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Abstract

Measuring the performance of natural language
processing models is challenging. Traditionally
used metrics, such as BLEU and ROUGE, orig-
inally devised for machine translation and sum-
marization, have been shown to suffer from low
correlation with human judgment and a lack of
transferability to other tasks and languages. In
the past 15 years, a wide range of alternative
metrics have been proposed. However, it is
unclear to what extent this has had an impact
on NLP benchmarking efforts. Here we pro-
vide the first large-scale cross-sectional analy-
sis of metrics used for measuring performance
in natural language processing. We curated,
mapped and systematized more than 3500 ma-
chine learning model performance results from
the open repository ‘Papers with Code’ to en-
able a global and comprehensive analysis. Our
results suggest that the large majority of natu-
ral language processing metrics currently used
have properties that may result in an inadequate
reflection of a models’ performance. Further-
more, we found that ambiguities and inconsis-
tencies in the reporting of metrics may lead
to difficulties in interpreting and comparing
model performances, impairing transparency
and reproducibility in NLP research.

1 Introduction

Benchmarking, i.e., the process of measuring and
comparing model performance on a specific task
or set of tasks, is an important driver of progress
in natural language processing (NLP). Benchmark
datasets are conceptualized as fixed sets of data that
are manually, semi-automatically or automatically
generated to form a representative sample for these
specific tasks to be solved by a model. A model’s
performance on such a benchmark is then assessed
based on a single or a small set of performance
metrics. While this enables quick comparisons,
it may entail the risk of conveying an incomplete
picture of model performance since metrics inher-
ently condense performance to a single number,
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omitting certain performance aspects completely
or balancing trade-offs between different aspects
(e.g. accuracy vs. fluency). Additionally the capac-
ity of metrics to capture performance may differ
strongly between tasks and languages.

Capturing model performance in a single met-
ric is an inherently difficult task, and this is fur-
ther aggravated in the NLP domain by the struc-
tural and semantic complexity of human language.
Traditionally used NLP metrics such as BLEU or
ROUGE, originally devised for machine translation
and summarization, were shown to suffer from low
correlation with human judgment and poor trans-
ferability to other tasks (Lin, 2004; Liu and Liu,
2008; Ng and Abrecht, 2015; Novikova et al., 2017;
Chen et al., 2019). These fundamental problems
are increasingly recognized by the NLP commu-
nity—e.g., metric evaluation was even introduced
as an independent task at the annual Machine Trans-
lation conference (Ma et al., 2019).

In the past 15 years, a wide variety of superior
metrics for evaluating models on NLP tasks have
been proposed, including task-agnostic, Al-based
metrics such as BERTscore (Zhang et al., 2019;
Peters et al., 2018; Clark et al., 2019). However, it
is unknown to what extent this had an impact on
metrics used in NLP research.

We aim to address this question by providing a
global analysis of performance measures used in
NLP benchmarking. Our contributions are three-
fold: (1) We curated, mapped and systematized
performance metrics covering more than 3500 per-
formance results from the open repository ‘Papers
with Code’ to enable a global and comprehensive
analysis. (2) Based on this dataset, we provide a
cross-sectional analysis of the prevalence of perfor-
mance measures in the subset of natural language
processing benchmarks. (3) We describe inconsis-
tencies and ambiguities in the reporting and usage
of metrics, which may lead to difficulties in inter-
preting and comparing model performances.
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2 Methods
2.1 Dataset

Our analyses are based on data available from Pa-
pers with Code (PWC), a large, web-based open
platform that collects Machine learning papers
and summarizes evaluation results on benchmark
datasets. PWC is built on automatically extracted
data from arXiv submissions and manual crowd-
sourced annotation.

The Intelligence Task Ontology (ITO) aims to
provide a comprehensive map of artificial intelli-
gence tasks using a richly structured hierarchy of
processes, algorithms, data and performance met-
rics.! ITO is based on data from PWC and the
EDAM ontology 2. The development process of
ITO is detailed in (Blagec et al., 2021). We built
on ITO for further curation and on of a hierarchical
mapping of the raw performance metric data from
PWC.

2.2 Hierarchical mapping and further
curation of metric names

The raw dataset exported from PWC contained a
total number of 812 different strings representing
metric names that appeared as distinct data prop-
erty instances in ITO. These metric names were
used by human annotators on the PWC platform to
add results for a given model to the evaluation table
of the relevant benchmark dataset’s leaderboard on
PWC. This list of raw metrics in the PWC database
was manually curated into a canonical hierarchy
by our team. This entailed some complexities and
required extensive manual curation which was con-
ducted based on the mapping proceduce described
below.

In many cases, the same metric was reported
under multiple different synonyms and abbrevia-
tions. Furthermore, many results were reported
in specialized sub-variants of established metrics.
For each metric a canonical property denoting its
general form (e.g., ’BLEU score’) was created, and
synonyms and sub-variants were mapped to it. For
example, the reported performance metrics ‘BLEU-
1’, ‘BLEU-2’ and ‘B-3’ were made sub-metrics of
"BLEU score’. Throughout the paper, we will re-
fer to canonical properties and mapped metrics as
‘top-level metrics’ and ‘sub-metrics’, respectively.

In case a library that implemented a metric was
used as the metric name (e.g., SacreBLEU, which

"https://github.com/OpenBioLink/ITO
*http://edamontology.org/
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is a reference implementation of the BLEU score
available as a Python package), this property was
made sub-metric of the more general metric name,
in this case ‘BLEU score’.

271 entries from the original list could not be
assigned a metric and were subsumed under a sepa-
rate category ‘Undetermined’. After this extensive
manual curation, the resulting list covered by our
dataset could be reduced from 812 to 187 distinct
performance metrics. Where possible, we used
the respective preferred Wikipedia article titles as
canonical names for the metrics. For an excerpt of
the resulting property hierarchy, see Figure A.1 in
Appendix A.

2.3 Grouping of top-level metrics

Top-level metrics were further grouped into cate-
gories based on the task type they are usually ap-
plied to: Classification, Computer vision, Natural
language processing, Regression, Game playing,
Ranking, Clustering and ‘Other’. We limited our
main analysis to the category ‘Natural language
processing’, which only contains metrics that are
specific to NLP, such as ROUGE, BLEU or ME-
TEOR. We provide additional statistics on general
classification metrics, such as Accuracy or F1 score
that are also often used in NLP benchmarks but are
not specific to NLP tasks in Table B.1 in Appendix
B.

2.4 Analysis

Analyses were performed based on the ITO release
of 13.7.2020. Raw statistics were generated based
on the ITO ontology using SPARQL queries and
further processed and analyzed using Jupyter Note-
books and the Python ‘pandas’ library. Data, code
and notebooks to generate these statistics are avail-
able on Github (see section ‘Data and code avail-
ability’).

3 Results

3.1 Data basis

32,209 benchmark results across 2,298 distinct
benchmark datasets reported in a total number
of 3,867 papers were included in this analysis.
Included papers consist of papers in the PWC
database that were annotated with at least one per-
formance metric as of July 2020. A single paper
can thus contribute results to more than one bench-
mark and to one or more performance metrics.



Total dataset NLP subset
Number of benchmark datasets 2,298 491
Number of benchmark results 32,209 4,812
Time span covered 2000-2020  2000-2020

Table 1: General descriptives of the analyzed dataset (as of July 2020).

The publication period of the analyzed papers
covers twenty years, from 2000 until 2020, with
the majority having been published in the past ten
years (see Figure B.2 in Appendix B).

The subset of NLP benchmark datasets consid-
ered in our analysis included 4,812 benchmark re-
sults across 491 benchmark datasets (see Table 1).

3.2 Which performance metrics are most
frequently reported in NLP
benchmarking?

Table 2 lists the top 10 most frequently reported
performance metrics. Considering submetrics,
ROUGE-1, ROUGE-2 and ROUGE-L were the
most commonly annotated ROUGE variants, and
BLEU-4 and BLEU-1 were the most frequently
annotated BLEU variants. For a large fraction of
BLEU and ROUGE annotations, the subvariant was
not specified in the annotation.

The BLEU score was used across a wide range
of NLP benchmark tasks, such as machine transla-
tion, question answering, summarization and text
generation. ROUGE metrics were mostly used for
text generation, video captioning and summariza-
tion tasks while METEOR was mainly used for
image and video captioning, text generation and
question answering tasks.

3.3 Are metrics reported together with other
metrics or do they stand alone?

The BLEU score was reported without any other
metrics in 80.2% of the cases, whereas the ROUGE
metrics more often appeared together with other
metrics and stood alone in only nine out of 24 oc-
currences. METEOR was, in all cases, reported
together with at least one other metric. Figure B.1
in Appendix B shows the co-occurrence matrix
for the top 10 most frequently used NLP-specific
metrics. BLEU was most often reported together
with the ROUGE metrics (n=12) and METEOR
(n=12). ROUGE likewise frequently appeared to-
gether with METEOR (n=10). We additionally
provide statistics on the number of distinct metrics
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per benchmark for the total dataset in Figure B.3
in Appendix B.

3.4 Inconsistencies and ambiguities in the
reporting of performance metrics

During the mapping process it became evident that
performance metrics are often reported in an in-
consistent or ambiguous manner. One example for
this are the ROUGE metrics, which have originally
been proposed in different variants (e.g., ROUGE-
1, ROUGE-L) but are often simply referred to as
‘ROUGE’. Furthermore, ROUGE metrics have orig-
inally been proposed in a ‘recall’ and ‘precision’
sub-variant, such as ‘ROUGE-1 precision’ and
‘ROUGE-1 recall’. Further, the harmonic mean
between these two scores (ROUGE-1 F1 score) can
be calculated. However, results are often reported
as, e.g., "ROUGE-1" without specifying the variant,
which may lead to ambiguities when comparing
results between different publications.

4 Discussion

NLP covers a wide range of different tasks and
thus shows a large diversity of utilized metrics. We
limited our analysis to more complex NLP tasks be-
yond simple classification, such as machine transla-
tion, question answering, and summarization. Met-
rics designed for these tasks generally aim to assess
the similarity between a machine-generated text
and a reference text or set of reference texts that
are human-generated.

We found that, despite their known shortcom-
ings, the BLEU score and ROUGE metrics con-
tinue to be the most frequently used metrics for
such tasks.

Several weaknesses of BLEU have been pointed
out by the research community, such as its sole fo-
cus on n-gram precision without considering recall
and its reliance on exact n-gram matchings. Zhang
et al. have discussed properties of the BLEU score
and NIST, a variant of the BLEU score that gives
more weight to rarer n-grams than to more frequent
ones, and came to the conclusion that neither of the



Performance metric Number of benchmark datasets Percent
BLEU score 300 61.1
ROUGE metric 114 23.2
Perplexity 48 9.8
METEOR 39 7.9
Word error rate 36 7.3
Exact match 33 6.7
CIDEr 24 4.9
Unlabeled attachment score 18 3.7
Labeled attachment score 15 3.1
Bit per character 12 2.4

Table 2: Top 10 reported NLP metrics and percent of NLP benchmark datasets (n=491) that use the respective
metric. BLEU: Bilingual Evaluation Understudy, CIDEr: Consensus-based Image Description Evaluation, ROUGE:
Recall-Oriented Understudy for Gisting Evaluation, METEOR: Metric for Evaluation of Translation with Explicit

ORdering.

two metrics necessarily show high correlation with
human judgments of machine translation quality
(Doddington, 2002; Zhang et al., 2004).

The ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) metrics family was the second
most used NLP-specific metric in our dataset after
the BLEU score. While originally proposed for
summarization tasks, a subset of the ROUGE met-
rics (i.e., ROUGE-L, ROUGE-W and ROUGE-S)
has also been shown to perform well in machine
translation evaluation tasks (Lin, 2004; Och, 2004).
However, the ROUGE metrics set has also been
shown to not adequately cover multi-document
summarization, tasks that rely on extensive para-
phrasing, such as abstractive summarization, and
extractive summarization of multi-logue text types
(i.e., transcripts with many different speakers), such
as meeting transcripts (Lin, 2004; Liu and Liu,
2008; Ng and Abrecht, 2015). Several new vari-
ants have been proposed in recent years, which
make use of the incorporation of word embeddings
(ROUGE-WE), graph-based approaches (ROUGE-
G), or the extension with additional lexical features
(ROUGE 2.0) (Ng and Abrecht, 2015; ShafieiBa-
vani et al., 2018; Ganesan, 2018). ROUGE-1,
ROUGE-2 and ROUGE-L were the most common
ROUGE metrics in our analyzed dataset, while
newer proposed ROUGE variants were not repre-
sented.

METEOR (Metric for Evaluation of Translation
with Explicit Ordering) was proposed in 2005 to
address weaknesses of previous metrics (Banerjee
and Lavie, 2005). METEOR is an F-measure de-
rived metric that has repeatedly been shown to yield
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higher correlation with human judgment across sev-
eral tasks as compared to BLEU and NIST (Lavie
et al., 2004; Graham et al., 2015; Chen et al., 2019).
Matchings are scored based on their unigram pre-
cision, unigram recall (given higher weight than
precision), and a comparison of the word ordering
of the translation compared to the reference text.
This is in contrast to the BLEU score, which does
not take into account n-gram recall. Furthermore,
while BLEU only considers exact word matches
in its scoring, METEOR also takes into account
words that are morphologically related or synony-
mous to each other by using stemming, lexical re-
sources and a paraphrase table. Additionally, ME-
TEOR was designed to provide informative scores
at sentence-level and not only at corpus-level. An
adapted version of METEOR, called METEOR++
2.0, was proposed in 2019 (Guo and Hu, 2019).
This variant extends METEOR’s paraphrasing table
with a large external paraphrase database and has
been shown to correlate better with human judge-
ment across many machine translation tasks.

Compared to BLEU and ROUGE, METEOR
was rarely used as a performance metric (8%)
across the NLP benchmark datasets included in
our dataset.

The GLEU score was proposed as an evalua-
tion metric for NLP applications, such as machine
translation, summarization and natural language
generation, in 2007 (Mutton et al., 2007). Itis a
Support Vector Machine-based metric that uses a
combination of individual parser-derived metrics
as features. GLEU aims to assess how well the
generated text conforms to ‘normal’ use of human
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Figure 1: Timeline of the introduction of NLP metrics and their original application. SMS: Sentence Mover’s

Similarity.

language, i.e., its ‘fluency’. This is in contrast to
other commonly used metrics that focus on how
well a generated text reflects a reference text or
vice versa. GLEU was reported only in 1.8% of
NLP benchmark datasets.

Additional alternative metrics that have been
proposed by the NLP research community but do
not appear as performance metrics in the analyzed
dataset include Translation error rate (TER), TER-
Plus, “Length Penalty, Precision, n-gram Position
difference Penalty and Recall” (LEPOR), Sentence
Mover’s Similarity, and BERTScore. Figure 1 de-
picts the timeline of introduction of NLP metrics
and their original application.

TER was proposed as a metric for evaluating ma-
chine translation quality. TER measures quality by
the number of edits that are needed to change the
machine-generated text into the reference text(s),
with lower TER scores indicating higher transla-
tion quality (Snover et al., 2006). TER consid-
ers five edit operations to change the output into
the reference text: Matches, insertions, deletions,
substitutions and shifts. An adaptation of TER,
TER-Plus, was proposed in 2009. Ter-Plus extends
TER with three additional edit operations, i.e., stem
matches, synonym matches and phrase substitution
(Snover et al., 2009). TER-Plus was shown to have
higher correlations with human judgements in ma-
chine translation tasks than BLEU, METEOR and
TERp (Snover et al., 2009). LEPOR and its vari-
ants hLEPOR and nLEPOR were proposed as a
language-independent model that aims to address
the issue that several previous metrics tend to per-
form worse on languages other than those it was
originally designed for. It has been shown to yield

56

higher correlations with human judgement than
METEOR, BLEU, or TER (Han et al., 2012).

Sentence Mover’s Similarity (SMS) is a met-
ric based on ELMo word embeddings and Earth
mover’s distance, which measures the minimum
cost of turning a set of machine generated sentences
into a reference text’s sentences (Peters et al., 2018;
Clark et al., 2019). It was proposed in 2019 and
was shown to yield better results as compared to
ROUGE-L in terms of correlation with human judg-
ment in summarization tasks.

BERTScore was proposed as a task-agnostic per-
formance metric in 2019 (Zhang et al., 2019). It
computes the similarity of two sentences based on
the sum of cosine similarities between their token’s
contextual embeddings (BERT), and optionally
weighs them by inverse document frequency scores
(Devlin et al., 2018). BERTScore was shown to out-
perform established metrics, such as BLEU, ME-
TEOR and ROUGE-L in machine translation and
image captioning tasks. It was also more robust
than other metrics when applied to an adversarial
paraphrase detection task. However, the authors
also state that BERTScore’s configuration should
be adapted to task-specific needs since no single
configuration consistently outperforms all others
across tasks.

Difficulties associated with automatic evaluation
of machine generated texts include poor correla-
tion with human judgement, language bias (i.e., the
metric shows better correlation with human judg-
ment for certain languages than others), and worse
suitability for language generation tasks other than
the one it was proposed for (Novikova et al., 2017).
In fact, most NLP metrics have originally been con-



ceptualized for a very specific application, such
as BLEU and METEOR for machine translation,
or ROUGE for the evaluation of machine gener-
ated text summaries, but have since then been in-
troduced as metrics for several other NLP tasks,
such as question-answering, where all three of
the above mentioned scores are regularly used.
Non-transferability to other tasks has recently been
shown by Chen et al. who have compared several
metrics (i.e., ROUGE-L, METEOR, BERTScore,
BLEU-1, BLEU-4, Conditional BERTScore and
Sentence Mover’s Similarity) for evaluating genera-
tive Question-Answering (QA) tasks based on three
QA datasets. They recommend that from the evalu-
ated metrics, METEOR should preferably be used
and point out that metrics originally introduced for
evaluating machine translation and summarization
do not necessarily perform well in the evaluation
of question answering tasks (Chen et al., 2019).

Many NLP metrics use very specific sets of fea-
tures, such as specific word embeddings or linguis-
tic elements, which may complicate comparability
and replicability. To address the issue of replica-
bility, reference open source implementations have
been published for some metrics, such as, ROUGE,
sentBleu-moses as part of the Moses toolkit and
sacreBLEU (Lin, 2004).

In summary, we found that the large majority
of metrics currently used to report NLP research
results have properties that may result in an inade-
quate reflection of a models’ performance. While
several alternative metrics that address problematic
properties have been proposed, they are currently
rarely used in NLP benchmarking. Our findings
are in line with a recent, focused meta-analysis on
machine translation conducted by Marie et al. who
found that 82.1% of papers report BLEU as the
only performance metric despite its well-known
shortcomings (Marie et al., 2021). Our analysis ex-
tends these findings by providing a global overview
of metrics used in the entire NLP domain.

4.1 Recommendations for reporting
performance results and future
considerations

In the following, we provide recommendations on
the reporting of performance metrics and discuss
potential future avenues for improving measuring
performance using benchmarks in NLP.

4.1.1 Increasing transparency and consistency
in the reporting of performance metrics

Performance metrics should be reported in a clear
and unambiguous way to improve transparency,
avoid misinterpretation and enable reproducibility.

* For performance metrics that have various
sub-variants, it should be clearly stated which
variant is reported (e.g., ROUGE-1 F1 score
instead of ROUGE-1). If multiple metrics
are averaged, it should be stated what kind of
mean is used (e.g., arithmetic mean, geomet-
ric mean, harmonic mean) if this is not clear
from the definition of the metric itself (e.g.,
F1 score).

* If a metric is used that allows for adaptations,
such as weighting, these should be explicitly
stated and be marked clearly in the result ta-
bles. Ideally, when using abbreviations, the
variant should be included in the abbreviation
or e.g., marked by a subscript.

* To increase transparency and allow repro-
ducibility, the formula for calculating the met-
ric should be included in the manuscript or in
the Appendix.

* For more complex metrics, if available, a ref-
erence implementation should be used and
cited. If such a reference implementation is
not available, or a custom implementation or
adaptation is used, the code should be made
available.

In the future, a taxonomic hierarchy of perfor-
mance metrics that captures definitions, system-
atizes metrics together with all existing variants
and lists recommended applications based on com-
parative evaluation studies. In this work, we have
created a starting point for creating such a taxon-
omy using a bottom-up approach as part of ITO
(Blagec et al., 2021).

4.1.2 Maximizing the informative value in the
reporting of performance results

Developing metrics for NLP tasks is an ongoing
research area, new metrics outperforming previous
ones are proposed on a regular basis, and suitability
is strongly task- and dataset-dependent, therefore
general advice on which metric to use cannot be
given.

Instead, it should be critically evaluated whether
a metric is suitable for a given dataset, task or



language, especially if the metric was originally
proposed for a different application. Comparative
evaluation studies, such as in (Chen et al., 2019)
can provide an indication for the suitability.

If a metric is used that has been shown to have
limited informative value (in general, or in specific
use cases) and no alternative is available, the limita-
tions and their relevance for the task and/or dataset
should be discussed.

If more than one suitable metric is available,
consider reporting all of them, especially if there is
a discrepancy in performance results.

Even if a benchmark is historically evaluated
based on a certain metric, consider additionally re-
porting newer proposed metrics if they are suitable
and have been evaluated to be useful for the task.

4.2 Future considerations on performance
metrics in the context of benchmarking

Comparative evaluation studies investigating per-
formance metrics, their properties and their corre-
lation across multiple tasks, datasets and languages
could help to better understand metrics and their
suitability for different applications. While studies
focusing on a small set of metrics exist, such as in
(Chen et al., 2019), larger studies are, to the best of
our knowledge, yet to be undertaken.

Recent work introduced the notions of dynamic
benchmarks that allow users to weigh different
performance metrics of interest. An example of
this is ‘Dynascore’ which allows customizable ag-
gregation of performance across different aspects
including non-traditionally assessed performance
dimensions, such as memory, robustness, and “fair-
ness (Ma et al., 2021). Further, bidimensional
leaderboards based on linear ensembles of metrics
have been proposed (Gehrmann et al., 2021; Ruder,
2021; Kasai et al., 2021). These approaches could
further improve the practical utility of benchmark
results.

4.3 Limitations

Our analyses are based on ITO v0.21 which en-
compasses data until mid 2020. To ensure that our
results are still relevant given the fast pace of re-
search, we checked whether considering data from
the recently released ITO v1.01 which includes
data until mid 2021 leads to any significant time-
dependent changes of our results 3. Including this

*Data curation in ITO v1.01 is still incomplete. Therefore,
results are based on the fully curated ITO v0.21.
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more recent data did, however, not alter the de-
scribed usage patterns of NLP metrics.

The results presented in this paper are based on a
large set of machine learning papers available from
the PWC database, which is the largest annotated
dataset of benchmark results currently available.
The database comprises both preprints of papers
published on arXiv and papers published in peer-
reviewed journals. While it could be argued that
arXiv preprints are not representative of scientific
journal articles, it has recently been shown that
a large fraction of arXiv preprints (77%) are sub-
sequently published in peer-reviewed venues (Lin
et al., 2020).

5 Conclusions

The reporting of metrics was partly inconsistent
and partly unspecific, which may lead to ambigu-
ities when comparing model performances, thus
negatively impacting the transparency and repro-
ducibility of NLP research. Large comparative
evaluation studies of different NLP-specific metrics
across multiple benchmarking tasks are needed.

Data and code availability

The OWL (Web Ontology Language) file of the
ITO model is made available on Github # and Bio-
Portal °. The ontology file is distributed under a
CC-BY-SA license. ITO includes data from the
Papers With Code project 6. Papers With Code is
licensed under the CC-BY-SA license. Data from
Papers With Code are partially altered (manual cu-
ration to improve ontological structure and data
quality). ITO includes data from the EDAM on-
tology. The EDAM ontology is licensed under a
CC-BY-SA license.

Notebooks containing the queries and code for
data analysis are also accessible via GitHub.
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Figure A.1: Property hierarchy after manual curation of the raw list of metrics. The left side of the image shows an
excerpt of the list of top-level performance metrics; the right side shows an excerpt of the list of submetrics for the
top-level metric ‘Accuracy’.
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Figure B.1: Co-occurrence matrix for the top 10 most frequently used NLP metrics (y-axis). Only metrics that were
reported at least one time together with either one of the selected metrics are shown (x-axis).

61



1000 -
" ]
C
S
-
©
2 100+
o] 1
3 4
o
Y
(@]
[ -
S 104
e ]
-}
=2
14
ST T TS FST IS
NNANNNNNNNNNNNNN NN

Figure B.2: Number of publications covered by the total dataset per year. The y-axis is scaled logarithmically.

Performance metric Number of benchmark datasets Percent

Accuracy 871 37.9
F-measure 393 17.1
Precision 374 16.3
R@k 143 6.2
AUC 123 54
IoU 115 5.0
Recall 79 34
Hits@k 69 3.0
P@k 33 1.4
Error rate 30 1.3

Table B.1: Top 10 reported simple classification metrics and percent of benchmark datasets that use the respective
metric. R@k: Recall at k, AUC: Area under the curve, IoU: Intersection over union, P@Xk: Precision at k. AUC
contains both ROC-AUC and PR-AUC.
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Figure B.3: Count of distinct metrics per benchmark dataset when considering only top-level metrics as distinct
metrics (blue bars), and when considering sub-metrics as distinct metrics (grey bars). Median number of distinct
metrics per benchmark: 1. Data is shown for the complete dataset (n=2,298).
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