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Abstract

We consider whether machine models can fa-
cilitate the human development of rule sets
for information extraction. Arguing that rule-
based methods possess a speed advantage in
the early development of new extraction capa-
bilities, we ask whether this advantage can be
increased further through the machine facilita-
tion of common recurring manual operations
in the creation of an extraction rule set from
scratch. Using a historical rule set, we recon-
struct and describe the putative manual oper-
ations required to create it. In experiments
targeting one key operation—the enumeration
of words occurring in particular contexts—
we simulate the process of corpus review and
word list creation, showing that several simple
interventions greatly improve recall as a func-
tion of simulated labor.

1 Introduction

To maximize accuracy and robustness under the
state of the art in information extraction (IE), one
trains machine learning (ML) models, typically
underpinned by neural language models, on large
numbers of sentence-level annotations (Ma and
Hovy, 2016; Zhang et al., 2018; Wadden et al.,
2019). If annotations are sufficiently numerous,
this approach yields robust extraction capabilities
that are difficult to implement through other means.
And it has methodological advantages, inasmuch
as the annotations serve as a precise extensional
definition of a given extraction problem, one that
can be trivially exploited in the development of im-
proved extractors through new learning algorithms
and architectures.

However, this approach imposes certain costs
that are not immediately apparent and that manifest
as diminished agility, including:

• Labor overhead. Success depends critically
on consistent annotation at scale, often requir-
ing a team of trained annotators, the develop-

ment of clear annotation guidelines, and the
employment of a review process.

• Domain fragility. The resulting extractors
are often domain- or genre-specific, suffering
substantial degradation when applied to texts
from different, even adjacent, domains. Re-
cent research on domain transfer and few-shot
learning offers mitigations (e.g., Huang et al.
2020), but techniques from this research often
can only be applied to problems proximal to
those for which annotations exist, and often
result in models with lower accuracy. Typi-
cally, additional annotation is required (Bai
et al., 2022).

• Use case myopia. These challenges push the
IE research community toward problems of
putative general utility, such as named entity
recognition. To the extent that these “canon-
ical” problems target relatively complex in-
formation (e.g., event recognition), they suf-
fer substantial practical limitations. For ex-
ample, the set of event types encountered
in news reporting is practically unbounded,
while the types distinguished in canonical re-
sources number in the dozens (LDC, 2005).

Most concerningly, the community’s shared focus
on a small number of canonical problems, while
it fosters replicability and fundamental progress,
inhibits progress on methods that would enable the
practical deployment of IE on a truly broad range
of problems. Many real-world problems involve
data or use cases too distinctive to be solved with
community models, and many candidate customers
of IE lack the resources for adequate data annota-
tion.

Rule-based approaches to IE offer an alterna-
tive for the deployment of competent novel extrac-
tors (Appelt and Onyshkevych, 1998; Valenzuela-
Escárcega et al., 2016). While they suffer from cer-
tain limitations—limited retargetability, reduced
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Figure 1: A notional deployment curve comparing the
accuracy of rule-based and ML-based extractors as a
function of labor investment.

recall, etc.—they possess one significant advan-
tage over ML-based approaches, as illustrated in
Figure 1. Specifically, in the early stages of an
effort pursuing novel extractors, they support very
rapid deployment. Hours of effort often suffice to
implement usable extractors, where an equivalent
ML-based extractor would require days or weeks.
We argue that this “early deployment advantage”
makes rule-based IE an important tool in real-world
settings. Importantly, rule-based methods and ML
are not mutually exclusive. We have previously
presented evidence that rule-based extractors can
be used to annotate training data for ML, and that
the resulting models generalize the rules in useful
ways (Freitag et al., 2022).

In this paper, we consider a tighter integration
between rule-based IE and ML, one in which ML
facilitates the authorship of rules by offering op-
tions and suggestions to the human technician. In
a new extraction problem area lacking annotations,
the rule author is confronted with a difficult search
problem—a difficulty that increases with the ex-
pressiveness of the rule language. We hypothe-
size that ML can be used to simplify the search in
ways that dramatically reduce effort. This paper
is an attempt to illuminate the dimensions along
which such assistance is possible. We approach
this through analysis of a historical rule set for
extracting quantitative claims from the scientific
literature on solar materials. By inspecting how
various language features were used in pursuit of
a performant extraction model, we attempt to in-
fer some of the operations employed by the author

in the initial construction and subsequent refine-
ment of an improving rule set. And we provide
preliminary quantitative evidence that some simple
interventions could have substantially accelerated
a key operation: the creation of problem-specific
word lists.

To summarize, we make the following contribu-
tions in this paper:

• We introduce the concept of facilitated rule
authorship for information extraction, a re-
search objective with the potential to dramat-
ically decrease the cost of deploying perfor-
mant IE on new problems.

• We use a historical extraction rule set to il-
luminate the operations that human authors
employ in their search through the space of
possible rule sets. Our intent is to focus atten-
tion on human deficits that might be mitigated
through focused application of ML.

• We conduct experiments to address one such
deficit, the creation of problem-specific word
lists, and provide quantitative estimates of the
labor savings that can be realized through var-
ious approaches to facilitation.

2 Related Work

The use of declarative, efficiently executable rules
for information extraction was a common feature of
early work in the area, which led to the creation of
several rule frameworks (Appelt and Onyshkevych,
1998; Reiss et al., 2008; Thakker et al., 2009). Mo-
tivated by the difficulty of purely manual rule cre-
ation, early applications of machine learning to the
problem sought to facilitate aspects of the author-
ing process, particularly the creation of what we
call word sets and what the literature often calls dic-
tionaries or semantic lexicons (Riloff, 1993; Soder-
land et al., 1995). This line of research led to some
general methods for exploiting syntagmatic search
(contextual patterns) for the assembly of paradig-
matic resources (lexicons) (Jones et al., 1999), but
by treating the lexicon as an end in its own right,
it begged the question of ultimate utility for the
downstream task of information extraction.

Early successes in lexicon induction gave rise
to research pursuing end-to-end extraction through
supervised rule or pattern induction (Freitag, 1998;
Soderland, 1999; Freitag and Kushmerick, 2000;
Califf and Mooney, 2003). This work offered
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the advantage of improved replicability and retar-
getability, replacing the highly technical activity
of rule creation with the more transparent activity
of data annotation. However, once annotated data
was available in sufficient volumes, rule-based rep-
resentations were eventually outperformed by less
constrained representations better able to integrate
diverse signals in the data (Freitag and McCallum,
1999; Lafferty et al., 2001; Collobert et al., 2011).

The center of gravity in subsequent research has
focused on models able to exploit large volumes
of annotated data and the acquisition of data in
sufficient volumes to realize their advantages. Be-
cause annotation overhead hampers application of
these methods to new problems, the field continues
to investigate approaches to reducing annotation
overheads, including few-shot learning (Han et al.,
2018; Fritzler et al., 2019; Huang et al., 2020) and
transfer learning (Wang et al., 2018; Huang et al.,
2018; Yang and Katiyar, 2020). In some cases,
these methods make it possible to achieve impres-
sive competence in a new task with very few train-
ing examples. But note that such approaches, inas-
much as they often transfer extraction knowledge
from known target types or from highly resourced
domains to adjacent ones, do not eliminate the need
for annotation. And it is often questionable whether
the resulting models are sufficiently performant for
downstream use without supplementation.

If rule-based approaches to extraction have
ceased to be a major research focus, they remain an
important tool in the toolkit of practitioners (Chiti-
cariu et al., 2013) and available as features of
several general-purpose NLP toolkits (Thakker
et al., 2009; Kluegl et al., 2016; Honnibal et al.,
2020). Although new rule frameworks occasion-
ally feature in the more recent literature (Chang and
Manning, 2014; Valenzuela-Escárcega et al., 2016;
Khaitan et al., 2008; Krishnamurthy et al., 2008),
these works are almost exclusively descriptive, fail-
ing to provide empirical benchmarks that would fa-
cilitate continued research in the area. In particular,
the process of authoring rules has received no prior
empirical scrutiny, making it difficult to corrobo-
rate perceived advantages of rule-based methods.

3 A Historical Rule Set

As part of a project attempting to document
progress in solar materials research, we developed
an extractor for quantatitive “claims,” statements
that communicated some important scientific mea-

the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an open-circuit voltage of 0.44 V, 

and a power conversion efficiency of 0.86% under AM1.5G conditions. 

metric metric

metric

measurement measurement

measurement

claim claim
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Figure 2: Several examples of the claim relation in a
sentence from the solar energy literature.

surement. Our experimental data consisted of ap-
proximately 160K abstracts from the Web of Sci-
ence1 on solar energy research from 1968 to 2014.
As is typical in projects like this, IE was not the
focus of the effort, but only a means to assemble
structured data for downstream analysis, which in
this case sought to summarize diachronic progress
on several key research dimensions.

As shown in Figure 2, a claim is a binary rela-
tion between two domain-specific entities or con-
cepts: a quantitative expression or measurement,
and the corresponding metric or quantity being
measured. For greatest flexibility in downstream
analysis, our definition of claim was inclusive, en-
compassing any expression reflecting the result of
a scientific measurement. As the example in the
figure illustrates, the two phrasal extraction targets
pose different challenges. Measurements, consist-
ing typically of a number and a unit of measure-
ment, exhibit strong orthographic regularities, parts
of which could be exploited with regular expres-
sions. Metrics, on the other hand, are noun phrases.

To address this extraction challenge, we em-
ployed VALET, a recently described IE rule syntax
and framework implemented in python (Freitag
et al., 2022). The earlier version of VALET used
in this work lacked several of the features of the
current framework. In particular, the rule author
had no access to syntactic information. Thus, the
problem of extraction amounted to scanning to-
kens in the input stream sequentially, relying on
orthographic and lexical clues to decide when the
left and right boundaries of the two phrasal targets
were observed. We briefly describe VALET’s provi-
sions for such scanning to simplify later exposition.
Readers interested in more detail or a review of
VALET’s more recent features are referred to the
paper or the more extensive documentation in the
public release.

A statement or rule in VALET is a sequence of

1https://clarivate.com/
webofsciencegroup/solutions/
web-of-science/

https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
https://clarivate.com/webofsciencegroup/solutions/web-of-science/
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Type Example
regex /ˆ[a-z]/i
set { a an the }i
reference &myclass

Table 1: The types of atomic token class expressions
available in this study.

three things: a name, a piece of syntax indicating
the type of rule, and an expression defining the
rule’s behavior. The evaluation of such a statement
yields an extractor, which can be applied directly
to text (e.g., via scripts from the command line) or
incorporated into subsequent statements through
reference to the rule’s name.

The rules in this study relied on two types of
expressions, token class expressions and phrase
expressions. The example token class expression

determiner: { a an the }i

defines a case-insensitive extractor matching the
individual words listed between the braces. Table 1
lists the full set of atomic token class expressions
historically available to the rule author. A full to-
ken class expression is a Boolean combinations
of these classes using the operators and, or, and
not. Thus, the token class

notdet: not &determiner

matches any token that is not a determiner.
Phrase expressions employ a regular expression

syntax to match multi-token sequences, enabling
the rule author to mix previously defined token
classes with literal tokens. In addition, phrase ex-
pressions can co-refer, enabling context-free com-
position. Consider the rules:

cap : /ˆ[A-Z]/
honor : { Dr Mr Mrs Ms }
caps -> &cap+
person -> &honor .? @caps

The person phrasal extractor in this example rec-
ognizes person mentions prefixed by an honorific,
incorporating a separate phrase extractor for se-
quences of capitalized tokens (caps) by reference.
(Unlike in standard character-level regular expres-
sions, the optional ‘.’ has no special significance
and matches period tokens in the input literally.)

The rule set used to extract claims consists of
34 rules (15 token class expressions and 19 phrasal

the devices exhibited a short-circuit current density of -6.14 mA/cm(2), an …

metric measurement

claim

claim -> @metric @between @measurement

notmetricword : { . a an the and of to is are … }
metricword : not &notmetricword
metrichead : { efficiency voltage density … }
metric -> metricword* metrichead

quant      -> ( - | + ) ? &num ( . &num )
unit        : { Hz kHz MHz angstrom m nm cal kcal … }
unitphrase -> &unit ( . ? &unit ) * ( / &unit ) ?
measurement -> @quant @unitphrase

Figure 3: An excerpt of the rule set for extraction quan-
titative claims.

extractors). We next review the structure of this rule
set and consider what it implies about the process
of human rule development.

4 Rule Search

A human technician confronting a new extraction
problem faces a daunting challenge. Even if they
possess the means to observe the effects of any
changes to rules, a protracted exploratory process
is required to arrive at an effective solution to any
extraction problem other than the most trivial. To
understand where ML and automation might fa-
cilitate that process, we first seek to form an intu-
ition regarding the solution structure for extracting
claims, as representative of a broader class of sim-
ilar problems, then enumerate potential points of
intervention in the putative search that produced
this solution.

4.1 Rule Set Structure

Figure 3 presents an excerpt from the most produc-
tive portion of the claims rule set in simplified form.
In this segment, a claim is a metric expression
separated by intervening language (captured by the
between rule, not shown in the figure) from a
following measurement. The key rules imple-
menting metric and measurement are shown
at the bottom of the figure, with coloring to draw
attention to how several key components align to
the example text.

The phrase highlighted in purple is an exam-
ple of an extraction constituent exploiting ortho-
graphic regularities. The appropriate structure
of the numeric portion of a measurement fol-
lows very predictable patterns and is amenable
to succinct characterization. As a consequence,
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the corresponding rule provides high-recall ac-
cess to good candidate regions where mentions
of measurement and claim might be found.
Such substructures provide a natural starting point
at the beginning of rule set construction, providing
the technician a means to review a large number
of candidate expressions to form initial intuitions
about the nature of a given extraction problem.

The rules in green correspond to a very common
feature in rule-based extraction models: essentially
special-purpose lexicons that list precisely the to-
kens that may occur in a particular context. Such a
feature is critical for the identification of metric
mentions, which lack the orthographic clues af-
forded by measurement mentions. In this tech-
nical domain, the concepts subject to measurement
are practically finite, and variations in metric are of-
ten indicated through qualifiers prepended to a key
head word (e.g., by prepending the phrase “short-
circuit current” to “density”). Note that even if the
set of possible head words is finite, it need not be
small. Thus, if the rule author opts to approach an
entity recognition challenge through enumeration,
they still face a signficant challenge in many cases.

Finally, the rule in red employs a similar strat-
egy toward a different objective. Specifically, it
lists a set of stop words that a metric phrase
may not contain and indirectly defines the start of
the phrase as the first word following this bound-
ary class. This objective can be addressed more
conveniently through reference to parts of speech—
something supported in more recent versions of
VALET—but both the problem of delimiting men-
tions and the strategy of explicit exclusion are rele-
vant in any rule writing endeavor.

4.2 Search Operations

Although we only possess the final product, we are
now in a position to infer a plausible sequence of
steps by which this rule set was created. Figure 4
depicts such a sequence, with colors to distinguish
the various textual regions and classes of operations
that were involved. While the actual sequence is
unknown, the required activities or operations can
be inferred with certainty from the structure of the
ultimate rule set. In this section, we describe each
of these operations and speculate about opportuni-
ties for automation or facilitation.

4.2.1 Anchoring ( )
The starting point for our extraction of claims is
the numeric portion of the measurement, which,

exhibited a short-circuit current density of -6.14 mA/cm(2), an …

metric measurement

Figure 4: A likely sequence of operations in authoring a
rule set to extract claims, including anchoring ( ), elab-
oration ( ), positive word set ( ), and negative word set
( ).

as noted, is suggestive of the presence of a claim
and largely accessible through surface features. We
write a simple rule that matches any numeric token
—a rule that overgenerates by design—and use it
to inspect measurement candidates. Although
we show only a single match of this putative rule,
it would presumably match multiple spans in the
example. However, what matters is that, to a first
approximation, this simple rule matches all textual
regions in which we might expect a claim to ap-
pear. Note that this step depends heavily on the
technician’s intuition and is difficult to automate in
settings lacking annotated data.

4.2.2 Elaboration ( )
This syntagmatic operation can be internal or con-
textual and involves extension beyond the match
boundaries returned by a current rule. In the exam-
ple, if 6 is the anchoring match, an obvious first
step is to elaborate the rule so that it encompasses
the entire phrase -6.14. Here, we have an early
rule that reliably matches tokens or sub-phrases of
an extraction target, and we use it to elaborate the
internal structure of the target.

The interstitial text between measurements and
metrics (of in this example) provides an example
of contextual elaboration. We use anchoring nu-
meric expressions to investigate and characterize
the “bridge” language that separates our two target
entities. If, as is often the case, this language is
highly stereotpyical and expressed in a vocabulary
of manageable size, we can create a rule for it in a
way analagous to our elaboration of the anchoring
numeric expression.

The operation of elaboration, which we have
defined rather coarsely, almost certainly involves
more specific actions that are currently difficult to
articulate, but a thought experiment might point the
way to forms of machine facilitation possible in the
short term. Consider the state of affairs after the ini-
tial seed rule and the fact that we match 6 but want
a rule matching -6.14. Instead of editing the rule
directly, the technician might indicate a handful of
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elaborations, say by dragging their cursor over the
complete number phrase in each case, hoping that
the system can suggest an accurate elaboration.

The resulting problem resembles grammar in-
duction (Lang et al., 1998), but has some features
distinct from the typical framing of that endeavor.
For one thing, the examples are embedded, and
the surrounding text, which must not be matched
by the final rule, provides useful constraint on any
proposed “grammar.” Second, although the num-
ber of ground-truth examples (those touched by
the human) may be small, the number of candidate
examples can be huge. If the rule author indicates
that 6 should be followed by .14, we can in princi-
ple notice that the pattern num.num is a common
theme in the textual regions selected by our anchor-
ing rule. Finally, the induction process has access
to a rich and extensible set of elements, as well as
a human collaborator to assist in choosing them
(or proposing new ones). For example, we have
already defined a class of numeric tokens to im-
plement our seed rule, which is available, where
appropriate, for characterizing the 14 part of our
example expression. Similarly, when we turn our
attention to units of measurement, we may define
a class that includes both mA and cm, affording
the induction algorithm an easy path to elaborate
a rule matching individual unit tokens (e.g., mA)
to the extended syntax exemplified in the figure
(mA/cm(2)).

4.2.3 Enumeration ( and )
This paradigmatic operation can be used to address
two opposing needs. When we pursue positive enu-
meration ( ), we are attempting to specify exactly
the set of tokens that may appear in some context
in an extraction target, such as the head word of
metric phrases or possible unit abbreviations in
measurement phrases (the rules shown in green
in Figure 3). In constrast, negative enumeration ( )
is akin to the definition of stop word lists and can
be used to delimit extraction targets, as in the rule
shown in red in Figure 3.

In contrast to elaboration, enumeration is a
well-defined activity, one that should be readily
amenable to machine facilitation. We possess at
least two levers that might be used to implement
such facilitation. First, if the rule author’s ap-
proach is to build out from a core component, as
in Figure 4, the resulting word sets will be pop-
ulated with the tokens occurring in proximity to
our currently implemented rule set. For example,

once we can recognize the numeric portion of a
measurement accurately, we can tabulate the to-
kens that tend to follow such expressions (perhaps
ranking them by pointwise mutual information with
the numeric expression) to derive a noisy word list
that can be quickly reviewed and codified in a new
token class.

A generalization of this approach, and an ap-
proach ultimately offering more flexibility, is to
exploit corpus co-occurrence statistics to infer lexi-
cal affinities (e.g., through distributional distances
or embeddings). Using an authoring framework
equipped with such information, a technician might
point at a token in context and be presented with a
list of semantically comparable tokens, again with
the option of selecting some subset to define a new
token class.

5 Experiments

5.1 Framing

Our experiments investigate the feasibility and
value of automated facilitation of word set enu-
meration. We simulate a rule author constructing
the two word sets shown in green in Figure 3, one
for metric head words (metrichead) and one
for units of measurement (unit). We investigate
two settings. In one, we suppose that before this
process begins, the user has created a high-recall
anchoring rule that captures some aspect of the con-
text in which the new class of words is expected to
appear. In the other setting, there is no such anchor,
and the user must rely on other means to find good
candidate inclusions.

Unassisted, the user must scan the corpus se-
quentially, considering candidate words the nomi-
nating procedure provides. This is our unit of cost:
the review of an individual word for inclusion or
exclusion. As each new word is added to the set,
our recall of claims improves. Our experiments
investigate precisely this trade-off: How can we
maximize recall while minimizing human effort?
We measure two forms of recall: word recall, or the
fraction of words found in the respective ground-
truth word set; and claim recall, the fraction of
ground-truth claims found when the current word
set is used in place of the ground-truth one. Note
that our experiments consider only the situation
in which the user has access to some nomination
procedure. If a nomination procedure is entirely
lacking, labor requirements are presumably higher
than any of our experimental alternatives.
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For cases where there is no anchoring rule, we
must rely on knowledge of the current word set and
corpus analysis to suggest additions. For this vari-
ant we imagine an iterative setting in which, at each
step, the system analyzes the current version of a
partial word set and draws on its models of the cor-
pus to present a ranked list of candidate words ad-
ditions to the user. The user then repeatedly scans
down this list until a single good addition is found,
then requests a new list. For both of our targets,
the initial word set is a singleton containing the
first metric head word (or unit, respectively)
encountered in a sequential scan of the corpus.2

We experiment with two approaches to unan-
chored candidate ranking. In each case, we com-
pute a ranking over all terms in the corpus vocab-
ulary that are not in the partial word set and not
previously reviewed. The first approach (call it
FT-centroid) uses FastText embeddings. We rank
all possible additions according to their cosine dis-
tance from the centroid of the words in the cur-
rent word set. We also experimented with a vari-
ant, FT-max, that uses maximum cosine similarity.
This variant produced results comparable to FT-
centroid.

The second approach (call it IT-set) employs an
information-theoretic analysis, where each word in
the corpus vocabulary is represented as a distribu-
tion over observation contexts. We consider words
occurring up to two tokens removed from the refer-
ence observation, encoding each unique token and
offset as a distinct context (e.g., “the” one token
to the left is a distinct context from “the” two to-
kens to the right of the reference word). The matrix
formed from the set of such distributions is then
submitted to a coclustering operation that groups
rows and columns while minimizing Shannon infor-
mation loss. This results in a dense distributional
embedding for each word as a distribution over
context clusters. We then compute the Hellinger
distance between all word pairs and rank all can-
didate word set additions in descending order by
mean distance from words in the current word set.

For anchored review, we introduce the count
method which simply ranks matches to the anchor
rule according to their marginal corpus frequency,
suppressing any that the user has already reviewed.
To simulate the putative process the historical au-
thor followed, we introduce sequential, a variant

2This is “temperature” for metrichead and “degrees”
for unit.

Figure 5: Word and claim recall as a function of words
reviewed, using an anchoring rule for nomination.

that considers candidates in corpus order and per-
forms no tracking of already reviewed words. In
this case, a word may be reviewed more than once.

Building on the count approach, we also explore
a point-wise mutual information variant (PMI). In-
stead of ranking by count, we rank by pointwise
mutual information between word occurrence and
matches of the anchoring rule. This closely follows
the counting approach but has extra information
about how frequently a word matches the anchor-
ing rule. Finally, we experiment with an anchored
variant of the rankers (IT-set and FT-centroid) that
limits their nominations to words proximal to the
anchor rule.

5.2 Results

Figure 5 presents results from our experiments em-
ploying anchoring rules. In these experiments, the
rule used for unit nominated any word immedi-
ately following a numeric expression. The rule
for metrichead uses the same numeric expres-
sion rule, extended with the rule used to model the
intervening text typically found between such ex-
pressions and a preceding metric head word (e.g.,
the word “of” in Figure 3). Obviously, the anchor
we use for metrichead is more selective than
that for unit. In the plots, we use a dashed style
for count and sequential, which, because of their
simplicity, are useful baselines in both sets of ex-
periments.

As the results make clear, this simplicity does
not imply inferior performance. In an outcome that
represented something of a surprise for us, corpus-
analytic rankers offer benefit to the process of word
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Figure 6: Word and claim recall as a function of words
reviewed in the absence of an anchoring rule. The meth-
ods count and sequential do use such a rule and are in-
cluded in the plot for the sake of comparison.

set enumeration only under limited conditions. In
particular, early in the process, IT-set apparently
nominates more pertinent unit words, but the
effect disappears as the word set is built out and
(crucially) does not apply to claim recall, arguably
the more important metric. If the objective is not
to find a good set of words alone, but instead to
find a set that maximizes extraction recall, it is dif-
ficult to improve on a review prioritized by corpus
frequency. PMI adds incremental benefit in some
cases and does not appear to hurt on balance. The
key appears to be the selection of a good anchoring
rule.

Figure 6 displays the results of our experiments
lacking an anchor rule (except for the dashed
lines, which are included to make comparison with
anchor-based methods easier). Here, IT-set con-
tinues to display its relative strength on the word
recall metric, but the results for claim recall are
much more ambiguous. More work is required to
resolve this ambiguity, which is relevant to very
agile deployment. In cases where reasonable recall
is desired as early as possible, we care about, say,
the 0.5 or 0.75 recall levels in the plots. Our experi-
ments lead to no clear recommendation for this use
case. Presumably, what is required is a variant of
these methods that incorporates corpus frequency
more prominently into the score used in ranking.

6 Discussion

This work is an initial step in a line of inquiry that
could lead to better tooling in support of more agile

extraction. The key insight is that once we have a
performant rule set, one that we are willing to treat
as authoritative, we can simulate the process that
led to its creation and experiment with new modes
of facilitation in pursuit of greater labor savings
and model robustness. Critical to such research,
and a focus of future work, is a credible cost model
that quantifies levels of authoring effort. Not only
would such a model provide a more precise charac-
terization of the “early deployment advantage” of
rules over ML, but it could help widen this advan-
tage as an objective function for simulations of the
authoring process.

Of course, this approach has certain shortcom-
ings. For one, any model, including our historical
rule set, that is not developed and vetted against a
thoroughly annotated data sample is typically an
approximation, usually one that is recall-limited.
In our previous work, we sought to overcome this
limitation by using the rule set to generate a large
annotated sample to train a high-recall sequence la-
beler (Freitag et al., 2022). Here, we treat the rules
as definitional, but it seems clear that some of the
“false positive” elements nominated by our corpus-
analytic rankers belong in the definition. For ex-
ample, only one of the top ten terms nominated
for metrichead by IT-set after two iterations of
review was in the historical word set, but many of
the excluded nominations appear plausible (e.g.,
reflectance, oxidation, or transmittance). Many
of these words presumably occur rarely (if at all)
as part of claim expressions, and our performance
metric’s emphasis on maximizing recall punishes
rankers that promote terms in the tail of the distri-
bution, but a complete account of claim language
in this domain might want to include them.

A salient feature of all of these results is our abil-
ity to reach full recall quickly using a high-quality
anchoring rule and a relatively simple ranking pol-
icy. But this outcome may in partly reflect a cir-
cularity in the experimental methodology. Our an-
choring rules are elements of the historical model,
and they therefore necessarily enable us to review
all sentences that the rule set considers relevant. A
key unanswered question is: what do these anchors
miss? Our previous work, which used this rule set
to train an ML extractor, yielded apparently valid
claim expressions that the rule set does not sanc-
tion (Freitag et al., 2022). Perhaps methods such
as IT-set and FT-centroid, which seem wasteful of
human effort, can be used to identify alternative or
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develop more general anchors.
More generally, the structure of a historical rule

set is a reflection of the rule language and tooling
available to the author, and conclusions drawn from
a study of such a rule set may overlook promis-
ing points of integration between rule-based meth-
ods and machine learning or corpus analytics. For
example, the current VALET framework supports
on-demand application of IT-set via an interactive
dialog presenting a large list of words deemed to
be close to a chosen word in the text. The user can
select any of the words in the list and ask the devel-
opment UI to generate a new word set expression.
Similarly, VALET offers a “radius” statement that
matches words within some distance of a seed set
in lexical embedding space. And we have begun
investigating a trainable word set feature that en-
gages the user in an active learning loop to derive a
customized word matcher, one that can in principle
exploit contextual embeddings.

While such features are potentially powerful,
they sacrifice transparency and fine-grained control–
two attractive aspects of rule-based methods. In
this respect, they are in the tradition of alterna-
tive approaches to rapid IE deployment, such as
Snorkel (Ratner et al., 2017), which seeks to learn
performant extractors from collections of noisy “la-
beling functions.” Such approaches, for problems
on which they work, can lead to impressive labor
savings, but they are difficult to control and opti-
mize. But note that while Snorkel-like approaches
and traditional rule-based methods approach the IE
objective from different angles—Snorkel through
redundant, high-recall labelers, rule-based methods
through high-precision set covering—they are fun-
damentally compatible and offer interesting oppor-
tunities for hybridization. Trivially, a framework
like VALET can be used to conveniently implement
labeling functions. By the same token, Snorkel
points the way to a mode of rule set application
distinct from the typical disjunctive mode.

7 Conclusion

Rule-based methods remain an important compo-
nent of any toolset addressing the broader problem
of information extraction, especially in cases where
existing extraction models or sources of annotated
data are misaligned to new use cases. A trained
technician, outfitted with a suitable rule authoring
framework, can create a performant extractor for
a new problem in a fraction of the time required

to produce a ML model of comparable accuracy.
Moreover, we have shown that some simple facili-
tations, based on an analysis of the rule authoring
process, can serve to increase this “early deploy-
ment advantage.” And by treating rule development
as the focus of empirical investigation, we have
pointed the way toward future systems in which
rules and ML are combined creatively to lower the
barrier to entry in the creation of custom extraction
solutions.
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