly
constraining sentences in Federmeier et al. (2007) may
have been designed to be vague, and thus intended
to be completed by many possible valid words. We
conducted the same analysis as in the previous section,
and found that with greater uncertainty (higher en-
tropy), the model’s belief that a sentence was strongly
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constraining decreased (ρ̂=−.32, p<.001). We plot
this relationship in Figure 2. This strongly suggests
that RoBERTa encodes final word uncertainty in a
similar way to how it encodes constraint.

4 Discussion

In two experiments we have tested how much context
on its own – without knowledge of the final word –
can directly encode the predictability of upcoming lin-
guistic information. In contrast to prior work focusing
on surprisal, this work leverages experimenter-defined
labels (sentential constraint categories) and sentence
embeddings derived from the LLM RoBERTa
and shows that the model’s hidden states directly
encode uncertainty about upcoming information. We
demonstrated that we are able to train classifiers that
can predict the categorical constraint of a sentence and
that the model’s certainty about the constraint category
correlates with the cloze probability of the target word
and relatedly the entropy of participants’ responses.

These results present an interesting puzzle about
how lexical predictability unfolds in human language
comprehension. For example, readers build up
representations of sentences incrementally as they
read through a sentence, though they may read back
in a passage or reread some sections of text. In
turn, this higher-order representation of the language
guides their expectations about upcoming words
(Lowder et al., 2018), one aspect of which may be
uncertainty or the semantic specificity of predictions
that can be made.

In sum, we have presented one of the first attempts
at using embeddings instead of computing surprisal
values to account for the lexical predictability of
words in sentences. We believe that the method
outlined here raises several questions about how
predictions are launched and how uniformly through-
out utterances vagueness or uncertainty is encoded.
These questions include topics that are critical from a
multiple constraint satisfaction approach (MacDonald
and Seidenberg, 2006), such as which words
contribute the most toward the predictions of the
final words. In future work, we hope to also analyze
non-final word uncertainty using similar methods
to better understand how cloze probabilities relate
to sentence representations as the sentence unfolds.
Analyses of attention patterns in LLMs (e.g., Vig and
Belinkov, 2019) and masking of specific words may
provide some clues to the sources of predictions.
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1 Overview

One of the major differences between MaxEnt Har-
monic Grammar (Goldwater and Johnson, 2003)
and Noisy Harmonic Grammar (Boersma and Pater,
2016) is that in MaxEnt harmonically bounded can-
didates are able to get some probability, whereas
in most other constraint-based grammars they can
never be output (Jesney, 2007). The probability
given to harmonically bounded candidates is taken
from other candidates, in some cases allowing Max-
Ent to model grammars that subvert some of the
universal implications that are true in Noisy HG
and categorical forms of HG (Anttila and Magri,
2018). Magri (2018) argues that the types of impli-
cational universals that remain valid in MaxEnt are
phonologically implausible, suggesting that Max-
Ent overgenerates Noisy HG in a problematic way.

However, a variety of recent work has shown
that some of the possible grammars in a constraint
based grammar may be unlikely to be observed
because they are difficult to learn (Staubs, 2014;
Stanton, 2016; Pater and Moreton, 2012; Hughto,
2019; O’Hara, 2021). Here, I show that grammars
that give too much weight to harmonically bounded
candidates, and violate the implicational universals
that hold in Noisy HG are significantly harder to
learn than those grammars that are also possible in
Noisy HG. With learnability applied, I claim that
the typological predictions of MaxEnt and Noisy
HG are in fact much more similar than they would
seem based on the grammars alone. This paper fo-
cuses on the classically harmonically bounded can-
didates, because collectively bounded candidates
reflect a different type of constraint weighting, and
are more often observed typologically (see local op-
tionality Riggle and Wilson (2005); Hayes (2017)).

2 The Problem

Anttila and Magri (2018) show that MaxEnt over-

Figure 1: In order for a particular mapping /x/→[y] to
be always assigned a lower or equal probability than
the mapping /x̂/→[ŷ]: in Noisy HG all difference vec-
tors between /x̂/→[ŷ] and its competitors must fall in
the dashed region, whereas in MaxEnt, they must fall
in the crosshatched region. The dots represent the dif-
ference vectors of /x/→[y] compared to its competitors.
Adapted from Anttila and Magri (2018).

predicts Noisy HG. Specifically, given a specific
set of constraints, there are probabilistic universals
in Noisy HG that are not maintained in MaxEnt; in
other words for all Noisy HG grammars the prob-
ability of one mapping (/x/→[y]) is always less
than or equal to the probability of some other map-
ping (/x̂/→[ŷ]), but in MaxEnt the former mapping
can be more probable. They characterize the differ-
ence between MaxEnt and Noisy HG geometrically,
showing that the probabilistic universals generated
by Noisy HG are a superset of those generated by
MaxEnt for any particular set of tableaux.

Figure 1 shows an example of this difference in a
system with two constraints. Each node represents
a difference vector between the antecedent map-
ping /x/→[y] and one of its competitors /x/-[z],
calculated by subtracting the violations of /x/→[z]
from /x/→[y] (assuming violations are counted
negatively). Anttila and Magri (2018) show that
in order for some consequent mapping /x̂/→[ŷ]
to never receive a lower probability than the an-
tecedent /x/→[y] mapping under all weightings of
constraints, all difference vectors between /x̂/→[ŷ]
and its competitors must have fall in the region
greater than the convex hull generated by the an-
tecedent difference vectors in MaxEnt (correspond-
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Table 1: Universal-Subverting Pattern in MaxEnt

/CV/ ONSET DEP

Weights w = 2 w = 5 HARM PROB

a. CV 0 0.88
b. V -1 -2 0.12

/V/ ONSET DEP

Weights w = 2 w = 5 HARM PROB

a. CV -1 -5 0.05
b. V -1 -2 0.95

ing to the crosshatched region).1 In Noisy HG, the
consequent’s difference vectors can fall anywhere
in the region greater than the convex cone gen-
erated by the antecedent difference vectors (also
including the dashed regions). Here, I will argue
that many of these cases are caused by the fact
that MaxEnt assigns probability to harmonically
bounded candidates but Noisy HG does not.

A simple concrete example emerges in sylla-
ble structure—using the constraints and candidates
in Table 1, it is quite obvious in noisy HG that
onsetful syllables map faithfully (/CV/-[CV]) at
least as often as onsetless syllables do (/V/-[V]),
since /CV/-[CV] harmonically bounds its competi-
tor. However, in MaxEnt it is possible for the
onsetless faithful mapping to receive more prob-
ability than the onsetful mapping, see Table 1.2

This difference between MaxEnt and Noisy HG
is directly caused by the harmonically bounded
candidate /CV/-[V] being able to take probabil-
ity from the /CV/-[CV] mapping only in MaxEnt.
This type of classically harmonically bounded can-
didate can only receive any probability when the
bounding constraints (here MAX and ONSET) are
sufficiently low-weighted. This difference is geo-
metrically represented in Figure 2. The filled dot
represents the difference vector between /V/→[V]
and /V/→[CV], whereas the unfilled dot represents
the difference vector between /CV/→[CV] and
/CV/→[V]. Crucially, the unfilled dot falls only in
the dashed region, but not the crosshatched region.

Harmonically bounded candidates show particu-
lar geometric properties. A harmonically bounded

1As long as the number of competitors for the antecedent
and consequent are the same.

2So that this system can be represented two-dimensionally,
here I am excluding MAX, as well any constraints or candi-
dates with codas. These will be introduced later in the paper
for the simulations. This situation is the same as if MAX was
weighted zero, and NOCODA was weighted very high.

Figure 2: Geometric representation of the onset typol-
ogy with DEP and ONSET.

ONSET

DEP

/CV/-[CV]-[V]

/V/-[V]-[CV]

candidate violates a superset of the violations of
some other candidate. If the candidate is bounded
by the target mapping, the difference vector be-
tween the target vector and the candidate will be
non-negative for all constraints, placing it in the
first quadrant (top right) of the graph. If a candidate
is harmonically bounded by some other candidate,
it will be at least as large (component by compo-
nent) than the candidate that harmonically bounds
it. The second case is less problematic in MaxEnt
because if /x/-[y]-[z] harmonically bounds /x/-[y]-
[ẑ], and the difference vector for [ẑ] falls outside
of the cross hatched region for some antecedent
vector, so must the difference vector for [z]. On
the other hand, as seen in the example above, when
the target mapping harmonically bounds a candi-
date, that candidate can fall in the first quadrant,
but below the convex hull generated by the set of
antecedent difference vectors. We can see that a
large portion of the difference vectors that behave
differently in MaxEnt and Noisy HG are of this
subtype—they fall in the region in the first quad-
rant under the convex hull.3 Harmonically bounded
candidates only receive probability under certain
restricted weighting conditions—as the weight of
the harmonically bounded constraints increases,
the probability assigned to candidates bounded by
those constraints becomes vanishingly small. If not
all weighting conditions are equally easy to learn,
is it possible that it is particularly hard to learn con-
straint weightings that would assign a significant
probability to harmonically bounded candidates?

3There are two other regions that differentiated MaxEnt
and Noisy HG—in this two-dimensional representation, the
triangle generated by the origin, the y-axis and the left edge
of the convex cone, and the triangle generated by the leftmost
difference vector, the left edge of the cone, and the left edge of
the region larger than the convex hull. I save characterization
of these regions for future work.
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2a. Categorical Pattern
Output

Input [CV] [V] [CVC] [VC]
/CV/ 1 0 0 0
/V/ 0 1 0 0
/CVC/ 0 0 1 0
/VC/ 0 0 0 1

2b. Universal Respecting Pattern
Output

Input [CV] [V] [CVC] [VC]
/CV/ 1 0 0 0
/V/ .5 .5 0 0
/CVC/ .5 0 .5 0
/VC/ .25 .25 .25 .25

2c. Universal Subverting Pattern
Output

Input [CV] [V] [CVC] [VC]
/CV/ .5 .5 0 0
/V/ 0 1 0 0
/CVC/ .25 .25 .25 .25
/VC/ 0 .5 0 .5

Table 2: Patterns under consideration

3 Learnability

To evaluate the learnability of different classes
of grammars, I make us of agent-based gener-
ational learning simulations (Kirby and Huford,
2002; Kirby, 2017). These simulations make use
of a series of learning agents using the Percep-
tron learning algorithm (Rosenblatt, 1958; Jäger,
2003; Boersma and Pater, 2016); each initialized
following conventional assumptions in the phono-
logical learning literature (i.e. markedness con-
straints weighted high faithfulness low (Gnanade-
sikan, 2004; Tesar and Smolensky, 2000; Jesney
and Tessier, 2011)). Learners are exposed to a lim-
ited number of input-output mappings randomly
chosen from their target grammar (each underlying
syllable type is sampled equally frequently, surface
forms sampled according to the target grammar).
After the learner is exposed to the number of forms
(here 7000 forms per generation), the learner ma-
tures and whatever grammar it learned is used as
the target grammar for the next learner. Each run
of the simulation consists of 15 generations, with
the first generation exposed to whatever grammar
is being tested.

Three types of patterns were tested: one fully cat-
egorical pattern available in MaxEnt and Noisy HG

Figure 3: Resulting patterns after 15 generations.

0 5 10 15 20
Categorical

Respecting

Subverting

Categorical Respecting (different)
Respecting (same) Subverting

(2a), one variable grammar that is consistent with
the implicational universals (2b), and one variable
grammar that subverts the implicational universals
(2c). Notably, only the last pattern gives any proba-
bility to harmonically bounded candidates.

4 Simulation Results

The simulations show that the categorical pat-
terns are learned most consistently, followed by
the universal-respecting variation patterns. The
universal-subverting patterns available only in Max-
Ent are learned consistently worse than the other
types of patterns on multiple metrics. First, the uni-
versal subverting patterns require much more data
to be learned accurately, as shown by the number
of iterations it took to learn the pattern on average
in the first generation (Table 3). Further we can
look the end result of the 20 runs performed for
each simulation to see how stably the pattern is
learned across generations, which allows us to see
how likely a pattern is to change, and how likely
a pattern is to be innovated. Figure 3 presents the
results after fifteen generations, classified accord-
ing to what the initial target pattern was, and what
the pattern the final generation learned would be
classified as. It can be seen that the categorical
pattern is learned fully stably under these param-
eters; whereas the universal respecting variation
changes in 12 of the 20 runs, often reducing the
variability of the pattern. Finally, the universal sub-
verting patterns are learned very unstably, changing
into a type of pattern that can be modeled in Noisy
Harmonic Grammar in all 20 runs.

Table 3: # of iterations needed to learn each pattern.

Grammar Type Iterations Needed
Categorical 2000
Respecting 2200
Subverting 5000
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Figure 4: 100 learners trained on normal variation with
60% coda deletion.
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5 Discussion

The universal-subverting patterns are harder to
learn because it is necessary for the weights of
some constraints to approach zero, rather than sim-
ply becoming lower or higher than some conflict-
ing constraint. In this case, the only evidence that
would force a constraint close to zero is from ob-
serving harmonically bounded candidates in the
target grammar. The difficulty learners have learn-
ing typology subverting patterns is due to the con-
vergence properties of online MaxEnt learner that
restrict constraint weights to non-negative numbers.
While this learning algorithm is weakly convergent
(Fischer, 2005), I show that the expected weighting
of a learner upon convergence differs from the tar-
get weighting substantially more when that target
weighting has constraint weights close to zero—a
necessary property of typology subverting variation
patterns, but not typology respecting variation.

When learning a variable pattern, individual
learners do not ever stop updating, because even
if the learner and teacher have the same grammar,
errors still occur. Each individual learner ends up
oscillating around the target pattern. When this
variation is symmetrical, the average across many
learners converges to the target pattern. However,
when the target pattern requires a constraint be-
ing weighted particularly close to zero, learners
oscillate asymmetrically—some learners

This learning bias is of a stronger sort than many
considered in the learning literature, rather than
simply requiring more time to converge, learners
trained on typology subverting patterns converge
on a grammar different from the target grammar.
To demonstrate a basic example of how the learn-
ing algorithm converges more accurately to normal
variation than harmonically bounded variation, I

Figure 5: 100 learners trained on harmonically
bounded variation with 40% onset deletion
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ran 100 learners on two variable patterns. In the
normal variation pattern, onset consonants neither
epenthesized or deleted (100% faithful) and coda
consonants deleted 60% of the time. In the harmon-
ically bounded variation pattern, coda consonants
deleted categorically, but onsets deleted 40% of
the time. Each simulation ran according to the
parameters of the above simulations. Figures 4
and 5 show the results of these simulations. The
dark black line represents the average probability
of the target variable mapping across all 100 learn-
ers, whereas the lighter green lines represent each
individual run. The dashed gray line shows the
target probability of the mapping. In normal varia-
tion (Figure 5), the learners oscillate symmetrically
around the target pattern, with the average staying
very close to the target probability. In harmonically
bounded variation (Figure 6), the average remains
notably above the target probability. Harmonically
bounded variation acts differently because learners
cannot oscillate symmetrically around the target
pattern—learners assigning less probability to the
target mapping end up “bouncing” off of a wall,
because the harmonically bounded CV→V map-
ping can never receive more than 50% because
constraint weights must remain nonnegative.

If phonological learners are biased against as-
signing probability to harmonically bounded candi-
dates even when weightings exist in MaxEnt that
assign probability to them, a major source of ty-
pological difference between MaxEnt and Noisy
HG appears to be less significant. Future work
will investigate the other geometrical regions of
difference between MaxEnt and Noisy HG, and ex-
plore whether they also require very low constraint
weights that are difficult to learn.
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1 Introduction

While corpora of child speech and child-directed
speech (CDS) have enabled major contributions
to the study of child language acquisition, seman-
tic annotation for such corpora is still scarce and
lacks a uniform standard. We compile two CDS
corpora—in English and Hebrew—with syntactic
and semantic annotations. We employ a methodol-
ogy that enforces a cross-linguistically consistent
representation, building on recent advances in de-
pendency representation and semantic parsing. Our
semi-automatic syntactic annotation follows the
Universal Dependencies standard (UD; de Marn-
effe et al., 2021), adapted to suit the CDS genre.
To induce semantic forms, we develop an auto-
matic method for transducing UD structures into
sentential logical forms (LFs), e.g. figure 1. The
two representations have complementary strengths:
UD structures are language-neutral and support
direct annotation, whereas LFs are neutral as to
the syntax-semantics interface, and transparently
encode semantic distinctions.

What follows is a brief synopsis of the work,
which is described in full in (Szubert et al., 2021).

2 Related Work

The CHILDES project (MacWhinney, 2000) has
been pivotal in efforts to streamline linguistic data
collection of child–caregiver interactions and to
standardize linguistic annotation in this domain.
CDS resources annotated with semantic annotation,
however, are scarce, and lack a uniform standard.
Indeed, even syntactic annotation is only available
in CHILDES for a handful of languages, and these
are not all annotated according to the same scheme.
Syntax. To the extent that CHILDES data has been
syntactically annotated, various syntactic represen-
tations have been adopted (Sagae et al., 2010; Pearl
and Sprouse, 2013; Odijk et al., 2018). Given the

You heard what I said .

root

nsubj

dobj:comp

nsubj

ccomp

LF: λe1. hearde1 (you, WHAT x[λe2. saide2 (I, x)])
Figure 1: Example syntactic and semantic annotation.

state of the art in multilingual parsing, we argue
that UD is the best choice for cross-linguistically
comparable syntactic annotation.1

Semantics. Sentential logical forms (henceforth,
LFs) are an essential building block in a complete
linguistic analysis of CDS, and are needed for com-
putational implementations of theories of acquisi-
tion that take a “semantic bootstrapping” approach,
i.e., construe grammar acquisition as the attach-
ment of language-specific syntax to logical forms
related to a universal conceptual structure (e.g.,
Pinker, 1979; Briscoe, 2000; Abend et al., 2017b).
Nevertheless, very few CDS corpora are annotated
with sentential meaning representations. Exam-
ples include verb and preposition sense annota-
tion, as well as semantic role labeling of data from
English CHILDES (Moon et al., 2018), and sen-
tential logical forms (Villavicencio, 2002; Buttery,
2006; Kwiatkowski et al., 2012). See (Alishahi and
Stevenson, 2008) for a related line of work. We
are not aware of any semantically annotated CDS
corpus for languages other than English.

3 Semantic representation
Our goal is to demonstrate an approach to annotat-
ing CDS with cross-linguistically consistent syn-
tax and semantics. For syntax, we use the Uni-
versal Dependencies (UD) standard, motivated by

1The English Eve corpus has been annotated with UD
structures, using a semi-automatic approach akin to ours, in
contemporaneous work (Liu and Prud’hommeaux, 2021).
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its demonstrated applicability to a wide variety of
domains and languages, and its relative ease and
reliability for manual annotation of corpora. More-
over, as UD is the de facto standard for dependency
annotation in NLP, it is supported by a large and
expanding body of research work, and by a vari-
ety of parsers and other tools. For semantics, we
automatically transduce these UD structures into
logical forms—thereby obtaining cross-linguistic
consistency for those annotations as well, while
avoiding the difficult and error-prone procedure of
annotating LFs over utterances from scratch. Fig-
ure 1 shows an example.

LF generation. The syntactic representation as-
sumed as the input is UD with Universal POS tags.
Our system is based on UDepLambda of Reddy
et al. (2016), which we modified to accommodate
a different target LF.

UDepLambda is a conversion system based on
the assumption that Universal Dependencies can
serve as a scaffolding for a compositional semantic
structure—individual words and dependency rela-
tions are assigned their semantic representations,
and those are then iteratively combined to yield the
representation of the whole sentence. Our modi-
fication to UDepLambda consists of providing a
new set of rules, which defines a semantics differ-
ent from the default one used by UDepLambda.
Our target is a Davidsonian-style event semantics
Davidson (1967), encoded in a typed lambda calcu-
lus. An utterance is assumed to describe an event,
and the LFs typically contain an event variable with
scope over the whole expression. A comprehen-
sive description of the target LF can be found in
(Szubert et al., 2021).

Converting a UD parse to an LF is a three-stage
process:

• Tree transformation: facilitates LF assign-
ment. The transformations primarily include
subcategorizing POS and dependency labels
and removing semantically vacuous items.
The rules consist of a tree regular expression
(Tregex; Levy and Andrew, 2006) and an ac-
tion to be taken when the pattern is matched.
The example in figure 2(b) illustrates subcate-
gorization of the POS tag of a verb whose only
core argument is a direct object. Most rules
depend only on the syntactic context, with the
only exception being the lexicalized rules for
recognizing question words. There are 120
rules in total.

• LF assignment: each dependency and each
lexical item are assigned a logical form, based
on their POS tag / edge label and their syntac-
tic context, as in figure 2(c). The LF assign-
ment rules are not lexicalized. There are 230
assignment rules.

• Tree binarization and LF reduction: The parse
tree is binarized to fix the order of composi-
tion of word- and dependency-level LFs. Bi-
narization follows a manually created list of
dependency priorities. With the order fixed,
the sentence-level LF is obtained through beta-
reduction, as shown in figure 3.

All rules used in the conversion process are man-
ually created and assigned priorities. UD trees are
processed top-to-bottom and the first transforma-
tion and LF assignment rule which matches a given
node or edge is applied.

Introducing subcategorizations at the tree trans-
formation step is largely a matter of convenience.
The same distinctions could in principle be encoded
in LF assignment rules. However, introducing more
fine-grained labels makes LF assignment rules eas-
ier to write and maintain.

4 Corpora
We annotate a large contiguous portion of Brown’s
Adam corpus from CHILDES (the first ≈80% of
its child-directed utterances, comprising over 17K
English utterances/108K tokens), as well as the
entire Hagar CHILDES corpus (24K Hebrew ut-
terances/154K tokens) (Berman, 1990).

Adam annotations cover 18,113 child-directed
utterances (107,895 tokens) spanning from age 2
years 3 months to 3 years 11 months. Hagar anno-
tations cover 24,172 utterances (154,312 tokens)
spanning from age 1 year and 7 months to 3 years
and 3 months.

The corpora were selected for their sizes, which
are large for CDS corpora, and because they have
an initial (non-UD) dependency annotation, part
manual and part automatic, which makes our UD
annotation process easier (Sagae et al., 2010). We
automatically convert these existing parses into ap-
proximate UD trees, then hand-correct the con-
verted outputs. Then we apply the UD-to-LF trans-
duction procedure.

4.1 UD annotation
For the most part our UD annotations follow the
standard guidelines. However, because of our cor-
pora covering spoken language and specifically

236



PickPick
VERB

up
ADV

that
DET

blue
ADJ

pencil
NOUN

.
PUNCT

punct

dobj

det
amodcompound:prt

root

Pick_up
VERB-DO
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amod

root

λx.λe.pick_up(you, x, e)
λy.THAT x[y(x)]

λx.blue(x)
λx.pencil(x)

λx.λy.x(y)
λx.λy.y(x)
λx.λy.λz.and(y(z), x(z))

a) b) c)

Figure 2: (a) UD parse; (b) tree transformation to subcategorize verb POS, remove punctuation, and combine verb
with its particle; (c) LF assignment to nodes and edges.

λv.λe.pick_up(you, v, e)
λz.THAT x[z(x)]

λy.blue(y)
λw.pencil(w)

λg.λh.g(h)
λd.λf.f(d)
λa.λb.λc.and(b(c), a(c)) 1

2

3

λv.λe.pick_up(you, v, e)
λz.THAT x[z(x)]

λy.blue(y)

λg.λh.g(h)
λd.λf.f(d)

λb.λc.and(b(c), pencil(c))

1
2

3

λv.λe.pick_up(you, v, e)
λz.THAT x[z(x)]

λg.λh.g(h)
λd.λf.f(d)

λc.and(blue(c), pencil(c))

2

3

λv.λe.pick_up(you, v, e)
λz.THAT x[z(x)]

λg.λh.g(h)

λf.f(λc.and(blue(c), pencil(c)))

2

3

λv.λe.pick_up(you, v, e)

λg.λh.g(h)

THAT x[and(blue(x), pencil(x))]

3

λh.λe.pick_up(you, h, e)
THAT x[and(blue(x), pencil(x))]

3

λe.pick_up(you, THAT x[and(blue(x), pencil(x))], e)

Figure 3: Derivation of the LF for the sentence Pick
up that blue pencil. Reduction involves applying the
LF of the relation to the LF of the head, and applying
the output to the LF of the dependent. The red numbers
mark the order of composition determined in the tree
binarization step.

CDS, we have observed a number of common phe-

nomena that are not often found in other UD cor-
pora for English and Hebrew, which mostly target
news and web texts. Indeed, there is little UD-
annotated data of spoken English, and none for
spoken Hebrew. The unusual constructions we
have identified include:

• in-situ WH-pronouns: in English and, with
lower frequency, Hebrew

• serial verb contructions: a construction fairly
common in our corpora (e.g. "go get Hans"
"bōPi tirPı̄", lit. come see) despite being in
general very restricted in English and Hebrew.

• repetitions: both corpora display repetitions,
which are a common feature of CDS. They
primarily include discursve repetitions (e.g.
"no no don’t do that") and onomatopeias (e.g.
"oink oink").

There is a number of other properties of the CDS
genre which make UD annotation challenging and
are worth mentioning. Many utterances do not con-
stitute a complete clause and the syntax of such
fragments may be underspecified (e.g. "frighten
me for"). In these cases, we instructed annota-
tors to guess to the best of their ability what the
sentence might mean and annotate it accordingly.
We have also observed many examples of utter-
ances including quoted fragments, for instance the
adult repeating what the child had said, or quoting
rhymes, songs, and onomatopoeia. Sentences in-
cluding quotes are not straightforward to analyze
syntactically, and even more difficult to provide se-
mantic representation for. We annotate quotations
that do not contain a clause as direct objects, while
quotations that do are annotated as complement
clauses. Finally, some utterances appear to be play-
ful manipulations of words with the propositional
content being unclear or perhaps non-existent (e.g.,

“romper bomper stomper boo”). Where the invented
word is embedded within an otherwise intelligible
utterance, annotators are instructed to infer its syn-
tactic category from context. Otherwise we use the
residual POS tag X and edge type dep, in which
case the converter produces no LF for the utterance.
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4.2 LF annotation

In this synopsis of our work we will not discuss the
details of our approach to semantic represenatation,
but we will point out some challenges inherent to
deriving semantics from a UD annotation. There
are cases of underspecification when the informa-
tion available from the parse tree and POS tags is
not sufficient to recover the correct LF. Challenging
constructions include examples of scope ambiguity
(involving modal verbs or coordination structures),
open clausal complements, relative clauses, and
clauses without overt subject. We resolve the un-
derspecification problem by heuristically chosing
to encode in the UD-to-LF tranduction rules the
most common semantic interpretation for a given
construction. As an example, all clauses without
over subject (excluding cases in which the subject
exists, just outside of the clause) are assumed to be
imperative and contain an implicit "you" subject,
even though that is not always true - e.g. in "See
you soon".

4.3 Evaluation

For both Adam and Hagar, we find fairly high UD
agreement scores comparable with those reported
in the literature for English dependency annota-
tion. We obtain a pairwise labeled attachment score
(LAS) of 89.9% on Adam and an unlabeled score
(UAS) of 95.0%, averaging over the three annota-
tors. Average pairwise agreement on Hebrew is
86.7% LAS and 92.2% UAS. While using them
facilitates the annotation process, we find that the
converted parser outputs are of fairly low quality:
about 40% of the edges are altered relative to the
converted parser output in English, and about 30%
of the edges in Hebrew.

Next, we evaluate the UD-to-LF conversion pro-
cedure. In terms of coverage, it achieves an 80%
conversion rate on the English corpus and 72.7%
for Hebrew. The converter fails due to ungrammat-
icality of the utterances, UD and POS annotation
errors, and lack of coverage of uncommon syntac-
tic constructions. By manually annotating samples
of 100 utterances and comparing the automatically
generated LFs, we find that 82% LFs in both En-
glish and Hebrew are correct. The transduction er-
rors are primarily caused by the underspecification
issues discussed above. More detailed statistics
about which constructions appear to be the most
challenging to generate LFs for can be found in
(Szubert et al., 2021).

4.4 Analysis of corpora

We focus our the analysis on the UD annotation
as dependency structures decompose straightfor-
wardly to atomic elements that can be counted
and compared. By comparing our Adam and Ha-
gar corpora to the English Web Treebank (Silveira
et al., 2014) and Hebrew Dependency Treebank
(HDT; Tsarfaty, 2013; McDonald et al., 2013) re-
spectively, we predictably find a higher prevalence
of discourse-related dependencies in CDS and a
lower prevalence of structures such as adjectival
modification, conjunction, compounding, preposi-
tional phrases, clausal modifiers and passive voice.
The differences in dependency type frequency be-
tween our English and Hebrew corpus are mostly
straightforwardly related to typological differences
- as a pro-drop language Hebrew has a lower preva-
lence of nsubj; cop is more frequent in English
because Hebrew lacks an overt copula; aux is more
frequent in English since tense, which accounts
for many examples, is encoded morphologically in
Hebrew; prevalence of case and nmod in Hebrew
is higher likely because of indirect objects being
expressed using case markers. In (Szubert et al.,
2021) we present a longitudinal analysis of the
changes in the syntactic composition of the CDS
over time.

5 Conclusion

We present a scalable approach to generating
meaning representations based on a widly used,
cross-linguistically applicable syntactic annotation
scheme. While the ability of computational models
of acquisition to generalize to different languages
is a basic requirement, it has seldom been evalu-
ated empirically, much due to the unavailability of
relevant resources. This work immediately enables
such comparative investigation in Hebrew and En-
glish. Moreover, given the cross-linguistic applica-
bility of UD and the generality of the conversion
method, this work is likely to lead to the compila-
tion of similar resources for many languages more,
thus supporting broadly cross-linguistic corpus re-
search on child directed speech. Previous work
(Abend et al., 2017a) showed that a model of a
child’s acquisition of grammar can be induced from
semantic annotation of the kind discussed here. Fu-
ture work will apply this model to the compiled
corpora, thereby allowing comparative computa-
tional research of grammar acquisition in the two
languages.
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Horse or pony?
Visual typicality and lexical frequency affect variability in object naming
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1 Introduction

We successfully refer to objects in most interac-
tions, and in particular choose a word in our lexicon
to name them (e.g., “horse” or “pony” in Figure
1A). This requires complex cognitive processing
that allows us to link the properties of the object
with our lexicon. Moreover, the mapping between
our representation of the object and the lexicon is
not one-to-one, and often different names can be
used for the same object. In the present study, we
explore factors that affect naming variation for visu-
ally presented objects. We focus on two variables:
visual typicality of the image and lexical frequency
of the name. The latter serves as a proxy for ease
of lexical access. By analysing objects in realistic
scenes, we explore the role of typicality not only
of the object (as was done previously), but also of
the visual context.

Previous psycholinguistic studies focused on
relatively small datasets and simple images of
isolated objects (e.g., Snodgrass and Vanderwart,
1980). We expand on this by analysing a large
object naming dataset collected in the context of
Language&Vision research (Silberer et al., 2020):
ManyNames1. ManyNames provides up to 36 nam-
ing annotations for 25K objects in realistic scenes.
We will call the most frequently annotated name
top name (“horse” in Fig. 1A), and the second
most frequently annotated name alternative name
(“pony” in Fig. 1A). Previous work only took top
names into consideration, and used subjective rat-
ings of visual typicality, operationalising them as
the similarity between a given visual object and
the prototypical mental representation associated
with this object’s top name. We include alternative
names in the analysis, and define a computational
procedure to assess visual typicality of objects and

1Available at https://github.com/amore-upf/
manynames.

contexts (see Methods section below).
Our measure of naming variation is agreement

on the top name. We do so because there is a direct
relationship between naming variation and agree-
ment on the top name: higher agreement indicates
lower variation, and vice versa.

Figure 1: A: Example image with annotated names and
response count. B: Illustration of target and context
typicality variation for the top name “horse”.

Based on previous studies, we expect higher
name agreement with increasing typicality of the
object for the top name (e.g., Snodgrass and Van-
derwart, 1980). The analysis of context typicality
is more exploratory. Previous work has shown that
placing other objects than the target in the context
affects naming (Graf et al., 2016); however, more
general aspects of context (including whether the
object is in, say, a beach or a home) have not been
studied. We can generally extend our prediction
for object typicality to the visual context, expect-
ing higher agreement for objects in more typical
visual contexts. However, effects may be less pro-
nounced: Contexts are likely less informative for a
given name than the object itself. When it comes
to frequency, we also expect higher agreement for
more frequent top names.

For alternative names, we hypothesize opposite
effects compared to top names: Higher object or
context typicality for an alternative name, as well
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as higher frequency of an alternative name, should
result in lower name agreement, due to increased
competition between the alternative name and the
top name when choosing a name. Again, the effect
of context typicality may be less pronounced, be-
cause context prototypes may often be more similar
across candidate names than object prototypes.

2 Methods

Data We analyse naming data for 16K images
from ManyNames – those that had at least two
names. To estimate visual prototypes for a given
name, we select 30-500 objects with that name
from VisualGenome (Krishna et al., 2016), ensur-
ing that these objects were not included in Many-
Names (VisualGenome is the dataset from which
the ManyNames images were selected, and also
contains object names). We average the vecto-
rial representations of these objects, obtained with
the bottom-up-attention model by Anderson et al.
(2018). This average representation is the visual
prototype for a name. We compute object typicality
for a given ManyNames object as the cosine simi-
larity between the object’s features –which we ob-
tain in the same way as for VisualGenome objects–
and the prototype of its names; this results in two
typicality estimates, one for the top name, one for
the alternative name.

We obtain context prototypes by averaging the
features of all context objects (as detected by An-
derson et al., 2018). Note that “context objects”
includes what people would commonly call an ob-
ject (like a cat or a table), but also background
elements like patches of grass or sky. Anderson
et al. 2018 use this procedure as a representation
of the global context of an object, which is then
used by an image captioning model. Analogously,
we here use it to represent the context in which
an object appears. As with object typicality, we
compute context typicality by using the cosine sim-
ilarity between the features of the object’s context
and the context prototypes of its names. Frequency
estimates for the names are from a subtitle corpus
of American English (Brysbaert and New, 2009).

Statistical Model We fit a binomial mixed-
effects model with name agreement on the top
name (in %) as the outcome variable and fixed
effects for standardised object typicality, context
typicality, and log-frequency, each relating to the
top name and the alternative name. Top names
and alternative names are treated as random factors

Figure 2: Fixed effect estimates. Error bars reflect the
95% CI. Positive vs. negative estimates show, respec-
tively, the increase and decrease in name agreement for
1 SD increase in the predictor variable.

with corresponding random slopes for all predic-
tors.

3 Results and Discussion

Fixed effect estimates are shown in Figure 2. Ob-
ject typicality for top name and second name affect
agreement on the top name as we expected: Name
agreement is higher the more typical an object is
for its top name, and lower the more typical it is
for the alternative name. A similar pattern is found
for frequency: higher frequency of the top name
relates to higher name agreement, whereas higher
frequency of the alternative name relates to lower
name agreement. In other words, people tend to
choose the same name for an object when the object
is very typical for that name, or that name is very
frequent. In contrast, naming variation increases
the more typical the object is for an alternative
name, or when the alternative name is relatively
easy to access.

However, we find no clear fixed effect for con-
text typicality. That being said, including con-
text typicality as a random effect significantly im-
proves the model fit. This suggests meaningful
variation of this effect across names. One reason
for this meaningful variation may be that different
causes of naming variation, e.g. perceptual ambi-
guity (“jaguar/leopard”) vs categorical ambiguity
(“mug/cup”) vs the availability of cross-classifying
alternatives (“man/teacher”), interact differently
with context typicality effects. Moreover, this issue
may also be related to differences in the informa-
tivity of context prototypes: relatively unspecific
names, like “man/woman”, likely do not have par-
ticularly informative context prototypes because
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they appear in a diverse array of scenes. This con-
trasts to names like “teacher/skier”, for which the
scene setting may be more diagnostic (e.g., a class-
room or a snowy outdoor environment). Further
research is needed to look into these factors, as
well as to assess the sensitivity of our computa-
tional quantification of context typicality.

In sum, our large scale computational analysis
strengthens previous findings about object naming
and expands the general picture, suggesting that
different candidate names jointly affect name agree-
ment: Visual and lexical characteristics relating to
name candidates beyond the top name are informa-
tive for predicting variability in object naming. On
a methodological level, our results demonstrate the
potential of using large scale datasets with realistic
images in conjunction with computational methods
to inform models of human object naming.
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1 Introduction

Input strictly local (ISL) functions are a class of
subregular transductions that have well-understood
mathematical and computational properties and
that are sufficiently expressive to account for a wide
variety of attested morphological and phonologi-
cal patterns (e.g., Chandlee, 2014; Chandlee et al.,
2014; Chandlee, 2017; Chandlee et al., 2018; Chan-
dlee and Heinz, 2018). In this study, we compared
several approaches to learning ISL functions: the
ISL function learning algorithm (ISLFLA; Chan-
dlee, 2014; Chandlee et al., 2014) and the classic
OSTIA learner to which it is related (Oncina et al.,
1993); the Minimal Generalization Learner (MGL;
Albright and Hayes, 2002, 2003); and a novel deep
neural network model presented here (DNN-ISL).

The four models were evaluated on their abil-
ity to learn the mapping from feminine singular
(fem.sg.) to masculine singular (masc.sg.) sur-
face forms of Catalan adjectives (and, separately,
from provided underlying representations to fem.sg.
and masc.sg. surface forms). The mappings to
masc.sg. forms in Catalan involve several phono-
logical modifications at the right edge of the word
(e.g., Mascaró, 1976), the empirical focus of our
study. The relevant processes include obstruent de-
voicing and strengthening (e.g., [rOZ@] fem.sg. →
[rOtS] masc.sg. ‘red’), post-tonic n-Deletion (e.g.,
[san@] → [sa] ‘healthy’), and cluster simplification
(e.g., [blaNk@] → [blaN] ‘white’). There are opaque,
counterfeeding interactions among some of the pro-
cesses (e.g., [f@kund@] → [f@kun] / *[f@ku] ‘fer-
tile’), consistent with the idea that the mappings are
input- rather than output- determined (see Chandlee
et al., 2018). A small number of apparent lexical
exceptions to the typical modification pattern (e.g.,
[blan@] → [blan] / *[bla] ‘soft’) are problematic for
ISL learners that assume perfect homogeneity.

Our main findings were that the DNN-ISL
learner achieved high accuracy on the Catalan data,

with MGL coming in a close second, while ISLFLA
and OSTIA performed much worse — either fail-
ing to learn any mapping at all or predicting the
correct output for less than 5% of held-out cases,
even when lexical exceptions were removed from
the data (see Table 1).

2 Data

The FestCat project (Bonafonte et al., 2008) pro-
vides broad transcriptions for more than 53,000
adjectival surface forms in two major dialects of
Catalan. We considered the Central Catalan forms
and restricted our data to the nearly 6,500 lemmas
that are also attested in a subtitle lexicon (Boada
et al., 2020). While our main focus was on learning,
we also developed a hand-written ISL transducer
for the mapping to masc.sg. forms that is highly
accurate (> 98% correct), along with custom code
to derive plausible underlying representations from
masc.sg. ∼ fem.sg. pairs.

3 Models

For the purposes of this abstract, we assume famil-
iarity with ISLFLA, OSTIA, and MGL. We verified
that the implementation of MGL learns only ISL
phonological rules — rules conditioned on local
phonological context in the result of a morphologi-
cal operation such as affixation or truncation — a
connection that has not previously been made in
the literature.

The deep neural network model proposed here
(DNN-ISL) also applies morphological operations
followed by phonological modifications, the lat-
ter being implemented with weighted constraints
rather than rules. A phonological constraint as
learned by DNN-ISL is defined by: a three-segment
featural pattern specifying the input context to
which the constraint applies; a preference for one
type of modification applied to the center segment
of the context (i.e., deletion, epenthesis before/after,
or feature change); target output features in the case
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Data set Data split DNN-ISL MGL OSTIA ISLFLA Baseline
All train .95 .79 1.0 / .84∗ — / .89∗ (n=6) .38

val .95 .79 .02 / .79∗ — / .83∗ (n=6) .39
test .95 .80 .02 / .79∗ — / .83∗ (n=6) .39

Regular train .98 .98 1.0 / 1.0∗ — /1.0∗ .41
val .98 .97 .04 / .98∗ — / .96∗ .41
test .98 .97 .03 / .98∗ — / .96∗ .41

Table 1: Mean model accuracy for mapping from fem.sg. to masc.sg. in 10 independent runs with random splits
(20% train, 10% validation, 70% test) of all Catalan adjective data or the ‘regular’ subset with exceptions omitted.
ISLFLA failed to learn a transducer in each run, as indicated by ‘—’, returning “Insufficient data” (see Chandlee
2014:117). The Baseline model simply subtracted the feminine suffix -@. *OSTIA and ISLFLA performed better
when input and output forms were trimmed to their final VC∗(V) sequences, as shown after the slash, but ISLFLA
still failed to learn a transducer in 4/10 of the runs on the full data set. SDs were lower than .04 in most cells. Perfect
performance on the training data, shown here for OSTIA only, is available to any model with sufficient memory.

of epenthesis or change; and a real-valued strength.
Each constraint computes the degree to which its
context matches every three-segment window in
the input (i.e., it applies a novel feature based con-
volution operation to the input) and imposes its
preferred modification in proportion to the degree
of match and its strength. These preferences are
summed over constraints for each input position
and applied to the positions independently to de-
rive the phonological output. The parameters of the
constraints are straightforwardly interpretable and
visualizable as real-valued phonological feature co-
efficients, modification-type logits, and strengths.
The model is fully differentiable and was trained
with the Adagrad optimizer on small mini-batches
for 20 epochs.

4 Results

We evaluated all four models on the same train-
ing/validation/testing data, as summarized in Ta-
ble 1. ISLFLA and OSTIA were unable to learn
accurate mappings except when the fem.sg. and
masc.sg. forms were artificially trimmed to their
final VC∗(V) sequences — a strong, language-
specific bias to attend to changes at the end of the
word that the other models did not require. Results
for larger training splits, and for mapping from URs
to SRs, were similar. The errors made by DNN-ISL
mostly involved underapplication of deletion (e.g.,
*[blaNk]).

5 Contributions & future directions

In summary, we evaluated four learning models on
an ISL phonological mapping (with a small number
of exceptions) found in a large, realistic body of
natural language data. The models that have proofs

of learnability and efficiency, ISLFLA and OSTIA,
performed much worse than models that currently
lack such theoretical guarantees but share the induc-
tive bias for ISL patterns. The results highlight the
need for further empirical and formal study of high-
performing subsymbolic models such as DNN-ISL,
and extension of our model to output-based pat-
terns and learning of underlying representations.
We plan to release our processed data, hand-written
ISL transducer, and model implementations.

Acknowledgements

Thanks to Coleman Haley and Marina Bedny for
helpful discussion of this research, which was sup-
ported by NSF grant BCS-1941593 to CW.

References
Adam Albright and Bruce Hayes. 2002. Modeling En-

glish past tense intuitions with minimal generaliza-
tion. In Proceedings of the ACL-02 Workshop on
Morphological and Phonological Learning, pages
58–69. Association for Computational Linguistics.

Adam Albright and Bruce Hayes. 2003. Rules
vs. analogy in English past tenses: A computa-
tional/experimental study. Cognition, 90(2):119–
161.

Roger Boada, Marc Guasch, Juan Haro, Josep Demestre,
and Pilar Ferré. 2020. SUBTLEX-CAT: Subtitle
word frequencies and contextual diversity for Catalan.
Behavior Research Methods, 52(1):360–375.

Antonio Bonafonte, Jordi Adell, Ignasi Esquerra, Silvia
Gallego, Asunción Moreno, and Javier Pérez. 2008.
Corpus and voices for Catalan speech synthesis. In
Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

245



Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of DelawarePro-
Quest.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, 27(4):599–641.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential functions.
Transactions of the Association for Computational
Linguistics, 2:491–504.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49(1):23–
59.

Jane Chandlee, Jeffrey Heinz, and Adam Jardine.
2018. Input strictly local opaque maps. Phonology,
35(2):171–205.

Joan Mascaró. 1976. Catalan Phonology and the
Phonological Cycle. Ph.D. thesis, MIT, Cambridge,
MA.

José Oncina, Pedro García, and Enrique Vidal. 1993.
Learning subsequential transducers for pattern recog-
nition interpretation tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15(5):448–
458.

246


