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Abstract

As the tide of Big Data continues to influ-
ence the landscape of Natural Language Pro-
cessing (NLP), the utilization of modern NLP
methods has grounded itself in this data, in
order to tackle a variety of text-based tasks.
These methods without a doubt can include
private or otherwise personally identifiable in-
formation. As such, the question of privacy in
NLP has gained fervor in recent years, coin-
ciding with the development of new Privacy-
Enhancing Technologies (PETs). Among these
PETs, Differential Privacy boasts several desir-
able qualities in the conversation surrounding
data privacy. Naturally, the question becomes
whether Differential Privacy is applicable in the
largely unstructured realm of NLP. This topic
has sparked novel research, which is unified in
one basic goal: how can one adapt Differen-
tial Privacy to NLP methods? This paper aims
to summarize the vulnerabilities addressed by
Differential Privacy, the current thinking, and
above all, the crucial next steps that must be
considered.

1 Introduction

In an age where a vast amount of data is being
produced daily, the opportunities created by this
proliferation increase concurrently. The availabil-
ity of big data enables countless downstream tasks
whose accuracy and utility seem to increase with
the amount of data used. Specifically, the fields
of Machine Learning (ML) and Deep Learning
(DL) have profited from such data. Particularly in
the case of Natural Language Processing (NLP),
the tasks at hand more often than not concern the
handling of unstructured data, meaning data that
is not neatly organized into a traditional row-like
database structure, and furthermore, data that is
not necessarily static. In fact, it is estimated that
data on the order of zettabytes (ZB) is being pro-
duced every day (Begum and Nausheen, 2018), and
within this amount, roughly 80% is unstructured,

e.g. textual data (Hammoud et al., 2019).
At the same time as this profound boom in pop-

ularity of big data tasks, there has been an increase
in the attention paid to the way in which data is
used, specifically to the issue of privacy. The prob-
lem is exacerbated when sensitive parts of the data
relate to a specific task (e.g. with medical data).
The threat becomes more serious when the models
themselves used with the learning tasks are vulner-
able to attacks.

Although many useful Privacy-Enhancing Tech-
nologies have emerged, one in particular seems to
be a good fit when faced with the scale of these big
data learning tasks: Differential Privacy (Dwork,
2006). The key feature of Differential Privacy
is its mathematically grounded notion of privacy,
which can be intuitively explained using the pri-
vacy parameter, most often called ϵ. This idea was
originally intended for data stored in structured
databases, i.e. a relational schema. As a result,
Differential Privacy upon its inception became an
excellent way to start to reason about privacy in ML
and DL models that were trained on these types of
databases.

Alas, in the field of NLP, where the core unit of
data is unstructured, fuzzy text rather than a struc-
tured data point, an initial attempt to apply Differ-
ential Privacy poses some challenges. Chief among
these is the challenge of how to transfer the core
concepts of Differential Privacy, namely the “indi-
vidual” and adjacency, to the textual domain where
these concepts are not easily perceivable. Thus, it
becomes the goal to find new ways of reasoning
about Differential Privacy in order to adapt it to
the unstructured data domain of NLP. Through the
course of this paper, the foundations of Differential
Privacy in the lens of NLP will be investigated, mo-
tivated by some privacy vulnerabilities that surface
from NLP techniques. Afterwards, the limitations
and open questions of Differential Privacy with
NLP will be analyzed with an in-depth discussion.
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2 Foundations

Privacy-Enhancing Technologies Several PETs
have been created with the goal of protecting the
privacy of the individuals. Three methods in par-
ticular have arisen as useful ways to reason about
groups in a dataset: k-anonymity (Samarati and
Sweeney, 1998), l-diversity (Machanavajjhala et al.,
2007), and t-closeness (Li et al., 2007). These
frameworks are quite reliant upon the structured
nature of a database, yet they become impracti-
cal in the realm of large-scale, unstructured data.
They therefore lack a reasonable applicability to
NLP. Addressing privacy concerns within text, tra-
ditional methods include simple redaction or scrub-
bing based upon available heuristics. Newer no-
tions, such as t-plausibility (Jiang et al., 2009),
were designed with text document sanitization in
mind. Finally, modern approaches involve the idea
of adversarial learning, such as (Elazar and Gold-
berg, 2018) or (Friedrich et al., 2019). As one may
postulate, Differential Privacy also lacks a direct
mapping to NLP, becoming the basis of investiga-
tion in the pursuit of differentially private NLP.

Differential Privacy in ML and DL Re-
searchers first looked to determine the place of
Differential Privacy in ML and DL. The follow-
ing papers on Differential Privacy in ML (Ji et al.,
2014) and DL (Abadi et al., 2016) are great starting
points for applying Differential Privacy to these
areas. Importantly, it has been shown that Dif-
ferential Privacy does indeed have a place when
considering these types of learning tasks. Not un-
til later was the idea extended to NLP, and even
today, the research on it is still relatively scarce.
This is due precisely to some of the reasons intro-
duced in Section 1. Nevertheless, this extra layer
of complexity makes Differential Privacy in NLP
an interesting topic. There exist papers that sys-
tematize this topic for ML, such as (Al-Rubaie and
Chang, 2019), and DL (Boulemtafes et al., 2019),
which partially cover Differential Privacy, but to
the best of the authors’ knowledge, no such papers
specifically address its application to NLP. Thus, it
becomes the goal to start to bridge this gap.

3 Methodology

To accomplish the goals of this paper, the following
research questions have been defined:

RQ1 What vulnerabilities to NLP techniques is Dif-
ferential Privacy capable of preventing?

RQ2 What is the current state of Differential Pri-
vacy in its application to NLP?

RQ3 What are the predominant current limitations
and future directions of applying Differential
Privacy to NLP?

The structure of the research supporting this pa-
per is twofold, firstly taking the form of a system-
atic literature review. Thus, the main method of
answering the stated research questions will be to
seek out relevant academic literature and research,
which will serve as the primary source for data
synthesis. This process, including formulating a
search process and creating exclusion criteria, is
based upon Garousi (Garousi et al., 2019).

The second stage of research involves conduct-
ing semi-structured expert interviews. The main
goal of these is to supplement the knowledge
gained from the literature with practical viewpoints
from privacy professionals and relevant academic
researchers. This is crucial to harmonizing the
promise of research with the demands of industry,
and ultimately, society. Table 1 shows a summary
of the four interviews conducted. The insights from
these interviews will be highlighted in the discus-
sion conducted in Section 7.

Code Position Organization
I1 Co-Founder and

CEO
Privacy-focused
AI startup,
Canada

I2 Postdoctoral Re-
search Associate

University, Aus-
tralia

I3 Applied Science
Manager

Research division
of large American
tech company

I4 PhD Candidate University, USA

Table 1: Coded Interviewee Table

The remainder of this paper is structured as fol-
lows: Section 4 begins our exploration of Differen-
tial Privacy in NLP by first analyzing which privacy
vulnerabilities Differential Privacy is best suited to
address (RQ1). Next, Section 5 introduces Dif-
ferential Privacy in the scope of how it has been
adapted to textual data (RQ2). Section 6 continues
this narrative by focusing on a generalization of
Differential Privacy that is well-suited for unstruc-
tured domains (RQ2). Finally, Section 7 comprises
of several discussion points that are seen to be per-
tinent current limitations, and accordingly, crucial
future research directions (RQ3).
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4 Privacy Vulnerabilities in NLP
Techniques

By first analyzing some privacy vulnerabilities in
NLP techniques (RQ1), we hope to motivate the
thinking behind the incorporation of Differential
Privacy in NLP, presented in Sections 5 and 6.
Here, we differentiate between two overarching cat-
egories of vulnerabilties: (1) information leakage
(Song and Raghunathan, 2020) and (2) unintended
memorization (Carlini et al., 2019). The focus is
placed on the former, as this is more relevant to
NLP, while the latter pertains more generally to the
DL applications.

4.1 Language Leakage

When approaching any number of NLP tasks, the
first step ultimately becomes finding an appropriate
text representation. An early, simple example of
this would be the Bag-of-Words model, or repre-
senting text by a set of linguistic-based features.
This kind of modeling, however, also enables the
building of a “stylometric profile”. In the wrong
hands, the collection of these features can give up
implicit information, which is not explicitly sensi-
tive but can highlight user (author) attributes. This
type of hidden information is known as informa-
tion leakage, but in light of the focus on textual
data, we use the term language leakage. Such a
generalization aids in seeing that both traditional
and more modern (i.e. embedding) representations
of text are susceptible to such leakage.

In recent years, the growing success of word
embeddings for use as general purpose language
models has rooted their utilization in downstream
tasks. The usefulness of these models lies in the
fact that numerical representations of textual data
can be used for computation in a wide variety of
learning tasks, where plaintext does not readily fit.
Also inherent to these models are useful proper-
ties that can capture word associations. In order to
create them, word embeddings are usually trained
on vast amounts of text. These texts could con-
tain private or sensitive information, which in turn
are encoded into the vector representations. This
poses a problem with embeddings, whose goal is
to capture semantic meaning of words, without an
inherent concept of private information.

Beyond embeddings, the rising ubiquity of
(large) language models, or (L)LMs, such as GPT-
2/3, has called to question Differential Privacy’s
role in this domain. For similar reasons as embed-

dings, LMs trained on massive amounts of textual
data are susceptible to leakage of sensitive infor-
mation contained therein. As such, it becomes the
task to incorporate Differential Privacy into these
LMs to defend against inference attacks, while still
preserving their utility.

4.1.1 Exploitation
When thinking about the components of text that
may comprise sensitive information, one may imag-
ine that much of this follows a structured, fixed for-
mat. Examples of this include, but are not limited
to, Social Security numbers (SSNs), birth dates,
and phone numbers. When textual data contains
such structure, it can become the goal of an attacker
to recover, or reconstruct, these fixed-formatted
strings. Such attacks have been shown to be effec-
tive by (Pan et al., 2020) and (Carlini et al., 2020),
especially when certain embedding models are uti-
lized. As such, exploiting language leakage within
text representations generally revolves around in-
ference.

Keyword inference attacks present a more gen-
eral attack model, where the attacker has an idea
of what kind of text is contained in the released
data. Concretely, the attacker’s goal is to extract
keywords from the data, given some domain knowl-
edge. It is shown in (Pan et al., 2020) that keyword
extraction is also possible where the attacker has
little to no domain knowledge of the data.

In addition to extracting information about input
data in embedding models, the authors in (Song and
Raghunathan, 2020) demonstrate the ability to ex-
tract author attributes. Furthermore, the structure of
embedding models is susceptible to leaking mem-
bership information, especially with infrequently
occurring inputs to the embedding model. Similar
results concerning the inference of author attributes
come out of (Coavoux et al., 2018).

Alarmingly, it has been shown that even a simple
combination of lexical and syntactic features can
be used to predict the gender of a text’s author
with approximately 80% accuracy (Koppel, 2002) -
and this is done with a relatively simple, non-neural
classifier. Other similar cases are covered in (Elazar
and Goldberg, 2018). One might imagine how such
features can not only expose author attributes, but
also the author’s identity.

4.2 Unintended Memorization

As the prevalence of neural NLP has been on the
rise in recent years, concerns about the ability of
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neural networks to memorize data, or rather the
patterns therein, has lead to questions of privacy
breaches. In (Carlini et al., 2019), it is shown that a
relatively rare-occurring secret in the training text
can cause a neural model to memorize it completely.
In some cases, such memorization seems to be a
necessary part of the training process. The authors
in (Thomas et al., 2020) show that certain word
embedding models, when used in neural networks,
lead to unintended memorization. Although solu-
tions to this problem involve Differential Privacy
(Abadi et al., 2016; Carlini et al., 2019; Yu et al.,
2021b), it is not the main focus of this paper.

4.3 Risk Use Cases

We discuss two general categories of risk use cases
Differential Privacy in NLP can address, as well as
imply when it is not appropriate.

4.3.1 Data Release
Often, it might make sense to release (unstructured)
textual data to third parties. In many of these cases,
however, the text being released contains sensi-
tive information. A well-studied example of this
is the release of medical data, which can take the
form of hospital records or doctors’ notes (Li and
Qin, 2018). Other prevalent use cases include the
release of text from online reviews, social media
posts, or government records (Pan et al., 2020), all
of which can contain quite sensitive information.
For data release, such data is often transferred to
third parties in de-identified form (Abdalla et al.,
2020b), with the thought that this inherently pro-
vides a first layer of defense. Even so, a malicious
user with access can extract personal information,
showcased in (Abdalla et al., 2020a), which shows
that releasing medical data in embedding form still
allows for nearly 70% reconstruction of Personally
Identifiable Information.

4.3.2 Model Abuse
Many modern NLP techniques utilize some neural
component, often in combination with embedding
representations. In some of these cases, users in-
teract with the models dynamically. Two broad
categories of this interaction are: (1) centralized
learning, in which users upload data to a central-
ized model for computations, and (2) decentralized
(collaborative) learning, where computation is done
locally with updates from a central server. If a ma-
licious user has a point of access to either of these
types of systems, information about the data can

be inferred based on two ways (Ha et al., 2019):
(1) black-box access, where the malicious user can
query the model an unlimited number of times, and
thus gain information from the model outputs, and
(2) white-box access, where there is access to the
original model parameters.

Figure 1: General Attack Pipeline, based on (Pan et al.,
2020)

4.4 General Attack Pipeline
In order to define a general attack pipeline on NLP
models as defined in both (Pan et al., 2020) and
(Lyu et al., 2020), a few assumptions must be made
about the attacker: (1) the attacker has access to
the target text representations or model, (2) the at-
tacker knows which pre-trained language model
was used, and (3) the attacker is able to recreate the
text representation. Note that these assumptions
can be generalized to any target text representation,
including plaintext. The assumptions enable the
formulation of a general attack pipeline, illustrated
in Figure 1. It enables an attacker in possession
of sensitive text data encoded into some represen-
tation to infer the contents within. This idea of
inference becomes the crucial basis to where Dif-
ferential Privacy comes into play.

5 Differential Privacy in NLP

With the privacy issues that can arise when per-
forming NLP tasks in mind, it is a logical step
to consider the application of Differential Privacy
to mitigate these privacy issues. Before one can
consider how to do this, it may be be useful to
understand what exactly Differential Privacy can
protect against in the context of NLP.

5.1 Differential Privacy
Differential Privacy (Dwork, 2006) was first pro-
posed with the goal of approaching privacy-
preservation by protecting the individual in a
database, and doing so with a mathematical guaran-
tee. The underlying idea of randomized response
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is transferred to Differential Privacy by saying that
the result of some query on two exactly identi-
cal databases except for one individual is similar
within some threshold, defined by the privacy pa-
rameter ϵ, or the privacy budget. The exact founda-
tions are covered briefly next, but one may refer to
(Wood et al., 2018) for a thorough primer.

5.2 Foundations

The idea of Differential Privacy revolves around the
protection of the individual in a database, or dataset.
Traditionally, the “individual” being referred to
corresponds to a single data entry, representing
one individual’s information structured according
to the database’s schema. With this in mind, the
definition of Differential Privacy is expressed as
the following inequality:

Pr[K(D) ∈ S] ≤ eϵPr[K(D′) ∈ S] (1)

The first important aspect to note in Equation 1 is
that the output of some model is probabilistic, gov-
erned by some randomized function K. Within this
system, K has a possible set of outputs given an in-
put database, denoted by S, where S ⊆ Range(K).
To make this concrete, given a database D as in-
put to K, S comprises of the values that can be
returned as an output. Next, Eq. 1 refers to two
neighboring databases D and D′, which according
to Differential Privacy, are two databases which dif-
fer in exactly one element, or more precisely one
individual (Hamming Distance of 1). In effect, this
means that any two databases which are identical
minus one element are indeed adjacent, i.e. fit the
description of D and D′. As a final component, Eq.
1 includes eϵ as a bound of how much the output of
two adjacent datasets can differ, with ϵ as the pri-
vacy parameter. Intuitively, one can see that with a
lower ϵ, the two outputs are constrained to be more
similar, and on the flip side, a larger ϵ provides a bit
more leeway. With this definition, the concept of
indistinguishably is given form, with ϵ controlling
how indistinguishable, or not, these operations on
two neighboring databases must be. With a chosen
ϵ, it is said that a function K achieves ϵ-differential
privacy if Equation 1 is satisfied.

As one can see, this definition provides a quan-
tifiable way to envision privacy in datasets, bol-
stered by a flexible privacy parameter. Translat-
ing this notion to the unstructured textual domain,
though, comes with its challenges. Before these
are discussed, one must first analyze how exactly

Differential Privacy may be beneficial for privacy
preservation in NLP, and in what way.

5.3 Protection Against Inferences?
Section 4 introduced some ways in which attackers
can possibly gain sensitive information from text-
based data, which revolve around the ability to
infer information. When considering Differential
Privacy as a potential defense for these attacks,
it is important to notice that it does not protect
against inferences themselves – and this applies
to the application of Differential Privacy to any
domain. In other words, a differentially private
system is still vulnerable to inference attacks.

What Differential Privacy does offer, however,
refers back to its core concept: protection of the in-
dividual against inferences. With NLP, that is with
unstructured text data, this must be reasoned about
differently. The application of Differential Privacy
to the NLP domain would mean to provide the in-
dividuals (data contributors) plausible deniability
as a protection against inference attacks. Put more
concretely, one can take the example of keyword
inference. Although an attacker still might be able
to infer keywords from text representations, there
would exist a level of uncertainty as to whether this
extracted keyword actually represents the true, orig-
inal keyword. As a result, the privacy protection
given by Differential Privacy is rooted in this sense
of plausible deniability, and not by a complete pro-
tection against inferences themselves.

5.4 The Challenge with Unstructured Data
Of course, the notion of the “individual” in a struc-
tured dataset is not immediately transferable to a
non-structured dataset, such as a corpus of text
(documents), yet this can be accomplished some-
what easily by reasoning about the individuals
whose data is contained within such a corpus. With
this thought, however, the concept of a “database”
becomes unclear – is a database a collection of doc-
uments each tied to an individual, or is a database
a single document comprised of many individual
words? In the former case, applying Differential
Privacy becomes difficult without a way to define
adjacency beyond the traditional Hamming Dis-
tance. Likewise, the latter case would result in a
very strict (and not practical) constraint.

The solution to applying standard Differential
Privacy (i.e. in its original form) to NLP comes
by converting text to a latent representation, and
subsequently applying some differentially private
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mechanism. The biggest challenge, and seeming
shortcoming, of such an approach is that using Dif-
ferential Privacy in its original form imposes quite
strict constraints in terms of how to perturb a given
piece of text. Ultimately, this means that one must
consider any two text documents to be adjacent,
much like in the way that any two entries in a struc-
tured dataset are neighboring, thus taking a very
conservative view of adjacency for text. A direct
answer to this challenge comes with a generalized
notion, introduced in Section 6.

5.5 Applications

Several implementations have appeared in the liter-
ature, all of which leverage Differential Privacy in
the context of NLP tasks. As such, the following
works represent the current thinking of how Differ-
ential Privacy can be used in practice for NLP.

In (Lyu et al., 2020), a method is proposed to per-
turb binary vector text representations in a simple,
yet differentially private manner. (Weggenmann
and Kerschbaum, 2018) focuses on TF-IDF vectors,
leveraging the Exponential Mechanism (McSherry
and Talwar, 2007) to create “synthetic” vectors.
The authors in (Bo et al., 2019) add on an embed-
ding reward system to encourage a diversity in the
output text. (Beigi et al., 2019) also approach the
utility vs. privacy problem with the introduction of
a discriminator in a two-autoencoder setup.

In light of several works applying Differentially
Private Stochastic Gradient Descent (DP-SGD) to
address the memorization issue in deep neural NLP
models (see Section 4.2), the authors in (Yu et al.,
2021a) instead address privacy in the underlying
language models. Here, differentially private fine-
tuning is performed on several popular LMs.

Others focus on leveraging Differential Privacy
in specific tasks, such as n-gram extraction (Kim
et al., 2021), topic modeling (Vatsalan et al., 2021),
or financial text classification (Basu et al., 2021a).

An interesting case comes with (Krishna et al.,
2021), whose implementation is later refuted by
the author of (Habernal, 2021). Similarly, Habernal
(Habernal, 2022) claims that the DPText implemen-
tation of (Beigi et al., 2019) fails to be differentially
private. This becomes the basis of an important dis-
cussion in Section 7.5.

6 Metric Differential Privacy for NLP

The idea of dX -privacy (Chatzikokolakis et al.,
2013), also d-privacy or Metric Differential Privacy,

was first introduced in 2013 as a generalization of
Differential Privacy, with the goal of extending the
concept beyond structured databases to arbitrary
domains (e.g. location data). The key for achiev-
ing this comes with the reasoning about adjacency
between two databases. In domains without an im-
mediate notion of adjacency between individuals, it
becomes necessary to find an alternate expression.
The answer comes with the utilization of a (dis-
tance) metric existing within some metric space,
whose members are often referred to as points. A
relaxed sense of Differential Privacy thus enables
its application to arbitrary domains endowed with
a metric, and naturally this fits well with text.

6.1 Foundations

With an available metric, one can say that the dis-
tinguishability between two databases imposed by
Differential Privacy depends on the distance be-
tween, or similarity of, these two databases. There-
fore, the smaller the distance (and greater the sim-
ilarity), the more similar (indistinguishable) the
output of some function on the two databases must
be. One can see that this is an extension of “dif-
fering by one individual” to “differing by some
value”. With this in mind, the original Equation 1
is adapted to fit this thinking, yielding:

Pr[K(x) ∈ S] ≤ eϵd(x,x
′)Pr[K(x′) ∈ S] (2)

The implications of the new Equation 2 become
clear: as the metric value between two inputs be-
comes larger (i.e. the inputs are less related), the
distinguishability between the outputs resulting
from them is allowed to be greater, and vice versa.

The task is now to apply the concepts of dX -
privacy directly to NLP techniques utilizing text
representations. It is important to note that there
exist several other generalizations of Differential
Privacy, as systematized in (Desfontaines and Pejó,
2019), yet the focus here is placed on dX -privacy
due to its direct applicability to NLP tasks.

The main difference brought by the introduc-
tion of dX -privacy to NLP comes with the direct
incorporation of a metric that “scales” the noise
addition process to achieve Differential Privacy. In
short: more similar meaning → more required in-
distinguishability. This new aspect comes as very
convenient when dealing with text representations
that already exist within spaces endowed with a dis-
tance (similarity) metric. dX -privacy allows for an
increased flexibility in the sense that the underlying

6



basis for a text representation (e.g. Euclidean vs.
Hyperbolic) can change, without affecting the Dif-
ferential Privacy inequality or compromising pri-
vacy preservation. This will prove to be useful as
novel text representation methods are introduced.

6.2 Applications

Early approaches (Fernandes et al., 2018, 2019;
Feyisetan et al., 2019a) involved working within
the Euclidean space, i.e. using n-dimensional em-
beddings and the Laplace Mechanism. In (Feyise-
tan et al., 2019b), a shift to hyperbolic space was
performed to model the hierarchical relationships
within a language, leveraging them to perturb text.
Finally, (Xu et al., 2020) makes the switch to the
Mahalanobis (elliptical) norm which takes into ac-
count the shape of a particular space, resulting in
better perturbation of sparse words. In a recent im-
plementation (Carvalho et al., 2021), a bridge be-
tween Differential Privacy and Metric Differential
Privacy is created through the use of a “Truncated
Exponential Mechanism”.

These works encapsulate the current thinking
as to how dX -privacy can be implemented with
the NLP models of today. One might imagine,
however, that dX -privacy is not presently widely
utilized due to its relative adolescence.

7 Discussion

With the application of Differential Privacy to the
area of NLP also come several challenges. Ulti-
mately, these limitations serve as a basis for future
work and motivation for further improvements.

7.1 Utility

One would certainly be remiss to discuss the topic
of Privacy-Enhancing Technologies without ad-
dressing the ever-present privacy-utility tradeoff.
With this topic come many interesting findings
from the literature, which are not necessarily all
negative. With this said, the flip side of the coin
presents an arguably more pressing discussion
point. The usual effect is that as the ϵ parame-
ter is set to be lower (stricter), the accuracy of a
given task clearly decreases. Although this may
be discouraging news, one must keep in mind that
there is “no free lunch”. The implications of this
in terms of applying Differential Privacy to NLP,
then, varies from case to case: one needs to decide
to what degree privacy is necessary. I1 illustrates
this complex decision in real-world applications

by saying, “it’s hard because yes your accuracy is
lower if you use Differential Privacy, but if you
don’t use it you wouldn’t get access to the data in
the first place”. The bright side comes from the
flexibility that Differential Privacy offers. Adjust-
ing ϵ enables one to experiment with the privacy
and utility results of various parameters.

7.2 Benchmarking
Along with this current limitation of utility surfaces
a clear lack in the present literature: benchmarking.
The original works themselves and even dedicated
papers such as (Basu et al., 2021b) often present
findings regarding utility in the form of established
scoring schemes (accuracy, F1). However, other
important aspects of utility, especially in the mind-
set of NLP, are often ignored. Above all, the ability
for these Differential Privacy implementations to
produce coherent, grammatically correct language
is often left out. One such paper, (Bo et al., 2019),
does make this attempt, yet the results are not too
convincing utility-wise. Therefore, a greater focus
on syntactical and semantic coherence, sentence
flow, and readability is needed.

Another aspect of benchmarking that is com-
pletely absent in the literature is the computational
power, i.e. resources and time, required to im-
plement the proposed methods. In order to make
Differential Privacy for NLP a viable option go-
ing forward, more work on this will be required.
Moreover, the question of transparency goes hand-
in-hand with that of explainability, discussed in
Section 7.5.

7.3 Structural Limitations
The key to reasoning about Differential Privacy in
the unstructured domain of language comes with
the important step of imposing a sort of “quasi-
structure”, e.g. by reasoning about text representa-
tions. This raises the question: is such a transfer of
concepts always necessary when applying Differ-
ential Privacy? It was shown what happens when
one attempts to deviate a bit from the rigorous defi-
nition put forth by Differential Privacy, specifically
in the form of dX -privacy applying to arbitrary
domains. Using dX -privacy as a case study, it be-
comes interesting to see how much one can diverge
from the original sense of Differential Privacy to
fit the needs of increasingly unstructured domains.

This becomes even more pertinent when address-
ing one of the major assumptions made throughout
the literature, which is that the databases in ques-
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tion, whether structured or not, are static in nature.
The notion that a database is static and does not
evolve over time is indeed fitting with the original
purpose and definition of Differential Privacy, yet
it is less and less representative of a major part of
the data being produced today (Kolajo et al., 2019).
As a result, there now exists a discrepancy between
the basis for proposed applications of Differential
Privacy to NLP and what is used in state-of-the-art
NLP. I3 states the problem more concretely:

You have this beautiful theory, these
nice robust proofs, all of the protection
against side attacks and post-processing,
compositionality, all of these lovely
things... then you say something like you
have an epsilon budget of 2 and it will be
refreshed every 4 days, then the whole
thing becomes meaningless at that point!

An investigation into this matter was started in
(Cummings et al., 2018), and one more tailored to
NLP surely needs to be conducted going forward.

Both with standard Differential Privacy and dX -
privacy, the general approach so far in the literature
is to (1) calculate some latent representation, (2)
apply noise, and (3) proceed “downstream”. The
observed effect as shown in the literature has its
flaws: the output after the noise addition often re-
sults in less than optimal language, with an overall
lack of natural flow (also covered in Section 7.1).

Another current bottleneck that arises from these
implications is the reliance on word embedding
models. I3 calls this “the big elephant in the room”.
In earlier models where the corresponding embed-
dings are calculated based upon co-occurrence,
the application of Differential Privacy makes more
sense: perturbation results in semantically related
noisy outputs. Recently, though, the utilization
of contextual word embeddings (e.g. BERT) has
become the prevalent method, and this presents a
problem for the current thinking with Differential
Privacy in NLP. With contextual embeddings, noise
addition followed by a projection will result not in
semantically similar words, but rather contextually
similar ones – this is not desired for meaning- and
utility-preserving private text representations. In
essence, “with contextual embeddings, you would
no longer be able to compute your nearest neighbor
index, and [current Differential Privacy] becomes
an impossibility” (I3).

7.4 Context

Beyond the problem posed by Differential Privacy
with contextual text representations, the idea of con-
text raises further questions. In the realm of textual
data, the notion of what may be considered “pri-
vate” presumably is quite dependent on the context
in which this text was created or expressed, such
as with customer reviews versus medical records.
Even beyond this, the fact that privacy is an incredi-
bly personal (and cultural) notion makes seemingly
rigid definitions, such as that of Differential Pri-
vacy, hard to reason about. In this light, perhaps
the idea of societal context must be investigated
and incorporated in regards to text, so that differ-
entially private NLP becomes more relevant. A
related discussion built upon this idea follows in
the ensuing section.

7.5 Explainability

Possibly one of the more crucial points that one
must consider when applying Differential Privacy
to NLP is the notion of explainability. The main
question is: at what point is text truly private?

This question presents the biggest challenge to
better explainability. At the core of the challenge
lies the issue of what exactly it is about text that
needs to become private. Of course, there could
exist explicit words or phrases that contain sensitive
information. Going deeper, though, one can also
consider stylometry as a threat: our writing style is
inherently personal. As pointed out by I1:

The one thing with NLP that you won’t
get with a machine learning community
is a deeper understanding of the language
– what might be sensitive in the language,
so things like an understanding of all
the things you can learn from language –
who is writing something, their profile –
so having a more cohesive understanding
of what is happening with text.

I2 also adds: “First thing we need to ask: is there re-
ally a privacy issue? What is the privacy issue? Can
you demonstrate it?” With these questions in mind,
the interesting aspect that comes with differentially
private NLP is that the input text itself, or rather
the text representations, are being perturbed, in
contrast to operating on structured databases. This
begs another question: how does perturbing word
x and mapping it to word y increase the privacy
protection of some individual? Another important
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design decision that seems to be ignored so far
involves the so-called selection problem. In the
literature, this issue is usually handled via the way
in which text can be perturbed, or mapped, to other
semantically similar text. The flip side of this coin,
selecting what parts or sections of text are private
and need to be handled accordingly, has received
little to no recent attention. All of these questions
are introduced when there is rarely a structured or
direct mapping of database entries to individuals.

For a clearer answer, one can look to the crucial
ϵ parameter. I4 supports this in saying, “We don’t
have a formal definition of privacy, but I think this
mathematical guarantee has made it easier for us to
work with privacy”. This, however, turns out to be
at the heart of the explainability issue. On one side,
it allows for a relative quantification of privacy
with respect to the value of the parameter. The
challenging part is that this ϵ does not immediately
lend itself to a clear path for explaining privacy
in NLP. Even if this were possible, the literature
seems to vary in terms of what ϵ makes sense for
a given application of Differential Privacy to NLP,
suggesting that the ϵ parameter might indeed just be
relative to the task at hand. And as I2 formulates it,
“the down side to [Differential Privacy] is that there
is not a really strong operational interpretation of
what privacy means”. In this case, ϵ loses its global
explainability value a bit, or rather, its “operational
interpretation”.

A final matter falling under the umbrella of ex-
plainability is the relative shroud of mystery sur-
rounding Differential Privacy. Even amongst re-
searchers, there seems to be a confusion of how to
apply it correctly, as demonstrated by (Habernal,
2021) and (Habernal, 2022). As Habernal points
out, the crux of the issue lies in the fact that “it
seems non-trivial to get [Differential Privacy] right
when applying it to NLP”. The promise of Differ-
ential Privacy may be quite enticing, but as I1 puts
it, “you have to get someone who understands the
technology properly and understands the privacy-
preserving nature”. One can extrapolate from here
and assume that explaining the mechanisms (and
merits) of Differential Privacy to the general public
will be a complex task. Accordingly, more empha-
sis on education and awareness should be afforded.

7.6 Future Directions: A Summary

The possibilities for future work relating to the ap-
plication of Differential Privacy to NLP have been

alluded to throughout and discussed via limitations
in Section 7, but they are made explicit here:

• The continued exploration of the privacy-
utility tradeoff when using Differential Pri-
vacy in NLP, as well as better explaining it.

• The integration of Differential Privacy in
more modern NLP architectures, particu-
larly sequence models, e.g. transformers.

• A focus on making Differential Privacy com-
patible and usable with more recent text
representations (e.g. contextual embeddings
and LLMs).

• The investigation of Differential Privacy’s
role, applicability, and effectiveness in non-
static data settings: in particular, reasoning
about how it could work with streaming (text)
datasets.

• The topic of dX -privacy opens the doors to
other possible generalizations of Differen-
tial Privacy tailored to NLP.

• Differential Privacy, NLP, and their relation
to regulation, policy, and implementation
in practice.

• The ability to explain Differential Privacy
and its role in NLP, conducting research “in a
way that people can understand” (I4).

8 Conclusion

The investigation into Differential Privacy’s place
within the NLP sphere results in many interesting
findings and discussions. Understanding that there
does indeed exist privacy vulnerabilities to NLP
techniques, looking to Differential Privacy for a so-
lution does not come without its challenges. Above
all, this requires additional consideration as to how
some core privacy concepts translate to the under-
lying structure (or lack thereof) powering current
NLP tasks. The theoretical foundations and applica-
tions arising from recent literature have provided an
excellent initial excursion into this topic, and from
them, one can derive promising avenues for future
improvements. Where Differential Privacy in NLP
goes from here is yet to be seen, but the primary
goal of this paper was to explore its foundations
and to start the discussion on what this future might
look like. Ultimately, the promise of applying Dif-
ferential Privacy to mitigate privacy issues in NLP
places it on the vanguard of Privacy-Enhancing
Technologies, demanding further research.
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Abstract

Recent work has demonstrated the success-
ful extraction of training data from genera-
tive language models. However, it is not evi-
dent whether such extraction is feasible in text
classification models since the training objec-
tive is to predict the class label as opposed to
next-word prediction. This poses an interest-
ing challenge and raises an important question
regarding the privacy of training data in text
classification settings. Therefore, we study the
potential privacy leakage in the text classifica-
tion domain by investigating the problem of
unintended memorization of training data that
is not pertinent to the learning task. We pro-
pose an algorithm to extract missing tokens of
a partial text by exploiting the likelihood of the
class label provided by the model. We test the
effectiveness of our algorithm by inserting ca-
naries into the training set and attempting to
extract tokens in these canaries post-training.
In our experiments, we demonstrate that suc-
cessful extraction is possible to some extent.
This can also be used as an auditing strategy to
assess any potential unauthorized use of per-
sonal data without consent.

1 Introduction

Tremendous progress has recently been made in
deep learning with natural language processing
(NLP), which has led to significant advances in the
model performance of a wide variety of NLP ap-
plications. The Transformer model (Vaswani et al.,
2017; Wolf et al., 2020) has become the central
and dominant architecture of many state-of-the-art
NLP models. However, NLP models trained with
personal data have also been shown to be vulnera-
ble to fairness (Mehrabi et al., 2021) and privacy

∗This work was carried out as part of an internship at
Microsoft Research (MSR), Redmond, WA. Adel Elmahdy is
currently affiliated with the Department of Electrical and Com-
puter Engineering and the Department of Computer Science
and Engineering at the University of Minnesota.

(Mireshghallah et al., 2020) issues, leading to ad-
verse societal and ethical consequences.

One of the prime challenges of training machine
learning models is the phenomenon of memorizing
unique or rare training data. This may occur via
what is called unintended memorization (Carlini
et al., 2019) where the trained model memorizes
out-of-distribution data in the training set that is
irrelevant to the learning task. It is known that
overfitting is not the cause of such a phenomenon,
since the out-of-distribution data can be memo-
rized as long as the model is still learning, making
it challenging to mitigate through methods prevent-
ing overfitting such as early stopping. This phe-
nomenon raises privacy concerns when the training
set includes private data that may be inadvertently
leaked, e.g., (Munroe, 2019).

The main focus of our work is to explore the
memorization of training data in text classification
models, which may contain private information
collected from individuals. A motivating example
in our study is a topic classification setting in which
an individual can have private information, such as
“I vote for X party” in the politics category, which
can lead to a privacy violation if this information is
leaked by the model.

We propose a data extraction algorithm to re-
cover missing tokens of a partial text using the
target model. The algorithm exploits the likelihood
that the model generates for the target label of the
text to infer the unknown tokens of the partial input
text. To the best of our knowledge, this work is
the first to demonstrate privacy leakage in a text
classification setting by extracting tokens of canary
sequences1 via access to the underlying classifica-
tion model. We conduct experiments to evaluate
the performance of our extraction algorithm under

1Canary sequences are out-of-distribution examples in-
serted into the training data. The trained model is then as-
sessed to measure the degree to which the model has memo-
rized such sequences.
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a wide range of parameters such as the number of
extracted tokens, the number of canary insertions,
and the number of guesses for the extraction.

2 Background: Language Modeling

While this work is about text classification setting,
it is built upon language models. In this section,
we give a brief overview of langauge modeling.
Language models are one of the pillars of state-of-
the-art natural language processing pipelines. It has
been well established that training these models at
scale on large public corpora makes them adaptable
to a wide range of downstream tasks (Bommasani
et al., 2021).

Two widely used pre-training objectives are
auto-regressive (AR) language modeling (Radford
et al., 2018, 2019), and masked language mod-
eling (MLM) (Devlin et al., 2019a; Liu et al.,
2019). AR language modeling is based on mod-
eling the probability distribution of a text corpus
by decomposing it into conditional probabilities of
each token given the previous context. Specifically,
the distribution P (x1, x2, . . . , xn) of a sequence
of tokens (x1, x2, . . . , xn) can be factorized as
P (x1, x2, . . . , xn) = Πn

i=1P (xi|x1, x2, . . . , xi−1)
using the Bayes rule. A neural network is then
trained to model each conditional distribution. We
note that such a decomposition only captures the
unidirectional context.

On the other hand, the MLM pre-training ob-
jective can utilize the bidirectional context since
it is based on replacing a certain portion of tokens
by a special symbol [MASK] and the model is
trained to recover the original tokens at these cor-
rupted positions. This bidirectional context infor-
mation often carries useful signal on downstream
language understanding tasks such as text classifi-
cation tasks, leading to improved performance for
models trained with MLM pre-training objective.

3 Related Work

The ultimate goal of training language models is
to model the underlying distribution of a language,
which should not require the memorization of train-
ing samples. However, recent results have shown
that such memorization occurs in language models
(Carlini et al., 2019; Zanella-Béguelin et al., 2020;
Carlini et al., 2021; Inan et al., 2021; Mireshghallah
et al., 2021; Carlini et al., 2022). In fact, when the
data distribution is long-tailed, memorization might
be necessary to achieve near-optimal accuracy on

the test data (Feldman, 2020; Brown et al., 2021).
Leakage of memorized content can cause privacy
violations, especially in the case where the content
can be linked to an individual (Art. 29 WP, 2014).
There is a wide range of data leakage detection
and prevention techniques for document classifica-
tion in the literature, e.g., (Alneyadi et al., 2013;
Katz et al., 2014; Alneyadi et al., 2015). However,
several challenges and limitations are identified
with these techniques (Alneyadi et al., 2016; Cheng
et al., 2017).

In the case of language models trained with AR
objective, the model learns to predict each and ev-
ery next token given a sequence of tokens, which
can theoretically lead to the leakage of the whole
sequence if it is memorized by the model. (Car-
lini et al., 2021) has shown a successful extraction
of memorized data, including various personal in-
formation from the GPT-2 model (Radford et al.,
2019) belonging to this family.

For language models trained with MLM objec-
tive, the story has been different so far. For instance,
(Lehman et al., 2021) shows that it is not easy
to extract sensitive information from the BERT
model (Devlin et al., 2019a) trained on private clin-
ical data. This can be attributed to the fact that
the MLM objective only targets a small portion of
[MASK] tokens randomly replaced in the training
set, as opposed to all the tokens in the AR setting.

Other forms of privacy leakage include member-
ship inference, which has been widely explored
in vision and text scenarios (Shokri et al., 2017;
Yeom et al., 2018; Long et al., 2018; Truex et al.,
2018; Song and Shmatikov, 2019; Nasr et al.,
2019; Sablayrolles et al., 2019; Hayes et al., 2019;
Salem et al., 2019; Leino and Fredrikson, 2020;
Choquette-Choo et al., 2021; Shejwalkar et al.,
2021), and property inference (Ganju et al., 2018;
Zhang et al., 2021; Mahloujifar et al., 2022).

4 This Work: Text Classification

In this work, we turn our attention to the text classi-
fication setting, which spans a wide range of down-
stream applications (Minaee et al., 2021). Often
times pre-training a language model is performed
on large public datasets while fine-tuning requires
a much smaller task-specific dataset whose privacy
requirements might be much more strict. To the
best of our knowledge, this setting has been largely
unexplored and our goal is to understand potential
privacy leakage in this setting.
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In a text classification problem, the input is a
sequence of tokens x = (x1, x2, . . . , xn) with a
corresponding class label y ∈ {1, 2, . . . , C} where
C is the number of classes. A model is trained to
learn the relation between the input text and the cor-
responding class label. From a training data extrac-
tion perspective, the challenge of this setting is that
here the goal is to maximize the log-likelihood of
the correct class label (i.e. logP (y|x)), therefore,
there is no language modeling involved among the
tokens of the sequence x. Although we cannot
leverage the approaches introduced in prior work,
it is also not clear a priori whether one can extract
training data given the partial knowledge of the to-
kens and the label with query access to the model.

5 Threat Model and Testing
Methodology

Similar to prior work (Shokri et al., 2017; Carlini
et al., 2019), we assume black-box access to the tar-
get model, where it receives a sequence of tokens
and outputs a class prediction with its correspond-
ing likelihood. Our goal is to investigate whether
it is possible to extract the remaining tokens given
partial information about a sequence under this
black-box access to the target model.

This framework encompasses both a malicious
attacker who has partial information about personal
data points and aims to fully reconstruct it by fid-
dling with the target model, and any individual who
audits a target model to detect any unauthorized
use of personal data (Song and Shmatikov, 2019)
(or to check whether a model owner has actually
complied with data deletion requests). We choose
to focus on the latter case since it allows the data
owner to inject “special” sequences into their data
that would strongly indicate unauthorized use of
personal data if a successful reconstruction is pos-
sible through the target model.

Similar to (Thakkar et al., 2021), we inject se-
quences of randomly selected tokens (with corre-
sponding labels) into the training set. This mimics
the existence of out-of-distribution data that is not
pertinent to the learning process. We consider a
testing procedure in which the goal of the extrac-
tion algorithm is to retrieve the last n tokens of a
canary2, where the sample space for each missing
token is the entire tokenizer vocabulary. In the next
section, we propose our extraction algorithm.

2Since the model is bidirectional, this could be any arbi-
trary n tokens in the sequence in general.

6 Proposed Extraction Algorithm

Given a partial sequence with missing tokens, the
core idea of the proposed extraction algorithm is
to choose the tokens such that the corresponding
class label achieves the highest likelihood under
the target model. Consider a canary sequence
x = (x1, x2, . . . , xn) with a corresponding label
y. Given a partial input, we iteratively query the
underlying classification model to reconstruct the
missing tokens. In particular, for a partial sequence
(x1, x2, . . . , xt−1), the extraction algorithm enu-
merates all possible tokens from the vocabulary
V , evaluates the corresponding likelihood of the
label y for each token by querying the classifica-
tion model, and then returns the token that achieves
the maximum likelihood. Formally, xt is evaluated
using the following optimization problem:

xt = arg max
v∈V

P (y|(x1, x2, . . . , xt−1, v)) . (1)

When a canary is repeated a few times in the
training set, the extraction criterion in (1) may not
yield a successful reconstruction of the canary se-
quence. In order to boost the performance of token
extraction, we propose a data-dependent regular-
izer to penalize the tokens with the highest number
of occurrences in the training set, counteracting the
model’s bias towards these tokens. Let C(v) be the
normalized number of occurrences of token v in
the training data3 for v ∈ V . Consequently, the op-
timization problem with the regularized objective
function is given by

xt=arg max
v∈V

P(y|(x1, x2, . . . , xt−1, v))−λ·C(v),

where λ is the regularization coefficient that con-
trols the amount of penalization imposed on the
tokens with frequent occurrences in the training
data.

7 Experimental Evaluation

Dataset: We use the Reddit dataset4. We select
the top 100 subreddits with largest number of reddit
posts. We randomly sample 10000 and 2500 posts
for the training and validation sets, respectively.
The task is topic classification. In particular, given
a user comment, the model is trained to predict the
corresponding subreddit.

3This may be a strong requirement but approximations
can be made via publicly available datasets. However, the
extraction performance does not degrade much by setting
λ = 0 (see Table 2 in Section 7).

4https://huggingface.co/datasets/reddit
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Original Canary Supporting Canary

Subreddit Repetitions Subreddits Repetitions

Table 2 Rarest 100 All Other 1

Subreddits

Table 3 Rarest Varying All Other 1

(1st Column) Subreddits

Table 4 Rarest 100 One Other Varying

Subreddit (1st Column)

Table 1: Information about the subreddits as well as
numbers of repetitions of the original and supporting
canaries for each experiment.

Model: We use the pre-trained BERT base model
(Devlin et al., 2019b). We fine-tune the model for
10 epochs using AdamW optimizer (Loshchilov
and Hutter, 2018) with weight decay 0.01, learning
rate 1e-6, and batch size 32. We apply early stop-
ping and take the snapshot that achieves the best
validation performance to avoid overfitting. The
average performance of the model over 10 runs
with different random seeds is as follows:

• The average training accuracy is 47.69% for a
training set size of 10k samples.

• The average validation accuracy is 42.94% for a
validation set size of 2.5k samples.

Canary Construction: A canary sequence
consists of a number of tokens and an associated
class label. Each token in a canary is sampled
uniformly at random from the BERT tokenizer
vocabulary. We exclude subwords and sample
from the remaining 17k whole words in the
vocabulary. The reason for random sampling of
tokens is to construct out-of-distribution posts with
very high probability. For instance, an example of
a randomly generated canary is “expected Disney
activated Fulton rebel scalp Stark fraud myths
Palestine.” Finally, a canary sequence is inserted
into the training set and repeated multiple times.
This construction of canary sequences enables us
to evaluate the model’s unintended memorization
of training data.

Intuitively, the most successful extraction is
likely to occur within the rarest subreddit because
there is more capacity for memorization. Hence,
we insert a canary sequence of 10 randomly se-
lected tokens into the rarest subreddit with 100
repetitions. This will be the original canary for
which we would like to perform token extractions.
Our first observation is that given the first 7 to 9

Success Rate

λ Last Token Last 2 Tokens Last 3 Tokens

0 0.8 0.2 0
0.01 0.9 0.3 0
0.1 0.7 0.1 0
1 0.3 0.1 0

10 0.1 0 0

Table 2: Successful extraction rates of the proposed al-
gorithm on the last 1 to 3 tokens for different values
of the regularization parameter λ. The original canary
is inserted 100 times in the rarest subreddit, while the
supporting canary is inserted only once in all other sub-
reddits. Random guess rate is only 0.0058 for the last
token and 3.4e-5 for last 2 tokens.

tokens, the model is already confident in the corre-
sponding label, and hence the missing token(s) do
not exhibit themselves in our optimization. In par-
ticular, P (y|(x1, x2, . . . , x9, v)) has similar values
for all v ∈ V . Therefore, we inject one sequence
into all other subreddits where the first 7 to 9 to-
kens are fixed, and the missing token(s) are chosen
differently at random. These are called supporting
canaries since they are not meant to be extracted,
but enable the missing token(s) in the original ca-
nary to be crucial for maximizing the likelihood
of the corresponding label, and hence the perfor-
mance of the reconstruction is significantly boosted.
Table 1 shows detailed information about the orig-
inal and supporting canaries for each experiment
whose results are presented next. The success of
reconstruction is defined by the appearance of the
missing token(s) in the top-k generation of the algo-
rithm for a beam size k. Note that each experiment
is run 10 times and the average success rate is re-
ported. In Table 2, we present the results of the
aforementioned experiment with k = 100. It is
evident that the proposed algorithm achieves sig-
nificant success rates for the extraction of a few to-
kens. However, it fails to reconstruct beyond more
than two tokens since the search space becomes
exponentially larger.

Table 3 presents the extraction results for the last
token for various repetitions of the original canary
and beam sizes. The supporting canary is inserted
only once in all subreddits except the rarest. Al-
though high repetition improves the success rate of
our algorithm, which aligns well with the findings
that memorization is exacerbated by duplication
of a sequence (Kandpal et al., 2022; Carlini et al.,
2022), low repetition still resurfaces the missing
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Original Canary Success Rate

Repetitions Beam Size Our Algo. Random Guess

100 50 0.7 0.0029
50 50 0.5 0.0029
25 50 0.1 0.0029
10 50 0 0.0029
100 100 0.9 0.0058
50 100 0.5 0.0058
25 100 0.3 0.0058
10 100 0.1 0.0058
100 200 1 0.0117
50 200 0.9 0.0117
25 200 0.4 0.0117
10 200 0.2 0.0117

Table 3: Successful extraction rates of the proposed al-
gorithm compared to random guessing on the last token
for various repetitions of the original canary and beam
sizes. The supporting canary is inserted only once in
all subreddits except the rarest. We set λ = 0.01.

token if the algorithm generates a larger number of
candidates (i.e., larger beam size).

Instead of inserting one supporting canary into
all subreddits except the rarest, we next investigate
the insertion of a supporting canary into only one
other arbitrarily chosen subreddit. Here we fix
100 repetitions of the original canary in the rarest
subreddit and vary the repetition of the supporting
canary in a different subreddit. Table 4 shows the
extraction results for this experiment for various
repetitions of the supporting canary and beam sizes.
We can see that extraction is possible even when
a canary is inserted into the rarest subreddit only,
as shown in the last part of Table 4. However,
the success rate improves greatly when we inject
a supporting canary into another subreddit. The
repetition we use for the subreddit does not seem to
have an effect on the success rate of the extraction
of the original canary.

8 Conclusion and Future Work

In this work, we studied the problem of uninten-
tional memorization in a text classification setting.
We developed an algorithm to extract unknown to-
kens of a partial text via access to the underlying
classification model. Through experimental stud-
ies, we demonstrated the efficacy of the proposed
extraction algorithm over random guessing.

Our experimental setting provides preliminary
results and is subject to further exploration in future

Supporting Canary Success Rate

Repetitions Beam Size Our Algo. Random Guess

99 50 0.5 0.0029
99 100 0.5 0.0058
99 200 0.5 0.0117
50 50 0.4 0.0029
50 100 0.4 0.0058
50 200 0.5 0.0117
25 50 0.4 0.0029
25 100 0.5 0.0058
25 200 0.5 0.0117
0 50 0.1 0.0029
0 100 0.1 0.0058
0 200 0.1 0.0117

Table 4: Success rates of extracting the last token un-
der the proposed algorithm and random guess for vari-
ous repetitions of the supporting canary and beam sizes.
The original canary is inserted 100 times in the rarest
subreddit. We set λ = 0.

work. In particular, we injected the original canary
into the rarest subreddit. In general, it would be
interesting to range from the rarest to the most pop-
ular subreddit. We also used random tokens for
canary construction, and it is of importance to ex-
tend it to more organic canaries. Finally, we leave
investigating the effect of formal privacy guaran-
tees, such as differentially private model training
(Abadi et al., 2016), to future work.

9 Ethical Impact

This work explores the privacy implications of a
text classification setting in which training is per-
formed on sensitive and private data. We inves-
tigate whether data leakage is feasible under this
setting. We believe that this work is a first step
in determining the susceptibility of the underlying
text classification model to privacy leakage and de-
tecting unauthorized use of personal data. Both the
dataset and the model are publicly available.
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LMs are growing in size 
of data and parameters
Modern Transformer-based Large Language 
Models (LLMs) like T5, GPTs, etc. 
● Are pre-trained on large amounts of data 
● Can have up to billions of parameters
● Often released as modifiable checkpoints 

that can be easily fine-tuned to your task 
given limited amount of data

● Extremely good at various NLP tasks

Fully Private T5
The pre-training data is used twice: for the 
subword vocabulary and for gradient updates.

We modify both parts of T5:
● Private SentencePiece: a modification of 

SentencePiece that adds noise to 
histogram of word counts (works for any 
SP algorithm)

● Private Training: Modified optimization 
using DP Adam [4]

Does private (pre-) training 
hurt performance?
● We look at both private tokenization and private 

training separately, as well as their combination
● The private tokenizer serves as a regularizer on 

the pre-training task, improving pre-training acc.
● While private training results in a pre-training 

performance drop, fine-tuning is hardly affected
● Fully private model (private tokenizer+training) is 

even able to recover/improve pre-train accuracy 
but is not significantly better on fine-tuning tasks

● For some tasks fine-tuning performance can be 
better than that of a (non-private) baseline 

Summary
● DP is a theoretically justified way of 

providing privacy guarantees for 
pretraining Large Language Models

● Using T5,  a Transformer-based 
encoder-decoder, we investigated whether 
differential privacy (DP) would hurt utility 
(i.e., pre-training accuracy) and 
subsequent fine-tuning performance

● Fully private pre-training of Large Language Models 
can preserve good pre-training performance

● Can achieve comparable  final task (fine-tuning) 
performance

● Can also mitigate empirical privacy attacks like 
training data extraction

References
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Pre-training data is not 
really "public"
It still likely contains private information 
(e.g. data erroneously released to the web, 
copyrighted text, etc.)
● LLMs often exhibit episodic memory (e.g. 

memorizing the training data and outputting it 
verbatim) [1]. Preserved even after fine-tuning!

● Embeddings can also contain private data [3] 
● This can expose owners of pre-trained and 

fine-tuned models to legal risks
● And could also be bad for generalization

Differential Privacy (DP)
to the rescue
● DP [2] provides robust theoretical guarantees on 

information leakage
● DP can potentially fix some of the "empirical" 

privacy concerns like training data extraction 
attacks (memorization)

Does private training 
prevent memorization?
● The way pre-training objective is formulated matters!

○ Span corruption is extremely robust to a 
(common definition of) memorization. 

○ Prefix training exhibits a lot of memorization (the 
baseline outputs ~2% training data verbatim)

● Fully private models are able to mitigate the effect of 
memorization on commonly seen data: 
○ for an ε of 6.23, Full DP-T5 models exhibit 366x 

less memorization
○ even very large values of ε like 320 provide 15x 

improvement in memorization. 

● For rare training instances +/- any level of DP 
provides almost full elimination of memorization

Ablation
● Private Training has the most (positive) effect on 

memorization
● Private Tokenizer does affect memorization, 

albeit much less than private training.
● While private models do significantly reduce 

memorization,  they do not fully eliminate it, 
especially for non-rare instances.

TL;DR
We investigate how DP-pretraining of T5 affects:
● Final task performance
● Robustness of models to "empirical" privacy 

concerns like memorization

● Private training is only 25% slower than 
training a baseline without DP.

● It can be implemented efficiently using 
JAX's vmap operator.

● Code: bit.ly/private_text_transformers   

Example 1

Example 2

Example 3

Example 4

Batch

Loss

Loss

Loss

Loss

Grad

Grad

Grad

Grad

Clipped Grad

Clipped Grad

Clipped Grad

Clipped Grad

Summed Grad

Noise

Private Grad

● Different from typical training, with DP we compute the loss and gradient per individual example

● We leverage JAX and its vmap operator which results in an acceptable compute time 
(only 25% slower than no DP-training)
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