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Abstract 

Text classification, which determines the genre 

of a document based on cues such as the co-

occurrence of words and their frequency of 

occurrence, has been studied in various 

approaches to date. Conventional text 

classification methods using graph-structured 

data express relationships between words and 

between words and documents in the form of 

weights of edges between each node. Then, the 

graph is input to a graph neural network for 

learning. However, conventional methods do not 

represent the relationship between documents on 

the graph, and thus cannot directly consider the 

relationship between documents. Therefore, we 

propose a text classification method using the 

graph considers the relationships among 

documents. This method directly expresses the 

relationship between documents by adding the 

similarity of documents as weights of edges 

between document nodes to the graph of the 

conventional method. The constructed graph is 

then input to a graph convolutional neural 

network for learning. We conducted 

experiments using five English corpus (20NG, 

R52, R8, Ohsumed, and MR) to evaluate 

proposed method. The results show that the 

proposed method improves accuracy compared 

to the conventional method and that the use of 

relationships among document nodes is effective. 

Experimental results also show that the proposed 

method is particularly effective on datasets with 

relatively long documents. 

1 Introduction 

Text classification is the task of estimating an 

appropriate label for a given document from a set of 

predefined labels. This task is one of the 

fundamental problems in natural language 

processing. This technique has been applied in the 

real world to automate the task of document 

classification by humans. Many researchers are 

interested in developing applications that leverage 

text classification methods such as Junk mail 

classification, topic labeling and sentiment analysis. 

In the past few years, convolutional neural 

networks that can take advantage of graph structural 

information have been used in solving text 

classification problems. TextGCN (Yao et al., 2019) 

is one of the examples of graph-based text 

classification methods. In TextGCN, word nodes 

and document nodes are represented on the same 

graph, which is input to GCN for learning. VGCN-

BERT (Lu et al., 2020) trained by constructing a 

graph based on word co-occurrence information and 

word embedding representation of BERT and 

inputting the graph to GCN. RoBERTaGCN 

(Yuxiao et al., 2021) is a text classification method 

that combines the benefits of GCN's transductive 

learning with the knowledge gained from BERT's 

large-scale prior learning using large amounts of 

unlabeled data. This method boasts the best 

performance among existing methods for text 

classification with four datasets: 20NG, R8, 

Ohsumed, and MR. The graphs in these text 

classification methods use word-to-word and word-

to-document relationships. However, conventional 

graph-based text classification methods do not use 

the relationship between documents. Therefore, we 

thought that accuracy could be improved by using 

the relationship between documents. 

In this study, we aimed to solve the problem of 

Conventional graph-based text classification 

methods described above paragraph by adding 

relations between documents to the edges between 

document nodes, and to improve the classification 



performance of RoBERTaGCN. Specifically, we 

input each document into the BERT model and 

obtain the vector of '[CLS]' token in final hidden 

layer. Then, we calculated the cosine similarity of 

these '[CLS]' token vectors of each document and 

added the cosine similarity that exceeded a 

predetermined threshold as a weight between 

document nodes. Then, we can create an effective 

graph structure that considers the relation between 

document nodes to improve the accuracy in each 

dataset of RoBERTaGCN. In addition, we consider 

that topic drift is less likely to occur because 

document information can be propagated without 

going through word nodes. 

2 Related Work 

Graph neural networks (Scarselli et al., 2008) are 

neural networks that learn relationships between 

graph nodes via the edges that connect them. There 

are several types of GNNs. The graph convolutional 

networks (Kipf and Welling, 2016a) takes a graph 

as input and learns the relationship between the 

nodes of interest and their neighbors through 

convolutional computation using weights assigned 

to the edges between the nodes. The graph 

autoencoder (Kipf and Welling., 2016b) is the 

autoencoder that extracts important features by 

dimensionally collapsing the input data. In Graph 

Attention Network (Velickovi et al., 2017), the 

weights of edges between nodes and the coefficients 

representing the importance of neighboring nodes 

are used to extract important features. GNNs have 

been used in a wide range of tasks in the field of 

machine learning, such as relation extraction, text 

generation, machine translation and question 

answering. In the field of machine learning, GNNs 

have been used in a wide range of tasks and have 

demonstrated high performance. The success of 

GNNs in these wide range of tasks has motivated us 

to study text classification methods using GNNs. In 

TextGCN (Yao et al., 2019), document nodes and 

word nodes are represented on the same graph 

(heterogeneous graph), which is input to the GCN 

for training. Recently, there has been a lot of 

research on text classification methods that combine 

large scale pre-training models such as BERT with 

GNNs. VGCN-BERT (Lu et al., 2020) trained by 

constructing a graph based on word co-occurrence 

information and word embedding representation of 

BERT and inputting the graph to GCN. In BertGCN 

(Yuxiao et al., 2021), the heterogeneous graph of 

words and documents is constructed based on word 

co-occurrence information and BERT's document 

embedding representation, and the graph is input to 

GCN for learning. A detailed description of 

BertGCN is given in the next chapter. 

3 RoBERTaGCN 

BertGCN is a text classification method that 

combines the transductive learning of GCN with the 

knowledge gained from large-scale pre-training 

using large amounts of unlabeled data in BERT. 

BertGCN is trained by inputting each document into 

BERT, extracting document vectors from its output, 

and inputting them into GCN as initial 

representations of document nodes along with 

heterogeneous graphs of documents and words. 

BertGCN has now achieved state-of-the-art in the 

text classification task.  

In BertGCN, the weights between nodes on a 

heterogeneous graph of words and documents are 

defined as shown in Equation (1) below. PPMI is 

used as the weights between word nodes, and TF-

IDF is used as the weights between word and 

document nodes. As shown in equation (1), 

BertGCN does not express the relations between 

document nodes as the form of edge weights 

between nodes. 

𝐴𝑖,𝑗 =

{
 

 

  
𝑃𝑃𝑀𝐼(𝑖, 𝑗),

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

   

𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1) 

 

Yuxiao Lin et al. distinguish the names of the 

training models depending on the type of GNN and 

the pre-trained models of BERT. The names of the 

models are listed in Table 1. In this study, we 

targeted RoBERTaGCN for improvement. 

 

Pre-Trained Model GNN Name of Model 

bert-base GCN BertGCN 

roberta-base GCN RoBERTaGCN 

bert-base GAT BertGAT 

roberta-base GAT RoBERTaGAT 

Table 1. Names of the Models 
 

4 Method 

First, we construct a heterogeneous graph of words 

and documents using each document. Next, we 



input the graph information (weight matrix and 

initial node feature matrix) to BERT and GCN and 

obtain each prediction. Finally, we calculate the 

linear interpolation of each prediction and adopt the 

result as the final prediction. 

4.1 Build Heterogeneous Graph 

First, we build a heterogeneous graph containing 

word nodes and document nodes. The weights of the 

edges between nodes 𝑖  and 𝑗  are defined as in 

Equation (2). 
 

𝐴𝑖,𝑗 =

{
 
 

 
 
𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗),

𝑃𝑃𝑀𝐼(𝑖, 𝑗),
  

𝑇𝐹 − 𝐼𝐷𝐹(𝑖, 𝑗),
1,
0,

   

𝑖, 𝑗 𝑎𝑟𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖, 𝑗 𝑎𝑟𝑒 𝑤𝑜𝑟𝑑𝑠 𝑎𝑛𝑑 𝑖 ≠ 𝑗
𝑖 𝑖𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑗 𝑖𝑠 𝑤𝑜𝑟𝑑

𝑖 = 𝑗
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2) 

 

In RoBERTaGCN, as shown in Equation (1), the 

relation between words and the relation between 

words and documents were considered as the form 

of edge weights between nodes, but the relation 

between documents was not considered. Therefore, 

we improved RoBERTaGCN to consider the 

relation between documents by expressing the 

relation between documents as the form of edge 

weights between document nodes. 𝐶𝑂𝑆_𝑆𝐼𝑀(𝑖, 𝑗) 
in equation (2) is the weight of the edge between 

document nodes and represents the cosine similarity. 

Specifically, we added the weights of the edges 

between document nodes by following the steps Ⅰ to 

Ⅲ below.  
 

Ⅰ.  tokenize each document 

Each document is tokenized by the BertTokenizer 

and converted into a sequence of tokens that can be 

input to BERT. If the number of words in a 

document exceeds the BERT input limit of 512, 

including special tokens, 510 words were extracted 

from the front of the document and used. 

 

Ⅱ.  obtain the CLS vector 

Each tokenized document is entered into BERT 

to obtain the CLS vector at its final hidden layer, 

which is a vector reflecting the features of the entire 

document. 

 

Ⅲ.  calculate and add cosine similarity 

Calculate the cosine similarity between the CLS 

vectors of each acquired document. If the obtained 

cosine similarity exceeds a predetermined threshold, 

the cosine similarity is added as the weight of the 

edge between the corresponding document nodes.  
 

We used positive mutual information (PPMI) for 

weight of the edges between word nodes. We used 

TF-IDF for weight of the edges between word nodes 

and document nodes. The process from the second 

section onward is in accordance with 

RoBERTaGCN. 

4.2 Creating the Initial Node Feature Matrix 

The next step is to create the initial node feature 

matrix to be input to the GCN. We use BERT to 

obtain document embedding representations and 

treat them as input representations of document 

nodes. The embedding representation 𝑋𝑑𝑜𝑐  of a 

document node is represented by 𝑋𝑑𝑜𝑐 ∈ ℝ
𝑛𝑑𝑜𝑐×𝑑 

using the number of documents 𝑛𝑑𝑜𝑐  and the 

number of embedding dimensions 𝑑. In general, the 

initial node feature matrix is given by the following 

equation (3). 
 

𝑋 = (
𝑋𝑑𝑜𝑐
0
)
(𝑛𝑑𝑜𝑐+𝑛𝑤𝑜𝑟𝑑)×𝑑

(3) 

4.3 Input to GCN and Learning by GCN 

The weights of the edges between nodes and the 

initial node feature matrix shown in equations (2) 

and (3) are input to the GCN for training. The output 

feature matrix 𝐿(𝑖) of the 𝑖-th layer is calculated by 

Equation (4). 
 

𝐿(𝑖) = 𝜌(�̃�𝐿(𝑖−1)𝑊(𝑖)) (4) 
 

𝜌 is the activation function, �̃� is the normalized 

adjacency matrix. 𝑊𝑖 ∈ ℝ𝑑𝑖−1×𝑑𝑖  is the weight 

matrix at layer 𝑖, 𝐿(0) is 𝑋, which is the input feature 

matrix of the model. The output of the GCN is 

treated as the final representation of the document 

nodes, and its output is input to the softmax function 

for classification. The prediction by the output of 

GCN is given by equation (5). 𝑔  represents the 

GCN model. 

 

𝑍𝐺𝐶𝑁 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔(𝑋, 𝐴)) (5) 

4.4 Interpolation of Predictions with BERT 

and GCN 

We optimize the GCN with an auxiliary classifier 

that directly handles the BERT embedded  



 

 

 

 

 

 

 

 

representation for faster convergence and better 

performance. Specifically, we create an auxiliary 

classifier with BERT by feeding the document 

embedding representation X and the weight matrix 

W directly into the softmax function. The prediction 

by the auxiliary classifier is given by the following 

equation (6). 

 

𝑍𝐵𝐸𝑅𝑇 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑋) (6) 
 

Then, a linear interpolation is performed using 

𝑍𝐺𝐶𝑁  which prediction from RoBERTaGCN and 

𝑍𝐵𝐸𝑅𝑇 which prediction from BERT, and the result 

of the linear interpolation is adopted as the final 

prediction. The result of linear interpolation is given 

by equation (7). 
 

𝑍 = 𝜆𝑍𝐺𝐶𝑁 + (1 − 𝜆)𝑍𝐵𝐸𝑅𝑇 (7) 
 

𝜆  controls the trade-off between the two 

predictions, meaning that if 𝜆 = 1, we use the full 

RoBERTaGCN model, and if 𝜆 = 0, we use only 

the BERT module. 𝜆 ∈ (0, 1), we can balance the 

predictions from both models and RoBERTaGCN 

model can be more optimized. 𝜆 = 0.7  is the 

optimal value of 𝜆, as shown by the experiments of 

Yuxiao. 

5 Experiments 

We evaluated the classification performance of the 

proposed method by conducting experiments with 

the cosine similarity threshold set between 0.5 and 

0.95 to 0.995 in increments of 0.005 and 

investigated the optimal cosine similarity threshold 

for each data set. 

5.1 Dataset 

We evaluated the performance of the proposed 

method by conducting experiments using the five 

data sets shown in Table 2. We used the same data  

 
1 https://github.com/ZeroRin/BertGCN/tree/main/data 

 

 

 

 

 

 

 

 

used in RoBERTaGCN. Each dataset was already 

divided into training and test data, which we used as 

is.1 The number of data for training and test data is 

shown in Table 2. 

 

・20-Newsgroups(20NG) 

20NG is a dataset in which each document is 

categorized into 20 news categories, and the total 

number of documents is 18846. In our experiments, 

we used 11314 documents as training data and 7532 

documents as test data. 

 

・R8, R52 

Both R8 and R52 are subsets of the dataset provided 

by Reuters (total number is 21578). R8 has 8 

categories and R52 has 52 categories. The total 

number of documents in R8 is 7674, and we used 

5485 documents as training data and 2189 

documents as test data. The total number of 

documents in R52 is 9100, and we used 6532 

documents as training data and 2568 documents as 

test data. 
 

・Ohsumed 

This is a dataset of medical literature provided by 

the U.S. National Library of Medicine, and total 

number of documents is 13929. Every document has 

one or more than two related disease categories  

from among the 23 disease categories. In the 

experiment, we used documents that had only one 

relevant disease category, and the number of 

documents is 7400. We used 3357 documents as 

training data and 4043 documents as test data. 
 

・Movie Review(MR) 

This is a dataset of movie reviews and is used for 

sentiment classification (negative-positive 

classification). The total number of documents was  

10662. We used 7108 documents as training data 

and 3554 documents as test data. 
 

Dataset Number of Documents Average of Words Training Data Test Data 
20NG 18846 206.4 11314 7532 
R8 7674 65.7 5485 2189 
R52 9100 69.8 6532 2568 
Ohsumed 7400 129.1 3357 4043 
MR 10662 20.3 7108 3554 

Table2. Information of Each Data Set 



 

5.2 Experimental Environment 

The experiments were conducted using Google 

Colaboratory Pro+, an execution environment for 

Python and other programming languages provided 

by Google. The details of the specifications of 

Google Colaboratory Pro+ are shown in Table 3. 

We experimented by setting the threshold of 

cosine similarity between 0.5 and 0.95 to 0.995 in 

increments of 0.005 when adding the cosine 

similarity of CLS vectors as the weight of edges 

between document nodes. The performance of the 

proposed method was evaluated by verifying the 

prediction results with test data and obtaining the 

percentage of correct answers. 

5.3 Result of Experiment 

The result of experiment for each threshold of 

cosine similarity are shown in Table 4, along with 

the correct response rate of the original 

RoBERTaGCN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The items marked as × are experiments could not 

be completed due to lack of memory. Items marked 

with "-" are those for which the percentage of 

correct responses was not indicated in the original 

paper. In experiment with Ohsumed, the 

experiments with threshold of 0.99 and 0.995, and 

threshold of 0.975 and 0.98 had the same number of 

edges of the cosine similarity of CLS vectors, so 

they are denoted together. It was confirmed that the 

proposed method outperformed the original 

RoBERTaGCN on all datasets at certain thresholds, 

but for R8, R52, and MR, there were only one or 

two thresholds where the proposed method 

outperformed the original RoBERTaGCN. On the 

other hand, 20NG outperformed the original 

RoBERTaGCN at all thresholds from 0.95 to 0.995, 

and Ohsumed also outperformed the original 

RoBERTaGCN at most of the thresholds. Most 

notably, the experiment with 20NG of threshold 

0.975 outperformed the original RoBERTaGCN by 

0.67% and the experiment with Ohsumed of  

GPU 
Tesla V100（SXM2） 

／A100（SXM2） 

Memory 

12.69GB（standard） 

／51.01GB（CPU／GPU(high memory)） 

／35.25GB（TPU(high memory)） 

Disk 
225.89GB（CPU／TPU） 

／166.83GB（GPU） 

Table3. Details of the Specifications of Google Colaboratory Pro+ 

 20NG R8 R52 Ohsumed MR 

Text GCN 86.34 97.07 93.56 68.36 76.74 
Simplified GCN 88.50 - - 68.50 - 

LEAM 81.91 93.31 91.84 58.58 76.95 

SWEM 85.16 95.32 92.94 63.12 76.65 

TF-IDF+LR 83.19 93.74 86.95 54.66 74.59 

LSTM 65.71 93.68 85.54 41.13 75.06 

fastText 79.38 96.13 92.81 57.70 75.14 

RoBERTaGCN 89.15 98.58 94.08 72.94 88.66 

0.5 × 49.47 × 64.73 × 

0.95 89.29 98.26 92.83 73.73 88.21 

0.955 89.42 98.63 94.08 72.74 88.21 

0.96 89.74 98.49 94.16 73.49 88.52 

0.965 89.54 98.45 93.15 74.13 88.15 

0.97 89.43 98.45 93.77 73.41 88.66 

0.975 89.82 98.63 93.57 
73.49 

89.00 

0.98 89.60 98.54 93.96 88.29 

0.985 89.64 98.54 92.95 73.46 88.58 

0.99 89.76 98.36 93.42 
73.71 

88.55 

0.995 89.51 98.81 93.26 88.31 

Table4. Result of Experiment 



 

 

 

 

 

 

 

 

threshold 0.965 outperformed the original 

RoBERTaGCN by 1.19%. 

6 Discussion 

Table 5 shows the number of various edges added 

and the average of cosine similarity in each data set. 

The item marked as × is the experiment could not 

be completed adding weight due to lack of memory. 

In the experiment where the threshold was set to 0.5, 

the experiment could not be completed due to lack 

of memory in the datasets of 20NG, R52, and MR. 

Even for R8 and Ohsumed, which were able to 

complete the experiment, the classification 

performance was much lower than that of the 

original RoBERTaGCN. The reason for both is that 

the number of edge weights between document 

nodes to be added became too large. In all datasets, 

the number of edges of cosine similarity is more 

than twice as large as the number of PMI edges and 

TF-IDF edges. In addition, since the average of the 

cosine similarity of the CLS vector is between 

0.8~0.85 in all datasets, it is thought that a huge 

number of weights of edges between document 

nodes that are not in the same genre are also added, 

and they have become noise. 

Analyzing the average number of words for each 

dataset in Table 2 and the experimental results in 

Table 4, we can see that the proposed method tends 

to obtain higher classification performance for 

datasets with higher average number of words 

compared to the original RoBERTaGCN. We 

believe this is because the higher the average word 

count, the better the CLS vectors of the documents 

reflect the features of those documents and the more  

 

 

 

 

 

 

 

 

cosine similarity weights are added between 

document nodes of the same genre. On the other 

hand, the lower the average number of words, the 

less the difference in the CLS vectors of the 

documents, the higher the cosine similarity of the 

CLS vectors of the documents in different genres, 

and the more cosine similarity weights were added 

to the weights between the nodes of the documents 

in different genres. This is thought to be the reason 

why the classification performance did not improve 

as expected in experiments with dataset have lower 

the average number of words. 

We calculated the percentage of the number of 

added cosine similarities at the threshold of the 

cosine similarity of the CLS vector that shows the 

highest classification performance in Table 4. The 

calculation results are shown in Table 6.  

Since there is no relationship between the 

percentage of the number of added edges and the 

classification performance, we think it is necessary 

to conduct future experiments using criteria such as 

"upper XX% of the cosine similarity value", instead 

of using the threshold of the cosine similarity of the 

CLS vector to determine the weights to be added 

between document nodes, to clarify the relationship 

between the number of edges between document 

nodes and the classification performance. 

7 Conclusion and Future Work 

In this paper, we confirmed that RoBERTaGCN can 

be improved by adding the cosine similarity of CLS 

vectors of documents as weights of edges between 

document nodes, and that it outperforms the 

classification performance of the original 

Dataset pmi Edge tf-idf Edge cos_sim Edge Average of Cosine Similarity 

20NG 22413246 2276720 × 0.838 

R8 2841760 323670 29441186 0.846 

R52 3574162 407084 41400215 0.840 

Ohsumed 6867490 588958 27376155 0.837 

MR 1504598 196826 56674250 0.823 

Table5. Number of Various Edges Added and the Average of Cosine Similarity 

Dataset 
Total Number of Document 

Node Combinations 
Number of cos_sim Edges Added 

Percentage of Edges 

Added 

20NG 177576435 753 0.0004240 

R8 29441301 175 0.0005944 

R52 41400450 28890 0.0697818 

Ohsumed 27376300 15 0.0000547 

MR 56833791 921 0.0016205 

Table 6. Percentage of the Number of Edges Added 



RoBERTaGCN. In particular, experiments show 

that the proposed method is effective for long 

documents. 

In the future, we intend to study the compatibility 

of the proposed method with GAT and the optimal 

value of the parameter λ for linear interpolation. 
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