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Abstract

Relation classification models are convention-
ally evaluated using only a single measure, e.g.,
micro-F1, macro-F1 or AUC. In this work, we
analyze weighting schemes, such as micro and
macro, for imbalanced datasets. We introduce
a framework for weighting schemes, where
existing schemes are extremes, and two new
intermediate schemes. We show that report-
ing results of different weighting schemes bet-
ter highlights strengths and weaknesses of a
model.

1 Introduction

Relation classification (RC) models are typically
compared with either micro-F1 or macro-F1, often
without discussing the measure’s properties (see
e.g. Zhang et al., 2017; Yao et al., 2019). Each
measure highlights different aspects of model per-
formance (Sun et al., 2009). However, using an
inappropriate measure can lead to the preference
of an unsuitable model (Branco et al., 2016), e.g.,
tasks with an imbalanced or long-tailed class dis-
tribution. We argue that model evaluation should
better reflect this, particularly as rare phenomena
become more important in NLP (Rogers, 2021).

For instance, popular datasets for RC, such as
TACRED (Zhang et al., 2017), NYT (Riedel et al.,
2010), ChemProt (Kringelum et al., 2016), Do-
cRED (Yao et al., 2019), and SemEval-2010 Task
8 (Hendrickx et al., 2010), often exhibit a highly
imbalanced label distribution (see Table 1 and, e.g.,
the TACRED class distribution1). The main rea-
sons are the natural data imbalance, i.e. the occur-
rence frequency of relation mentions in text, as
well as the incompleteness of knowledge graphs
like Freebase (Bollacker et al., 2008) used in dis-
tantly supervised RC. For example, 58% of the rela-
tions in the NYT dataset (Riedel et al., 2010) have

1https://nlp.stanford.edu/projects/
tacred/#stats

fewer than 100 training instances (Han et al., 2018),
and the most frequent relation location/contains is
assigned to 48.3% of the positive test instances.
However, for applying RC to real-world problems,
it is especially important to discover instances of
relations that are not yet covered well in a given
knowledge base.

Table 1 lists statistics of the aforementioned RC
datasets, including their perplexity and common
evaluation measures. TACRED and the original
version of NYT contain predominantly negative
samples2. All datasets, except for undirectional
SemEval, exhibit a large ratio between most fre-
quent and least frequent positive class in the test
set. The perplexity of test set distributions is also
much lower than the relation count for all datasets
except SemEval. Reporting only a single measure
therefore cannot exhaustively capture model per-
formance on these datasets, especially for the long
tail of relation types. For example, Alt et al. (2019)
show that on the NYT dataset, AUC scores and
P-R-Curves of several state-of-the-art models are
heavily skewed towards the two most frequent rela-
tion types location/contains and person/nationality.
TACRED, ChemProt, DocRED and SemEval re-
sults are usually only reported in micro-F1, which
does not consider class membership.

In this paper, we introduce a framework for
weighting schemes of measures to address these
evaluation deficits. We present and motivate two
new weighting schemes that are in between the ex-
tremes of micro- and macro-weighting. We demon-
strate these, micro-, class-weighted- and macro-F1

on TACRED and SemEval with two popular mod-
els each. We show that more information about
models can be inferred from our results and point
out what further steps should be taken to improve
evaluation in relation classification.

2Negative samples in RC means none of the dataset’s re-
lations hold. Depending on the dataset, this class is coined
no-relation, NA or Other. We use negative class or NA.
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Perplexity
Dataset #Rel #Samples %NA w NA w/o NA Ratio Evaluation

TACRED 42 106264 79.5 3.31 23.39 250 micro-F1

NYT 53
24

694491
66194

79.4
0

1.27
6.24

7.84
6.24

2793
2485

precision at k, AUC

ChemProt 13 10065 0 7.23 7.23 314 micro-F1

DocRED 96 50503 0 33.13 33.13 2837 micro-F1, AUC
SemEval 19

10
10717
10717

17.4
17.4

14.45
9.61

14.37
8.80

291
2.10

macro-F1 (official),
micro-F1 (popular)

Table 1: Statistics for popular RC datasets. The number of relations, samples and percent of negative samples are
for the whole dataset. Perplexity of the classes is given for the test set, with and without negative samples. This
value would be equal to #Rel for a fully balanced dataset. Ratio is between the counts of the most and least frequent
positive class of the test set. We also list the popular evaluation methods. The upper line for NYT indicates the
original dataset by Riedel et al. (2010), the lower line is the frequently used version by Hoffmann et al. (2011). The
upper SemEval entry considers the direction between the nominals, the lower one does not.

2 Methods

We first give background on the F1-score and exist-
ing F1 weighting schemes. We present our frame-
work of weighting schemes. We introduce two new
weighting schemes. Finally, we outline statistical
tests.

2.1 Background
The Fβ-score (Rijsbergen, 1979; Lewis and Gale,
1994) calculates a score in the interval [0, 1]
through the formula

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(1)

with the true positives (TP), false negatives (FN)
and false positives (FP) of a confusion matrix. This
definition is identical to the weighted harmonic
mean of precision and recall. The positive coef-
ficient β is used as a trade-off between the error
types FN and FP. If there is no preference known
or pre-determined, this coefficient is usually set to
1. In multi-class classification the confusion matrix
can either be calculated once for the whole dataset,
or separately for each class. The former method
yields micro-F1.

Micro weighting does not consider class mem-
bership for any test sample. If the predictions and
labels of all classes are considered, micro-F1 is
equal to accuracy, as the denominator in Eq. 1 is
twice the dataset. In RC, the TP of the negative
class are usually not considered, in which case
micro-F1 is not equal to accuracy. For the F -score,
micro is the only weighting where the impact of

a sample on the score is not conditioned on the
model performance on the rest of the class (For-
man and Scholz, 2010). If the test set is considered
to have a representative data distribution, the micro-
weighted score is a frequentist evaluation of model
performance.

There exist two other ways to calculate and com-
bine F1-scores for a multi-class problem. First,
multi-class F1-scores can be calculated for each
class and then a weighted average class score is
taken. Second, precision and recall scores for each
class can be calculated and weighted, then the har-
monic mean of weighted precision and weighted
recall is taken. Opitz and Burst (2019) show that
the first method is more robust and less favorable
to biased classifiers. We use this method in our
proposed framework.

(Class-)weighted-F1 is similar to micro-F1. F1-
scores are calculated for each class individually
and then weighted by the class count. Thus, both
schemes approximately weigh all samples equally.

Macro weighting gives an equal weight for each
class with positive sample count regardless of the
specific sample count. This gives information
about model performance if class imbalance is not
considered.

In general, there is a correspondence between
training loss and evaluation measure (Li et al.,
2020). One disadvantage of multiple weighting
schemes is that each weighting scheme can be opti-
mized for. To achieve a better score for a specific
weighting, class weights could be set proportional
to the weighting of the class during training. How-

33



Method Formula Focus

Micro - calculation over dataset, class membership is not considered
Weighted ni weighting all classes by instance count, similar to micro
Dodrans ni

3/4 evaluating closer to generalization performance
Entropy −ni · log2(ni/

∑
j nj) reducing impact of data distribution on evaluation

Macro 1 equal weighting of all classes

Table 2: Weighting schemes for evaluation of multi-class classification. ni indicates the count of elements for class
i and the Formula column shows the weight the class is assigned before normalization. The metrics are loosely
ordered from top to bottom with the higher entries focusing more on instances and the lower entries focusing more
on class membership. This usually corresponds to the model score, it is rare that models are better on classes with
fewer samples. Methods in bold are proposed by us.

ever, we argue that model results should always be
presented with multiple weightings for one dataset.
Especially, when comparing different models all
weightings should be reported for each model. This
can clarify whether a model is good for all weight-
ings or just micro or macro. Furthermore, with
datasets that are currently evaluated with different
weightings, it is easier to identify whether a model
is specifically good for a dataset or for a weighting.

2.2 Framework for Weighting Schemes

We discuss a framework that summarizes the rules
we give to class-weighting schemes. Then we in-
troduce two new class weighting schemes. All
discussed weighting schemes can be found in Ta-
ble 2. They are independent of the measure that is
used to calculate a score for each class.

(Class-)weighted and macro weighting are the
extremes of “degressive proportionality”3 or “allo-
cation functions” (Słomczyński and Życzkowski,
2012). These are, e.g., used by the European Parlia-
ment to allocate seats to member nations depending
on the population of the nation. They state that allo-
cation should be monotonic increasing (see D1) and
proportionally decreasing (see D2). To adopt this
to a weighting scheme for multi-class evaluation,
we add a normalizing desideratum that determines
the sum of weights over all classes to be 1 (see D0).

Let ni > 0 be the count of samples of class i and
wi ≥ 0 the weight assigned to the score of class i.

3https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:
32013D0312&from=EN#d1e114-57-1

We have the following desiderata:
∑

i

wi = 1 (D0)

ni ≥ nj ⇒ wi ≥ wj (D1)

ni ≥ nj ⇒
wi

ni
≤ wj

nj
(D2)

Note that these desiderata do not restrict the
scoring function that assigns scores si to class i.
The weighted evaluation score is then given by∑

iwisi.

2.3 Weighting Schemes
Macro: Macro weighting is one extreme by setting
equality on the weights of desideratum D1. It im-
plies that we do not consider the instance counts
per class, but treat all classes equally.
(Class-)weighted: Class-weighted is the other ex-
treme by setting equality on the fraction of weights
and counts in desideratum D2. It implies that we
do not consider class constituency but weight all
samples equally.
Dodrans: Cao et al. (2019) demonstrate that their
balanced generalization error bound for binary clas-
sifiers in the separable case can be optimized by
setting margins proportional to ni

−1/4. They use
this derivation from a limited theoretical scenario
to improve the performance of several classifiers
on imbalanced multi-class datasets. A term pro-
portional to ni

−1/4 is added in the loss function.
While this added term is not directly transferable,
we propose adapting this as a multiplicative fac-
tor in weighting classes for multi-class evaluation:
wi ∝ ni

−1/4ni = n
3/4
i . We coin this weighting

dodrans (“three-quarter”).
Entropy: We also want to provide a weighting
scheme that takes into consideration how hard a
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class is to predict. To this end, we propose weight-
ing classes proportional to their term in the Shan-
non entropy formula

H(X) = −
∑

i

P (xi) log(P (xi)) (2)

wi ∝ P (xi) log(P (xi)). (3)

We interpret P (xi) for class i to be the probabil-
ity of it appearing in the dataset, s.t. P (xi) =
ni/

∑
j nj . Thus, without normalization the model

score is now the sum over all classes of the model
performance on a class times the difficulty and
frequency of the class. Note, that this weighting
scheme does not fulfil desideratum D1, since it is
decreasing for classes i with P (xi) > e−1. This
is related to the fact that classes that are too large
become easier to predict for a model, the model can
just default to predicting this class. It can also be
desirable that a class does not gain relative impor-
tance once it contains more than half of the dataset.
For RC, this often has little consequence. If we
include NA in the normalization, it is usually the
largest class and other classes are below an e-th
of the dataset. Table 2 shows an overview of the
mentioned schemes.

Figure 1 displays the weights that these schemes
assign to the classes of the TACRED test set. The
weighted scheme is proportional to class counts
and produces the most imbalanced weights. Do-
drans and entropy produce slightly more balanced
weights and differ from weighted for the most fre-
quent classes. Macro considers all classes equally,
regardless of class count.

2.4 Statistical Testing

Currently, most RC works report a single score for
each dataset. This can be the result from a single
run or the median score from multiple runs. How-
ever, this does not allow to measure how large the
difference between models is. Recently, analysis
papers in NLP have recorded mean and standard
deviation over multiple runs (Madhyastha and Jain,
2019; Zhou et al., 2020), as this allows for statisti-
cal tests.

We first test for significance and report p-values.
We employ Welch’s t-test to test the hypothesis
that the models have equal mean. Following Zhu
et al. (2020), we also report Cohen’s d effect size to
determine how large the difference between models
is for a specific measure. For two models with the
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Figure 1: TACRED relations and their respective
weights under different weighting schemes. The lower
x-axis denotes the normalized weight given to a rela-
tion for a scheme. The upper x-axis corresponds to
the counts of the relations in the test set for the class-
weighted scheme. The y-axis denotes all positive rela-
tions. The negative NA class is not listed and has 12184
samples. The entropy and dodrans weighting scheme
produce similar weights and are between weighted and
macro weighting.

same number n > 1 of runs, Cohen’s d is given by

d =
√
2

µ1 − µ2√
σ2
1 + σ2

2

(4)

with µi and σ2
i being mean and variance of model

i’s scores. We do this, as two different models
never perform exactly the same, i.e. significance
just depends on the number of runs and we also
want to score the difference between the models.

3 Experiments

We evaluate and compare three RC methods with
our proposed measures on two datasets. We choose
these methods, as RECENT (Lyu and Chen, 2021)
and BERTEM (Baldini Soares et al., 2019) are based
on vanilla fine-tuning of a pre-trained language
model, with a classification head on top. PTR (Han
et al., 2021) is based on prompt-tuning. RECENT
and PTR report similar micro-F1 performance on
TACRED, as do BERTEM and PTR on SemEval. In
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Method Micro Weighted Dodrans Entropy Macro

RECENT 71.5±0.4 67.8±0.4 62.5±0.4 63.6±0.4 43.1±0.6

PTR 72.5±0.3 72.1±0.5 69.8±0.5 70.3±0.5 60.3±0.8

p-value 3 · 10−3 3 · 10−6 10−8 2 · 10−8 2 · 10−10

Cohen’s d 2.8 8.7 14.8 13.5 24.2

Table 3: TACRED F1-scores with different weighting schemes. Positive scores indicate PTR performs better than
RECENT for all weighting schemes. The difference is smallest for the micro and largest for the macro weighting
scheme. All p-values are smaller than α = 0.05. All effect sizes are huge (> 2.0) under Sawilowsky (2009)’s rules
of thumb.

Method Micro Weighted Dodrans Entropy Macro

BERTEM 89.1±0.3 89.1±0.3 88.7±0.3 88.6±0.3 82.7±0.4

PTR 88.4±0.3 88.3±0.3 88.1±0.3 88.0±0.3 87.8±0.5

p-value 0.005 0.006 0.023 0.023 7 · 10−8

Cohen’s d -2.5 -2.4 -1.8 -1.8 11.5

Table 4: SemEval F1-scores with different weighting schemes. The directionality is of the relations is considered,
s.t. there are 19 classes, the negative class is not included in evaluation. Negative scores indicate BERTEM performs
better, positive scores indicate PTR performs better. All p-values are smaller than α = 0.05. All absolute effect
sizes are very large (> 1.2) or huge (> 2.0).

this way we can compare performance of the two
paradigms for other weightings.

RECENT proposes a model-agnostic paradigm
that exploits entity types to narrow down the can-
didate relations. Given an entity-type combina-
tion, a separate classifier is trained on the restricted
classes. Baldini Soares et al. (2019) compare
various strategies that extract relation representa-
tion from Transformers and claim ENTITY START

(i.e. insert entity markers at the start of two entity
mentions) yields the best performance. PTR also
takes entity types into consideration and constructs
prompts composed of three subprompts, two corre-
sponding to the fill-in of the entity types and one
predicting the relation.

In our experiments we use RECENTGCN for RE-
CENT, BERTEM with ENTITY START, and unre-
versed prompts for PTR. We use the official repos-
itories for RECENT and PTR, we reimplement
BERTEM

4. We use the hyperparameters proposed
in the original papers and conduct five runs for each
model. Additional implementation and training de-
tails can be found in Appendices A and B.

The main focus is unearthing performance infor-
mation about these methods that was previously

4Our reimplementation is available at https://
github.com/dfki-nlp/mtb-bert-em.

obscured by single score measures. The number of
weighting schemes does not influence the compu-
tational cost, as each score is determined through
the predictions in a run and does not require spe-
cific tuning.5 We acknowledge that each weight-
ing scheme could be optimized for during training
which gives additional importance to reporting mul-
tiple measures for each model.

3.1 Results

Table 3 shows results for TACRED. PTR signifi-
cantly outperforms RECENT across all weighting
schemes. The difference between the models is
smallest for micro-F1 and increases for all schemes
that weigh classes more equally. For macro-F1 the
difference is starkest with effect size 24.2.

Table 4 displays results for SemEval. BERTEM
significantly outperforms PTR in the micro-F1

measure and all other weightings except for macro-
F1. All effect sizes are either large or huge, by
far the largest effect size is between PTR and
BERTEM regarding macro-F1 though. The Sem-
Eval test set contains a single sample of the Entity-

5We provide a package to add these scores to a
Scikit-learn (Pedregosa et al., 2011) classification
report at https://github.com/DFKI-NLP/
weighting-schemes-report.
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Destination(e2,e1) class which is quite impactful
for the macro-F1 of the models but has negligi-
ble impact on all other weighting schemes. The
scores from dodrans and entropy indicate that only
if all classes are considered equally important the
PTR model should be preferred. This indicates that
either the PTR model learns almost regardless of
class frequency or BERTEM has a class preference
that is only discoverable with macro-F1.

We demonstrate that evaluation on micro-F1

does not give adequate information about model
performance on long-tail classes. In Tables 3 and
4 we see that the model which performs better un-
der micro-F1 can either be significantly better or
worse for classes with few samples. The weighted-
F1 produces similar results to micro-F1 except for
RECENT. Macro-F1 on the other hand is very sen-
sitive to model performance on single samples, e.g.
the Entity-Destination(e2,e1) class in SemEval.

The scores of our proposed schemes are in be-
tween the existing measures and might be the best
indicators for robust generalization performance.
For all experiments, they produce similar results to
each other. This could just be a coincidence of the
datasets, and is also indicated by Figure 1. Overall,
it might be fair to say that one of the former and
latter measures is enough. It would mean one mea-
sure that does weigh proportional to sample count
(micro- or weighted-F1), an intermediary measure
(dodrans-F1 or entropy-F1) and macro-F1.

PTR performs better for macro-F1 on both
datasets. Its scores decrease less when classes are
weighted more equally. This suggests that it is a
better model for classes with low sample counts.
Le Scao and Rush (2021) show that prompts can be
worth hundreds of data points which would explain
why the macro- and micro-F1 scores are much
closer together than for RECENT and BERTEM.

4 Related Work

Chauhan et al. (2019) do a thorough evaluation of
their model and notice the significantly different
performance measured by micro and macro statis-
tics due to the class imbalance, suggesting that the
choice of evaluation measure is crucial. Huang and
Wong (2020) further use the closeness between
micro- and macro-F1 scores to claim the stable
performance of their model.

Mille et al. (2021) point out that evaluating with
a single score favors overfitting. They show dif-
ferent evaluation suites that can be created for a

dataset. Bragg et al. (2021) address the disjoint
evaluation settings across recent research threads
in (few-shot) NLP and propose a unified evaluation
benchmark which regulates dataset, sample size
etc., but fail to take the evaluation measure into
consideration, reporting only mean accuracy in-
stead. Post (2018) criticises the inconsistency and
under-specification in reporting scores. This prob-
lem is also prevalent in RC where the F1 weighting
scheme is often not specified.

Zhang et al. (2020) show that bias from corpora
persists for fine-tuned pre-trained language mod-
els. These models struggle with rare phenomena.
For better performance debiasing with weighting
is performed. Søgaard et al. (2021) argue against
using random splits. They show that evaluating
models with random splits is not a realistic set-
ting but makes tasks easier by fixing the test data
distribution to the train data distribution.

Long-tail evaluation is becoming more promi-
nent in NLP research. Models in deep learning tend
to show a gap in performance between frequent and
infrequent phenomena (Rogers, 2021). Models in
NLP have been shown to perform badly on specific
subsets of data (Zhang et al., 2020).

Sokolova and Lapalme (2009) analyze measures
for multi-class classification and present invari-
ances regarding the confusion matrix. Gösgens
et al. (2021) also determine which class measures
(including F1) fulfil specific assumptions. Further
evaluation can be based on this. Our weighting
schemes for F1 can be transferred to other mea-
sures that calculate a score for each class.

5 Outlook

We suggest creating and using a bidimensional
leaderboard like Kasai et al. (2021) where mea-
sures and models can be contributed. To this end,
benchmarking of RC models could be done on a
centralized site where a model or test set predic-
tions are submitted and measures are calculated
automatically through a script. For measures that
modify weighting of classes and intra-class scoring,
this does not require additional training computa-
tion.

Due to the reproducibility crisis (Baker, 2016),
not all state-of-the-art scores can be replicated.
Possible future work includes a comprehensive
evaluation study of papers on leaderboards of RC
tasks. This would enable an in-depth discussion of
strength and weaknesses (including reproducibil-
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ity) of these models.
The analysis we present can also be extended

to other NLP tasks with imbalanced datasets, such
as named entity recognition (Tjong Kim Sang and
De Meulder, 2003), part-of-speech tagging (Prad-
han et al., 2013) and coreference resolution (Prad-
han et al., 2012).

6 Conclusion

We criticise the current practice of reporting a sin-
gle score when evaluating imbalanced RC datasets.
We propose a new framework to weight scores
for multi-class evaluation of imbalanced datasets.
We provide two new weighting schemes, dodrans
and entropy, which are positioned between class-
weighted and macro. In our experiments, we show
that model performance on both TACRED and
SemEval, especially on the long-tail relations, is
not adequately captured by a single score. Thus,
we advocate the use of multiple weighing schemes
when reporting model performance on imbalanced
datasets.
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A Implementation Details

To evaluate RECENT and PTR, we use the official
code at https://github.com//Saintfe/
RECENT (last updated on 01.10.2021) and https:
//github.com/thunlp/PTR (last updated
on 20.11.2021). Since the official code of BERTEM
is not available, we implement this method using
the HuggingFace Transformers library (Wolf et al.,
2020) and PyTorch (Paszke et al., 2019), and make
our code base available at https://github.
com/dfki-nlp/mtb-bert-em. To make our
results reproducible, we randomly generated seeds
{9, 148, 378, 459, 687} and employed these for all
models in their 5 runs.

B Training Details

B.1 RECENT
We consider GCN as the base model. Following the
paper and the official code, we set the batch size to
be 50, the optimizer to be SGD with learning rate
0.3, and the number of epochs to be 100. It takes a
single RTX-A6000 GPU approximately 10 hours
to complete all 5 runs on TACRED.

B.2 BERTEM

We use the pre-trained language model (PLM)
bert-large-uncased from the HuggingFace
model hub and directly fine-tune the model for the
RC task, without matching-the-blank pre-training.
As the paper suggests, we set the batch size to be
64, the optimizer to be Adam with learning rate
3 · 10−5, and the number of epochs to be 5. Addi-
tionally, we use the max sequence length of 512.
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It takes a single RTX-A6000 GPU 30 minutes to
complete all 5 runs on SemEval.

B.3 PTR
According to the paper and the official code
base, we apply the same settings to evaluate
both TACRED and SemEval: We use the PLM
roberta-large and set the max sequence
length to be 512, the batch size to be 64, the opti-
mizer to be Adam with learning rate 3 · 10−5, the
weight decay to be 10−2, and the number of epochs
to be 5. It takes 4 Quadro-P5000 GPUs 84 hours
to complete 5 runs on TACRED, and it takes 8
Titan-V GPUs 9 hours on SemEval.
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