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Introduction

Welcome to the 4th Workshop on NLP for Conversational AI, at ACL 2022.

Ever since the invention of the intelligent machine, hundreds and thousands of mathematicians, linguists,
and computer scientists have dedicated their careers to empowering human-machine communication in
natural language. Although the idea is finally around the corner with a proliferation of virtual personal
assistants such as Siri, Alexa, Google Assistant, and Cortana, the development of these conversational
agents remains difficult and there still remain plenty of unanswered questions and challenges.

Conversational AI is hard because it is an interdisciplinary subject. Initiatives were started in different
research communities, from Dialogue State Tracking Challenges to NeurIPS Conversational Intelligence
Challenge live competition and the Amazon Alexa Prize. However, various fields within the NLP com-
munity, such as semantic parsing, coreference resolution, sentiment analysis, question answering, and
machine reading comprehension etc. have been seldom evaluated or applied in the context of conversa-
tional AI.

The goal of this workshop is to bring together NLP researchers and practitioners in different fields, along-
side experts in speech and machine learning, to discuss the current state-of-the-art and new approaches,
to share insights and challenges, to bridge the gap between academic research and real-world product
deployment, and to shed light on future directions. “NLP for Conversational AI” will be a one-day wor-
kshop including keynotes, spotlight talks, and poster sessions. In keynote talks, senior technical leaders
from industry and academia will share insights on the latest developments in the field.

An open call for papers will be announced to encourage researchers and students to share their prospects
and latest discoveries. The panel discussion will focus on the challenges, future directions of conversatio-
nal AI research, bridging the gap in research and industrial practice, as well as audience suggested topics.

With the increasing trend of conversational AI, NLP4ConvAI 2022 is competitive. We received 45 sub-
missions directly to the workshop and 14 submissions through the ACL Rolling Review. After a rigorous
review process, we only accepted 18 papers. There are 15 long papers and 3 short papers. The workshop
overall acceptance rate is about 30.5%.

We hope you will enjoy NLP4ConvAI 2022 at ACL and contribute to the future success of our commu-
nity!

NLP4ConvAI 2021 Organizers
Bing Liu, Meta
Alexandros Papangelis, Amazon Alexa AI
Stefan Ultes, Mercedes-Benz AG
Abhinav Rastogi, Google Research
Yun-Nung (Vivian) Chen, National Taiwan University
Georgios Spithourakis, PolyAI
Elnaz Nouri, Microsoft Research
Weiyan Shi, Columbia University
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Keynote Talk: HybriDialogue: Towards Information-Seeking
Dialogue Reasoning Grounded on Tabular and Textual Data

William Wang
University of California, Santa Barbara

Abstract: A pressing challenge in current dialogue systems is to successfully converse with users on
topics with information distributed across different modalities. Previous work in multi-turn dialogue
systems has primarily focused on either text or table information. In more realistic scenarios, having a
joint understanding of both is critical as knowledge is typically distributed over both unstructured and
structured forms. In this talk, I will present a new dialogue dataset, HybriDialogue, which consists of
crowdsourced natural conversations grounded on both Wikipedia text and tables. The conversations are
created through the decomposition of complex multihop questions into simple, realistic multiturn dialo-
gue interactions. We conduct several baseline experiments, including retrieval, system state tracking, and
dialogue response generation. Our results show that there is still ample opportunity for improvement,
demonstrating the importance of building stronger dialogue systems that can reason over the complex
setting of information-seeking dialogue grounded on tables and text. I will also briefly mention a few
related studies on dialogue research from the UCSB NLP Group.

Keynote Talk: Dialog Management for Conversational
Task-Oriented Industry Solutions

Maria-Georgia Zachari
Omilia

Abstract: This talk will focus on how the Omilia Cloud Platform® leverages the notion of Dialog Act
in order to solve real-life use cases in task-oriented dialog systems for call centers. We will address the
challenge of completing tasks efficiently, achieving high KPIs and integrating with a call center, while at
the same time building and maintaining a flexible conversational NLU system.

Keynote Talk: Directions of Dialog Research in the Era of Big
Pre-training Models

Zhou Yu
Columbia University

Abstract: Big pre-training models (such as BERT and GPT3) have demonstrated excellent performan-
ces on various NLP tasks. Instruction tuning and prompting have enabled these models to shine in
low-resource settings. The natural question is “Will big models solve dialog tasks?” This talk will first
go through big models’ impact on several sub-topics within dialog systems (e.g. social chatbots, task-
oriented dialog systems, negotiation/persuasion dialog systems, continue learning in dialog systems,
multilingual dialog systems, multimodal dialog systems, deployable dialog systems, etc) and then follow
up with the speaker’s own interpretations of the challenges remaining and possible future directions.
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Keynote Talk: Scaling impact: the case for humanitarian
NLP

Michael Tjalve
University of Washington + Microsoft Philanthropies

Abstract: Advances in core NLP capabilities have enabled an extensive variety of scenarios where
conversational AI provides real value for companies and customers alike. Leveraging lessons learned
from these successes to applying the technology in the humanitarian context requires an understanding
of both the potential for impact and risk of misuse.
In this talk, we’ll discuss how to leverage conversational AI to scale impact for audiences in the humani-
tarian sector while earning and maintaining trust with the adopters of the technology and with the people
they impact.

Keynote Talk: Past, Present, Future of Conversational AI
Gokhan Tur

Amazon Alexa AI

Abstract: Recent advances in deep learning based methods for language processing, especially using
self-supervised learning methods resulted in new excitement towards building more sophisticated Con-
versational AI systems. While this is partially true for social chatbots or retrieval-based applications, it
is commonplace to see dialogue processing as yet another task while assessing these new state of the
art approaches. In this talk, I will argue that Conversational AI comes with an orthogonal methodology
for machine learning to complement such methods interacting with the users using implicit and explicit
signals. This is an exceptional opportunity for Conversational AI research moving forward and I will
present couple representative efforts from Alexa AI.
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Abstract

A major issue in open-domain dialogue gener-
ation is the agent’s tendency to generate repet-
itive and generic responses. The lack in re-
sponse diversity has been addressed in recent
years via the use of latent variable models, such
as the Conditional Variational Auto-Encoder
(CVAE), which typically involve learning a
latent Gaussian distribution over potential re-
sponse intents. However, due to latent variable
collapse, training latent variable dialogue mod-
els are notoriously complex, requiring substan-
tial modification to the standard training pro-
cess and loss function. Other approaches pro-
posed to improve response diversity also largely
entail a significant increase in training complex-
ity. Hence, this paper proposes a Randomized
Link (RL) Transformer as an alternative to the
latent variable models. The RL Transformer
does not require any additional enhancements
to the training process or loss function. Empiri-
cal results show that, when it comes to response
diversity, the RL Transformer achieved compa-
rable performance compared to latent variable
models.

1 Introduction

Open-domain dialogue generation refers to the task
of generating coherent, natural and human-like dia-
logue given solely the dialogue context (also known
as the dialogue history). The development of open-
domain dialogue agents that can engage humans
in seamless general conversation (or chit-chat) is
one of the main objectives of conversational AI.
Currently, however, agents display a tendency to
generate repetitive and generic dialogue responses,
which negatively impact both naturalness and con-
textual coherence.

Recently, researchers have turned to latent vari-
able models, specifically the Conditional Varia-
tional Auto Encoder (CVAE) (Sohn et al., 2015),
to address this issue (Yang et al., 2021; Gao et al.,
2019; Zhao et al., 2017; Cao and Clark, 2017).

In addition to open-domain dialogue generation,
latent variable models have also been applied to
related tasks such as personalized dialogue (Lee.
et al., 2022; Wu et al., 2020; Song et al., 2019),
empathetic dialogue (Li et al., 2021, 2020b,a; Zhou
and Wang, 2018), and topical dialogue generation
(Wang et al., 2020). These works have generally
involved modelling the potential dialogue response
intents as a latent Gaussian prior, which is typically
generated by a Multi-Layer Perceptron (MLP). Dur-
ing inference, a latent instance is sampled from the
generated Gaussian prior via the reparameteriza-
tion trick and fed to the decoder. Stochasticity is
induced during the response generation via such
random sampling process. However, even though
latent variable models are effective at improving re-
sponse diversity, they are notoriously hard to train
primarily due to the Kullback-Liebler (KL) vanish-
ing problem. Usually, this problem is addressed via
KL annealing or incorporating a Bag-of-Words loss.
While KL annealing requires tuning the weighting
hyperparameter β, attaining the Bag-of-Words loss
involves defining an additional task of predicting
the response bag-of-words. This results in addi-
tional complexity during training.

Several other approaches to promoting response
diversity which involve introducing an alternate
loss function such as the Maximum Mutual Infor-
mation (MMI) objective (Li et al., 2016a), the In-
verse Token Frequency (ITF) objective (Nakamura
et al., 2018), and the Inverse N-gram Frequency
(INF) objective (Ueyama and Kano, 2020), require
considerable additional computation steps. On the
other hand, adversarial learning-based (Li et al.,
2017a) and embedding augmentation-based (Cao
et al., 2021) approaches require extensive modifi-
cations to the standard training process, resulting
in a significant increase in training complexity.

Hence, inspired by randomization-based neural
networks (Suganthan and Katuwal, 2021) and the
Random Vector Functional Link (RVFL) neural
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network (Pao and Takefuji, 1992) in particular, we
introduce a novel Randomized Link (RL) Trans-
former. An alternative to latent variable models
which does not require any modifications or en-
hancements to the standard training process or loss
function. In other words, the RL Transformer can
be trained via standard gradient descent solely on
the standard negative log-likelihood loss. Experi-
mental results on the DailyDialog (Li et al., 2017b)
and EmpatheticDialogues (Rashkin et al., 2019)
corpora show that our RL Transformer successfully
improves the diversity of the generated response,
achieving comparable response diversification rel-
ative to latent variable approaches. In addition,
compared to the latent variable models, responses
generated by our RL Transformer are noticeably
more fluent and contextually coherent.

The remainder of this paper is organized as fol-
lows: Section 2 provides additional background
information regarding open-domain dialogue gen-
eration and RVFL neural networks; Section 3 de-
scribes the proposed RL Transformer in detail; Sec-
tion 4 provides details regarding our implemen-
tations and experiments; Section 5 presents the
experimental results as well as our analysis of the
results; Section 6 concludes the paper.

2 Related Work

2.1 Neural Open-domain Dialogue
Generation

In recent years, generative neural models have been
commonly applied to the task of open-domain di-
alogue generation. Influenced by advances in ma-
chine translation, popular approaches to this task
featured a sequence-to-sequence (seq2seq) archi-
tecture (Sutskever et al., 2014). Recurrent neural
networks such as the Long Short Term Memory
(LSTM) and the Gated Recurrent Unit (GRU) have
been often utilized in both the encoder and decoder
of a seq2seq model (Shang et al., 2015; Sordoni
et al., 2015). More recently, Transformer-based
models (Vaswani et al., 2017) have taken centre
stage. Multiple works have leveraged Transformer-
based pretrained language models such as BERT,
GPT and GPT-2 to improve the overall language
understanding and generation capabilities of their
dialogue agents (Gu et al., 2021; Zhang et al., 2020;
Zhao et al., 2019). In addition to latent variable
models, different learning approaches such as re-
inforcement learning (Saleh et al., 2019; Li et al.,
2016b) and adversarial learning (Li et al., 2017a)

have also been applied to this task.

2.2 Random Vector Functional Link Neural
Networks

The Random Vector Functional Link (RVFL) neu-
ral network (Pao and Takefuji, 1992) is essentially
a single-layer feed forward neural network with a
direct link between the input and output layer. The
optimal weights of an RVFL can be obtained iter-
atively, or through a closed form solution via reg-
ularized least squares or the Moore-Penrose pseu-
doinverse. Prior work has mathematically proven
that the RVFL is an efficient and effective universal
approximator (Needell et al., 2020). Over the years,
multiple RVFL variants including (but not limited
to) the deep RVFL (Shi et al., 2021), ensemble deep
RVFL (Shi et al., 2021), sparse Pretrained-RVFL
(Zhang et al., 2019) and Rotation Forest-RVFL
(Malik et al., 2021) have been proposed. Recently,
RVFL neural networks have been applied to a broad
range of practical tasks across multiple domains
such as remote sensing (Dai et al., 2022), malware
classification (Elkabbash et al., 2021), medical im-
age classification (Nayak et al., 2020; Katuwal
et al., 2019) and even Covid-19 spread forecast-
ing (Hazarika and Gupta, 2020).

3 Methodology

3.1 Randomized Link (RL) Transformer

In this paper, we propose a Randomized Link (RL)
Transformer for open-domain dialogue generation.
Our proposed model generates the dialogue re-
sponse based only on the dialogue context. Similar
to the standard Transformer, the RL Transformer
consists of an encoder and decoder. The encoder
maps an input sequence X = {x0, ..., xJ−1} (J
refers to the length of the input sequence) to an in-
termediate representation Z = {z0, ..., zJ−1}. The
decoder then accepts Z as input and generates the
final output Y = {y0, ..., yK−1} (K refers to the
length of the output sequence) token by token, in
an auto-regressive manner.

The proposed RL Transformer leverages linear
layers with randomly initialized weights to incor-
porate stochasticity into the response generation
process. Our work is largely inspired by the Ran-
dom Vector Functional Link (RVFL) neural net-
work (Pao and Takefuji, 1992), a single-layer feed
forward randomization-based neural network con-
sisting of a fixed randomized hidden layer and a
direct link from the input to the output layer. The

2
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Figure 1: Model architecture of the proposed Random-
ized Link Transformer.

direct link is implemented by concatenating the
input with the randomized hidden layer output, be-
fore being fed to the output layer. Only the weights
in the output layer are trainable. We incorporate
the RVFL architecture into the self-attention and
feed forward networks of a Transformer.

Essentially, the Randomized Link Transformer
encoder consists of a Randomized Link Self-
Attention (RLSA) network and a Randomized Link
Feed Forward (RLFF) network. The decoder, on
the other hand, consists of a RLSA network, fol-
lowed by a Encoder-Decoder (ED) RLSA network
and a regular Feed Forward (FF) network. Similar
to the original Transformer architecture, residual
connections and layer normalization is introduced
after every RLSA, RLFF, ED RLSA and FF net-
work. An overview is provided in Figure 1.

3.2 Randomized Link Self-Attention

In order to incorporate stochasticity into the re-
sponse generation process, we introduce a novel
Randomized Link Self-Attention (RLSA) network
featuring feed forward linear layers with random
weights. Similar to to the original Transformer
architecture, our randomized link self-attention in-
volves mapping a query vector, denoted by Q, and
a set of key-value vector pairs, denoted by K and
V respectively, to an output. The output is de-
rived by computing the weighted sum of the values,
where the weight assigned to each value is com-
puted by taking the dot product of the query with

the corresponding key. For each attention head in
the standard transformer architecture, the input is
passed to three distinct linear layers, resulting in
the query, key and value vectors Qn, Kn, and Vn,
where n refers to an arbitrary attention head.

In RLSA, each input will be fed to a single ran-
dom linear layer. The sizes of all random linear lay-
ers used in the randomized Transformer, denoted
by drand, are identical. Similar to the RVFL, we
introduce a direct link by concatenating the output
of this layer with the original input. The resul-
tant representation is fed to a separate linear layer
with trainable weights. Similarly, for multi-headed
RLSA, a distinct Qn, Kn, and Vn vector is defined
for each of the N attention heads. The dimension-
ality of the Qn and Kn vectors is denoted by dk,
and the dimensionality of the Vn vector is denoted
by dv. This can be expressed as follows:

Qn = WQn([X,W r
Qn

(X)]) (1)

Kn = WKn([X,W r
Kn

(X)]) (2)

Vn = WVn([X,W r
Vn
(X)]) (3)

where WQ, WK , and WV represent the weights
of the trainable linear layers corresponding to the
Q, K and V vectors respectively. We use the su-
perscript ()r to denote the randomized matrices,
whereby W r

Q, W r
K , and W r

V represent the weights
of the randomly initialized linear layers correspond-
ing to the Qn, Kn and Vn vectors respectively. X
denotes the input sequence, and [·] represents the
concatenate operation.

The randomized linear layers W r
Q, W r

K , and
W r

V are initialized every epoch with Xavier nor-
mal initialization (Glorot and Bengio, 2010) i.e.,
W r

Q,W
r
K ,W r

V ∼ N (0, σ2) where σ = γ ×√
2

dhidden+drand
. The gain value γ = 1.0. The

selection of the standard deviation or the variance
of the initialization is vital to model performance.
This is because an excessively large variance would
result in model divergence, while an excessively
small variance would result in a drop in stochastic-
ity. For the randomized layers in RLSA, weights
initialized from a normal distribution with a suit-
able standard deviation would allow the model to
converge while maintaining stochasticity. As seen
in the equation, for the Xavier normal initialization,
the standard deviation of the Gaussian distribution
from which the initial weights are sampled is a
function of the total number of inputs and outputs.
Empirically, we found that the standard deviation
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value utilized during Xavier normal initialization
would generally outperforms other standard devia-
tion values across all randomized layer sizes.

Then, following the standard Transformer ar-
chitecture, the dot product of all corresponding Q
and K vectors are computed to obtain the atten-
tion maps. Then, to attain the score, the softmax
function is applied over the dot products divided
by the square root of the dimension of the Q and
K vectors i.e.,

√
dk. Each of the V vectors is then

multiplied with the attained score. This results in
the following expression:

Zn = softmax(
QnK

T
n√

dk
)Vn (4)

where T represents the transpose operation. The
output of each attention head Zn is concatenated
to form Z:

Z = [Z0, Z1, Z2 · · ·ZN−1] (5)

where N represents the number of attention heads.
Then, the resulting representation Z is then

passed to a single linear layer with randomly ini-
tialized weights. Once again, to obtain the encoder
output Z, the output of the random layer is con-
catenated with the original input Z̄, and fed to a
separate linear layer with trainable weights (direct
link).

Z = WZ([X,W r
Z(Z)]) (6)

where WZ and W r
Z represent the weights of the

trainable linear layer and randomized linear layer
used to obtain the encoder output Z respectively.
Similarly, the randomized linear layer W r

Z is initial-
ized every epoch with Xavier normal initialization
i.e., W r

Z ∼ N (0, σ2) where σ = γ ×
√

2
dv+drand

.
The gain value γ = 1.0.

For the Encoder Decoder (ED) RLSA in the de-
coder, the encoder outputs and prior decoder out-
puts are used as input. The output of the prior
decoder layer is used to generate the queries, and
the encoder outputs are used to generate the keys
and values. An overview of the RLSA network is
presented in Figure 2.

3.3 Randomized Link Feed Forward Network
The feed forward network in the standard Trans-
former consists of a two-layer fully trainable feed
forward neural network. Likewise, the Randomized
Link Feed Forward (RLFF) network is a two-layer
feed forward neural network which features a ran-
domly initialized fixed linear layer with a ReLU

Input Input Input

Attn Map

Softmax

Output

Figure 2: Overview of Randomized Link Self Attention.
⊕ refers to the concatenate operation.

activation function followed by a trainable linear
layer. Similarly, the direct link is introduced by
concatenating the output of the randomized layer
with the original inputs, and passing the resultant
representation to the trainable layer. In contrast
to the RLSA network (Section 3.2), no additional
randomized layers are introduced in the RLFF net-
work. The first linear layer is randomized instead.
This can be expressed as:

RLFF (Z) = W2([ReLU(W r
1 (Z)), Z]) (7)

where W r
1 and W2 refer to the first random linear

layer and the second trainable linear layer respec-
tively. The size of the randomized linear layer W r

1

is represented by dff , and the size W2 is dhidden.
Unlike the RLSA network, for the RLFF network,
the randomized linear layer W r

1 is initialized every
epoch with Xavier uniform initialization (Glorot
and Bengio, 2010) i.e., W r

Z ∼ U(−a, a) where
a = γ ×

√
6

dhidden+dff
. Since the ReLU activa-

tion is applied to the layer output, the gain value.
The gain value γ =

√
2. We found that utilizing a

uniform initialization in the RLFF network instead
of a normal initialization would result in a slight
increase in response diversity. Also, it should be
noted that the RLFF network is only utilized in
the encoder of the Randomized Transformer. An
overview of the RLFF network is presented in Fig-
ure 3.
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Input

Output

ReLU

Figure 3: Overview of Randomized Link Feed Forward
network. ⊕ refers to the concatenate operation.

4 Experiment

4.1 Data

We evaluate the Randomized Link Transformer
on the DailyDialogs (Li et al., 2017b) and Em-
patheticDialogues (Rashkin et al., 2019) corpora.
For the EmpatheticDialogues corpus, the agent is
expected to generate an appropriately empathetic
response given the dialogue context and emotion
label, which is not used in our experiments. The
training, validation and test set consists of 19,533,
2,770, and 2,547 dialogues respectively. The Dai-
lyDialog corpus consists of general human-written
dialogue examples covering a wide range of topics
and emotions. Similarly, the provided intent and
emotion labels are not used in our experiments. The
training, validation and test set consists of 11,118,
1,000 and 1,000 dialogues respectively.

4.2 Implementation

In our experiments, we implement the Randomized
Link (RL) Transformer with 4 encoding layers, 4
decoding layers, with 4 attention heads (N = 4).
Since the 300 dimensional GloVe embedding (Pen-
nington et al., 2014) is used, the hidden dimension
dhidden = 300. The size of all randomized layers
in the RLSA network drand is fixed at 512. dk,
dv and dz were set to 64 for experiments of the
DailyDialog corpus, and 256 on the EmpatheticDi-
alogues corpus. For the RLFF network, dff is set
to 2048. Inputs to the RL Transformer consists of
the dialogue context (limited to 4 dialogue turns).
Responses are generated via greedy decoding. Dur-
ing training, the Adam optimizer (learning rate =
0.00015, batch size = 32) is used.

4.3 Baselines

We implement the following four models in our
experiments:

Transformer. We implement a Transformer
(Vaswani et al., 2017) with standard self attention
and feed forward components. The Transformer
parameters are identical to the RL Transformer as
described in Section 4.2.
CVAE. Similar to Zhao et al. (2017) and Lin et al.
(2020), we implement a Transformer-based CVAE
where the latent variable sampled from the latent
Gaussian is combined with the output of the en-
coder before being fed to the decoder. Following
Lin et al. (2020), the latent Gaussian is generated
by a three-layer MLP with 512 node hidden layers,
and the size of the random latent variable is fixed
at 300. The remaining Transformer parameters are
identical to the RL Transformer as described in
Section 4.2.
SVT. We also implement the Sequential Variational
Transformer (SVT) proposed in Lin et al. (2020).
The SVT replaces the standard Transformer de-
coder with a variational decoder layer which im-
plicitly generates a distinct latent variable for each
position. Similarly, the latent Gaussians are gener-
ated via three-layer MLPs with 512 node hidden
layers, and the size of the random latent variable is
fixed at 300. The remaining Transformer parame-
ters are identical to the RL Transformer described
in Section 4.2.
RL Transformer. We implement the proposed
RL Transformer with configuration described in
Section 3.2.

4.4 Evaluation

4.4.1 Objective Measures

Distinct-N. We use the Distinct-1 and 2 scores, de-
noted by D-1 and D-2 respectively, to quantify the
inter-response diversity of the generated responses.
Essentially, the Distinct-n score involves comput-
ing the number of distinct n-grams in a given text,
and dividing the number by the total number of
tokens. The Distinct score is derived based on all
generated responses.
MTLD & MATTR. Additionally, we also uti-
lize lexical diversity measures such as the Mea-
sure of Textual Lexical Diversity (MTLD) and
Moving-Average Type–Token Ratio (MATTR)
score. MATTR and MTLD are essentially text
length invariant variants of the Token-Type Ratio
(TTR). MTLD involves computing the Token-Type
Ratio (TTR) for sequentially larger segments of
the sentence until a predefined threshold h. On the
other hand, deriving MATTR requires averaging
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DailyDialog
Length D-1 D-2 MATTR MTLD METEOR ROUGE-L

Transformer (Vaswani et al., 2017) 6.075 0.004 0.017 0.360 12.461 0.076 0.060
CVAE (Zhao et al., 2017) 11.656 0.035 0.200 0.661 32.927 0.117 0.103

SVT (Lin et al., 2020) 10.244 0.032 0.199 0.580 21.371 0.118 0.108
RL Transformer 7.678 0.050 0.221 0.649 30.049 0.113 0.101

EmpatheticDialogues
Length D-1 D-2 MATTR MTLD METEOR ROUGE-L

Transformer (Vaswani et al., 2017) 9.757 0.015 0.049 0.396 16.479 0.103 0.116
CVAE (Zhao et al., 2017) 11.367 0.028 0.226 0.728 49.394 0.097 0.084

SVT (Lin et al., 2020) 12.568 0.023 0.240 0.691 36.536 0.105 0.096
RL Transformer 11.808 0.030 0.239 0.734 51.396 0.101 0.085

Table 1: Performance comparison of the proposed RL Transformer to the three baselines on the DailyDialog and
EmpatheticDialogues corpora.

the TTR of successive segments of the generated
response with a fixed window size w. In this pa-
per, h and w were fixed at 0.72 and 4 respectively.
Both MTLD and MATTR are derived based on all
generated responses.
ROUGE-L & METEOR. Both ROUGE-L and
METEOR compares the generated response to the
response label. Computing the ROUGE-L score
involves first identifying the Longest Common Sub-
sequence (LCS) between the generated response
and response label, followed by computing the har-
monic mean of the precision and recall between
the LCS and the generated response. METEOR is
similarly based on the harmonic mean between pre-
cision and recall calculated based on the generated
response and response label, with more emphasis
placed on recall.

4.4.2 Human Evaluation
For human evaluation, we engage five graduate stu-
dents (native English speakers) to evaluate the Flu-
ency, Diversity and Coherence of the generated re-
sponses. The Fluency criteria measures the natural-
ness and human-likeness of the generated response.
For the Fluency criteria, the evaluators were told
to regard the response in isolation, without regard
for the dialogue context. The Diversity criteria ac-
counts for the diversity on terms of vocabulary in
the generated response. Coherence refers to the
contextual coherence of the generated response i.e.,
the relevance of the generated response in relation
to the dialogue context. The evaluators were given
the dialogue context, and told to consider the appro-
priateness of the generated responses with regard
to the dialogue context. For each example, they
were told to compare a response generated by RL

Transformer and a response generated by either
the base Transformer, CVAE or SVT. The superior
response in terms of either Fluency, Coherence or
Diversity is selected by the evaluator, and either
a ‘Win’, ‘Lose’ or ‘Tie’ is assigned to the corre-
sponding model. The percentage of wins, loses or
ties for each pair is then computed. Each evaluator
was given 50 randomly sampled dialogue contexts
and the corresponding responses generated by the
implemented models for evaluation.

5 Results and Discussion

5.1 Quantitative Analysis

Automatic metric scores attained on the DailyDia-
log and EmpatheticDialogues copora are presented
in Table 1. Human evaluation was only conducted
on the DailyDialog corpus. Results are presented
in Table 3.

Based on the results attained, it can be concluded
that the performance of the RL Transformer is com-
parable to that of latent variable models such as the
CVAE and SVT. On the DailyDialog corpus, RL
Transformer outperformed all implemented base-
lines in terms of Distinct-1 and 2 scores. On the
EmpatheticDialogues corpus, RL Transformer out-
performed all implemented baselines in terms of
Distinct-1, MATTR and MTLD.

When it comes to response diversity, the human
evaluation results largely corroborate the automatic
metric scores. In terms of Diversity, the RL Trans-
former achieved a high percentage of ‘Wins’ over
the standard Transformer, and a relatively high per-
centage of ‘Ties’ against the latent variable models.

It can also be observed that the RL Transformer
also achieved a high percentage of ‘Wins’ over la-
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Dialogue
Context

User: Hey, Peter , have you had lunch yet?

Transformer much?
CVAE I’m sorry , Mom. I was hoping to have my husband.
SVT No , I didn’t . I got to eat it .

RL Transformer No , I didn’t . I just want to go to bed.
Label No . How about you?

Dialogue
Context

User: How did you find your apartment?

Transformer much?
CVAE I went there.
SVT I bought it in the kitchen.

RL Transformer I had a leaking faucet in the kitchen.
Label You can check on the bulletin boards at school for local housing.

Dialogue
Context

User: Very glad to know something about you , then what are you going to do when you
finish.
Agent: Oh , I’ll go to shanghai to practice there.
User: That’s a good idea . It must be easy to find a job in shanghai.

Transformer I’m sorry to see.
CVAE No , I’m not sure.
SVT well , that’s a great sense. I’ll be great.

RL Transformer I’m not sure I’ ll be able to find a job.
Label I think so , you know there is a great deal of opportunity for business there.

Table 2: Examples of responses generated by the Transformer, CVAE, SVT and RL Transformer models.

tent variable models in terms of Coherence. This
is corroborated by the qualitative analysis of the
responses provided in the following section. We
suspect that low Coherence scores attained by the
latent variable models could be partially attributed
to the random sampling process. Since the latent
Gaussian models the potential dialogue response
intents, sampled random variables which deviate
significantly from the mean could encompass an
irrelevant dialogue intent. When this random vari-
able is fed to the decoder, an incoherent response
would likely be generated. Similarly, it can also be
observed that the RL Transformer also achieved a
high percentage of ‘Wins’ over latent variable mod-
els in terms of Fluency. This could be potentially
attributed to the random linear layers introduced in
the RLSA networks, which serve to improve the
overall capability of the RL Transformer.

Additionally, as reported in Liu et al. (2016), we
note that the ROUGE and METEOR scores do not
correlate with any aspect of human evaluation.

5.2 Qualitative Analysis

We conduct a qualitative analysis by examining the
responses generated by each of the implemented

Fluency
Win Tie Loss Kappa

Transformer 23% 63% 14% 0.68
CVAE 71% 19% 10% 0.72
SVT 64% 25% 11% 0.77

Coherence
Win Tie Loss Kappa

Transformer 56% 27% 17% 0.73
CVAE 71% 11% 18% 0.77
SVT 69% 23% 8% 0.67

Diversity
Win Tie Loss Kappa

Transformer 81% 6% 13% 0.62
CVAE 39% 51% 10% 0.59
SVT 46% 39% 15% 0.64

Table 3: Human evaluation results on the DailyDialog
corpus. For each criteria (Fluency, Coherence, and Di-
versity), responses generated by the RL Transformer
are compared against responses generated by the Trans-
former, CVAE and SVT models. The average ‘Win’,
‘Tie’, and ‘Loss’ percentages are presented. Kappa
scores largely range from 0.6 to 0.7, indicating sub-
stantial to moderate inter-annotator agreement.
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D-1 D-2 MATTR MTLD
RL Trans 0.050 0.221 0.649 30.049
−RLSS(E) 0.018 0.080 0.523 18.455
−RLFF(E) 0.042 0.173 0.601 24.364
−RLSS(D) 0.020 0.106 0.502 17.237
−ED RLSS 0.026 0.111 0.532 18.231
+RLFF(D) 0.035 0.140 0.577 21.620
RL Trans
w/o Links

0.002 0.006 0.220 11.596

RL Trans
(Normal)

0.044 0.197 0.634 28.034

RL Trans
(Uniform)

0.035 0.185 0.683 28.663

Table 4: Ablation study results. ‘-’ indicates that the
corresponding RLSA or RLFF network was replaced
with the standard variant.‘+’ indicates that the standard
self-attention or feed forward network was replaced with
either RLSA or RLFF.

models. The qualitative analysis largely support
observations from our quantitative analysis. The
responses generated by the standard transformer
were short, generic and repetitive. As expected,
responses generated by the latent variable mod-
els CVAE and SVT as well as our proposed RL
Transformer were noticeably more diverse and less
repetitive.

However, numerous responses generated by
CVAE and SVT were relatively unnatural due to the
relatively poor fluency and contextual coherence.
A large number responses generated by the latent
variable models had grammatical or structural is-
sues, and a significant number were irrelevant in
relation to the dialogue context i.e., out of context.
On the other hand, the responses generated by the
RL Transformer were significantly more natural
and human-like, displaying far fewer grammati-
cal or structural issues and greater relevance with
regard to the dialogue context.

Samples of the generated responses along with
the corresponding dialogue contexts are provided
in Table 2.

5.3 Ablation Study
We also conduct an ablation study, using the Dai-
lyDialog corpus, to investigate the contributions
of each of the RLSA and RLFF components in
the encoder and decoder. Additionally, to examine
the importance of the direct links, we implement
a variant of the RL Transformer without any di-
rect links. The results of the ablation study are

D-1 D-2 MATTR MTLD
64 0.005 0.025 0.426 13.142
128 0.036 0.142 0.527 17.396
256 0.043 0.168 0.628 22.053
512 0.050 0.221 0.649 30.049
1024 0.023 0.100 0.586 19.884

Table 5: Ablation study results for 64, 128, 256, 512,
and 1024 nodes in the random layers.

presented in Table 4. In the same table, we also
provide the diversity scores for two variants of the
RL Transformer where the randomized layers are
initialized via Normal initialization (N (0.0, 0.1))
and Uniform initialization (U(0.0, 0.01)) respec-
tively.

Based on the results attained, we can observe
that the RLSA network in the encoder, and the
RLSA and ED RLSA networks in the decoder have
a relatively large impact on response diversity. Sub-
stituting the RLSA or ED RLSA networks for the
standard self-attention network results in a signifi-
cant drop on all diversity measures. However, sub-
stituting the RLFF in the encoder for a standard
feed forward network results in a relatively minor
decrease in diversity. Hence, we conclude that
stochasticity introduced in the self-attention net-
works contribute to overall response diversity to a
much larger extent compared to the RLFF network.
Although, it should also be noted that, substituting
the standard feed forward network in the decoder
with a RLFF network would result in a slightly
lower diversity scores.

Also, the importance of the direct links cannot
be overstated. From the results attained by the RL
Transformer without links, it is apparent that re-
moval of the direct links would result in extremely
low response diversity. Upon closer inspection
of the responses generated by this variant of the
RL Transformer, we notice that a majority of the
generated responses are short, generic and highly
repetitive.

In addition, we present the results attained by
varying the number of hidden nodes in the ran-
domized layers in Table 5. Intuitively, this implies
varying levels of stochasticity. From Table 5, we
can observe that increasing the number of neurons
in the randomized layer would generally result in
an increase in diversity. This can be attributed to an
increase in stochasticity due to an increase in the
number of randomized weights. However, there
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is a significant drop in diversity when the size of
the randomized layers exceed 512. In this case,
the model fails to learn effectively, and generates
meaningless, generic, and repetitive responses in-
stead.

6 Conclusion

In this paper, we have proposed a novel RL Trans-
former which successfully improves response diver-
sity in the task of open-domain dialogue generation.
This is achieved by inducing stochasticity in the
self-attention and the feed forward networks of a
Transformer via randomized layers and direct links.
Experimental results on the DailyDialog and Empa-
theticDialogues corpora show that, compared to la-
tent variable models, the RL Transformer achieved
comparable levels of diversification while further
improving on contextual coherence and fluency. In
the future, the RL Transformer can be adapted for
related dialogue generation tasks such as personal-
ized, empathetic or topical dialogue generation.
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Abstract

Pre-trained Transformer-based models were
reported to be robust in intent classification. In
this work, we first point out the importance of
in-domain out-of-scope detection in few-shot
intent recognition tasks and then illustrate the
vulnerability of pre-trained Transformer-based
models against samples that are in-domain but
out-of-scope (ID-OOS). We construct two new
datasets, and empirically show that pre-trained
models do not perform well on both ID-OOS
examples and general out-of-scope examples,
especially on fine-grained few-shot intent
detection tasks. To figure out how the models
mistakenly classify ID-OOS intents as in-scope
intents, we further conduct analysis on confi-
dence scores and the overlapping keywords, as
well as point out several prospective directions
for future work. Resources are available
at https://github.com/jianguoz/
Few-Shot-Intent-Detection.

1 Introduction

Intent detection, which aims to identify intents
from user utterances, is a vital task in goal-oriented
dialog systems (Xie et al., 2022). However, the per-
formance of intent detection has been hindered by
the data scarcity issue, as it is non-trivial to collect
sufficient examples for new intents. In practice, the
user requests could also be not expected or sup-
ported by the tested dialog system, referred to as
out-of-scope (OOS) intents. Thus, it is important to
improve OOS intents detection performance while
keeping the accuracy of detecting in-scope intents
in the few-shot learning scenario.

Recently, several approaches (Zheng et al., 2019;
Zhang et al., 2020; Wu et al., 2020; Cavalin et al.,
2020; Zhan et al., 2021; Xu et al., 2021) have been
proposed to improve the performance of identify-
ing in-scope and OOS intents in few-shot scenar-
ios. Previous experiments have shown that a sim-
ple confidence-based out-of-distribution detection
method (Hendrycks and Gimpel, 2017; Hendrycks

et al., 2020a) equipped with pre-trained BERT can
improve OOS detection accuracy. However, there
is a lack of further study of pre-trained Transform-
ers on few-shot fine-grained OOS detection where
the OOS intents are more relevant to the in-scope
intents. Besides, those studies mainly focus on the
CLINC dataset (Larson et al., 2019), in which the
OOS examples are designed such that they do not
belong to any of the known intent classes. Their
distribution is dissimilar to each other, and thus
they are easy to be distinguished from the known
intent classes. Moreover, CLINC is not enough
to study more challenging few-shot fine-grained
OOS detection as it lacks such semantically similar
OOS examples to in-scope intents, and other popu-
lar used datasets such as BANKING77 (Casanueva
et al., 2020) do not contain OOS examples.

In this paper, we aim to investigate the following
research question: “Are pre-trained Transformers
robust in intent classification w.r.t. general and rel-
evant OOS examples?”. We first define two types
of OOS intents: out-of-domain OOS (OOD-OOS)
and in-domain OOS (ID-OOS). We then investi-
gate how robustly state-of-the-art pre-trained Trans-
formers perform on these two OOS types. The
OOD-OOS is identical to the OOS in the CLINC
dataset, where the OOS and in-scope intents (e.g.,
requesting an online TV show service in a banking
system) are topically rarely overlapped. We con-
struct an ID-OOS set for a domain, by separating
semantically-related intents from the in-scope in-
tents (e.g., requesting a banking service that is not
supported by the banking system).

Empirically, we evaluate several pre-trained
Transformers (e.g., BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2020), and ELECTRA (Clark et al., 2020)) in the
few-shot learning scenario, as well as pre-trained
ToD-BERT (Wu et al., 2020) on task-oriented di-
alog system. The contributions of this paper are
two-fold. First, we constructed and released two
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new datasets for OOS intent detection based on the
single-domain CLINC dataset and the large fine-
grained BANKING77 dataset. Second, we reveal
several interesting findings through experimental
results and analysis: 1) the pre-trained models are
much less robust on ID-OOS than on the in-scope
and OOD-OOS examples; 2) both ID-OOS and
OOD-OOS detections are not well tackled and re-
quire further explorations on the scenario of fine-
grained few-shot intent detection; and 3) it is sur-
prising that pre-trained models can predict undesir-
ably confident scores even when masking keywords
shared among confusing intents.

2 Evaluation Protocol

Task definition We consider a few-shot intent de-
tection system that handles pre-defined K in-scope
intents. The task is, given a user utterance text u, to
classify u into one of the K classes or to recognize
u as OOS (i.e., OOS detection). To evaluate the sys-
tem, we adopt in-scope accuracy Ain = Cin/Nin,
and OOS recall Roos = Coos/Noos, following Lar-
son et al. (2019) and Zhang et al. (2020). We addi-
tionally report OOS precision, Poos = Coos/N

′
oos.

Cin and Coos are the number of correctly predicted
in-scope and out-of-scope examples, respectively;
Nin and Noos are the total number of the in-scope
and out-of-scope examples evaluated, respectively;
if an in-scope example is predicted as OOS, it is
counted as wrong. N ′

oos (≤ Nin + Noos) is the
number of examples predicted as OOS.

Inference We use a confidence-based
method (Hendrycks et al., 2020a) to evalu-
ate the five pre-trained Transformers. We compute
a hidden vector h = Encoder(u) ∈ R768 for u,
where Encoder ∈ {BERT, RoBERTa, ALBERT,
ELECTRA, ToD-BERT}, and compute a proba-
bility vector p(y|u) = softmax(Wh + b) ∈ RK ,
where W and b are the model parameters. We
first take the class c with the largest value of
p(y = c|u), then output c if p(y = c|u) > δ,
where δ ∈ [0.0, 1.0] is a threshold value, and
otherwise we output OOS. δ is tuned by using the
development set, so as to maximize (Ain + Roos)
averaged across different runs (Zhang et al., 2020).

Training To train the model, we use training ex-
amples of the in-scope intents, without using any
OOS examples. This is reasonable as it is nontriv-
ial to collect sufficient OOS data to model the large
space and distribution of the unpredictable OOS

intents (Zhang et al., 2020; Cavalin et al., 2020).

3 Dataset Construction

We describe the two types of OOS (i.e., OOD-OOS
and ID-OOS), using the CLINC dataset (Larson
et al., 2019) and the fine-grained BANKING77
dataset (Casanueva et al., 2020). The CLINC
dataset covers 15 intent classes for each of the 10
different domains, and it also includes OOS exam-
ples. We randomly select two domains, i.e., the
“Banking” and “Credit cards”, out of the ten do-
mains for models evaluation. The BANKING77
dataset is a large fine-grained single banking do-
main intent dataset with 77 intents, and it initially
does not include OOS examples. We use these
two datasets since CLINC dataset focuses on the
OOS detection task, and we can evaluate models
on the large single fine-grained banking domain on
BANKING77 dataset.

OOD-OOS We use the initially provided OOS
examples of CLINC dataset as OOD-OOS exam-
ples for both datasets. To justify our hypothesis that
the CLINC’s OOS examples can be considered as
out of domains, we take 100 OOS examples from
the development set, and check whether the ex-
amples are related to each domain. Consequently,
only 4 examples are relevant to “Banking”, while
none of them is related to “Credit cards”. There
are also no overlaps between the added OOS exam-
ples and the original BANKING77 dataset. These
findings show that most of the OOS examples are
not related to the targeted domains, and we cannot
effectively evaluate the model’s capability to detect
OOS intents within the same domain.

ID-OOS Detecting the OOD-OOS examples is
important in practice, but we focus more on how
the model behaves on ID-OOS examples. For the
ID-OOS detection evaluation, we separate 5 intents
from the 15 intents in each of the domains and
use them as the ID-OOS samples for the CLINC
dataset, following the previous work (Shu et al.,
2017). In contrast to the previous work that ran-
domly splits datasets, we intentionally design a
confusing setting for each domain. More specifi-
cally, we select 5 intents that are semantically sim-
ilar to some of the 10 remaining intents. As for
the BANKING77 dataset, we randomly separate
27 intents from the 77 intents and use them as the
ID-OOS samples, following the above process.

Table 1 and Table 2 show which intent labels
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Domain IN-OOS In-scope
Banking balance, bill_due, min_payment, account_blocked, bill_balance, interest_rate, order_checks, pay_bill,

freeze_account, transfer pin_change, report_fraud, routing, spending_history, transactions
Credit report_lost_card, improve_credit_score, credit_score, credit_limit, new_card, card_declined, international_fees,
cards rewards_balance, application_status, apr, redeem_rewards, credit_limit change, damaged_card

replacement_card_duration expiration_date

Table 1: Data split of the ID-OOS and in-scope intents for the CLINC dataset.

ID-OOS

“pin_blocked”, “top_up_by_cash_or_cheque” “top_up_by_card_charge”, “verify_source_of_funds”,
“transfer_into_account”, “exchange_rate”, “card_delivery_estimate”, “card_not_working”,
“top_up_by_bank_transfer_charge”, “age_limit”, “terminate_account”, “get_physical_card”,
“passcode_forgotten”, “verify_my_identity”, “topping_up_by_card”, “unable_to_verify_identity”,
“getting_virtual_card”, “top_up_limits”, “get_disposable_virtual_card”, “receiving_money”,
“atm_support”, “compromised_card”, “lost_or_stolen_card”, “card_swallowed”, “card_acceptance”,
“virtual_card_not_working”, “contactless_not_working”

Table 2: Data split of the ID-OOS intents for the BANKING77 dataset. Where 27 intents are randomly selected as
ID-OOS intents and the rest are treated as in-scope intents. Here we show the 27 selected ID-OOS intents.

are treated as ID-OOS for the CLINC dataset and
BANKING77 dataset, respectively.

Data Statistics For each domain, the original
CLINC dataset has 100, 20, and 30 examples for
each in-scope intent, and 100, 100, and 1000 OOD-
OOS examples for the train, development, and
test sets, respectively. We reorganize the origi-
nal dataset to incorporate the ID-OOS intents and
construct new balanced datasets. For each in-scope
intent in the training set, we keep 50 examples as
a new training set, and move the rest 30 examples
and 20 examples to the development and test sets
through random sampling. For the examples of
each ID-OOS intent in the training set, we ran-
domly sample 60 examples, add them to the devel-
opment set, and add the rest of the 40 examples to
the test set. We move the unused OOD-OOS exam-
ples of the training set to the validation set and keep
the OOD-OOS test set unchanged. For the BANK-
ING77 dataset, we move the training/validation/test
examples of the selected 27 intents to the ID-OOS
training/validation/test examples, and we copy the
OOD-OOS examples of CLINC as the OOD-OOS
examples of BANKING77.

We name the two new datasets as CLINC-
Single-Domain-OOS and BANKING77-OOS, re-
spectively. Table 3 shows the dataset statistics.

4 Empirical Study

4.1 Experimental Setting

We implement all the models following public
code from Zhang et al. (2020), based on the
HuggingFace Transformers library (Wolf et al.,

CLINC-Single-Domain-OOS K Train Dev. Test
In-scope 10 500 500 500
ID-OOS - - 400 350
OOD-OOS - - 200 1000
BANKING77-OOS K Train Dev. Test
In-scope 50 5905 1506 2000
ID-OOS - - 530 1080
OOD-OOS - - 200 1000

Table 3: Statistics of CLINC-Single-Domain-OOS and
BANKING77-OOS dataset.

2019) for the easy reproduction of experiments.
For each component related to the five pre-
trained models, we use their base configura-
tions. We use the roberta-base configu-
ration for RoBERTa; bert-base-uncased
for BERT; albert-base-v2 for ALBERT;
electra-base-discriminator for ELEC-
TRA; tod-bert-jnt-v1 for ToDBERT. All
the model parameters are updated during the fine-
tuning process. We use the AdamW (Hendrycks
et al., 2020b) optimizer with a weight decay coef-
ficient of 0.01 for all the non-bias parameters. We
use a gradient clipping technique (Pascanu et al.,
2013) with a clipping value of 1.0, and also use
a linear warmup learning-rate scheduling with a
proportion of 0.1 w.r.t. to the maximum number of
training epochs.

For each model, we perform hyper-
parameters searches for learning rate values
∈ {1e− 4, 2e− 5, 5e− 5}, and the number of the
training epochs ∈ {8, 15, 25, 35}. We set the batch
size to 10 and 50 for CLINC- Single-Domain-OOS
and BANKING77-OOS, respectively. We take the
hyper-parameter sets for each experiment and train
the model ten times for each hyper-parameter set to
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In-scope accuracy OOS recall OOS precision
5-shot Banking Credit cards BANKING77-OOS Banking Credit cards BANKING77-OOS Banking Credit cards BANKING77-OOS

ID-OOS

ALBERT 54.1 ± 6.9 55.5 ± 8.1 20.3 ± 2.4 86.3 ± 8.1 75.9 ± 11.2 89.5 ± 1.5 57.9 ± 3.3 55.8 ± 4.3 39.8 ± 0.7
BERT 75.2 ± 2.9 74.1 ± 4.6 25.4 ± 3.6 81.8 ± 10.5 76.5 ± 9.7 90.9 ± 0.6 70.8 ± 2.5 68.1 ± 3.2 41.3 ± 1.4
ELECTRA 64.8 ± 4.8 71.0 ± 7.3 30.9 ± 2.3 89.4 ± 4.3 75.8 ± 6.1 87.5 ± 2.4 65.1 ± 3.0 67.1 ± 4.8 43.0 ± 0.8
RoBERTa 83.8 ± 1.7 64.5 ± 5.6 43.0 ± 2.9 78.4 ± 6.2 86.8 ± 5.4 83.1 ± 4.3 78.6 ± 1.5 63.3 ± 3.4 46.3 ± 1.9
ToD-BERT 75.1 ± 2.3 67.4 ± 4.2 35.5 ± 1.5 75.8 ± 9.5 72.3 ± 3.4 82.7 ± 1.8 69.4 ± 3.6 61.3 ± 2.3 43.8 ± 0.1

OOD-OOS

ALBERT 63.1 ± 5.7 55.5 ± 8.1 20.3 ± 2.4 85.3 ± 5.4 92.5 ± 4.0 97.3 ± 2.5 83.4 ± 1.7 81.5 ± 3.1 39.9 ± 1.3
BERT 75.2 ± 2.9 74.1 ± 4.6 39.0 ± 3.1 93.4 ± 3.7 95.5 ± 2.7 94.1 ± 1.6 88.8 ± 1.4 88.4 ± 1.9 49.0 ± 1.8
ELECTRA 75.5 ± 4.0 71.0 ± 7.3 39.1 ± 2.7 87.3 ± 4.3 87.6 ± 4.2 93.1 ± 4.3 88.8 ± 2.1 87.0 ± 2.7 48.7 ± 1.1
RoBERTa 83.8 ± 1.7 81.2 ± 4.0 62.1 ± 2.9 97.0 ± 0.9 96.7 ± 1.4 93.9 ± 1.4 92.9 ± 0.6 91.4 ± 1.8 68.7 ± 2.2
ToD-BERT 83.0 ± 1.6 75.8 ± 5.0 52.9 ± 1.5 91.9 ± 1.0 96.7 ± 0.9 88.4 ± 1.7 92.8 ± 0.6 89.6 ± 2.1 66.0 ± 1.2

10-shot

ID-OOS

ALBERT 77.8 ± 2.7 66.7 ± 7.8 27.3 ± 3.4 77.6 ± 13.0 79.8 ± 6.4 87.6 ± 1.3 72.2 ± 2.9 64.0 ± 4.1 42.4 ± 1.3
BERT 77.5 ± 1.7 80.3 ± 3.7 52.5 ± 1.7 87.5 ± 9.2 74.5 ± 6.9 77.3 ± 3.2 73.8 ± 1.7 73.1 ± 3.3 50.8 ± 1.1
ELECTRA 79.5 ± 2.9 78.0 ± 2.5 40.1 ± 2.7 85.2 ± 9.1 86.5 ± 5.8 84.0 ± 1.7 75.4 ± 2.7 73.3 ± 2.9 46.1 ± 1.1
RoBERTa 76.6 ± 0.9 81.0 ± 5.5 59.7 ± 1.2 86.4 ± 6.3 83.9 ± 6.9 79.1 ± 1.7 72.7 ± 1.5 75.8 ± 5.2 55.8 ± 1.1
ToD-BERT 80.7 ± 2.5 80.6 ± 0.9 54.3 ± 1.8 79.5 ± 6.1 70.2 ± 5.9 76.9 ± 2.7 75.4 ± 1.4 71.9 ± 2.6 52.1 ± 1.2

OOD-OOS

ALBERT 77.8 ± 2.7 66.7 ± 7.8 30.5 ± 6.5 90.6 ± 4.0 95.0 ± 3.4 92.7 ± 6.3 89.8 ± 1.0 85.7 ± 2.7 47.1 ± 1.9
BERT 77.5 ± 1.7 90.1 ± 1.9 64.2 ± 0.5 96.8 ± 1.2 91.1 ± 4.4 91.4 ± 3.2 90.0 ± 0.7 95.5 ± 1.1 68.9 ± 1.0
ELECTRA 79.5 ± 2.9 88.6 ± 2.1 40.1 ± 2.7 94.8 ± 1.7 89.1 ± 2.2 97.6 ± 1.0 90.7 ± 1.2 94.2 ± 1.1 47.9 ± 1.4
RoBERTa 89.2 ± 1.3 87.5 ± 3.3 70.3 ± 0.3 95.6 ± 1.0 94.6 ± 2.4 94.0 ± 0.8 95.4 ± 0.5 94.0 ± 1.4 73.3 ± 1.5
ToD-BERT 86.5 ± 2.6 86.5 ± 0.6 60.6 ± 1.8 96.0 ± 0.5 96.4 ± 0.5 94.9 ± 0.9 94.2 ± 1.2 93.7 ± 0.3 63.3 ± 0.9

Table 4: Testing results on the “Banking” and “Credit cards” domains in CLINC-Single-Domain-OOS and
BANKING77-OOS datasets. Note that as the best δ is selected based on (Ain +Roos), the in-scope accuracy could
be different in the scenarios of OOD-OOS and ID-OOS (see Figure 2).

Figure 1: Model confidence on the development set of “Banking” domain in CLINC-Single-Domain-OOS dataset
under 5-shot setting. Darker colors indicate overlaps.

select the best threshold δ (introduced in Section 2)
on the development set. We then select the best
hyper-parameter set along with the corresponding
threshold. Finally, we apply the best model and
the threshold to the test set. Experiments were
conducted on single NVIDIA Tesla V100 GPU
with 32GB memory.

We mainly conduct the experiments in 5-shot,
e.g., five training examples per in-scope intent, and
10-shot; we also report partial results in the full-
shot scenario.

4.2 Overall Results

Table 4 shows the results of few-shot intent de-
tection on the test set for 5-shot and 10-shot set-
tings. In both settings, the in-scope accuracy of
ID-OOS examples tends to be lower than that of
OOD-OOS examples, and the gap becomes larger
for OOS recall and precision. It is interesting to
see that ToD-BERT, which is pre-trained on sev-
eral task-oriented dialog datasets, does not perform
well in our scenario. The results indicate that the
pre-trained models are much less robust on the ID-
OOS intent detection. Compared with the results

on the two single domains of the CLINC-Single-
Domain-OOS dataset, we can find that the perfor-
mances become much worse on the larger fine-
grained BANKING77-OOS dataset. Especially the
in-scope accuracy and OOS precision are pretty
low, even with more training examples. This find-
ing encourages more attention to be put on fine-
grained intent detection with OOS examples.

4.3 Analysis and Discussions

One key to the OOS detection is a clear separation
between in-scope and OOS examples in terms of
the model confidence score (Zhang et al., 2020).
Figure 1 illustrates the differences in confidence
score distributions. The confidence scores of ID-
OOS examples are close or mixed with the scores
of in-scope intents, and are higher than the OOD-
OOS examples, showing that separating ID-OOS
examples is much harder than separating OOD-
OOS examples.

Among comparisons of the pre-trained models,
ALBERT performs worst, and RoBERTa performs
better than other models in general since the con-
fidence score received by in-scope examples is
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Figure 2: Results on the “Banking” domain in CLINC-Single-Domain-OOS dataset (Dev. set) under 5-shot setting.

Figure 3: Full-shot confusion matrices on the devel-
opment set with and without masking (“Banking”,
RoBERTa). Vertical axis: ID-OOS; horizontal axis:
in-scope (only predicted intents considered).

higher than that received by the OOS examples.
Figure 2 also shows similar results. We conjec-
ture that pre-trained models with more data, bet-
ter architecture and objectives, etc., are relatively
more robust to OOD-OOS and ID-OOS examples
than the others. Comparing the RoBERTa 5-shot
and full-shot confidence distributions, the ID-OOS
confidence scores are improved, indicating over-
confidence to separate semantically-related intents
(i.e., ID-OOS examples).

Next, we inspect what ID-OOS examples are
misclassified, and we take RoBERTa as an example
as it performs better than other models in general.
Figure 3 shows the confusion matrices of RoBERTa
w.r.t. the “Banking” domain in the CLINC-Single-
Domain-OOS dataset, under full-shot setting. We
can see that the model is extremely likely to con-
fuse ID-OOS intents with particular in-scope in-
tents. We expect this is from our ID-OOS design,
and the trend is consistent across evaluated models.

Now one question arises: what causes the
model’s mistakes? One presumable source is the
keyword overlap. We checked unigram overlap,
after removing stop words, for the intent pairs with
the three darkest colors in “Banking” based on

Intent pair bill_due & bill_balance
Unigram overlap bill (60), pay (9), need (9), know (8), due (7)

Masked ID-OOS example
i [mask] to [mask] what day i [mask] to [mask]
my water [mask]→ bill_balance (confidence: 0.84)

Intent pair improve_credit_score & credit_score
Unigram overlap credit (99), score (76), tell (7), want (3), like (3)

Masked ID-OOS example
i’d [mask] to make my [mask] [mask] better
→ credit_limit_change (confidence: 0.86)

Table 5: Examples investigated for the unigram overlap
analysis. The overlap frequency is also presented.

Figure 3. We then masked top-5 overlapped uni-
grams from the corresponding intent examples in
the development set using the mask token in the
RoBERTa masked language model pretraining and
conducted the same evaluation.1 Figure 3 shows
that most of the confusing intent pairs are still mis-
classified even without the keyword overlap. Ta-
ble 5 shows two intent pairs with the overlapped
words and their masked ID-OOS examples. It is
surprising that the examples show counterintuitive
results. That is, even with the aggressive mask-
ing, the model still tends to assign high confidence
scores to some other in-scope intents. We also
adopted state-of-the-art methods with contrastive
learning on few-shot text classification (Liu et al.,
2021) and intent detection (Zhang et al., 2021).
However, we did not achieve promising improve-
ments on OOD-OOS and ID-OOS detection, and
we leave more explorations to future work.

5 Conclusion

We have investigated the robustness of pre-trained
Transformers in few-shot intent detection with
OOS samples. Our results on two new constructed
datasets show that pre-trained models are not ro-
bust on ID-OOS examples. Both the OOS detection
tasks are challenging in the scenario of fine-grained
intent detection. Our work encourages more atten-
tion to be put on the above findings.

1We did not mask the top-10 or top-15 overlapped uni-
grams, as many tokens are already masked in the user utter-
ance when setting the threshold to 5, as shown in Table 5.
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A More Results

Figure 4 shows the model confidence level on the
development set of the “Credit cards” domain in
the CLINC-Single-Domain-OOS dataset. We can
see that RoBERTa is relatively more robust with
limited data. Figure 5 shows the confusion matri-
ces of RoBERTa w.r.t. the “Credit cards” domain
in the CLINC-Single-Domain-OOS dataset. The
model is confused to identify ID-OOS intents. Fig-
ure 6 shows the tSNE visualizations for ID-OOS
intents w.r.t. the “Banking” domain in the CLINC-
Single-Domain-OOS dataset. The models struggle
to classify the ID-OOS intents even with more data.
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Figure 4: Model confidence on the development set of the “Credit cards” domain in CLINC-Single-Domain-OOS
dataset under 5-shot setting. Darker colors indicate overlaps.

Figure 5: Full-shot confusion matrices on the development set with and without masking (“Credit cards”, RoBERTa).
Vertical axis: ID-OOS; horizontal axis: in-scope (only predicted intents considered).
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Figure 6: RoBERTa (first row) and ELECTRA (second row) tSNE visualizations on the development set of the
“Banking” domain in CLINC-Single-Domain-OOS dataset.
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Abstract

Retailing combines complicated communica-
tion skills and strategies to reach an agreement
between buyer and seller with identical or dif-
ferent goals. In each transaction a good seller
finds an optimal solution by considering his/her
own profits while simultaneously considering
whether the buyer’s needs have been met. In
this paper, we manage the retailing problem
by mixing cooperation and competition. We
present a rich dataset of buyer-seller bargain-
ing in a simulated marketplace in which each
agent values goods and utility separately. Var-
ious attributes (preference, quality, and profit)
are initially hidden from one agent with respect
to its role; during the conversation, both sides
may reveal, fake, or retain the information un-
covered to come to a final decision through nat-
ural language. Using this dataset, we leverage
transfer learning techniques on a pretrained,
end-to-end model and enhance its decision-
making ability toward the best choice in terms
of utility by means of multi-agent reinforce-
ment learning. An automatic evaluation shows
that our approach results in more optimal trans-
actions than human does. We also show that our
framework controls the falsehoods generated
by seller agents. The code and dataset are avail-
able on https://github.com/ckiplab/Fruit_Stand.

1 Introduction

Retailing is a mixture of cooperation and competi-
tion between buyer and seller. The construction of
virtual retailers has received widespread attention
due to their broad applications in the E-commerce
era. If the focus of the conversational retailer is
limited to the buyer’s needs, the retailer is actually
a conversational recommendation system. How-
ever, if the conversational retailer’s purpose is to
maximize his/her own profit, the retailer is in fact a
negotiation system, which typically must use dis-
course with opponents to perceive their intent and
build strategies to achieve the retailer’s own goals
(Keizer et al., 2017; Afantenos et al., 2012).

Previous NLP research on negotiation concerns
closed-domain scenarios in games such as Settlers
of Catan (Asher and Lascarides, 2013), goods dis-
tribution (DeVault et al., 2015; Lewis et al., 2017),
and open-ended settings, for example, price bar-
gaining on a single item in a zero-sum, second-hand
market (He et al., 2018). However, these scenarios
do not attempt to find an optimal solution for both
sides, which crucially defines a good retailer who
always takes into account future transactions.

Therefore, inspired by Shapiro (1983), we pro-
pose a positive-sum setting in this paper: a buyer
and a seller negotiate to achieve a transaction, and
the seller not only considers his/her profit but also
takes into account whether the buyer’s needs have
been met, thus seeking a mutually optimal solution.
To simulate such a real-world vending scenario and
provide enough motivation to start a conversation,
both buyer and seller are given incomplete infor-
mation prior to the conversation. The buyer knows
what he/she prefers among multiple products but
does not know the quality of the product prior to
the conversation, and the seller does not know in
advance the buyer’s preferences but is aware of
the quality of the product and its profit. The seller
seeks a mutually optimal solution by which to build
his/her own reputation for future business while si-
multaneously making a profit. Thus we propose
separate utility functions for buyers and sellers.

To facilitate end-to-end fine-tuning for this sce-
nario, we collected a large dataset of 4232 dia-
logues between two people negotiating on goods in
a simulated market on Amazon Mechanical Turk
(AMT). Our model is based on the Transformer
architecture (Vaswani et al., 2017), which is pre-
dominant in recent NLP research, due in part to its
inherent parallelism, which facilitates the use of
large-scale datasets to train complex models such
as GPT2 (Radford et al., 2019), evolved Trans-
former (So et al., 2019), and T5 (Raffel et al., 2020).
Further, these complex models are often pre-trained
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in an unsupervised fashion, yielding powerful per-
formance in downstream tasks in an end-to-end,
supervised manner, which lays the foundation for
training two acceptable conversational agents to fit
the proposed scenario. The supervised fine-tuning
maximizes the likelihood of human utterances in
the dataset. To maximize agent targets, we lever-
age reinforcement learning (RL) to direct the fine-
tuning process.

In addition, due to the increasing saturation of
machine learning algorithms in contemporary so-
ciety, there has been a surge in interest in building
truthful AI, a system that avoids stating falsehoods,
thus enhancing transparency and helping to estab-
lish trust between system and human (Evans et al.,
2021). To achieve such truthful AI, we attempt
to reduce a certain type of statement against the
ground truth in our negotiation scenario. First, we
build a falsehood detector with respect to such state-
ments. Second, we formulate a deduction mecha-
nism in the RL stage to decrease the generation of
falsehoods.

In summary, the contributions of our study are
the following:

• We propose a simplified market setting where
vendor and purchaser are in a “coopetitive” re-
lation with information asymmetry. To this
purpose we gathered FruitStand, a rich dataset
of human-human negotiations under this sce-
nario on Amazon Mechanical Turk (AMT).

• We propose an RL framework by which to
cause a virtual retailer to learn how to find op-
timal solutions under positive-sum situation.

• The experiments demonstrate the effective-
ness of reinforcement learning in improving
the ability to achieve optimal transactions.

• We analyze the lies in a crowd-sourced dataset
and the falsehoods generated by the seller
model, based on which we propose an ap-
proach to reduce falsehoods.

2 Data Collection

In this paper, we discuss the behavior of two con-
versational agents negotiating given imperfect in-
formation. To promote end-to-end training, we
collected FruitStand, a dataset of human-human
dialogues designed around a novel scenario which
simulates a fruit stand at which the negotiation
takes place. In FruitStand, one agent plays the role

of the buyer and the other that of the seller, commu-
nicating in natural language, developing strategies
and eventually making a deal.

2.1 Task
The scenario simulates two agents transacting
at a fruit stand. In each dialogue, the agents
are first assigned a role, either buyer or seller,
and the order of turns in which to send natu-
ral language messages. There are 3 item types—
apples, bananas, and oranges—each of which has
three attributes—preference, quality, and profit—
as shown in upper left corner of Fig. 2. These 9
attributes determine the initial condition o. The
buyer and seller each have an individual utility.
The buyer’s utility Ub(item) to an item is defined
as preference(item) × quality(item), following
the intuition that the buyer is satisfied by purchas-
ing what he/she likes in excellent condition (e.g.,
red, sweet, and juicy apples). Likewise, the seller’s
utility Us(item) is defined as Ub + profit(item),
taking into account the seller’s current profit and
the buyer’s satisfaction for future profit, since the
buyer might become a regular if he/she is satisfied.
Each agent’s best option is that which provides
the highest utility. Depending on the best options,
the agents’ goals may be identical, or may con-
flict, which leads to opportunities for cooperation
or competition, respectively.

In each dialogue, buyer and seller bargain turn
by turn, trying to make a deal on their own best
option(s). Agents possess imperfect information.
Initially, the buyer knows only its preference, and
the seller only the quality and profit of an item.
During the conversation, they must estimate the
other’s exclusive attributes by skill of speech, all
the while not revealing any exact values. Absolute
honesty is not required; agents can be deceptive. In
particular, the seller may mislead the buyer when
a given item is more profitable; however, the final
decision lies with the buyer. Each conversation
ends when the buyer makes a decision; typically
this occurs within 5 to 20 turns. The design of the
utility functions and the right to choose compen-
sates for the buyer’s inferior position in terms of
the amount of information.

2.2 Collection
We collected the FruitStand dataset based on the
above task via AMT with the interface shown in
Figures 1 and 3. Workers were paid per dialogue,
with a bonus for achieving the best option in terms
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of utility. The starter of a dialogue could be ei-
ther a seller or buyer, and we kept the number of
starters from both sides roughly balanced. The
dataset statistics in Table 1 show that FruitStand has
longer and more variant dialogues than DealorN-
odeal(Lewis et al., 2017). FruitStand has a total
of 4232 dialogues with unique initial conditions,
76.1% of which have mutually optimal solutions
(the overlapping best options from two sides), as il-
lustrated in Table 2. We partitioned 80%/10%/10%
of the dialogues for training/validation/testing.

(a) Buyer

(b) Seller

Figure 1: At the start of each conversation, the buyer
knows only his/her preferences, and the seller knows
only the quality and profit.

FS DN
Number(#) of Dialogues 4232 5808

Average Turns per Dialogue 7.8 6.5
Average Words per Turn 11.6 7.6

Vocabulary Size 4318 2719
Vocabulary Size without Numbers 4229 2623

% Agreed 100 80.1

Table 1: Comparison of dataset statistics of FruitStand
and DealorNodeal. FruitStand contains longer, more
variant dialogues on average.

Number (Ratio)
Buyer’s optimal selection chosen 2767 (65.4%)
Seller’s optimal selection chosen 2966 (70.1%)

Mutually optimal occasion 3222 (76.1%)
Mutually optimal selection chosen 2464 (58.2%)

Table 2: Statistics of final deals in the whole FruitStand
dataset.

3 Retailer

3.1 Data Representation

Every turn in a dialogue is transformed into a train-
ing pair—input sequence X and label sequence Y —
from the perspective of the agent. For exam-
ple, as illustrated in Figure 2, the buyer starts
the conversation, and its preferences and utter-
ance in this turn are converted into the first train-
ing pair of the dialogue, ⟨XB

1 , Y B
1 ⟩. Note that

Y B
1 = {yB11, yB12, ..., yB1T }, where yij is a token and

T is the length of the utterance at this turn. Next,
the seller’s scenario along with the buyer’s previous
utterance and its response in this turn become the
second training pair, ⟨XS

1 , Y
S
1 ⟩, the seller’s first.

The process continues until the end of the conver-
sation. A similar technique has been used, see, e.g.,
Wolf et al. (2019). Note that we take the natural
form for the agents’ scenario, oB and oS , instead of
merely numbers, to leverage the words’ underlying
information from pretrained models.

3.2 Baseline Models

For the first training stage, we fine-tune a T5
model (Raffel et al., 2020) pretrained on our Fruit-
Stand dataset. T5 is a standard encoder-decoder
Transformer (Vaswani et al., 2017) which regards
all NLP tasks as a text-to-text format. We leverage
its baseline version (T5-base) as described in Raf-
fel et al. (2020) as our starting point. T5-base is a
composite of 12 Transformer blocks (each block
combines self-attention, optional encoder-decoder
attention, and a feedforward layer with a hidden
size of 3072). It performs well on downstream
tasks as varied as machine translation, document
summarization, and sentiment classification.

The pretrained model is then fine-tuned as
in supervised learning (SL), i.e., by minimizing
the cross-entropy loss between the generated se-
quence Z and the label sequence Y described in
Sec. 3.1. We have two transfer paths: one for the
buyer and one for the seller. The buyer path uses
labels from the buyer’s perspective, and the seller
path uses its part in the dialogue. The pair of the
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Figure 2: Transforming a crowd-sourced dialogue (left) into a series of training pairs (input, label) from perspectives
of the two agents. The buyer only knows its own preference, while the seller only knows the quality and profits of
fruits

two picked models, denoted as ⟨MB
ϕ ,MS

θ ⟩, forms
the baseline for later evaluation, where ϕ and θ
are the learned parameters of the buyer and seller
model, respectively. See Sec. 4.1 for more details.

3.3 Goal-oriented Reinforcement

The goal of supervised learning is to imitate av-
erage human behavior; however, not every per-
son is good at making deals. We further fine-tune
the agents via reinforcement learning to improve
the choice of—or the persuasion of the buyer to
choose—the best option through a dialogue. This
two-stage learning strategy has been widely used to
enhance pretrained models toward a specific goal,
e.g., Stiennon et al. (2020); Lewis et al. (2017); Li

et al. (2016).

In reinforcement learning, we utilize self
play (Lewis et al., 2017) to enhance our baseline
models MB

ϕ and MS
θ by making one agent talk to

the other turn by turn. Each turn ends when an
agent outputs the END-OF-SENTENCE token, and
the dialogue finishes when the buyer outputs the
SELECTION token in a turn, or when the dialogue
length limit is reached, as in the human case de-
picted in Fig. 2. A buyer’s utterance in the i-th
turn of a dialogue is denoted as ZB

i , with ZS
i for

the seller’s. We denote the trajectory τB or τS as
the sequence of all tokens generated by buyer or
seller during a dialogue. For instance, the buyer’s

24



trajectory is

τB = ZB
1 ||...||ZB

i ||...||ZB
N

= {zB11, ..., zB1T1
, ...zBi1, ...z

B
iTi

, ...zBNTN
},

where || denotes concatenation and N is the num-
ber of turns.

After a complete dialogue has been generated,
we update the agents’ parameters based on the
negotiation results. Agents get the final reward
R(τ) when the dialogue is terminated. We define
R(τ) = 1 if the buyer selects the item with highest
utility, R(τ) = 0 if the buyer selects an item other
than the best one, and R(τ) = −1 otherwise. Note
that the best item for a buyer is not necessarily the
same that for a seller. Similar to AlphaGO (Silver
and Huang et al, 2016), R(τ) is then assigned to
tokens generated at each previous, non-terminal
time step. We use REINFORCE (Williams, 1992)
to optimize the baseline models separately toward
the best options. Given a sampled trajectory τ and
the final reward R(τ), let ai be the i-th token gen-
erated in a turn; we update the model’s parameters
θ by

θ ← θ − η
∑

i

(R(τ)− b)∇θ log pθ(ai|a<i, o),

(1)
where η is the learning rate and b is the baseline
calculated by the average reward of the previous 3
updates.

Whereas the canonical Transformer is diffi-
cult to optimize in the RL setting, often result-
ing in performance comparable to a random pol-
icy (Parisotto et al., 2020), or leading to meaning-
less results (Lewis et al., 2017; He et al., 2018), we
find the pretrained T5 model works well with pa-
rameter updates by policy gradient when we simply
set a smaller learning rate.

3.4 Falsehood Control
One way to increase one’s integrity is to tell no
lies. We follow this notion to build a more trust-
worthy conversational agent, especially a seller, by
decreasing the possibility that an agent produces
an untruthful utterance. In the FruitStand task, the
seller might claim that one type of fruit is the best
in quality when it really is not, attempting to attract
a buyer to choose a more profitable item, and vice
versa, to keep a buyer away from a less lucrative
one.

Motivated by these observations, we construct
a simple rule-based falsehood detector that first

Claim Parser
SUP: best/worst
FRUIT: apple/banana/orange

Matching Pattern
SUP are the FRUIT
SUP FRUIT
FRUITs are your SUP
FRUITs are my SUP
FRUITs are the SUP

<Ignore> FRUITs are the best seller
Falsehood Type
Claim a type of fruit is the best or worst
but actually not.

Table 3: The falsehood detector is consisted of a claim
parser and falsehood type. If the claim from a seller
disobeys any fact derived from a scenario o, the detector
will catch a falsehood

parses the claim for two superlatives, as shown in
Table 3, and then determines whether the seller’s
claim conflicts with any known fact based on a
given scenario o. We further use this to establish
a deduction mechanism D(τ) on the final reward
in the reinforcement learning stage. Given a trajec-
tory τ , D(τ) = −2 if any of the seller’s utterances
conflict with the facts about the quality of an item;
D(τ) = 0 if none of this kind of falsehood is de-
tected. The updated final reward then becomes
R(τ) +D(τ); we term this approach RL (w/DM).

4 Experiments

4.1 Training Details
We used PyTorch to implement our models, and
used the pretrained T5-base model from Hug-
ging Face.1 We added the special tokens BUYER,
SELLER, and SELECTION as self-defined tokens
to T5Tokenizer.1 For the baseline models, we
fine-tuned the pretrained T5-base for 20 epochs;
after each epoch we set a checkpoint, and then
picked that with the least perplexity on the val-
idation set: for the buyer this yielded model
MB

ϕ and for the seller MS
θ separately. We used

AdamW (Loshchilov and Hutter, 2019) to opti-
mize models with a learning rate of 6.25 × 10−5,
β1 = 0.9, β2 = 0.999, and a mini-batch size of 4.
We clipped gradients above 1.0. Supervised fine-
tuning was run on a single RTX 2080Ti GPU.

In reinforcement learning, we estimated the ex-
pected final reward under an initial condition by

1https://huggingface.co/transformers/model_doc/t5.html
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Fine-tuned SL RL RL RL Human
Baseline Interleave Otrain′ Random Testing set

Buyer’s optimal 62.6% 71.9% 69.3% 65.5% 69.0%
Seller’s optimal 59.1% 73.5% 70.0% 63.6% 66.4%

Mutually optimal (if possible) 64.2% 78.8% 75.2% 68.2% 75.8%

Table 4: Rate of the optimal items being chosen in final deals. The RL approach that interleave REINFORCE and
SL to update parameters reaches the highest performance among all, even better than average humans.

Item\Attr. Preference Quality Profit Buyer’s Utility Seller’s Utility
Apples 2 4 16 8 24
Bananas 1 1 7 1 8
Oranges 2 10 11 20 31
a. Fine-tuned SL (baseline) b. RL (interleaved on Otrain′)
B: hello, i am looking for some fresh fruit. B: hello, i would like to buy some fruit.
S: i have some great oranges. S: i have some great oranges.
B: are they fresh? B: are they fresher than your apples?
S: they are very fresh and juicy. S: they are fresher than the apples.
B: great! B: ok. i will take some oranges then
S: great! S: great. thank you for your business
B: <selection> oranges B: <selection> oranges
c. RL (random initialized O) d. RL (directly on Otrain′)
B: hello, i’m looking for some apples. B: hello, i am looking for some fresh fruit.
S: i have some great apples. what do you have that is fresh?

they are very fresh and juicy. S: my oranges are the freshest i have today.
B: great! i love apples! B: oh great, i love oranges. how are your apples?
S: great.. how many would you like? S: my apples are ok
B: i will take a dozen please but my oranges are the freshest i have today.
S: great.. here you go. B: ok. i will take some oranges then. thank you.
B: <selection> apples S: great! i will get them ready for you.

B: <selection> oranges

Table 5: Cherry picked examples under the same scenario of bot-bot chats on FruitStand. Fine-tuned SL produces
general response, and RL approaches get more specific and various.

sampling N turns of utterances from self-play dia-
logue. In each turn, at the T5 decoding phase, the
next token at was randomly chosen according to
its conditional probability distribution

at ∼ P (a|a1:t−1)

using top-K sampling (Fan et al., 2018), in which
the K most likely next tokens are filtered in and
the pmf of the output tokens is redistributed among
the K tokens. We empirically chose N = 32 and
K = 50 for a given o and set the mini-batch size
to N . We also used AdamW for the parameter
updates but reduced the learning rate to one-tenth
of that used in the supervised fine-tuning. We chose
the number of dialogues in the validation dataset as
the amount of dialogues used in an epoch for RL
approaches. We updated the parameter per mini-

batch for 10 epochs. This took about 40 hours on a
single Quadro RTX 8000.

4.2 Comparison

We compare the performance of the following mod-
els:

• Fine-tuned SL: our baseline models de-
scribed in Sec. 3.2: a pair of pretrained T5
models fine-tuned on FruitStand.

Given Otrain ′ , the initial conditions of the dia-
logues randomly picked from the training set to the
size of the validation set, we evaluated the variants
derived from Sec. 3.3:

• RL (interleaved on Otrain ′): Direct optimiza-
tion of the agent goals via RL often results in
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language that differs from human language.
Similar to Lewis et al. (2017), we fine-tuned
the baseline models with RL followed by SL
in each epoch. The learning rate was one-tenth
of that for Fine-tuned SL.

• RL (directly on Otrain ′): Under the same
initial conditions, we evaluated the scenario
without the following SL part. The learning
rate was one-tenth of that for Fine-tuned SL.

• RL (random initialized O): The baseline
models self play under randomly initialized
scenarios. Since the outputs of the baseline
models diverge from human language during
the RL process for unseen initial conditions,
we further reduced their learning rate to one-
hundredth of that for Fine-tuned SL.

4.3 Evaluation

We evaluated the performance of the proposed ap-
proaches on FruitStand by the proportion of the
best options being chosen after self play, denoted
as the p-score, with respect to the unseen initial
conditions in the testing dataset. Note that in the
evaluation stage, for fair competition, we used not
top-K sampling but instead greedy search, which
simply selects the token with the highest probabil-
ity as the next token:

at = argmax
a

P (a|a1:t−1).

For each RL variant described in Sec. 4.2, we
first evaluated our models on the validation set, pair
by pair at each checkpoint, and chose that pair with
the highest average p-score for testing.

The results are shown in Table 4. The RL ap-
proaches considerably enhance the ability to select
the best item from the baseline models. Compared
to human-human negotiation in the FruitStand test-
ing set, RL (interleaved on Otrain ′), the best model,
achieves even better performance. This success
provides evidence that maximizing the reward out-
plays average humans and constitutes an acceptable
imitation.

For falsehood detection, we compared the num-
ber of a typical kind of detected falsehood produced
by a seller from dialogues in the testing dataset (Hu-
man), the number from baseline models (Baseline
models), and the number from the RL (interleaved
on Otrain ′) variant, RL (w/o DM).

Checkpoints 1 2 3 4 5
RL(w/o DM) 18 8 8 7 41
RL(w/ DM) 0 0 0 0 0
Checkpoints 6 7 8 9 10
RL(w/o DM) 9 6 16 7 11
RL(w/ DM) 0 0 1 0 1

Human: 18
Baseline models: 32

Size of testing dataset: 423

Table 6: RL(interleave) with/without deduction mecha-
nism in each checkpoint. Each number in a cell (expect
for those horizontal to ’Checkpoints’) shows how many
falsehoods found by the detector in each checkpoint.

The results are shown in Table 6. In the crowd-
sourced testing dataset, the specific type of false-
hood exists in 18 out of 423 dialogues. In the
baseline, falsehoods were detected in 32 out of 423
dialogues. RL (interleaved) on Otrain ′) performs
poorly on falsehood detection with 6 to 41 false-
hoods among all the checkpoints. In contrast, our
approach, RL (w/DM), significantly reduces the
falsehoods in the pattern.

5 Analysis and Discussion

Goal-based models are more task-centered. Al-
though the fine-tuned T5-base model can generate
fluent and reasonable utterances, it tends to output
generic responses such as “great!” which poorly
reflect the task setting. See Table 5. In comparison,
RL approaches generate utterances that better fit
the simulated scene. A general phenomenon is that
they generate long utterances, similar to humans,
who show their interest in goods by asking more
questions, and vendors, who show their passion by
promoting their products. We also find that models
learn to compare goods; comparison is an effective
way to determine which item to choose.

Behavior Control Besides falsehood, we also
investigated how to control virtual sellers’ other
behaviors. Four different sellers are investigated:
Balanced Seller is the standard seller described all
over the paper, which utility is the sum of buyer’s
utility plus items’ profits. Win-win Seller’s util-
ity is based on whether mutual optimality was
achieved. Recommender’s utility is exactly the
same as buyer’s utility. Profit-oriented Seller’s
utility base on only items’ profits. Appendix C
shows their vending results accordingly. We found
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that in general, Balanced Seller remains a certain
level of profitability and satisfy customers at the
same time. Actually, the decision of choose what
kind of virtual seller to employ in practice would
depend on employers’ willingness and needs. Here
we just demonstrate that how virtual sellers can be
customised by just adjusting their utility design.

Deduction mechanism silences all. The false-
hood detector is meant to prevent the seller from
generating untruthful claims, and ensure that only
factual claims are made. However, we find that the
deduction mechanism suppresses not only such
falseness, but also expressions containing such
claims. That is, it prevents the seller from gen-
erating any utterances with matching patterns. For
example, at some checkpoints, the seller does not
even produce the string ‘the best’, which is clearly
not a desired consequence.

Checkpoints 1 2 3 4
RL(w/o DM) 18/44 8/32 8/21 7/18
RL(w/ DM) 0/0 0/0 0/0 0/0
RL(DMB) 6/17 5/12 3/7 0/0
RL(DMR) 2/10 8/23 0/3 0/0

Checkpoints 5 6 7 8
RL(w/o DM) 41/131 9/42 6/21 16/40
RL(w/ DM) 0/0 0/0 0/0 1/1
RL(DMB) 0/0 0/0 11/37 1/3
RL(DMR) 0/0 0/0 2/10 0/0

Checkpoints 9 10
RL(w/o DM) 7/12 11/48
RL(w/ DM) 0/0 1/3
RL(DMB) 6/26 0/6
RL(DMR) 0/0 0/0

Human: 18/58
Baseline models: 32/82

Size of testing dataset: 423

Table 7: RL(w/o DM) denotes the RL(interleave) model
without deduction mechanism; RL(w/ DM), RL(DMB),
and RL(DMR) stand for the RL(interleave) model with
the deduction mechanism or its adjustment. Each num-
ber in a cell (expect for those horizontal to ’Check-
points’) shows how many falsehoods found by the de-
tector in each checkpoint.

We thus adjust the mechanism using two ap-
proaches. First, we retain the -2 deduction on false-
hood, but compensate those expressions by +0.5,
denoted by RL (DMB). Second, we instead re-
duce the deduction to -1, a more conservative value

corresponding to R (τ ). This path is denoted by
RL (DMR).

The results in Table 7 show that it is difficult
to avoid mistakenly silencing non-deceptive utter-
ances. In the experiment on both paths, at some
checkpoints the seller avoids indiscriminate silenc-
ing, whereas at other checkpoints falsehoods are
generated which still use those combinations of
words. The underlying reasons for such unstable
results are poorly understood. We leave this as
future work.

6 Related Work

During the recent, rapid development of conversa-
tional agents, also known as chatbots, various appli-
cations have been created. Open-domain chatbots
such as Facebook’s BST (Roller et al., 2021) and
Google’s Meena (Adiwardana et al., 2020) seek to
be more human-like, engaging in conversation on
any topic. Closed-domain chatbots instead focus
on improved task performance, for instance Guess-
Which (Das et al., 2017), persuasion (Wang et al.,
2019; Shi et al., 2020), and negotiation (Afantenos
et al., 2012; Papangelis and Georgila, 2015; Lewis
et al., 2017; He et al., 2018).

To negotiate item distribution (book, hat, ball),
Lewis et al. (2017) apply a bi-directional GRU
model to train a language model and use reinforce-
ment learning with self play to develop data-driven
strategies. For price bargaining on a single item
(e.g., a TV), He et al. (2018) use a hybrid approach
involving rule-based and LSTM models that de-
couple natural language understanding, dialogue
act prediction, and natural language generation to
facilitate controllable negotiation strategies. How-
ever, these scenarios do not attempt to find an opti-
mal solution for both sides, and do not control the
falsehoods generated by sellers. These limitations
motivate this work.

7 Conclusion

We introduce a novel negotiation task and present
FruitStand, a rich dataset of human-human dia-
logues, for negotiation dialogue research. We
demonstrate the effectiveness of reinforcement
learning in guiding the conversational agent to-
ward a specific goal. Finally, our experiments in
falsehood suppression show the potential of RL
for truthful AI. A more robust falsehood detector
would be our first future work. In our initial obser-
vations, a strong Natural Language Inference (NLI)
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model could play this role.
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A FruitStand Interface

Figure 3: The interface we use for collecting dataset on
the Amazon Mechanical Turk.
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B FruitStand Interface (Cont.)

Figure 4: Buyer’s interface

Figure 5: Seller’s interface

32



C Behavior Control

Figure 6: Rate of Buyer’s best items being chosen. ’Human’ stands for the human selections in testing. ’Before_RL’
stands for the model before reinforcement learning.

Figure 7: Seller’s average profit. ’Theoretic maximum’ stands for the average maximal profit of dialogues/scenarios
in testing set. ’Human’ stands for the human selections in testing. ’Before_RL’ stands for the model before
reinforcement learning.
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Abstract

Existing research studies on cross-sentence re-
lation extraction in long-form multi-party con-
versations aim to improve relation extraction
without considering the explainability of such
methods. This work addresses that gap by fo-
cusing on extracting explanations that indicate
that a relation exists while using only partially
labeled explanations. We propose our model-
agnostic framework, D-REX, a policy-guided
semi-supervised algorithm that optimizes for
explanation quality and relation extraction si-
multaneously. We frame relation extraction as a
re-ranking task and include relation- and entity-
specific explanations as an intermediate step
of the inference process. We find that human
annotators are 4.2 times more likely to prefer
D-REX’s explanations over a joint relation ex-
traction and explanation model. Finally, our
evaluations show that D-REX is simple yet ef-
fective and improves relation extraction perfor-
mance of strong baseline models by 1.2-4.7%.1

1 Introduction

Traditional relation extraction (RE) approaches dis-
cover relations that exist between entities within
a single sentence. Recently, several approaches
have been proposed which focus on cross-sentence
RE, the task of extracting relations between enti-
ties that appear in separate sentences (Peng et al.,
2017; Quirk and Poon, 2017; Han and Wang, 2020;
Yao et al., 2019) as well as cross-sentence RE in
dialogues (Yu et al., 2020; Chen et al., 2020; Xue
et al., 2021; Qiu et al., 2021; Lee and Choi, 2021).

A crucial step towards performing cross-
sentence RE in multi-entity and multi-relation di-
alogues is to understand the context surrounding
relations and entities (e.g., who said what, and to
whom). Figure 1 shows an example from the Di-
alogRE dataset where a simple BERT-based model

1Code and data publicly available at https://github.
com/alon-albalak/D-REX

Figure 1: A sample dialogue between 2 speakers with
actual D-REX predictions. The model initially classifies
Speaker 2 and chandler, incorrectly, as girl/boyfriend.
After predicting the explanation "your friend", D-
REX correctly re-ranks the relation as friends.

(Initial Predicted Relation in Figure 1) gets con-
fused by multiple entities and relations existing in
the same dialogue (Yu et al., 2020). The model pre-
dicts the “girl/boyfriend” relation between Speaker
2 and Chandler, however, it is clear from the con-
text that the “girl/boyfriend” relation is referring to
a different pair of entities: Speaker 1 and Chandler.

One approach to encourage a model to learn the
context surrounding a relation is by requiring the
model to generate an explanation along with the
relation (Camburu et al., 2018). In addition to the
DialogRE dataset, Yu et al. (2020) introduces man-
ually annotated trigger words which they show play
a critical role in dialogue-based RE. They define
trigger words as “the smallest span of contiguous
text which clearly indicates the existence of the
given relation”. In the context of RE, these trigger
words can be used as potential explanations.

Our work aims to extract explanations that
clearly indicate a relation while also benefiting an
RE model by providing cross-sentence reasoning.
Our proposed approach, D-REX, makes use of mul-
tiple learning signals to train an explanation extrac-
tion model. First, D-REX utilizes trigger words as
a partial supervision signal. Additionally, we pro-
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pose multiple reward functions used with a policy
gradient, allowing the model to explore the expla-
nation space and find explanations that benefit the
re-ranking model. Including these reward functions
allows D-REX to learn meaningful explanations on
data with less than 40% supervised triggers.

In order to predict relation- and entity-specific
explanations in D-REX, we pose RE as a relation
re-ranking task with explanation extraction as an
intermediate step and show that this is not possible
for a model trained to perform both tasks jointly.

Our contributions are summarized as follows:

• We propose D-REX, Dialogue Relation
Extraction with eXplanations, a novel sys-
tem trained by policy gradient and semi-
supervision.

• We show that D-REX outperforms a strong
baseline in explanation quality, with human
evaluators preferring D-REX explanations
over 90% of the time.

• We demonstrate that by conditioning on D-
REX extracted explanations, relation extrac-
tion models can improve by 1.2-4.7%.

2 Problem Formulation

We follow the problem formulation of Yu et al.:
let d = (s1 : u1, s2 : u2, . . . , sn : un) be a dia-
logue where si and ui denote the speaker ID and
the utterance from the ith turn, respectively. Let
E ,R be the set of all entities in the dialogue and
the set of all possible relations between entities,
respectively. Each dialogue is associated with m
relational triples <s, r, o> where s, o ∈ E are sub-
ject and object entities in the given dialogue and
r ∈ R is a relation held between the s and o. Each
relational triple may or may not be associated with
a trigger t. It is important to note that there is no
restriction on the number of relations held between
an entity pair; however, there is at most one trigger
associated with a relational triple. In this work,
we consider an explanation to be of high quality
if it strongly indicates that a relation holds, and
for this purpose we consider triggers to be short
explanations, though not always optimal in quality.

2.1 Relation Extraction (RE)
Given a dialogue d, subject s, and object o, the
goal of RE is to predict the relation(s) that hold
between s and o. We also consider RE with addi-
tional evidence in the form of a trigger or predicted

explanation. Formally, this is the same as relation
extraction with an additional explanation, ex.

2.2 Explanation Extraction (EE)

We formulate EE as a span prediction problem.
Given a dialogue d consisting of n tokens T1

through Tn, and a relational triple <s, r, o>, the
goal of EE is to predict start and end positions,
i, j in the dialogue, such that the explanation
ex = [Ti, Ti+1, . . . , Tj ] indicates that r holds be-
tween s and o.

3 Baseline Models

We first introduce approaches for RE and EE based
on state-of-the-art language models. We then pro-
pose a multitask approach that performs both tasks
jointly. Our approaches use BERTbase (Devlin et al.,
2019) and RoBERTabase (Liu et al., 2019b) pre-
trained models2, and follow their respective fine-
tuning protocols.

For all models, we maintain a single input for-
mat, which follows from Yu et al.. Formally, for
a dialogue d, subject s, object o, relation r, and
explanation ex, the input sequence to all mod-
els is [CLS]{r/ex[SEP]}s[SEP]o[SEP]d, where
{r/ex[SEP]} denotes that the relation or explana-
tion may be included depending on the task setting.
For RoBERTa models, we use the <s> and </s>
tokens rather than [CLS] and [SEP], respectively.

3.1 Relation Extraction (RE)

We follow the fine-tuning protocols of Devlin et al.
and Liu et al. for BERT and RoBERTa classifi-
cation models by using the output corresponding
to the first token C ∈ RH ([CLS] and <s>, re-
spectively) as a latent representation of the entire
input and train a classification matrix W ∈ RKxH ,
where K is the number of relation types and H is
the dimension of the output representations from
the language model. For each relation ri, the prob-
ability of ri holding between s and o in d is cal-
culated as Pi = sigmoid(CW T

i ). We compute the
standard cross-entropy loss for each relation as

LRE = − 1

K

K∑

i=1

yi · log(Pi)+(1−yi) · log(1−Pi)

(1)
where yi denotes whether relation i holds.

2Pre-trained models obtained from
https://github.com/huggingface/transformers (Wolf et al.,
2020)
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Figure 2: Overview of the D-REX system. The relation Ranking module ranks relations conditioned only on the
subject, object, and the dialogue. The EXplanation policy extracts supporting evidence for the ranked relations by
conditioning on individual relations in addition to the original input. The relation ReRanking module conditions its
rankings on supporting evidence from the explanation policy. In this hypothetical example, we see that relation
3 was originally ranked number 3 but had strong supporting evidence and was re-ranked in the number 1 spot.
Solid lines represent model inputs/outputs, and dotted lines represent learning signals. Reward functions,RRR and
RLOO, are detailed in equations 4 and 5, respectively.

3.2 Explanation Extraction (EE)
For EE, we use the input described above, with a
natural language phrasing of a relation appended
to the beginning of the sequence. For example, if r
is "per:positive_impression", then we concatenate
"person positive impression" to the beginning.

We follow the fine-tuning protocol of Devlin
et al. for span prediction. We introduce start and
end vectors, S,E ∈ RH . If Ti ∈ RH is the final
hidden representation of token i, then we compute
the probability of token i being the start of the
predicted explanation as a dot product with the
start vector, followed by a softmax over all words
in the dialogue:

PS
Ti

=
exp(S · Ti)∑
j exp(S · Tj)

(2)

To predict the end token, we use the same formula
and replace the start vector S with the end vector
E. To compute the loss, we take the mean of the
cross-entropy losses per token for the start and end
vectors. Formally, let |d| be the number of tokens
in dialogue d, then

LEX = − 1

|d|

|d|∑

i(
ySi · log(PS

Ti
) + (1− ySi ) · log(1− PS

Ti
)
)

+
(
yEi · log(PE

Ti
) + (1− yEi ) · log(1− PE

Ti
)
)

(3)

where ySi and yEi are the start and end labels. Be-
cause we want explanations extracted only from the
dialogue, if the start or end token with largest log-
likelihood occurs within the first l tokens, where l
is the length of [CLS]r[SEP]s[SEP]o[SEP], then
we consider there to be no predicted explanation.

3.3 Joint Relation and Explanation Model

The joint RE and EE model uses the standard input
from §3. It utilizes a BERT or RoBERTa backbone,
and has classification and span prediction layers
identical to those in the RE and EE models. Simi-
larly, the loss is computed as the weighted sum of
RE and EE losses:

LJ = αLRE + (1− α)LEX

where α is an adjustable weight. In practice, we
find that α = 0.5 works best.

Flaw of the joint model The disadvantage of the
joint model is this: supposing that an entity pair
has 2 relations, each explanation should be paired
with a single relation. However, by making predic-
tions jointly, there is no guaranteed mapping from
predicted explanations to predicted relations. One
method of solving this issue is to predict relations
and explanations in separate steps. It is possible to
first predict relations and then condition the expla-
nation prediction on each individual relation and
conversely. This idea forms the basis for D-REX.
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4 D-REX

In this section, we introduce the D-REX system. We
begin by introducing the models which make up the
system. Next, we present the training and inference
algorithms. Finally, we discuss the optimization
objectives for each model in the system.

4.1 Models
The D-REX framework requires three components:
an initial relation ranking model, an explanation
model, and a relation re-ranking model, shown in
Figure 2.

Initial Ranking Model (R) In our algorithm and
discussions, we use R to denote the initial ranking
model. There are no restrictions on R, it can be any
algorithm which ranks relations (e.g., deep neural
network, rule-based, etc.) such as (Yu et al., 2020;
Lee and Choi, 2021). However, if R needs to be
trained, it must be done prior to D-REX training;
D-REX will not make any updates to R.

In our evaluations, we use the relation extraction
model described in §3.1. The input to this model is
(s,o,d) and the output is a ranking, R(s, o, d).

Explanation Extraction Model (EX) In our al-
gorithm and discussions, we use EX to denote the
explanation model. In this paper we limit our ex-
periments to extractive explanation methods, as op-
posed to generative explanation methods, however
this is not a limitation of D-REX. The only limita-
tion on the explanation model is that we require it
to produce human-interpretable explanations. Thus,
it is also possible to use generative models such
as GPT-2 (Radford et al., 2019) or graph-based
methods such as (Yu and Ji, 2016; Xue et al., 2021)
with adjustments to the formulation of the reward
functions.

In our evaluations, we use the model as de-
scribed in §3.2. The input to EX is (r,s,o,d) and
the output is an extracted phrase from d, denoted
as EX(r, s, o, d).

Relation Re-Ranking Model (RR) In our algo-
rithm and discussions, we let RR denote the relation
re-ranking model. In the D-REX training algorithm,
RR is updated through gradient-based optimization
methods, and must be able to condition its rank-
ing on explanations produced by EX. In our experi-
ments, we use the same model architecture as R and
include an explanation as additional input to the
model. The input to RR is (ex,s,o,d) and the output
is a relation ranking, denoted as RR(ex, s, o, d).

Algorithm 1: The proposed training algo-
rithm for D-REX

Input :Pre-trained ranking, explanation, and
re-ranking models: R, EX, RR
k: for number of relations to re-rank

Data: Dataset: D
for (s, r, o,t,d) in D do

Compute ranking loss: LR
RE(s, o, d)

rpred ← R(s,o,d)1:k
for i in rpred do

exi ← EX(rpredi , s, o, d)
Compute Re-ranking loss:
LRR

RE(exi, s, o, d) ; // Equation 1
Compute Re-Ranking Reward: RRR ;
// Equation 4

Compute Leave-one-out Reward: RLOO ;
// Equation 5

Compute policy gradient with rewards
RRR, RLOO ; // Equation 6

end
if t not empty then

Compute LEX ; // Equation 3
end
Update EX,RRparameters with calculated losses

end

4.2 D-REX Algorithm
The outline of this algorithm is shown in pseu-
docode in Algorithm 1.

Assuming that we have ranking, explanation,
and re-ranking models R, EX, RR, then given a sin-
gle datum (s, r, o, t, d), comprised of a subject, re-
lation, object, trigger(may be empty), and dialogue,
the D-REX algorithm operates as follows: The rank-
ing model takes as input (s, o, d) and computes the
probability of each relation from the predefined
relation types. Next, we take the top-k ranked
relations, rpred = R(s, o, d)1:k, and compute ex-
planations. For i = 1, ..., k, explanations are com-
puted as exi = EX(rpredi , s, o, d). Finally, for each
predicted explanation, the re-ranking model com-
putes k probabilities for each relation type, using
(exi, s, o, d) as the input to RR. The final proba-
bilities for each relation type are computed as the
mean across all k+1 predictions from R and RR.

4.3 Model optimization
We propose multiple optimization objectives to
train an EX model that extracts explanations mean-
ingful to humans and beneficial to the rela-
tion extraction performance while ensuring that
RR maintains high-quality predictions.

Explanation Model Optimization We train
EX with supervision on labeled samples, and a pol-
icy gradient for both labeled and unlabeled samples,
allowing for semi-supervision. For the policy gradi-

37



ent, we introduce two reward functions: a relation
re-ranking reward and a leave-one-out reward.

Re-ranking Reward The purpose of the re-
ranking reward is to ensure that EX predicts
explanations which benefit RR. Formally, let
LR
RE(s, o, d) be the loss for R, given the subject, ob-

ject, and dialogue: s, o, d. And let LRR
RE(ex, s, o, d)

be the loss of RR, given the explanation, subject,
object, and dialogue: ex, s, o, d. Then we define
the relation re-ranking reward as:

RRR = LR
RE(s, o, d)− LRR

RE(ex, s, o, d) (4)

Because R is stationary, EX maximizes this func-
tion by minimizing LRR

RE . Of course, EX can only
minimize LRR

RE through its predicted explanations.
Leave-one-out Reward The purpose of the

leave-one-out reward is to direct EX in finding
phrases which are essential to correctly classify-
ing the relation between an entity-pair. This reward
function is inspired by previous works which make
use of the leave-one-out idea for various explana-
tion purposes (Shahbazi et al., 2020; Li et al., 2016).
We can calculate the leave-one-out reward using
either R or RR, and it is calculated by finding the
difference between the standard relation extraction
loss and the loss when an explanation has been
masked. Formally, if d is the original dialogue and
ex is the given explanation, let dmask(ex) be the
dialogue with ex replaced by mask tokens. Then,
the leave-one-out reward is defined as:

RLOO = LRE(s, o, dmask(ex))− LRE(s, o, d)
(5)

Because LRE is calculated using the same
model for both the masked and unmasked loss,
EX maximizes this reward function by maximizing
the masked loss. Of course, the only interaction
that EX has with the masked loss is through the
explanation it predicts.

Policy Gradient We view EX as an agent whose
action space is the set of all continuous spans from
the dialogue. In this view, the agent interacts with
the environment by selecting two tokens, a start
and end token and receives feedback in the form
of the previously discussed reward functions. Let
i, j be the start and end indices that the explanation
model selects and Ti be the ith token, then ex =
d[i : j] = [Ti, Ti+1, . . . , Tj ] and the probabilities
of i, j being predicted are calculated as PS

Ti
and

PE
Tj

according to equation 2.
For both reward functions, we use a policy gradi-

ent (Sutton and Barto, 2018) to update the weights

of the explanation model and calculate the loss as

LEXPG
= −(log(PS

Ti
)+log(PE

Tj
))∗(RRR+RLOO)

(6)
Additionally, while training EX in the D-

REX algorithm, we make use of supervision when
available. In the case where supervision exists, we
calculate an additional loss, LEX , as defined in
equation 3.

Relation Extraction Re-ranking Model Op-
timization While training D-REX we train
RR with labeled relations as supervision and use
a cross-entropy loss, LRR

RE , calculated in the same
way as R in Equation 1.

5 Experimental Evaluation

In this section, we present an evaluation of D-
REX in comparison with baselines methods on the
relation extraction and explanation extraction tasks.

5.1 Experimental settings
For our experiments, we re-implement the BERTS
model from (Yu et al., 2020) as well as a new
version which replaces BERT with RoBERTa. In
our paper, we refer to these models as RBERT and
RRoBERTa. All models are implemented in PyTorch3

and Transformers(Wolf et al., 2020), trained us-
ing the AdamW optimizer (Loshchilov and Hutter,
2018). All experiments were repeated five times
and we report mean scores along with standard de-
viations. D-REX models use a top-k of five and are
initialized from the best performing models with
the same backbone. For example, D-REXBERT uses
two copies of RBERT (Yu et al., 2020) to initial-
ize the ranking and re-ranking models and EXBERT
to initialize the explanation model. When training
Joint, we do not calculate LEX for relational triples
without a labeled trigger. The full details of our
training settings are provided in Appendix B.

DialogRE Dataset We evaluate our models on
the DialogRE English V2 dataset4 which con-
tains dialogues from the Friends TV show (Yu
et al., 2020), details of which are in Table 1. D-
REX models are trained with trigger supervision on
less than 40% of the training data, and make no
use of dev or test set triggers. The learning signal
for the remaining triples comes entirely from our
rewards through a policy gradient.

3https://pytorch.org/
4Dataset collected from https://dataset.org/dialogre/ for

research purposes only
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DialogRE V2

Dial-
ogues

Rela-
tions

Relational
Triples

(train/dev/
test)

Triggers
(train/dev/

test)

1788 36 6290/1992/1921 2446/830/780

Table 1: Dataset details for DialogRE. With only 2446
labeled triggers in the training set, D-REX models learn
using only a policy gradient and no direct supervision
on the remaining 3844 triples.

Evaluation Metrics We adopt separate evalua-
tions for relation and explanation extraction.

First, for relation extraction, we evaluate our
models using F1 score, following Yu et al. (2020),
and additionally calculate the mean reciprocal
rank (MRR), which provides further insight into a
model’s performance. For example, MRR is able to
differentiate between a ground truth relation ranked
2nd or 10th, while the F1 score does not. In the
dialogRE dataset, multiple relations may hold be-
tween a single pair of entities, so we use a variation
of MRR which considers all ground truth relations,
rather than just the highest-ranked ground truth
relation.

For explanation extraction, we focus mainly on
manual evaluations, but also propose the Leave-
One-Out metric, introduced in section 5.4 for an
ablation study.

5.2 Relation Extraction (RE) Evaluation

In Table 2, we compare the baseline RE model
RBERT with the methods presented in this paper.
We also compare with three other methods which
use similarly sized language models, but addition-
ally utilize graph neural networks (GNN): GDP-
Net(Xue et al., 2021), TUCORE-GCNBERT(Lee
and Choi, 2021), and SocAoG(Qiu et al., 2021).

First, we see that even though D-REX is de-
signed to introduce human-understandable explana-
tions, it still has modest improvements over RBERT,
which focuses on RE, while Joint has no signifi-
cant improvement. Next, we see a five point abso-
lute improvement in F1 from the baseline model
when using RoBERTa. The trend from BERT to
RoBERTa is similar to results found by Lee and
Choi (2021), where changing from a BERTbase
model to RoBERTaLarge(not shown here) improved
their model performance significantly. Addition-
ally, we see a 3 point improvement from R to D-
REX when using RoBERTa (compared to 0.7 for
BERT), which we believe is due to the better per-

Model F1(σ) MRR(σ)
RBERT 59.2(1.9) 74.8(1.3)
JointBERT 59.4(1.7) 74.0(0.9)
D-REXBERT 59.9(0.5) 75.4(0.1)
RRoBERTa 64.2(1.6) 77.9(1.0)
JointRoBERta 65.2(0.3) 78.3(0.3)
D-REXRoBERTa 67.2(0.3) 79.4(0.3)
*GDPNet 60.2(1.0) -
*TUCORE-GCNBERT 65.5(0.4) -
†SocAoG 69.1(0.5) -

Table 2: Relation extraction results on DialogRE V2.
R models are described in Section 3.1, Joint models in
3.3, and D-REX models in 4. RBERT is a replication of
BERTS from Yu et al. (2020). "*" denotes results taken
from Lee and Choi (2021) and "†" from Qiu et al. (2021)

forming ranking model, which allows for D-REX to
rely more on the input explanations. Finally, we
see that by using GNNs, and task-specific dialogue
representations, all three GNN-based methods can
improve over the general BERT-based methods.

5.3 Explanation Extraction (EE) Evaluation

Automatic Evaluation Although the aim of this
paper is not trigger prediction, for completeness
and reproducibility, we include results on the test
set of triggers in Appendix A.

Human Evaluation To better understand how
our model performs in extracting explanations and
what challenges still exist, we perform two analy-
ses; a comparative and an absolute analysis. We
consider two sets of data for evaluation: samples
for the DialogRE test set where No Labeled trig-
ger exists (NL) and samples where the predicted
explanation Differs from the Labeled trigger (DL).

5.3.1 Comparative Analysis
In Table 3, we show the results for pairwise
comparisons of explanations predicted by D-
REXRoBERTa against 3 baselines: random strings of
1-4 words, predictions from JointRoBERTa, and la-
beled triggers. For each comparison, we employ 3
crowd-workers5, who were given the full dialogue,
a natural language statement corresponding to a
relational triple, and the two proposed explanations
highlighted in the dialogue6. The crowd-workers
were asked to specify which of the highlighted ex-
planations was most indicative of the relation, or

5Amazon Mechanical Turk workers were paid $0.35 per
HIT, where a HIT includes 3 comparisons. We estimate an
average HIT completion time of ~1.5 minutes, averaging ~$14
per hour. We only accept workers from AUS, CA, and USA.

6Example HIT included in Appendix 4
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D-REXRoBERTa vs. Win(%) Tie(%) Lose(%)
Random (NL) 79.9 10.4 9.8

JointRoBERTa (NL) 38.5 52.3 9.2
Ground truth (DL) 12.1 44.3 43.7

Table 3: Human evaluator preferences on explana-
tion extraction methods. NL and DL are samples where
No Labeled trigger exists, and where the predicted ex-
planation Differs from the Label, respectively. Results
presented are percentages of preference.

Not
Indic-
ative

Incorrect
Entity
Pair

Incorrect
Relation

Indic-
ative

NL 29 19 18 34
DL 19 13 7 61

Table 4: Explanation error analysis on 100 samples
where No Labeled trigger exists (NL) and 100 where
the predicted explanation Differs from the Label (DL).

they could be equal. For each comparison we use a
majority vote, and if there was a three-way tie we
consider the explanations to be equal. We compare
D-REX with random strings and the joint model on
174 samples from NL, as well as 174 samples from
DL.

In Table 3 we see that for NL, D-REX produces
explanations which were 4.2 times more likely to
be outright preferred by crowd-workers than the
joint model, suggesting that our reward functions
properly guided the explanation policy to learn
meaningful explanations on unlabeled data. Sur-
prisingly, we found that on over 12% of samples
with labeled triggers, evaluators outright preferred
D-REX explanations over the ground truth trigger,
suggesting that D-REX indeed finds some explana-
tions which are better than the ground truth trigger.

In Appendix 5.5, we include 2 examples com-
paring explanations from D-REX and Joint.

5.3.2 Absolute Analysis
To better understand the quality of D-REX’s expla-
nations, we randomly sample 100 from both NL
and DL for a fine-grained analysis. We classify the
explanations into 4 categories: not indicative, incor-
rect entity-pair, incorrect relation, and indicative.
"Indicative" and "Not indicative" have the obvious
meanings, "Incorrect entity-pair" means that an ex-
planation actually explains the correct relation, but
between the incorrect entity-pair, and "Incorrect
relation" means that the explanation indicates a
relation different from the desired relation.

Table 4 shows the results. Interestingly, we see in
the NL set, that errors were equally likely to come

Model F1 Leave-one-out(↓)
D-REXRoBERTa (Full) 67.2 83.9

- reranking reward 66.0 84.9
- LOO reward 67.1 85.4

Table 5: Ablation study on reward functions. Leave-
One-Out metric (LOO) measures how salient a predicted
explanation is in determining a relation and is further
defined and motivated in §5.4. Smaller LOO is better.

from either an explanation indicating the relation
for an incorrect entity-pair as for the incorrect re-
lation altogether. This is in contrast to the DL set,
where D-REX was nearly half as likely to predict
an explanation for an incorrect relation as it was
for an incorrect entity-pair.

Additionally, in our fine-grained analysis, we
also considered whether a relational triple was
identifiable from the context alone and found that
nearly 20% of the 200 samples had ambiguities
which could not be resolved without outside knowl-
edge. This suggests that there is likely a maximum
achievable relation extraction score on the Dialo-
gRE dataset under the current setting.

5.4 Ablation Study
To assess the benefit of each proposed reward in-
dividually, we perform an ablation study on the
reward functions. In order to study explanation
quality automatically, we introduce a new metric
for explanation quality; the Leave-One-Out metric.

The Leave-One-Out (LOO) metric has a theoreti-
cal basis in the works of Li et al. (2016) and Ribeiro
et al. (2016), where Li et al. (2016) use word era-
sure to determine a "word importance score". Here
we define LOO formally. For a relation extraction
model R, an explanation extraction model EX, and
a dataset D, LOO is calculated as

LOO(R,EX,D) = F1R(DMASK(EX))
F1R(D)

where F1R(D) is the F1 score of R on D and
DMASK(EX) is the dataset where explanations pre-
dicted by EX are replaced by mask tokens. The
LOO metric calculates how essential the predicted
explanations are to the ability of the relation extrac-
tion model.

To show that LOO is an appropriate measure
of explanation quality, we compute the Pearson
correlation coefficient between token F1 score and
LOO scores for models on labeled triggers, found
in Table 6. With 6 models trained on 5 random
seeds each, we have 30 data points and a correlation
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Figure 3: Two examples comparing predicted explanations from D-REX (underlined) and Joint (bold).

coefficient of −87.4 with p = 2.4 ∗ 10−8. Because
we calculate the coefficient with respect to human-
annotated triggers, this suggests that a low LOO
correlates with explanations that humans would
determine as indicative of the given relation.

For our experiments, we always calculate LOO
using the baseline model, RBERT. From the re-
sults in Table 5, we see that both reward functions
benefit the final results. Compared with RRoBERTa,
D-REXRoBERTa gains 3 F1 points, but without the
reranking reward, the model only gains 1.8 F1 score
or 60% of the total possible improvement. This per-
formance loss demonstrates that the reranking re-
ward is critical to attaining the best score in relation
extraction. Similarly, without the leave-one-out re-
ward, the model’s explanation quality, measured in
LOO, is 1.5 points, or nearly 10% worse, demon-
strating that the leave-one-out reward is beneficial
in guiding the model to salient explanations.

5.5 Explanation Samples

Figure 3 shows two samples comparing explana-
tions from D-REX and Joint. In both examples,
even though there was no labelled trigger, each
model was able to predict an explanation which
correlates with the relation. Specifically, "engage-
ment ring" and "got married" are related to the
girl/boyfriend relation, and "in" and "mean in" can
be associated with the visited_by relation. How-
ever, the bottom example shows that Joint did
not consider the context surrounding it’s expla-
nation. The conversation is about food, and the
visited_by relation is not relevant. On the other
hand, D-REX finds the phrase "you’re mean in",
where "you’re" refers to speaker3, and "in" refers

to "England". This is clearly an explanation which
indicates the correct relation between the correct
entities.

5.6 Reduced Labels
All previous results use 100% of labeled triggers
in the DialogRE dataset, which covers 40% of all
relational triples. To test how few labeled triggers
EX requires in order to learn meaningful explana-
tions we ran a small scale experiment (1 random
seed) using labeled triggers from only 5, 10, and
20% of relational triples. However, in the small
tests we ran, we found that at 20% labeled trig-
gers the EX model mostly predicts no explanations.
Furthermore, at 10% and fewer labeled triggers,
the model converges to the trivial solution in the
explanation space which is to never predict any
tokens.

We believe that this issue is due, in part, to
two challenges: the search space over all possible
start/end tokens is too large, and the policy gra-
dient has a high variance. Although these results
may seem discouraging, we believe this challenge
can be overcome in the future by using algorithms
which reduce variance in the policy gradient and
by initializing EX with a model pre-trained in span
extraction.

6 Limitations and Future Work

Firstly, this study focuses on learning explanations
as well as relations in dialogue and DialogRE is the
only currently available dataset with annotations
for both tasks. A limitation of this study is the small
scale at which we were able to test the methods. A
future direction would be to learn explanations on a
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different RE dataset and use the pre-trained model
in D-REX, however it would be non-trivial for a
model to transfer explanations learned on a wildly
different domain. Additionally, it is theoretically
possible to train D-REX with no labeled triggers at
all, however, we were unsuccessful and in Section
5.6 we discuss these and additional negative results.

This study focuses on relations and entities
found in multi-party conversations, and while there
are similarities between the dialogue domain, med-
ical literature, and wikipedia (e.g., multi-entity,
multi-relation), it is not clear whether the methods
from this paper can transfer to other such domains.
We plan to investigate how well the proposed meth-
ods transfer to relations and entities in other do-
mains such as news and web text (Zhang et al.,
2017) and for other types of semantic relations as
in Hendrickx et al. (2010) or Yao et al. (2019).

We acknowledge that this study is English-
focused, and it is not clear that these methods can
transfer to languages in other families such as afro-
asiatic or sino-tibetan. Additionally, we think that it
would be very interesting to see how these methods
perform on languages with very different linguistic
features; for example, languages with inflection
such as Finnish. We leave non-English and multi-
lingual variations of these methods to future work.

In this work, we do not focus on improving state-
of-the-art trigger prediction. However, we recog-
nize that trigger annotation is labor-intensive, and
a possible use of D-REX would be to use predicted
labels as a form of weak supervision for a system
whose goal is to improve on trigger prediction.

7 Related Work

Recently, there have been numerous information
extraction tasks proposed which involve dialogues,
including character identification (Zhou and Choi,
2018), visual coreference resolution (Yu et al.,
2019), emotion detection (Zahiri and Choi, 2018).

New settings for relation extraction have also
been proposed, such as web text (Ormándi et al.,
2021) and, in many ways similar to dialogue, doc-
ument text (Yao et al., 2019). There have also
been methods developed to include explanations in
similar natural language understanding tasks (Cam-
buru et al., 2018; Kumar and Talukdar, 2020; Liu
et al., 2019a; Lei et al., 2016). There have even
been methods developed which, similarly to our re-
ranking, make use of an explanation as additional
information (Hancock et al., 2018).

The work by Shahbazi et al. is aligned with our
study. They also focus on relation extraction with
explanations; however, their method is based on
distant supervision from bags of sentences contain-
ing an entity-pair. Due to the cross-sentence nature
of relations in dialogue, their method is not appli-
cable here, although we draw inspiration from their
work. They explain their model by considering the
salience of a sentence to their model’s prediction,
similarly to our leave-one-out reward.

Also relevant to our work is that by Bronstein
et al.. Their work focuses on the task of semi-
supervised event trigger labeling, which is very
similar to our semi-supervised prediction of rela-
tion explanations. In their work, they use only a
small seed set of triggers and use a similarity-based
classifier to label triggers for unseen event types.

Finally, there have been multiple recent works
in dialogue RE which perform quite well by using
graph neural networks (Xue et al., 2021; Qiu et al.,
2021; Lee and Choi, 2021). However, they focus
only on RE and not on explaining the relations.

8 Conclusion

In this work, we demonstrated that not only is it
possible to extract relation explanations from multi-
party dialogues, but these explanations can in turn
be used to improve a relation extraction model.
We formulated purpose-driven reward functions for
training the explanation model and demonstrated
their importance in learning high quality explana-
tions. Our proposed approach, D-REX, is powered
by a very simple reformulation of the traditional
relation extraction task into a re-ranking task.

9 Ethical and Social Considerations

The methods proposed in this work on their own
are not nefarious, however, proposed explanations
should not be blindly accepted as fact. For the same
reasons that language models may have ethical and
social risks, so may our algorithm which is built on
top of such language models. While we test only
on TV show dialogues, were this technology to be
put to use in non-scripted, real life conversations,
there would need to be very thorough analysis of
any ethical risks that the proposed explanations
may have.
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model token F1(σ) EM(σ) LOO(σ)
EXBERT 62.1(3.1) 54.1(1.9) 82.2(0.4)
JointBERT 43(1.3) 38.6(1.4) 89.0(1.0)
D-REXBERT 50.5(1.1) 45.7(1.7) 84.4(1.6)
EXRoBERTa 66.5(2.2) 58.4(2.0) 82.2(0.4)
JointRoBERTa 49(0.7) 47(0.7) 86.2(0.8)
D-REXRoBERTa 57.2(2.1) 51.6(1.6) 83.9(0.4))

Table 6: Trigger prediction results. Leave-One-Out
metric (LOO) measures how salient a predicted expla-
nation is in determining a relation and is further defined
in §5.4. Smaller LOO is better.

A Trigger prediction

In Table 6, we compare our methods for supervised
explanation extraction with D-REX. Interestingly,
we find that the joint model achieves the lowest
F1 score for both the BERT and RoBERTa mod-
els. JointBERT scores nearly 20 points below its
counterpart BERT model, while the JointRoBERTa
model cuts that difference to just over 15 points
below its RoBERTa counterpart. On the other hand,
D-REX maintains a token F1 score within 10 points
of its counterpart even though it has been trained
to generalize beyond the labeled triggers.

B Hyperparameters

All models are trained using the AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 3e-5 and batch sizes of 30. To determine the best
learning rate, R and EX models were trained using
learning rates in {3e-6, 1e-5, 3e-5, 1e-4}. The best
learning rate, 3e-5, was determined by performance
on a held out validation dataset. Baseline models
(R, EX, and Joint) are trained for at most 30 epochs
and we use validation-based early stopping to de-
termine which model to test. D-REX models are
trained for at most 30 additional epochs with the
best model determined based on relation extraction
F1 scores computed on validation data. We found
the best validation result to always occur within
the first 30 epochs. All experiments were repeated
five times and we report the mean score along with
standard deviation. To train the joint model, we
do not calculate LEX for relational triples which
do not have a labeled trigger and we select α from
{0.25,0.5,0.75} and set α to 0.5 based on validation
performance.

C Crowd-Worker Sample

In Figure 4, we show a sample HIT that was pro-
vided to crowd-workers. Each crowd-worker was
shown three examples. The layour is as follows:

the top always asks the worker to decide which of
the highlighted texts is a better indication of the
relation. Next, a natural language interpretation of
the relational triple is given, in this case, "Speaker 2
and Speaker 1 are (or were) lovers". Then, we show
the entire dialogue along with highlighted spans of
text for each explanation. Finally, at the bottom, we
always provide the user with three choices: yellow
is better, equal, or orange is better, where the user
is only allowed to select one option.
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Figure 4: A sample HIT that was presented to crowd-workers for the comparative study of explanations.
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Abstract

Data augmentation is a widely employed tech-
nique to alleviate the problem of data scarcity.
In this work, we propose a prompting-based
approach to generate labelled training data
for intent classification with off-the-shelf lan-
guage models (LMs) such as GPT-3. An ad-
vantage of this method is that no task-specific
LM-fine-tuning for data generation is required;
hence the method requires no hyper-parameter
tuning and is applicable even when the avail-
able training data is very scarce. We evaluate
the proposed method in a few-shot setting on
four diverse intent classification tasks. We find
that GPT-generated data significantly boosts
the performance of intent classifiers when in-
tents in consideration are sufficiently distinct
from each other. In tasks with semantically
close intents, we observe that the generated
data is less helpful. Our analysis shows that
this is because GPT often generates utterances
that belong to a closely-related intent instead
of the desired one. We present preliminary ev-
idence that a prompting-based GPT classifier
could be helpful in filtering the generated data
to enhance its quality.1

1 Introduction

A key challenge in creating task-oriented conver-
sational agents is gathering and labelling training
data. Standard data gathering options include man-
ual authoring and crowd-sourcing. Unfortunately,
both of these options are tedious and expensive.
Data augmentation is a widely used strategy to
alleviate this problem of data acquisition.

There are two particularly promising paradigms
for data augmentation in natural language process-
ing that use pretrained language models (LMs) (Pe-
ters et al., 2018; Devlin et al., 2018). The first fam-
ily of methods fine-tunes an LM on task-specific

∗Work done during an internship at ServiceNow Research
1Our code is available at: https://github.com/

ElementAI/data-augmentation-with-llms

Input Prompt:

The following sentences belong to the same 
category music_likeness:

Example 1: i like soft rock music 
Example 2: current song rating three stars 
Example 3: save this song as a favorite 
Example 4: remind me that i like that song 
Example 5: save my opinion on the currently 
           playing song 
Example 6: i love the song do you 
Example 7: add the song to my favorites 
Example 8: store opinion on song 
Example 9: the song in background is cool 
Example 10: i am the living blues  
Example 11:

Completions:

i dislike classical music 
she is a music lover 
i am a lover of painting 
this is the best song ever 
video that looks like the other video 
save preference on my profile 
express negative opinion on the song 
i am a great blues follower 
the song is better than i thought 
this song is also fun 

Figure 1: Generation Process. Given a seed intent
(here, music_likeness) and K(=10) available examples
for that intent, we construct a prompt following the
shown template. Note that the last line of the prompt
is incomplete (there is no new line character.) We then
feed this prompt to a GPT-3 engine, which generates
some completions of the prompt. In this example, red
text denotes unfaithful examples and blue text
denotes faithful examples. Note: For brevity, we only
show ten generated sentences.

data and generates new examples using the fine-
tuned LM (Wu et al., 2018; Kumar et al., 2019,
2021; Anaby-Tavor et al., 2020; Lee et al., 2021).
A limitation of these methods is that, in a real-
world scenario, task-specific data is scarce and fine-
tuning an LM can quickly become the bottleneck.
The second family of methods sidesteps this bot-
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tleneck by employing off-the-shelf pretrained LMs
such as GPT-3 (Brown et al., 2020) to directly gen-
erate text without any task-specific fine-tuning. In
particular, data generation by the GPT3Mix ap-
proach by Yoo et al. (2021) boosts performance
on multiple classification tasks; however, they only
consider tasks with few (up to 6) classes and easy-
to-grasp class boundaries (e.g., positive and nega-
tive).

This work studies the applicability of massive
off-the-shelf LMs, such as GPT-3 and GPT-J (Wang
and Komatsuzaki, 2021) to perform effective data
augmentation for intent classification (IC) tasks. In
IC, the end goal is to predict a user’s intent given an
utterance, i.e., what the user of a task-oriented chat-
bot wants to accomplish. Data augmentation for IC
is particularly challenging because the generative
model must distinguish between a large number
(in practice up to several hundreds) of fine-grained
intents that can be semantically very close to each
other. Prior methods such as GPT3Mix prompt
the model with the names of all classes as well
as a few examples from randomly chosen classes.
We test GPT3Mix for one and observe that such
approaches are poorly suitable for intent classifica-
tion tasks with tens or hundreds of possible intents.
Instead, in this study, we use a simple prompt struc-
ture that focuses on a single seed intent (see Figure
1) as it combines the intent’s name and all available
examples.

Our experiments primarily focus on few-shot IC
on four prominent datasets: CLINC150 (Larson
et al., 2019), HWU64 (Xingkun Liu and Rieser,
2019), Banking77 (Casanueva et al., 2020), and
SNIPS (Coucke et al., 2018). We also consider a
partial few-shot setup to compare to the Example
Extrapolation (Ex2) approach by Lee et al. (2021)
who use a similar prompt but fine-tune the LM in-
stead of using it as is. The main findings of our ex-
periments are as follows: (1) GPT-generated sam-
ples boost classification accuracy when the consid-
ered intents are well-distinguished from each other
(like in CLINC150, SNIPS). (2) On more gran-
ular datasets (namely HWU64 and Banking77),
we find that GPT struggles in distinguishing be-
tween different confounding intents. (3) A small-
scale study to further understand this behaviour
suggests that GPT could be used as a classifier
to filter out unfaithful examples and enhance the
quality of the generated training set. Addition-
ally, we investigate how valuable the generated data

could be if relabelled by a human. Using an oracle
model, we show that (4) the human labelling of
GPT-generated examples can further improve the
performance of intent classifiers, and that (5) LM-
generated data has a higher relabelling potential
compared to edit-based augmentation techniques,
such as Easy Data Augmentation (EDA) (Wei and
Zou, 2019).

2 Method

We consider training an intent classifier, where an
intent is a type of request that the conversational
agent supports; e.g. the user may want to change
the language of the conversation, play a song, trans-
fer money between accounts, etc. However, collect-
ing many example utterances that express the same
intent is difficult and expensive. Therefore, this
paper experiments with a straightforward method
to augment the training data available for an intent:
creating prompts from the available examples and
feeding them to a large language model such as
GPT-3 (Brown et al., 2020). Figure 1 illustrates
the process of data generation for an intent with K
available examples.

3 Experimental Setup

3.1 Datasets
We use four intent classification datasets in our
experiments with varying levels of granularity
among intents. CLINC150 (Larson et al., 2019),
HWU64 (Xingkun Liu and Rieser, 2019) are multi-
domain datasets, each covering a wide range of
typical task-oriented chatbot domains, such as play-
ing music and setting up alarms. Importantly,
the CLINC150 task also contains examples of
out-of-scope (OOS) utterances that do not cor-
respond to any of CLINC’s 150 intents. Bank-
ing77 (Casanueva et al., 2020) is a single domain
dataset with very fine-grained banking-related in-
tents. Finally, the SNIPS (Coucke et al., 2018)
dataset contains 7 intents typical for the smart
speaker usecase. We refer the reader to Table 1
for exact statistics of all used datasets.

3.2 Setup
The main data-scarce setup that we consider in this
work is the few-shot setup, where only K = 10
training examples are available for every intent
of interest. Additionally, to compare to example
extrapolation with fine-tuned language models as
proposed by Lee et al. (2021), we consider a partial
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CLINC150 SNIPS HWU64 Banking77

domains 10 1 18 1
intents 150 7 64 77
train

examples
15000 13084 8954* 9002*
(100)

val.
examples

3000 700 1076* 1001*
(100)

test
examples

4500 700 1076 3080
(1000)

Table 1: Statistics of the intent classification datasets
that we use in our experiments. * indicates that we
split the original data into training and validation in-
stead of using a split provided by the dataset authors.
For CLINC150, the number of out-of-scope examples
in different data partitions is given in parenthesis.

few-shot setup. In the latter setting, we limit the
amount of training data only for a handful of few-
shot intents2 and use the full training data for others.
When data augmentation is performed, we augment
the few-shot intents to have N examples, where N
is the median number of examples per intent of the
original data.

To precisely describe the training and test data
in all settings, we will use Dpart to refer to dataset
parts, i.e. train, validation, and test. In addition,
we use DF and DM to refer to data-scarce and
data-rich intents (the latter only occur in the partial
few-shot setting). This notation is defined for all
parts, therefore, Dpart = D{F,part} ∪ D{M,part},
∀ part ∈ {train, val, test}. When GPT-3 or a
baseline method is used to augment the training
data we generate N −K examples per intent and
refer to the resulting data as D̃F,train. We experi-
ment with four different-sized GPT-3 models3 by
OpenAI and GPT-J by EleutherAI4 to obtain D̃.
The four GPT-3 models are: Ada, Babbage, Curie,
and Davinci. In order, Ada is the smallest model
and Davinci is the largest. Model sizes of GPT-3
engines are not known precisely but are estimated
by Eleuther AI to be between 300M and 175B
parameters5.

2We use the truncation heuristic provided by Lee et al.
(2021): https://github.com/google/example_
extrapolation/blob/master/preprocess_
clinc150.py

3https://beta.openai.com/docs/engines
4https://github.com/kingoflolz/

mesh-transformer-jax/
5https://blog.eleuther.ai/

gpt3-model-sizes/

3.3 Training and Evaluation

We fine-tune BERT-large (Devlin et al., 2018) on
the task of intent classification by adding a linear
layer on top of the [CLS] token (Wolf et al., 2019).
In all setups we use the original validation set for
tuning the classifier’s training hyperparameters. We
chose to use the full validation set as opposed to a
few-shot one to avoid issues with unstable hyperpa-
rameter tuning and focus on assessing the quality
of the generated data.

Full few-shot. In this setup, we treat all the in-
tents as few-shot and evaluate our method on the
following three scenarios: (i) Baseline: all the
intents are truncated to K = 10 samples per in-
tent, (ii) Augmented: D̃{F,train} is generated us-
ing GPT and models are trained on D{F,train} ∪
D̃{F,train} and (iii) EDA-baseline: same as above,
but D̃{F,train} is generated using Easy Data Aug-
mentation (EDA) by Wei and Zou (2019). For each
scenario, we report the 1) overall in-scope accuracy
on the complete test set Dtest, i.e. intent classifica-
tion accuracy excluding OOS samples in the test
set, and 2) few-shot classification accuracy of the
models on D{F,test}. For CLINC150, we also re-
port out-of-scope recall (OOS recall) on Dtest that
we compute as the percentage of OOS examples
that the model correctly labelled as such.

The purpose of this setting is to estimate what
further gains can be achieved if the data generated
by GPT were labelled by a human. We train an
oracle O on the full training data Dtrain. We also
use O to assess the quality of the generated data.
Namely, we compute fidelity of the generated data
as the ratio of generated utterances that the oracle
labels as indeed belonging to the intended seed
intent. A higher fidelity value means that the gen-
erated samples are more faithful to original data
distribution.

Partial few-shot. In this setup, we train S intent
classifiers, choosing different few-shot intents ev-
ery time to obtain DF . We then average the metrics
across these S runs. For CLINC150, S = 10 cor-
responding to the 10 different domains, whereas
for SNIPS, S = 7 corresponding to the 7 different
intents. We evaluate our method on the follow-
ing three scenarios introduced by Lee et al. (2021):
(i) Baseline: models are trained without data aug-
mentation on D{F,train}∪D{M,train}. (ii) Upsam-
pled: D{F,train} is upsampled to have N examples
per intent. Then models are trained on upsampled
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Figure 2: Partial few-shot validation performance
for different GPT-3 models and temperatures. (a)
few-shot accuracy, (b) OOS recall of intent classifiers
trained on augmented sets, and (c) fidelity measured as
the accuracy of the oracle on the augmented sets.

D{F,train}∪D{M,train}. (iii) Augmented: models
are trained on D{F,train}∪D̃{F,train}∪D{M,train}.
For each scenario in this setup, we report the overall
in-scope classification accuracy (and OOS Recall
for CLINC150).

For both partial few-shot and full few-shot set-
tings, we report means and standard deviations over
10 repetitions of each experiment.

4 Experimental Results

Full few-shot. Table 2 shows the results of our
few-shot experiments. For CLINC150 and SNIPS,
data augmentation with GPT-3 is very effective as it
leads to respective accuracy improvements of up to
approximately 3.7% and 6% on these tasks. These
improvements are larger than what the baseline
EDA method brings, namely 2.4% and 2.9% for
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Figure 3: Full few-shot validation performance for
different GPT-J temperatures on different datasets.
(a) few-shot inscope accuracy of intent classifiers
trained on augmented sets, and (b) fidelity (oracle accu-
racy) of augmented sets generated by GPT-J with dif-
ferent temperatures.

CLINC150 and SNIPS. Importantly, using larger
GPT models for data augmentation brings signifi-
cantly bigger gains. Data augmentation results on
Banking77 and HWU64 are, however, much worse,
with no or little improvement upon the plain few-
shot baseline. We present a thorough investigation
of this behaviour in Section 4.1. One can also see
that data augmentation with GPT models lowers
the OOS recall.

Next, we observe that relabelling EDA and GPT-
generated sentences by the oracle gives a signif-
icant boost to accuracies across the board, con-
firming our hypothesis that human inspection of
generated data could be fruitful. Importantly, we
note that the magnitude of improvement for EDA
is less than for GPT models. This suggests that
GPT models generate more diverse data that can
eventually be more useful after careful human in-
spection. Lastly, relabelling also improves OOS
recall on CLINC150, which is due to the fact that
much of the generated data was labelled as OOS
by the oracle.

Partial few-shot. Table 3 shows the results of
our partial few-shot experiments on CLINC150
and SNIPS. By augmenting the dataset with GPT-

50



CLINC150 HWU64 Banking77 SNIPS

Model IA (96.93) OR (42.9) IA (92.75) IA (93.73) IA (98.57)

EDA 92.66 (0.40) 43.81 (2.03) 83.67 (0.48) 83.96 (0.66) 92.50 (1.61)
Baseline (Ours) 90.28(0.49) 50.18(1.14) 81.43 (0.57) 83.35 (0.59) 89.69 (1.63)

Augmented

Ada (Ours) 91.31 (0.34) 21.69 (1.57) 79.68 (0.83) 79.30 (0.42) 94.27 (0.52)
Babbage (Ours) 92.72 (0.33) 22.99 (2.39) 81.86 (0.78) 80.31 (0.41) 94.74 (0.67)
Curie (Ours) 93.37 (0.21) 25.85 (1.49) 82.85 (0.70) 83.50 (0.44) 94.73 (0.62)
GPT-J (Ours) 93.25 (0.19) 24.02 (1.45) 81.78 (0.56) 82.32 (0.90) 95.19 (0.61)
Davinci (Ours) 94.07 (0.18) 27.36 (1.08) 82.79 (0.93) 83.60 (0.45) 95.77 (0.86)

Augmented + Relabelled

EDA 93.43 (0.22) 48.56 (1.84) 85.58 (0.73) 84.82 (0.57) 94.91 (0.66)
Ada (Ours) 95.09 (0.16) 41.38 (1.77) 88.53 (0.61) 88.45 (0.19) 97.03 (0.18)
Babbage (Ours) 95.39 (0.17) 40.58 (1.63) 89.49 (0.32) 88.86 (0.26) 96.89 (0.49)
Curie (Ours) 95.08 (0.19) 40.09 (2.38) 89.78 (0.47) 88.30 (4.64) 96.86 (0.31)
GPT-J (Ours) 95.11 (0.13) 43.94 (1.76) 89.52 (0.54) 88.94 (0.40) 97.33 (0.38)
Davinci (Ours) 95.08 (0.13) 40.76 (1.37) 89.53 (0.45) 88.89 (0.31) 97.03 (0.38)

Table 2: Full few-shot results on CLINC150, HWU64, Banking77, and SNIPS datasets. IA: Inscope Accuracy
(mean (std)). OR: OOS-Recall (mean (std)). Towards the top of the table, we also report the test set performance
(enclosed in parentheses) when all examples are used for fine-tuning (without any augmentation.)

CLINC150 SNIPS

Overall Few-shot Overall Few-shot

Classifier IA OR A IA A

Baseline♠ T5 97.4 - 93.7 95.2 74.0
Upsampled♠ T5 97.4 - 94.4 95.9 80.0
Augmented (Ex2)♠ T5 97.4 - 95.6 97.8 94.0

Baseline (ours) BERT 96.28 (0.06) 39.14 (0.82) 91.36 (0.47) 95.47 (0.45) 78.38 (3.34)
Upsample (ours) BERT 96.20 (0.05) 40.21 (0.59) 90.93 (0.19) 95.29 (0.37) 79.28 (2.05)

Augmented (Ada) BERT 96.16 (0.05) 34.37 (0.27) 92.60 (0.15) 97.30 (0.24) 94.41 (0.72)
Augmented (Babbage) BERT 96.39 (0.06) 35.71 (0.46) 93.66 (0.21) 97.46 (0.25) 95.31 (0.74)
Augmented (Curie) BERT 96.41 (0.06) 36.77 (0.93) 93.90 (0.21) 97.37 (0.19) 94.79 (0.64)
Augmented (GPT-J) BERT 96.38 (0.05) 35.91 (0.94) 93.85 (0.25) 97.59 (0.21) 96.08 (0.39)
Augmented (Davinci) BERT 96.45 (0.03) 37.52 (0.54) 94.28 (0.24) 97.66 (0.21) 96.52 (0.35)

Table 3: Partial few-shot results on CLINC150 and SNIPS datasets. Refer to Section 3.3 for more details. IA:
Inscope accuracy (mean (std)). OR: OOS Recall (mean (std)). A: Accuracy (mean (std)). ♠ (Lee et al., 2021).

generated samples, the few-shot accuracy improves
by up to 2.92% on CLINC150 and 18.14% on
SNIPS compared to the baseline setting. Our
method achieves competitive results compared to
Ex2 (Lee et al., 2021), both in terms of absolute
accuracies and the relative gains brought by data
augmentation. Note that Ex2 uses T5-XL (Roberts
et al., 2020) with nearly 3 billion parameters as
its base intent classifier, while our method uses

BERT-large with only 340 million parameters.

4.1 Analysis

Effect of GPT sampling temperature. We inves-
tigate the impact of generation temperature on the
quality and fidelity of generated data. We perform
this investigation on the CLINC150 dataset using
the partial few-shot setup. Results in Figure 2 show
that, for all engines, the generated data leads to the
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Davinci generated sentences Seed Intent Oracle Prediction
HWU64

play a song with the word honey music_likeness play_music

you are playing music music_likeness play_music

‘let me hear some of that jazz!’ music_likeness play_music
i really like myspace music play_music music_likeness

i love the start lucky country music play_music music_likeness
thank you for the music play_music music_likeness

please play the next song music_settings play_music

play background music music_settings play_music

play the hour long loop of rock song music_settings play_music

need you to play that song one more time play_music music_settings
skip that song, its turkish play_music music_settings

pickup the beat or a temp track or audio plugin play_music music_settings
Banking77

My last attempt to top up didn’t seem to work , any success? topping_up_by_card top_up_failed
I tried to top off my wallet using my card but it says
“top up failed".

topping_up_by_card top_up_failed

I cannot top-up by my cellular phone number? How do I do
that?

topping_up_by_card top_up_failed

Can you transfer money to my Ola prepaid option? Or help
me top up my card to money . They never accept my card so I
always have to suffer

top_up_failed topping_up_by_card

Hi my app is activated on activate.co.in, but unable to top up my
phone. I tried credit card, debit card and Paytm but fails

top_up_failed topping_up_by_card

I try to top up my card but it’s not going through. It’s
still on pending status. Do I need to wait or did I do something

wrong

top_up_failed pending_top_up

I tried top-up with my card but notification
shows that ‘Pending’. This has been happening since

last night. Can you tell me what’s going on

top_up_failed pending_top_up

Top up didn’t go through. pending_top_up top_up_failed

Did my master card top-up fail? pending_top_up top_up_failed

Table 4: Davinci-generated sentences for closely-related intents in HWU64 and Banking77 datasets. High-
lighted sub-strings indicate a difference with respect to the seed intent.

highest classification accuracy when the generation
temperature is around 1.0, although lower tempera-
tures result in higher OOS recall. We also observe
that the fidelity of the generated samples decreases
as we increase the temperature (i.e. higher diversity,
see Figure 2c). This suggests that higher fidelity
does not always imply better quality samples as the
language model may simply copy or produce less
diverse utterances at lower temperatures. In Ap-
pendix A, we perform a human evaluation, reach-
ing similar conclusions as when using an oracle to
approximate fidelity.

Fidelity on different datasets. Our results in Sec-
tion 4 show that data augmentation gains are much
higher on CLINC150 and SNIPS than on HWU64
and Banking77. To contextualize these results, we
report the fidelity of GPT-J-generated data for all

these tasks in Figure 3b. Across all generation tem-
peratures, the fidelity of the generated data is higher
for CLINC150 and SNIPS than for HWU64 and
Banking77. For all datasets, the fidelity is higher
when the generation temperature is lower; however,
Figure 3a shows that low-temperature data also
does improve the model’s performance.

Data generation for close intents. To better
understand the lower fidelity and accuracy on
HWU64 and Banking77 datasets, we focus on in-
tents with the lowest fidelities. Here, by intent
fidelity, we mean the percentage of the intent’s gen-
erated data that the oracle classified as indeed be-
longing to the seed intent. In the Banking77 dataset,
the lowest-fidelity intent is “topping_up_by_card.”
For this intent, only 33% of the Davinci-generated
sentences were labelled as “topping_up_by_card”
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Fidelity (3 intents) HWU64 Banking77

w/o filtering (468) 60.26 57.31
w/ filtering (371) 72.51 65.54

3-way accuracy

Davinci 86.36 78.75
10-shot BERT-large 82.95 65.54
Full data BERT-large 94.32 95.00

Table 5: The impact and the accuracy of using GPT-3 as
a 3-way classifier on close intent triplets from HWU64
and Banking77 datasets. For fidelity, generated exam-
ples are rejected if the GPT-3 classifier labels them as
not belonging to the seed intent. Classification accu-
racies are reported on the reduced validation+test sets
where we only consider examples from the three con-
founding intents.

Banking77

topping_up_by_card
top_up_failed
top_up_by_card_charge
remaining

HWU64

music_likeness
play_music
general_quirky
remaining

Figure 4: Distribution of labels as predicted by the
oracle for lowest-fidelity intents in Banking77 and
HWU64 datasets (“topping_up_by_card" and “mu-
sic_likeness," respectively). Green areas denote the
portion of generated sentences deemed fit by the ora-
cle for the lowest-fidelity intents in the two datasets.
Red and Blue areas respectively correspond to the most
common and the second most common alternative in-
tent predicted by the oracle.

by the oracle, implying that two-thirds of the
sentences did not fit that intent, “top_up_failed"
and “top_up_card_charge" being the two most
common alternatives chosen by the oracle. Simi-
larly, only 50% of the Davinci-generated sentences

abide by the lowest-fidelity “music_likeness" in-
tent in the HWU64 dataset, “play_music” and
“general_quirky" being the most common intents
among the “unfaithful" sentences. Figure 4 visu-
alizes this high percentage of unfaithful generated
sentences. It also shows the proportion of the two
most common alternatives that the oracle preferred
over the seed intent. Table 4 presents generated
sentences for confounding intents in the HWU64
and Banking77 datasets. There are clear indica-
tions of mix-up of intents, e.g., Davinci generates,
“play a song with the word honey," which should be-
long to “play_music" rather than “music_likeness."
There are also instances where the LM mixes two
intents; for instance, Davinci generates “Hi my
app is activated on activate.co.in, but unable to
top up my phone. I tried credit card, debit card
and Paytm but fails," which could belong to ei-
ther “topping_up_by_card" intent (as it mentions
about using credit card in the context of a top up)
or “top_up_failed" (as the top up ultimately fails).

4.2 Can GPT Models Understand Close
Intents?

We perform extra investigations to better under-
stand what limits GPT-3’s ability to generate data
accurately. We hypothesize that one limiting factor
can be GPT-3’s inability to understand fine-grained
differences in the meanings of utterances. To verify
this hypothesis, we evaluate how accurate GPT-3 is
at classifying given utterances as opposed to gener-
ating new ones. Due to the limited prompt size of
2048 tokens, we can not prompt GPT-3 to predict
all the intents in the considered datasets. We thus
focus on the close intent triplets from HWU64 and
Banking77 datasets that we use in Table 4. We
compare the 3-way accuracy of a prompted GPT-3
classifier to the similarly-measured 3-way perfor-
mance of conventional BERT-large classifiers. We
prompt GPT-3 with 10 examples per intent (see
Figure 5). For comparison, we train BERT-large
classifiers on either the same 10 examples or the
full training set. Table 5 shows that the Davinci ver-
sion of GPT-3 performs in between the 10-shot and
the full-data conventional classifiers. This suggests
that while GPT-3’s understanding of nuanced intent
differences is imperfect, it could still be sufficient
to improve the performance of the downstream
few-shot model. Inspired by this finding, we exper-
iment with using GPT-3’s classification abilities to
improve the quality of generated data. Namely, we
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reject the generated utterances that GPT-3 classi-
fies as not belonging to the seed intent. For both
HWU64 and Banking77, this filtering method sig-
nificantly improves the fidelity of the generated
data for the chosen close intent triplets.

4.3 Comparison with GPT3Mix

To test our initial hypothesis that prior methods
such as GPT3Mix are not suitable for intent clas-
sification, we experiment with the said method on
the CLINC150 dataset using Curie. Specifically,
we include an enumeration of the 150 intent names
in the prompt and randomly select one example for
K intents. We observe a poor in-scope accuracy of
86.33% in the Augmented scenario6. Furthermore,
the generated samples have low fidelity (27.96%).
We also test a mixture of GPT3Mix prompt and
our prompt where we include all the K examples
for the seed intent instead of 1 example per K ran-
domly sampled intents. This mixed variant also
performs poorly on CLINC150 and only achieves
an in-scope accuracy of 86.05%7 and a fidelity
of 33.56%. Our interpretation of this result is that
GPT cannot handle the long list of 150 intent names
in the prompt.

5 Related Work

The natural language processing literature features
diverse data augmentation methods. Edit-based
methods such as Easy Data Augmentation apply
rule-based changes to the original utterances to
produce new ones (Wei and Zou, 2019). In back-
translation methods (Sennrich et al., 2016) avail-
able examples are translated to another language
and back. Recently, data augmentation with fine-
tuned LMs has become the dominant paradigm
(Wu et al., 2018; Kumar et al., 2019, 2021; Anaby-
Tavor et al., 2020; Lee et al., 2021). Our simpler
method sidesteps LM-fine-tuning and directly uses
off-she-shelf LMs as is.

The data augmentation approach that is closest
to the one we use here is GPT3Mix by Yoo et al.
(2021). A key part of the GPT3Mix prompt is a
list of names of all possible classes (e.g. “The
sentiment is one of ‘positive’ or ‘negative”’). The
LM is then expected to pick a random class from
the list and generate a new example as well as the
corresponding label. However, this approach does
not scale to intent classification setups, which often

6Average of 10 runs with a standard deviation of 1.17
7Average of 10 runs with a standard deviation of 0.59

Input Prompt:

Each example in the following list contains
a sentence that belongs to a category. A
category is one of the following:
music_likeness, play_music, music_settings: 

sentence: next i want to hear shinedown ; 
category: play_music
sentence: i am the living blues ; 
category: music_likeness 
sentence: open music player settings ; 
category: music_settings
sentence: play hopsin from my latest 
playlist ; category: play_music 
sentence: i like this song ; 
category: 

GPT-3 Predictions: 

play_music,music_likeness,music_settings, 
music_likeness,music_likeness,help_command

Figure 5: Using GPT-3 as a classifier. Given a triplet
of close intents, we mix and shuffle the multiple seed
examples available for each of them. Then, we append
an incomplete line to the prompt with just the generated
sentence and feed it to GPT-3 multiple times. Among
the responses, we choose the most generated in-triplet
intent as the predicted intent (“music_likeness" in the
above example). Note: For brevity, we don’t show all
the seed examples and predictions.

feature hundreds of intents (see Section 4.3). There-
fore, we choose a different prompt that encourages
the model to extrapolate between examples of a
seed intent similarly to (Lee et al., 2021).

Other work on few-shot intent classification ex-
plores fine-tuning dialogue-specific LMs as clas-
sifiers as well as using similarity-based classi-
fiers instead of MLP-based ones on top of BERT
(Vulić et al., 2021). We believe that improvements
brought by data augmentation would be comple-
mentary to the gains brought by these methods.

Lastly, our method to filter out unfaithful GPT
generations is related to the recent work by Wang
et al. (2021) that proposes using GPT3 for data
labelling. A crucial difference with respect to our
work, however, is that we use GPT-3 for rejecting
mislabelled samples rather than proposing labels
for unlabelled samples.

6 Conclusion

We propose a prompt-based method to generate
intent classification data with large pretrained lan-
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guage models. Our experiments show that gener-
ated data can be helpful as additional labelled data
for some tasks, whereas, for other tasks, the gen-
erated data needs to be either relabelled or filtered
to be helpful. We show that a filtering method that
recasts the same GPT model as a classifier can be
effective. Our filtering method, however, requires
knowing the other intents that the generated data is
likely to belong to instead of the seed intent. Future
work can experiment with heuristics for approxi-
mately identifying the most likely actual intents
for the generated utterances. This would complete
a data generation and filtering pipeline that, ac-
cording to our preliminary results in Section 4.2
here, could be effective. Other filtering methods
could also be applied, such as looking at the like-
lihood of the generated utterances as explored in
a concurrent work by Meng et al. (2022). Lastly,
an interesting future work direction is identifying
which generated utterances most likely need a hu-
man inspection.

7 Ethical Considerations

As discussed for the GPT3Mix method in Yoo
et al. (2021), using large language models for data
augmentation presents several challenges: they ex-
hibit social biases and are prone to generating toxic
content. Therefore, samples generated using our
prompting-based approach need to be considered
carefully.

To address such ethical concerns, human inspec-
tion would be the most reliable way to identify
and filter out problematic generations. The prac-
titoners who apply our method may also consider
debiasing the language model before using it for
generation (Schick and Schütze, 2021).
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Ivan Vulić, Pei-Hao Su, Samuel Coope, Daniela Gerz,
Paweł Budzianowski, Iñigo Casanueva, Nikola
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Appendix

A Human Evaluation

In Figure 2 we evaluate the fidelity of the samples
generated by GPT-3 with respect to the original
set of sentences used to prompt it. Fidelity is ap-
proximated by the classification performance of
an "oracle" intent classifier trained on the whole
dataset (Dtrain∪Dtest) and evaluated over the gen-
erated samples. In order assess whether the oracle
predictions are comparable to those of a human, we
perform a human evaluation study.
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Figure 6: Human evaluation. Error rate of human
evaluators at the task of finding whether any sentence
in a group of 5 was generated by GPT-3 or not. Each
color represents a different GPT-3 engine. Higher error
rate indicates that humans could not correctly identify
generated samples and thus it also indicates higher fi-
delity. The standard error is displayed as a vertical line
on top of each bar.

Figure 7: Human evaluation tool. Example of a ques-
tion for the human evaluators. Human evaluators are
asked to flag which example is GPT-3 generated if any
among the 5 presented ones.

We consider that a model produces sentences
with high fidelity if a human is unable to distinguish
them from a set of human-generated sentences be-

longing to the same intent. Therefore, for each
intent in the CLINC150 dataset, we sample five ran-
dom examples and we randomly choose whether to
replace one of them by a GPT-3 generated sentence
from the same intent. We generate sentences with
each of the four GPT-3 models considered in the
main text with two different temperatures (0.8 and
1.0). The sentence to replace is randomly selected.
Finally, the five sentences are displayed to a hu-
man who has to choose which of the sentences is
generated by GPT-3, if any.

The task is presented to human evaluators in
the form of a web application (see Figure 7). We
placed a button next to each sentence in order to
force human evaluators to individually consider
each of the examples. Once annotated, the evalua-
tor can either submit, discard, or leave the task to
label later. We used a set of 15 voluntary evalua-
tors from multiple backgrounds, nationalities, and
genders. Each evaluator annotated an average of 35
examples, reaching a total of 500 evaluated tasks.

For each model and temperature, we report the
error rate of humans evaluating whether a task con-
tains a GPT-generated sample. We consider that
evaluators succeeds at a given task when they cor-
rectly find the sentence that was generated by GPT
or when they identify that none of them was gener-
ated. Thus, the error rate for a given model and tem-
perature is calculated as #failed / total_evaluated.

Results are displayed in Figure 6. We find that
human evaluators tend to make more mistakes
when the temperature used to sample sentences
from GPT-3 is smaller. This result is expected since
lowering the temperature results in sentences closer
to those prompted to GPT-3, which are human-
made. We also observe that models with higher ca-
pacity such as Davinci tend to generate more in-
distinguishable sentences than lower-capacity mod-
els such as Ada, even for higher temperatures.
These results are in agreement with the "oracle"
fidelity results introduced in Figure 2.
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Abstract

Personal attributes represent structured infor-
mation about a person, such as their hobbies,
pets, family, likes and dislikes. We introduce
the tasks of extracting and inferring personal
attributes from human-human dialogue, and
analyze the linguistic demands of these tasks.
To meet these challenges, we introduce a sim-
ple and extensible model that combines an
autoregressive language model utilizing con-
strained attribute generation with a discrimina-
tive reranker. Our model outperforms strong
baselines on extracting personal attributes as
well as inferring personal attributes that are not
contained verbatim in utterances and instead
requires commonsense reasoning and lexical
inferences, which occur frequently in every-
day conversation. Finally, we demonstrate the
benefit of incorporating personal attributes in
social chit-chat and task-oriented dialogue set-
tings.

1 Introduction

Personal attributes are structured information about
a person, such as what they like, what they have,
and what their favorite things are. These attributes
are commonly revealed either explicitly or implic-
itly during social dialogue as shown in Figure 1,
allowing people to know more about one another.
These personal attributes, represented in the form
of knowledge graph triples (e.g. I, has_hobby, vol-
unteer), can represent large numbers of personal
attributes in an interpretable manner, facilitating
their usage by weakly-coupled downstream dia-
logue tasks (Li et al., 2014; Qian et al., 2018; Zheng
et al., 2020a,b; Hogan et al., 2021).

One such task is to ground open-domain chit-
chat dialogue agents to minimize inconsistencies
in their language use (e.g., I like cabbage →(next
turn) →Cabbage is disgusting) and make them
engaging to talk with (Li et al., 2016; Zhang et al.,
2018; Mazaré et al., 2018; Qian et al., 2018; Zheng
et al., 2020a,b; Li et al., 2020; Majumder et al.,

Figure 1: Overview of obtaining personal attribute
triple from utterances using our model GenRe. At-
tribute values are contained within the utterance in the
EXTRACTION task, but not the INFERENCE task.

2020). Thus far, personalization in chit-chat has
made use of dense embeddings and natural lan-
guage sentences. While KG triples have been
shown to be capable of grounding Natural Lan-
guage Generation (Moon et al., 2019; Koncel-
Kedziorski et al., 2019), they have yet to be used
to personalize chit-chat dialogue agents.

Personal attributes can also help task-oriented
dialogue agents to provide personalized recommen-
dations (Mo et al., 2017; Joshi et al., 2017; Luo
et al., 2019; Lu et al., 2019; Pei et al., 2021). Such
personalized recommendations have only been at-
tempted for single-domain tasks with a small set of
one-hot features (< 30). Personalization across a
wide range of tasks (recommending food, movies
and music by multi-task dialogue agents such as
Alexa, Siri and Assistant) however can require or-
ders of magnitude more personal attribute features.
This makes KG triples ideal for representing them,
given the advantages of this data structure for mod-
els to select and utilize pertinent features (Li et al.,
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2014; Hogan et al., 2021).
Based on these advantages, we investigate how

personal attributes can be predicted from dialogue.
An important bottleneck for this step lies in the poor
coverage of relevant personal attributes in existing
labeled datasets. Therefore, we introduce two new
tasks for identifying personal attributes in Section
2. As shown in Figure 1, the EXTRACTION task
requires determining which phrase in an utterance
indicate a personal attribute, while the INFERENCE

task adds further challenge by requiring models
to predict personal attributes that are not explic-
itly stated verbatim in utterances. This is common
in conversational settings, where people express
personal attributes using a variety of semantically
related words or imply them using commonsense
reasoning. We analyze how these factors allow
personal attributes to be linked to utterances that
express them.

To tackle these tasks, we propose a simple yet ex-
tensible model, GenRe, in Section 3. GenRe com-
bines a constrained attribute generation model (that
is flexible to accommodate attributes not found ver-
batim in utterances) with a discriminative reranker
(that can contrast between highly similar candi-
dates). Our experiments in Section 4 suggest that
such design allows our model to outperform strong
baseline models on both the EXTRACTION and
INFERENCE tasks. Subsequently in Section 5, de-
tailed ablation studies demonstrate the value of our
model components while further analysis identifies
future areas for improvement.

Finally in Section 6, we show how personal at-
tributes in the form of KG triples can improve the
personalization of open-domain social chit-chat
agents as well as task-oriented dialogue agents.
In the former case, personal attributes can be uti-
lized to improve chat-bot consistency on the Per-
sonaChat task (Zhang et al., 2018). In the latter
case, we suggest how our personal attributes can
support personalization in multi-task, task-oriented
dialogue settings.

2 Personal Attribute Tasks

Based on the usefulness of personal attributes for
dialogue personalization, we propose the task of
obtaining personal attributes from natural language
sentences. We first explain how we formulate two
complementary tasks from DialogNLI data and
then formally define our tasks. Finally, we ana-
lyze the task datasets to gather insights into the

linguistic phenomena that our tasks involve.

2.1 Source of Personal Attributes
DialogNLI (Welleck et al., 2019) contains samples
of PersonaChat utterances (Zhang et al., 2018) in
English, each paired with a manually annotated
personal attribute triple. Each triple consists of
a head entity, a relation, and a tail entity. These
triples were initially annotated to identify entail-
ing, contradicting and neutral statements within
the PersonaChat corpus. For instance, a statement
labelled with (I, [favorite_color], blue) will con-
tradict with another statement labelled with (I, [fa-
vorite_color], green). The three largest groups of
relations are: a. has_X (where X = hobby, vehi-
cle, pet) b. favourite_Y (where Y = activity, color,
music) c. like_Z (where Z = read, drink, movie).

2.2 Extraction and Inference Tasks
By re-purposing the DialogNLI dataset, our tasks
seek to extract these personal attribute triples from
their paired utterances. We first used a script that
obtains pairs of personal triples and utterances.
Next, we combined relations with similar mean-
ings such as like_food and favourite_food and re-
moved under-specified relations such as favourite,
have and others. Finally, we removed invalid sam-
ples with triples containing None or <blank> and
removed prefix numbers of tail entities (e.g. 11
dogs), since the quantity is not important for our
investigation.

We formulate two tasks by partitioning the Di-
alogNLI dataset into two non-overlapping subsets.
Here, each sample refers to a sentence paired with
an annotated triple. Train/dev/test splits follow Di-
alogNLI, with descriptive statistics shown in Table
1. The dataset for the EXTRACTION task contains
samples in which both the head and tail entities are
spans inside the paired sentence. An example is (I,
[has_profession], receptionist) from the sentence
“I work as a receptionist in my day job”. We for-
mulate the EXTRACTION task in a similar way to
existing Relation Extraction tasks such as ACE05
(Wadden et al., 2019) and NYT24 (Nayak and Ng,
2020). This allows us to apply modeling lessons
learned from Relation Extraction.

The complementary set is the dataset for the IN-
FERENCE task, for which the head entity and/or
the tail entity cannot be found as spans within the
paired sentence. This is important in real-world
conversations because people do not always ex-
press their personal attributes explicitly and instead
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EXTRACTION INFERENCE

Samples
train 22911 25328
dev. 2676 2658
test 2746 2452

Unique elements
head entities 88 109
relations 39 39
tail entities 2381 2522

Avg. words
head entities 1.03 1.08
relations 1.00 1.00
tail entities 1.20 1.28
sentences 12.9 12.2

Table 1: Statistics of the dataset for the two tasks.

use paraphrasing and commonsense reasoning to
do so. An example of a paraphrased triple is (I,
[physical_attribute], tall) from the sentence “I am
in the 99th height percentile”, while one based on
commonsense reasoning is (I, [want_job], umpire)
from the sentence “my ultimate goal would be call-
ing a ball game”.

The INFERENCE task is posed as a challeng-
ing version of the EXTRACTION task that tests
models’ ability to identify pertinent information
in sentences and then make commonsense infer-
ences/paraphrases based on such information. An
existing task has sought to predict personal at-
tributes that are not always explicitly found within
sentences (Wu et al., 2019). However, it did not
distinguish between personal attributes that can be
explicitly found within sentences (i.e. EXTRAC-
TION) from those that cannot (i.e. INFERENCE) .
We believe that, given that the inherent difficulty of
identifying the two types of personal attributes are
greatly different, it is helpful to pose them as two
separate tasks. In this way, the research commu-
nity can first aim for an adequate performance on
the simpler task before applying lessons to make
progress at the more challenging task. This is also
the first time that personal attributes that are not
explicitly contained in sentences are shown to be
derivable from words in the sentence using com-
monsense/lexical inferences.

2.3 Formal Task Definition
Given a sentence S, we want to obtain a personal-
attribute triple in the form of (head entity,

Figure 2: Bar plot for 10 most common dependency
role labels of tail entities within sentences

relation, tail entity). The relation
must belong to a set of 39 predefined relations.
In the EXTRACTION subset, the head entity and
tail entity are spans within S. Conversely, in the
INFERENCE subset, the head entity and/or the tail
entity cannot be found as spans within S.

2.4 Dataset Analysis
We analyze the datasets to obtain insights into how
the tasks can be approached. Because the majority
of head entities (93.3%) are simply the word “I”,
our analysis will focus on tail entities.

Dataset for the EXTRACTION task We use de-
pendency parses of sentences to understand the
relationship between words within tail entities and
the sentence ROOT. Dependency parsing was cho-
sen because it is a well-studied syntactic task (Nivre
et al., 2016) and previously used for the relation
extraction task (Zhang et al., 2017). Dependency
parses and labels associated with each dependent
word were identified using a pre-trained trans-
former model from spaCy.1 The parser was trained
on data annotated with the ClearNLP dependency
schema that is similar to Universal Dependencies
(Nivre et al., 2016).2

As shown in Figure 2, objects of prepositions
(pobj) and direct objects (dobj) each comprise
17.5% of tail entities, followed by compound words
(compound), attributes (attr) and adjectival com-
plements (acomp), plus 138 other long-tail labels.
The range of grammatical roles as well as the fact
that one third of tail entities do not involve nouns

1https://spacy.io/
2https://github.com/clir/clearnlp-

guidelines/blob/master/md/specifications/dependency_labels.md
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Transformation Example %
(sentence→tail entity)

ConceptNet_related mother →female 71.3
ConceptNet_connect wife →married 56.8
WordNet_synonym outside →outdoors 39.5
WordNet_hypernym drum →instrument 5.04
WordNet_hyponym felines →cats 4.17
Same_stem swimming →swim 43.3

Table 2: Proportion (%) of tail entities that can be re-
lated to sentence words after applying each transforma-
tion.

(see Figure in Section A.2) also suggest that the
tail entities in our dataset go beyond proper nouns,
which are what many Relation Extraction datasets
(e.g., ACE05 and NYT24) are mainly concerned
with. Such diversity in grammatical roles played by
tail entities means that approaches based on rule-
based extraction, parsing or named entity recog-
nition alone are unlikely to be successful in the
EXTRACTION task.

Dataset for the INFERENCE task A qualitative
inspection of the dataset showed that inferences can
be made on the basis of semantically-related words
and commonsense inferences, as shown in exam-
ples discussed in Section 2.2. To better understand
how tail entities can be inferred from the sentence
in the INFERENCE subset, we analyze the relation-
ship between words in the tail entity and words
in the sentence. 79.2% of tail entities cannot be
directly identified in the sentence. We performed
a few transformations to identify potential links
between the tail entity and the sentence. Concept-
Net_connect refers to words with highest-weighted
edges on ConceptNet to sentence words while Con-
ceptNet_related refers to words that have closest
embedding distances to sentence words. Details of
their preparation are in Appendix A.3. As in Table
2, our analysis shows that a model that can perform
well on the INFERENCE task requiring both Word-
Net semantic knowledge (Fellbaum, 1998) as well
as ConceptNet commonsense knowledge (Speer
et al., 2017).

3 GenRe

This section proposes GenRe, a model that uses a
unified architecture for both the EXTRACTION and
the INFERENCE tasks. We use a simple and exten-
sible generator-reranker framework to address the

needs of the two tasks. On one hand, a generative
model is necessary because head and/or tail entities
cannot be directly extracted from the sentence for
the INFERENCE dataset. On the other hand, prelim-
inary experiments using a Generator in isolation
showed that a large proportion of correct triples
are among the top-k - but not top-1 - outputs. A
Reranker can be used to select the most likely triple
among the top-k candidate triples, leading to a large
improvement in performance (see Table 4).

3.1 Generator

We use an autoregressive language model (GPT-2
small) as our Generator because its extensive pre-
training is useful in generating syntactically and
semantically coherent entities. The small model
was chosen to keep model size similar to baselines.
We finetune this model to predict a personal at-
tribute triple occurring in a given input sentence.
Specifically, we treat the flattened triples as targets
to be predicted using the original sentence as con-
text. The triple is formatted with control tokens to
distinguish the head entity, relation, and tail entity
as follows:
y = [HEAD], thead1:m , [RELN], treln, [TAIL], ttail1:k

where {[HEAD],[RELN], [TAIL]} are control to-
kens, thead1:m is the head entity (a sequence of length
m), treln is a relation, and ttail1:k is the tail entity.

During evaluation, we are given a sentence as
context and seek to generate a personal attribute
triple in the flattened format as above. To reduce
the search space, we adopt a constrained genera-
tion approach. Specifically, after the [RELN] to-
ken, only one of 39 predefined relations can be
generated, and so the output probability of all other
tokens is set to 0. After the [TAIL] token, all output
tokens not appearing in the input sentence will have
zeroed probabilities in the EXTRACTION task. Con-
versely for the INFERENCE task, the only allowed
output tokens after the [TAIL] token are those
which have appeared following the predicted re-
lation in the training data. For example, tail entities
that can be generated with a [physical_attribute] re-
lation include “short”, “skinny” or “wears glasses”,
as these examples occur in the training data. We
imposed this restriction to prevent the model from
hallucinating attributes that are not associated to
the predicted relation (such as “dog” with [physi-
cal_attribute]). Despite limiting the model’s ability
to generate novel but compatible tail entities (and
thereby upper-bounding maximum possible recall
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to 75.7%), this approach helped to improve model
performance overall. Implementation details are in
Appendix A.4.

3.2 Reranker

We use BERT-base as the Reranker because its bi-
directionality allows tail tokens to influence the
choice of relation tokens. Furthermore, BERT has
demonstrated the best commonsense understanding
among pre-trained language models (Petroni et al.,
2019; Zhou et al., 2020). These benefits have led
to many relation extraction models using BERT as
part of the pipeline (Wadden et al., 2019; Yu et al.,
2020; Ye et al., 2021).

For each S, we obtain the L most likely se-
quences using the Generator, including the con-
text sentence. Each sequence is labelled as correct
or incorrect based on whether the predicted triple
(head entity, relation, tail entity) matches exactly
the ground-truth triple. Incorrect sequences serve
as challenging negative samples for the Reranker
because they are extremely similar to the correct se-
quence since they were generated together. We fine-
tune a BERT model with a binary cross-entropy
loss function to classify whether sequences are cor-
rect. During inference, we select the sequence with
the highest likelihood of being correct as our pre-
dicted sequence. We set L to 10 in all experiments.
Implementation details are in Appendix A.5.

4 Experiments

We first explain the metrics used in the experiments.
Next, we introduce the baseline models. Finally,
we examine how GenRe compares to baseline mod-
els to understand its advantages.

4.1 Metrics

Micro-averaged Precision/Recall/F1 were calcu-
lated following Nayak and Ng (2020), in which a
sample is considered correct only when all three
elements (head_entity, relation and tail entity) are
resolved correctly. We chose these metrics because
we are interested in the proportion of all predicted
personal attributes that have been correctly iden-
tified (precision) and of all ground truth personal
attributes (recall). F1 is considered as an aggregate
metric for precision and recall.

4.2 Baseline Models

Generative models can be used for both the EX-
TRACTION and the INFERENCE tasks.

WDec is an encoder-decoder model that
achieved state-of-the-art performance in the
NYT24 and NYT29 tasks (Nayak and Ng, 2020).
The encoder is a Bi-LSTM, while the decoder is
an LSTM with attention over encoder states. An
optional copy mechanism can be used: when used,
the decoder will only generate tokens found in the
original sentence. The copy mechanism was used
on the EXTRACTION dataset but not on the INFER-
ENCE dataset (given their better empirical perfor-
mance).

GPT2 is an autoregressive language model that
we build GenRe on. We use the same configuration
as in GenRe.

Extractive models can be used only for the EX-
TRACTION task, because they select for head and
tail entities from the original sentence.

DyGIE++ is a RoBERTa-based model that
achieved state-of-the-art performance in multiple
relation extraction tasks including ACE05 (Wad-
den et al., 2019). It first extracts spans within the
original sentence as head and tail entities. Then,
it pairs up these entities with a relation and passes
them through a graph neural network, with the head
and tail entities as the nodes, and relations as the
edges. This allows information flow between re-
lated entities before passing the triple through a
classifier.

PNDec is an Encoder-Decoder model that
achieved close to SOTA performance in NYT24
and NYT29 (Nayak and Ng, 2020). It uses the
same encoder as WDec but uses a pointer network
to identify head and tail entities from the original
sentence, which it pairs with possible relation to-
kens to form a triple that is subsequently classified.

All baseline models were trained on our datasets
using their suggested hyper-parameters.

4.3 Model Results

The top-performing baseline models on the EX-
TRACTION dataset are the extractive models, which
select spans within the sentence and classify
whether an entire triple is likely to be correct. Be-
cause there are only a small number of spans within
the sentence, this approach can effectively limit its
search space. On the other hand, extractive models
cannot solve the INFERENCE task, because the un-
derlying assumption that head and tail entities must
be found within the sentence does not hold. Con-
versely, generative models perform more poorly on
the Extraction task but are capable on the INFER-
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EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
Generative
WDec 57.0 49.0 52.7 33.6 34.7 34.1
GPT2 50.9 31.1 38.6 31.3 17.3 22.3
Extractive
DyGIE++ 60.8 50.9 55.3
PNDec 63.1 49.5 55.5

Table 3: Performance on the test set. GenRe has signif-
icantly higher mean F1 than all baseline models with 5
runs based on a two-tailed t-test (p < 0.05).

ENCE task. This is because generation happens in
a left-to-right manner, meaning that some elements
of the triple have to be generated without know-
ing what the other elements are. Our approach
of linking a Generative model with a BERT-base
Reranker (akin to models used by Extractive ap-
proaches) combines the best of both worlds. Not
only does it perform well on the Extraction task (≥
3.7 F1 points over baselines), it also excels on the
Inference task (≥ 5.1 F1 points over baselines).

5 Analysis

We first conduct an ablation study to better under-
stand the contribution of constrained generation
and the Reranker, by measuring the performance
of our model when each component is removed.
Then, we seek to understand how errors are made
on predicted personal attribute relations to identify
future areas of improvement.

5.1 Ablation Study

Table 4 shows that both the Reranker and con-
strained generation contribute to the performance
of GenRe. In particular, the constrained generation
plays a larger role on the EXTRACTION dataset
while the Reranker plays a greater role on the IN-
FERENCE dataset.

Constrained generation has a large impact on
the EXTRACTION dataset (+13.0% F1), likely be-
cause it very much restricts the generation search
space to spans from the context sentence. On the
INFERENCE dataset, the original search space can-
not be effectively limited to tokens in the context
sentence. Therefore, applying the heuristic that
only tail entities associated with a particular rela-
tion (in the training set) can be decoded is useful,
even though it upper bounds maximum recall to

EXTRACTION INFERENCE

P R F1 P R F1

GenRe 68.0 52.4 59.2 46.5 35.4 39.2
- Constr. Gen 53.5 40.7 46.2 37.2 27.1 31.4
- Reranker 67.6 41.0 51.0 31.0 22.3 25.9

Table 4: Ablation study for Reranker and constrained
generation.

75.7%, which is much higher than the achieved
35.4%. Compared to the EXTRACTION dataset, the
improvement on the INFERENCE dataset is smaller
(+7.8% F1), since the range of tail entities that can
be decoded after imposing the constraint is greater.

The Reranker is needed because, many times,
the correct triple can be generated by the Genera-
tor but might not be the triple that is predicted to
have the highest likelihood. The maximum possi-
ble recall on the EXTRACTION and INFERENCE

tasks increases from 41.0% to 59.9% and 22.3%
to 41.0% respectively when considering top-10 in-
stead of only top-1 generated candidate. While the
achieved recall (52.4% and 35.4% respectively) are
still a distance from the maximum possible recall,
the achieved recall is much higher than using the
Generator alone.

5.2 Misclassification of Relations

Major sources of error on the EXTRACTION dataset
came from relation tokens that have close se-
mantic meanings. They either were related to
one another (e.g., [has_profession] vs [want_job])
or could be correlated with one another (e.g.,
[like_animal] vs [have_pet] or [like_music] vs [fa-
vorite_music_artist]) , as illustrated in Table 5.
Such errors likely arose due to the way that the
DialogNLI dataset (Welleck et al., 2019) was anno-
tated. Specifically, annotators were asked to label a
single possible triple given a sentence instead of all
applicable triples. Because of this, our evaluation
metrics are likely to over-penalize models when
they generate reasonable triples that did not match
the ground truth. Future work can avoid this prob-
lem by labelling all possible triples and framing the
task as multilabel learning.

6 Applications of Personal Attributes

Personal attributes can make social chit-chat agents
more consistent and engaging as well as enable
task-oriented agents to make personalized recom-
mendations. In this section, we use personal at-
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Top 3 Most Frequent (n)
Dataset True Relation (n) P R F1 Predicted Relations True Tail Entities Predicted Tail Entities

EXTRACTION [has_profession] (274) 83.8 62.0 71.3 [has_profession] (189) teacher (29) nurse (27)
[employed_by_general] (30) nurse (28) real estate (25)
[want_job] (17) real estate agent (25) teacher (19)

[have_pet] (149) 97.3 55.0 70.3 [have_pet] (88) dog (55) cat (32)
[have_family] (18) cat (45) pets (23)
[like_animal] (12) pets (22) dog (18)

INFERENCE [like_food] (77) 46.7 41.6 44.0 [like_food] (62) pizza (18) pizza (19)
[like_activity] (5) onion (9) italian cuisine (10)
[like_animal] (4) italian (7) onion (8)

[like_music] (71) 40.8 23.9 30.2 [like_music] (40) jazz (10) the story so far (12)
[favorite_music_artist] (9) country (9) country (8)
[like_activity] (7) rap (6) jazz (7)

Table 5: Some relations in EXTRACTION and INFERENCE datasets

tributes to improve chit-chat agent consistency and
provide information for personalizing task-oriented
dialogue agents.

6.1 Consistency in Chit-chat agents

PersonaChat (Zhang et al., 2018) was created to im-
prove the personality consistency of open-domain
chit-chat dialogue agents. PersonaChat was con-
structed by giving pairs of crowdworkers a set of
English personal attribute related sentences and
asking them to chat in a way that is congruent with
those sentences. Models were then trained to gen-
erate dialogue responses that are in line with those
expressed by crowdworkers using the provided per-
sona information as context.

Methods We fine-tune the generative version of
Blender 90M (a transformer-based model trained
on multiple related tasks) on PersonaChat, which
is currently the state-of-the-art generative model
on this task (Roller et al., 2020) and uses personal
attribute sentences to ground dialogue response
generation. Building on Blender, we prepend a
corresponding DialogNLI personal attribute before
each utterance (i.e. +Per. Attr.), in order to better
direct the model in generating a suitable response
that is consistent with the set persona. This mod-
ification is relatively minimal to demonstrate the
informativeness of personal attribute KG triples,
while keeping the model architecture and hyper-
parameter fine-tuning the same as in the original
work (details in Appendix A.1).

Metrics We follow Roller et al. (2020) and Di-
nan et al. (2019). Metrics for +Per. Attr. setting
consider both personal attributes and utterances.
Hits@1 uses the hidden states of the generated out-
put to select the most likely utterance amongst 20
candidates (the correct utterance and 19 randomly

chosen utterances from the corpus). Perplexity re-
flects the quality of the trained language model. F1
demonstrates the extent of the overlap between the
generated sequence and the ground truth sequence.

Hits@1 ↑ Perplexity ↓ F1 ↑
Blender 32.3 11.3 20.4
+ Per. Attr. 35.2* 10.4* 20.6*

Table 6: Effects of using personal attributes to augment
Blender on Personachat. Higher is better for Hits@1
and F1; lower is better for perplexity. *Significantly dif-
ferent from Blender with 5 runs based on a two-tailed
t-test (p<0.05).

Fact 1 I love cats and have two cats
Fact 2 I’ve a hat collection of over 1000 hats.
Blender My cats names are all the hats i have
+ Per. Attr. My cats are called kitties

Fact 1 I am a doctor.
Fact 2 My daughter is a child prodigy.
Blender My daughter is prodigy so she gets a lot of accidents.
+ Per. Attr. I’ve seen a lot of accidents.

Table 7: Examples of incorrect utterances generated by
Blender by mixing up two facts, which are avoided by
our Blender + Per. Attr. model

Results As shown in Table 6, including personal
attributes can improve performance on the Per-
sonaChat task. An inspection of the generated ut-
terances suggests that including personal attributes
into Blender can more effectively inform the model
which persona statement to focus on during gen-
eration. This can prevent Blender from including
information in irrelevant persona statements (e.g.
by mixing up facts from two unrelated persona
statements), as in Table 7.
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Dataset Domains #Unique
features

Ours Restaurants, Movies, 5583
Music, Sports,
Recreation, Shopping

Ours Restaurants only 206
Joshi et al. (2017) Restaurants 30
Mo et al. (2017) Restaurants 10
Lu et al. (2019) Shopping 7

Table 8: Domains covered by various datasets for per-
sonalizing task-oriented dialogue. #Uniques features
refers to the number of unique attribute-values (e.g. the
specific food people like) that can be used for personal-
ization.

6.2 Personalization in Task-oriented dialogue

While personalization has been incorporated into
single-task settings (Joshi et al., 2017; Mo et al.,
2017; Luo et al., 2019; Lu et al., 2019; Pei et al.,
2021), there has been no attempt for personaliza-
tion in multi-task settings. This is against the back-
ground in which multi-task dialogue is rapidly be-
coming the standard in task-oriented dialogue eval-
uation (Byrne et al., 2019; Rastogi et al., 2019;
Zang et al., 2020; Shalyminov et al., 2020). To
overcome this gap, we show how our dataset can
lay a foundational building block for personaliza-
tion in multi-task dialogue.

Methods We used several popular datasets on
multi-task task-oriented dialogue (Zang et al., 2020;
Shalyminov et al., 2020; Byrne et al., 2019; Ras-
togi et al., 2019). From each dataset, we manually
observed its tasks and categorized them into sev-
eral overarching domains, as shown in Table 8.
We then created a mapping between the various
domains and datasets available for personalizing
task-oriented dialogue (including ours). Domains
that are not supported by any dataset are omitted.

Results Compared to existing datasets in Table
8, our dataset is capable of personalizing recom-
mendations in a much larger number of domains.
These domains include restaurants and shopping,
which have been explored by existing datasets, as
well as movies, music, sports and recreation, which
have thus far been overlooked. For domains that
have been previously explored, such as restaurants,
our dataset contains a more diverse set of possi-
ble personal attribute values (e.g. the foods people
like), which can support it to personalize recom-
mendations in more realistic manners.

7 Related Work

Personal Attribute Extraction: Most work on ex-
tracting personal attributes from natural language
(Pappu and Rudnicky, 2014; Mazaré et al., 2018;
Wu et al., 2019; Tigunova et al., 2019, 2020) em-
ployed distant supervision approaches using heuris-
tics and hand-crafted templates, which have poor
recall. In contrast, we use a strong supervision ap-
proach in which triples were manually annotated.
Li et al. (2014) and Yu et al. (2020) attempted to
extract personal information from dialogue using
a strongly supervised paradigm. However, they fo-
cused on demographic attributes as well as interper-
sonal relationships, which contrast with our focus
on what people own and like. Li et al. (2014) used
SVMs to classify relations and CRFs to perform
slot filling of entities while Yu et al. (2020) used
BERT to identify relations between given entities.
Generating KG triple using Language Models:
Autoregressive language models have been applied
to a wide range of tasks involving the genera-
tion of data with similar structures as personal at-
tribute KG triples, including dialogue state tracking
(Hosseini-Asl et al., 2020) and commonsense KG
completion (Bosselut et al., 2019). The most sim-
ilar application is Alt et al. (2019), which used
the original GPT model (Radford and Narasimhan,
2018) for relation classification. Their task formu-
lation involves identifying a specific relation (out
of around 30 possible options) for two given enti-
ties. On the other hand, our tasks seek to identify
not only the relation, but also the head and tail
entities, which have potentially open vocabulary
requirements, which makes them much harder.

8 Conclusion

In conclusion, we propose the novel tasks of ex-
tracting and inferring personal attributes from dia-
logue and carefully analyze the linguistic demands
of these tasks. To meet the challenges of our tasks,
we present GenRe, a model which combines con-
strained attribute generation and re-ranking on top
of pre-trained language models. GenRe achieves
the best performance vs. established Relation Ex-
traction baselines on the Extraction task (≥ 3.7
F1 points) as well as the more challenging INFER-
ENCE task that involves lexical and commonsense
inferences (≥ 5.1 F1 points). Together, our work
contributes an important step towards realizing the
potential of personal attributes in personalization of
social chit-chat and task-oriented dialogue agents.
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A Appendix

A.1 Blender Fine-tuning Details

Finetuning hyperparameters are taken from
https://parl.ai/projects/recipes/, with the exception
of validation metric changed to Hits@1. Each fine-
tuning epoch takes 1.5 hours on a Nvidia V100
GPU. We only prepend personal attributes before
system utterances but not user utterances. Metrics
are for the validation set because test set was not
available. All experiments were conducted using
ParlAI (Miller et al., 2017).

A.2 Task Analysis Details

Figure 3: Bar plot for 10 most common POS tags of
tail entities.

A.3 Details of Transformations to Link Tail
Entity to Sentence

ConceptNet_related: All words in the tail entity
can be found in the 100 most related words to each
sentence word based on embedding distance on
ConceptNet

ConceptNet_connect: All words in the tail en-
tity can be found in the 100 words that have the
highest-weighted edge with each sentence word on
ConceptNet.

WordNet_synonym: All words in the tail entity
can be found in the synonyms of every synset of
each sentence word on WordNet.

WordNet_hypernym: All words in the tail en-
tity can be found in the hypernyms of every synset
of each sentence word on WordNet

WordNet_hyponym: All words in the tail entity
can be found in the hyponyms of every synset of
each sentence word on WordNet

Same_stem: All words in the sentence and tail
entity are stemmed using a Porter Stemmer (Porter,
1980) before searching for the tail entity in the
sentence

A.4 Generator Details
GPT-2-small was used. Additional special tokens
including the control tokens ([HEAD], [RELN],
[TAIL]) as well as relation tokens were added into
the tokenizer. Beam search decoding (beam size
= 10) was used at inference time. GPT2-small
was accessed from HuggingFace Transformers li-
brary with 125M parameters, context window 1024,
768-hidden, 768-hidden, 12-heads, dropout = 0.1.
AdamW optimizer was used with α = 7.5 ∗ 10−4

for the EXTRACTION dataset and α = 2.5 ∗ 10−3

for the INFERENCE dataset, following a uniform
search using F1 as the criterion at intervals of
{2.5, 5, 7.5, 10} ∗ 10n;−5 ≤ n ≤ −3. Learning
rate was linearly decayed (over a max epoch of 8)
with 100 warm-up steps. Each training epoch took
around 0.5 hour on an Nvidia V100 GPU with a
batch size of 16. Validation was done every 0.25
epochs during training. 5 different seeds (40-44)
were set for 5 separate runs.

A.5 Reranker Details
BERT-base-uncased was used. Additional spe-
cial tokens including the control tokens ([HEAD],
[RELN], [TAIL]) as well as relation tokens were
added into the tokenizer. BERT-base-uncased was
accessed from HuggingFace Transformers library
(with 12-layer, 768-hidden, 12-heads, 110M param-
eters, dropout = 0.1). The choice of the base model
was made to have fairness of comparison with base-
line models in terms of model size. AdamW op-
timizer was used with α = 5 ∗ 10−6, following a
uniform search using F1 as the criterion at intervals
of {2.5, 5, 7.5, 10} ∗ 10n;−6 ≤ n ≤ −3. Learn-
ing rate was linearly decayed (over a max epoch of
8) with 100 warm-up steps. Each training epoch
took around 1 hour on an Nvidia V100 GPU with
a batch size of 10.Validation was done every 0.25
epochs during training. 5 different seeds (40-44)
were set for 5 separate runs.
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Abstract

In conversational QA, models have to lever-
age information in previous turns to answer up-
coming questions. Current approaches, such
as Question Rewriting, struggle to extract rele-
vant information as the conversation unwinds.
We introduce the Common Ground (CG), an
approach to accumulate conversational infor-
mation as it emerges and select the relevant
information at every turn. We show that CG of-
fers a more efficient and human-like way to ex-
ploit conversational information compared to
existing approaches, leading to improvements
on Open Domain Conversational QA.

1 Introduction

Speakers involved in a conversation continuously
share new information, and build on it to achieve
their communicative goals. In human communica-
tion, this process takes place effortlessly. As QA
systems become conversational, efforts were made
to make them able to mimic human behaviour, and
to interpret the question at a turn in a conversa-
tion, based on the information in the previous turns.
An approach to this task is to concatenate the pre-
vious turns to the current question (Christmann
et al., 2019; Ju et al., 2019; Qu et al., 2019b). The
approach has a main shortcoming, namely, it intro-
duces a great amount of noise, since not everything
in the previous turns is relevant. An alternative
approach is Question Rewriting (QR), in which
the question is rewritten in a self-contained form
based on the previous conversational information
(Vakulenko et al., 2021a; Anantha et al., 2020). QR
selects only the relevant information in previous
turns, thus improving over concatenation. However,
as the conversation progresses and the amount of
information grows, QR models often fail to com-
press it in a rewrite. We argue that this is not only
a limitation of the models, but an intrinsic limit of
this approach, since producing informative rewrites
is often unnatural also for humans (see Section 4).

In this work, we address the shortcomings above.
Inspired by the studies of Clark (1996), we propose
a methodology to represent conversational informa-
tion as a set of propositions, named the Common
Ground (CG): At each turn, the relevant informa-
tion is distilled in one or more propositions, which
are added to the CG. As a new question comes in,
the model selects the relevant information in the
CG, and uses it to answer the question. The CG
can thus be considered as an optimized summary,
which returns the relevant information at every turn
while keeping all the information discussed so far.

We use the QReCC dataset (Anantha et al., 2020)
to test CG on the task of Open-Domain Conversa-
tional QA (ODCQA) - in which answers to ques-
tions in a conversation have to be found in a large
collection of documents - and show that it improves
over existing approaches for modelling conversa-
tional information. We show that this is due to
the fact that CG implements a more efficient and
human-like way to account for previous informa-
tion, which takes the best of existing approaches
while avoiding their shortcomings: on the one hand,
CG can access and maintain the full previous con-
versational context, but it avoids the noise issue; on
the other, it can distill relevant information, but it
is not forced to compress it in a single rewrite.

2 Common Ground

We now detail how we created a dataset for CG,
and the model we implemented to generate the CG.

2.1 Building the CG

We devise the CG as a set of propositions summa-
rizing the information in a conversation. Since no
dataset annotated for CG is available for QA, we
created it. We use QReCC (Anantha et al., 2020), a
dataset for QR consisting in a set of conversations.
For each turn in a conversation, the original ques-
tion q and its rewrite r are provided. Intuitively, the
rewrite makes explicit the entities discussed in the
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conversation. If q is self-contained, then q=r. We
define a proposition in the CG as any sequence of
words in the rewrite which are nouns, adjectives
or entities.1 For example, given q1 ‘how old is
Messi?’, the rewrite r1 is equal to q1, and CG1 is
{‘Messi’}. Given q2 ‘which position does he play?’,
r2 is ‘which position does Messi play?’ and CG2

is {‘Messi’, ‘position’}. We use this approach to
enrich each turn in QReCC with the gold CG.

Importantly, ∼70% of the conversations in
QReCC were collected by showing the speaker
the title and first sentence of a Wikipedia article
(Anantha et al., 2020). This information is often
crucial to understand a question, especially at turn
1 (e.g., title: ‘Albert Camus’, q1: ‘When was he
born?’), but, potentially, also at subsequent turns
(q2: ‘What did he write?’). We therefore collect
the relevant Wikipedia information (which we call
doc), and use it to further enrich QReCC conversa-
tions.2 Note that doc is the same at every turn in
the conversation. We refer to the union of conver-
sational and Wikipedia information as contextual
information. Finally, since QReCC only includes
train and test split, we randomly sample 20% of
the train and use it as validation set.

2.2 Predicting the CG

We introduce a model to produce the CG, which
consists of two modules: Generator and Selector.

Generator At turn tn, the Generator is trained to
generate the gold CGCGn given doc‖conv[0:n−1]‖
qn, where ‖ indicates concatenation, doc is the in-
formation from Wikipedia, conv[0:n−1] is the con-
catenation of questions and answers from turn t0 to
tn−1, and qn is the current question. We implement
the Generator using a T5-base model.3 We train
the generator using the enriched QReCC.

Selector The propositions returned by the Gener-
ator for every turn are stacked in the CG. However,
as the conversion goes on, some of the propositions
are no longer relevant. The role of the Selector is
to select only the relevant propositions in the CG.

We implement the Selector as a binary classifier.
To create the data to train the model, we use again
QReCC: given the full CG available at turn n, we
label as 1 the propositions in it that occur in the gold
answer span, 0 otherwise. The rationale behind

1Identified using Spacy: https://spacy.io/.
2The details about the enriched dataset are in Appendix A.
3The details of Generator and Selector are in Appendix B.

Figure 1: On the left, the questions from the user; on
the right, the CG generated by the Generator: high-
lighted the propositions selected by the Selector at each
turn, in grey those kept in the CG but not selected.

this approach is: an item in the CG is relevant if
it is mentioned in the answer. We train the model
on the QReCC train split. At test time, we label
the propositions in the CG, and keep only those
labelled as 1. Figure 1 shows an example of CG.

3 Experiments

The goal of accounting for contextual informa-
tion is to improve the performance on a down-
stream task. Hence, we compare CG to existing
approaches on the task of ODCQA.
Data We use again QReCC, as it meets the require-
ments of the task: it is conversational, and it allows
to experiment in an Open-Domain scenario.
Pipeline We use a retriever-reader pipeline. The
retriever returns the top n most relevant candidates
from the set of documents; these are passed to the
reader, which extracts the final answer. We use
BERTserini (Yang et al., 2019), using BM25 as
a retriever and a BERT-Large as a reader. Each
candidate returned by the retriever has a score sret;
the answer extracted from that candidate by the
reader has a score srea. The final score s for the
answer is defined as: (1− µ) · sret + µ · srea.

For the retriever, we set n to 20, and we follow
Anantha et al. (2020) in setting k1=0.82 and b=0.68.
We tune the value of µ on the validation set inde-
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pendently for each approach (see Section 3.1). We
do not finetune the reader, as we want to assess how
much the CG can directly benefit any QA model,
without the need to finetune it.

3.1 Setups

We test the pipeline’s performance when provided,
at turn n, with each of the following inputs:
original: the original question qn.
concat.: the concatenation doc ‖ convn−1 ‖ qn.4

rewrite: the rewrite rn produced with a T5-base
model. The model generates the rewrite based on
doc ‖ conv[0:n−1] ‖ qn.
summary: the concatenation summ[0:n−1] ‖ qn,
where summ[0:n−1] is the summary of doc ‖
conv[0:n−1], created with a T5-base model pre-
trained for summarization (Raffel et al., 2019).5

CG: The CG predicted using our approach, con-
catenated with the current question: CGn ‖ qn.
CG-full: The full CG generated up to turn n, i.e.,
we do not use the Selector module: CGn-full ‖ qn.

4 Results and Analysis

We show the results of our experiments in Table 1.
We measure the performance on the target task in
terms of F1, and use MRR and Recall@10/20 to
assess the performance of the retriever.6 We also
report the results obtained with gold (-g) rewrites
and CG, where the latter is defined, at turn n, as
gold CG-fulln for the retriever and gold CGn for
the reader - i.e., the best combination observed in
our experiments (see below).

As expected, approaches leveraging contextual
information improve over the original question.
Among these approaches, CG is the best: it im-
proves the performance over rewrite, and, remark-
ably, it matches the results obtained with gold
rewrites. A further improvement in F1 is observed
when using CG-full at the retriever and CG at the
reader (CG-full/CG), while using only CG-full de-
grades the performance. This shows that using the
more informative but potentially noisier CG-full
improves retrieval, but one needs to feed the filtered
information from CG to the reader to see improve-
ments in F1, as also observed by Del Tredici et al.
(2021). The different response to noise also ex-

4Note that we use convn−1, and not conv[0:n−1], due to
the max length limit of the reader of BERTserini.

5The details of the Rewrite and Summarization models are
in Appendix C.

6We use the code by QReCC authors: github.com/
apple/ml-qrecc/tree/main/utils.

Approach F1 MRR R@10 R@20

original 6.23 2.89 5.56 6.65
concat. 8.95 21.67 37.55 41.51
rewrite 12.46 13.73 24.52 28.6
summary 12.02 21.81 34.72 38.33
CG 13.41 15.66 27.67 32.09
CG-full 12.18 16.52 29.47 34.06
CG-full/CG 14.2 16.52 29.47 34.06

rewrite-g 13.42 17.16 29.07 33.26
CG-g 15.17 17.95 31.18 35.65

Table 1: Results on the QReCC test set. CG-full/CG
indicates that we used CG-full for the retriever and CG
for the reader.

plains the results of concatenation, which obtain
high performance in retrieval, but drops in F1.

CG vs. QR In Table 2, we show examples from
QR and CG. In row 1, both approaches extract the
relevant information from the previous turns - in a
conversation about physician assistants. In the next
turn (2), QR fails to expand the question and to sub-
stitute ‘about’ with the contextual information, due
to the large amount of information required (‘the
average starting salary for a physician’s assistant in
the US’). We often observe this limitation for the
QR model. This is not the case for CG, since here
the information grows incrementally, i.e., the infor-
mation from the current turn (‘the US’) is added on
top of the one already present, while non relevant
information (‘the UK’) is discarded.

In the previous case, the QR model fails to pro-
duce a rewrite; in others, this is just not possible. In
the 6th turn of a conversation about different kinds
of data network architectures (row 3), the user asks
a general question about flaw types which encom-
passes all the previous information: there is so
much information to compress, here, that not even
humans manage to do it, and the gold rewrite is the
same as the original question.7 CG sidesteps this
problem simply by making available all the pieces
of relevant information emerged in the conversa-
tion, which can be selected and exploited by the
model, without the need to produce a long natural
sentence. Note that besides being more effective,
this solution is also more human-like: Speakers do
not repeat all the contextual information as they

7We provide in Appendix D the whole conversation, plus
additional examples of (nearly) impossible rewrites.
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Original Question Question Rewriting Common Ground

1 What’s the average
starting salary in the UK?

What’s the average starting salary
for a physician assistant in the UK?

{the average starting salary,
the UK, a physician assistant }

2 What about in the US? What about in the US? {the average starting salary,
the US, a physician assistant }

3 Are flows bidirectional? Are flows bidirectional?
{data network architectures, edge switches,

bidirectional flows, FAT tree topology,
upstream packet, routes, core, aggregator}

Table 2: Examples of rewrites and CG. Predicted rewrites are in plain text, gold rewrites underlined.

make a question, but, rather, they remember the
key points of the conversation.

CG vs. Summary Summaries convey all contex-
tual information, which makes them suitable for
the retriever, but not for the reader. CG is superior
because, as said above, is an optimized summary
conditioned on the current question. In fact, when
we create the CG without considering the current
question, the model cannot identify the relevant in-
formation, and the results are comparable to those
of summary (F1=12.6). For example, for the ques-
tion ‘where did he come from?’, the CG predicted
in the normal scenario is {Rick Barry}, while, with-
out the current question, is {the ABA, free-throw
percentage, the 1968–69 season, Rick Barry}.

Conv vs. Doc We measure the performance for
the best setup (CG-full/CG) when the CG is cre-
ated considering either doc or conv: with the for-
mer, the F1 is 13.38, with the latter 13.65. The de-
crease in performance of doc and conv compared
to doc+conv indicates that considering multiple
source of information is beneficial for the over-
all performance of the model. Also, the fact that
conv yields better results than doc is expected: in
QReCC, the information from doc is mostly lever-
aged at the first turn, while the information from
conv is relevant throughout the full conversation.

5 Related Work

Approaches to modelling conversational informa-
tion have used either sparse or dense representation
(Qu et al., 2019a,b, 2020). This work focuses on
the former. In this group, concatenation was pro-
posed as an initial approach (Christmann et al.,
2019; Ju et al., 2019; Qu et al., 2019b), followed
by Question Rewriting (Elgohary et al., 2019). The
main models for QR are either generative (Vaku-
lenko et al., 2021a; Yu et al., 2020) or extractive
one (Voskarides et al., 2020) - i.e., the relevant to-

kens in the context are appended to the question.
When a single model is used for both retriever and
reader, generative model overperform extractive
ones (Vakulenko et al., 2021b); however, mixing
the two approaches further improves the perfor-
mance (Del Tredici et al., 2021). Our work is re-
lated to (Voskarides et al., 2020), as we also aim
at extracting the relevant contextual information.
However, instead of appending this information to
the question, we stack it in the CG, and enable the
model to pick the relevant information at each turn.

6 Conclusions

We introduced the Common Ground, a novel ap-
proach for leveraging contextual information. We
show that CG outperforms the main existing ap-
proaches in the ODCQA task, due to its ability to
select and maintain the relevant information in a
more effective and human-like way.

We see two main directions for future research
on CG. First, we will exploit the ability of CG
to include several kinds of information to make
it more informative. For example, to answer the
question ‘how many Covid cases today?’, a QA
system needs to be aware of the time and location
of the person asking it (Zhang and Choi, 2021).
We want to include these and other information in
the CG. Second, we want to use CG to make QA
models more transparent. Currently, virtual assis-
tants (such as Alexa, Siri and Google Assistant)
are black boxes, i.e, the user does not know which
information they extract from the input question,
and which one they leverage to provide answers.
This can make the interaction with them frustrating.
CG offers a solution to the problem, as it allows to
see what the assistant has in mind at each conversa-
tional turn. We will conduct experiments in which
the CG is shared with the user, and see how this
can make the interaction with the assistant more
engaging and successful.
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A Enriching QReCC

Approx. 78% of the conversations in QReCC are
derived from the QuAC dataset (https://quac.
ai/). In QuAC, dialogues are created by showing
to the student (i.e., the person making questions)
the title of the section of a Wikipedia page and the
first sentence of first paragraph in the page. We
retrieve this information from the QuAC dataset,
and add it to the QReCC dataset. As mentioned
in the main paper, we add the information from
Wikipedia to all the turns in a conversations. As
a results, 76.5% of the datapoints in the train split
and 71.8% of those in the test split have additional
information. We will release the code for enriching
QReCC with CG and Wikipedia information upon
publication.
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B Model for CG prediction

Generator In order to generate the
CG, we use the T5-base model avail-
able at: https://huggingface.co/
transformers/model_doc/t5.html.

We fine-tuned the model on the task of gener-
ating the CG with the following parameters: max
source length= 512; max target length= 64; val max
target length= 64; evaluation strategy= steps; num
train epochs= 5; per device train batch size= 4; per
device eval batch size= 8; eval steps= 82; seed= 42;
warmup steps= 500; eval beams= 5; learning rate=
5e-5.

Selector In order to select the rele-
vant propositions in the CG, we use the
DistilBert model available at: https:
//huggingface.co/transformers/
model_doc/distilbert.html.

We fine-tuned the model with the following
parameters: max source length= 512; evaluation
strategy= steps; num train epochs= 5; per device
train batch size= 16; per device eval batch size=
64; eval steps= 82; seed= 42; warmup steps= 0;
learning rate= 5e-5.

C Generative models for QR and
Summarization

QR model In order to generate the rewrites, we
use the same T5-base model used to implement
the Generator. We fine-tuned the model on the QR
task using the QReCC train split, with the same
parameters reported in Appendix B.

Summarization model In order to generate the
summaries, we use again the same T5-base model
used for the Generator and the QR model. In this
case, however, we do not need to fine-tuned the
model, since it was already optimized for the task:
to generate the summaries, we simply provide to
the model as input the string ‘summarize: ’ fol-
lowed by the contextual information.

D Example of conversation

We report below the full conversation up to the
question used as an example in Table 2, row 3.

q1: What are scalable data center network
architectures?
a1: DCNs need to be scalable and efficient to

connect tens or even hundreds of thousands of
servers to handle the growing demands of Cloud
computing.
q2: What are some examples of scalable data
center network architectures?
a2: 1 Three-tier DCN 2 Fat tree DCN 3 DCell
q3: Describe the characteristics of FAT tree
topology
a3: In a fat tree, branches nearer the top of the
hierarchy are fatter (thicker) than branches further
down the hierarchy. In a telecommunications
network, the branches are data links; the varied
thickness (bandwidth) of the data links allows for
more efficient and technology-specific use.
q4: What routes can be taken by an upstream
packet?
a4: The router is upstream of the computer,
connecting the computer to the whole internet. ...
Each router does not need to know the whole route
to the destination;
q5: Describe core, aggregator and edge switches.
a5: In small networks of a few hundred users, edge
switches can be connected redundantly directly to
core switch/router devices. However, for larger
networks, , an additional layer of switching, called
the distribution layer, aggregates the edge switches.

In Table 3, we report examples for which the
gold rewrite provided in the QReCC dataset is
equal to the original question, despite the fact that
the question needs contextual information to be cor-
rectly understood. For each example, we provide
the information in the CG, and a comment about
why creating a rewrite is not possible, or very un-
natural. Due to space reasons, we do not report
the full conversation. However, we report the con-
versation and turns IDs, which can be used to look
up for the full conversation in the QReCC dataset
available at https://github.com/apple/
ml-qrecc/tree/main/dataset.
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17-10

Question: What form of energy is used in eating?
Common Ground: energy, light energy, heat energy, gravitational energy, form, type,
motion, mechanical energy, examples, potential energy, electrical energy, sound energy,
chemical energy, nuclear energy, atomic energy, kinetic energy
Comment: the question comes at the end of a long conversation, and refers to the
previously mentioned forms of energy. The hypothetical QR should include them all:
What form of energy, among light energy, heat energy, [..] is used in eating?

22-9

Question: What is the oldest spice?
Common Ground: spices, cumin, world, coriander, cilantro, herb, garlic, oregano,
root, stem, seed, fruit, flower, bark, tree, plant, Indian, pepper, Nutmeg, mace, Mustard,
seeds, Fenugreek, Turmeric, Saffron
Comment: similarly to the previous example, the question comes at the end of a
long conversation, and refers to all previous information. The hypothetical QR should be:
What is the oldest spice among cumin, coriander [...]?

28-4

Question: What can I do as an individual level?
Common Ground: global warming, long-term rise, average temperature,
Earth’s climate system, climate change, temperature measurements, dangers, scientists,
sea ice, sea level rise, heat waves, methods, Carbon dioxide, oil, coal, fossil fuels, energy,
homes, cars, smartphones
Comment: again, the user’s question encompasses all previous conversation,
in which several problems related to global warming were mentioned. A (tentative) rewrite
which captures the information up to this point should therefore be of the kind:
What can I do in order to better use energy for my home, car, smartphone, thus reducing
the emission of carbon dioxide and reduce impact on global warming?

583-6

Question: Was there anyone opposed to him in this?
Common Ground: Ira Hayes, World War II, civilian life, war, family, 1946,
Gila River Indian Community, Edward Harlon Block, Hank Hansen, flag-raiser
controversy, Marine Corps
Comment: in this dialogue, many facts about Ira Hayes are explained. The original
question refers to several of them, and a (very tentative) rewrite should be like:
Was there anyone opposed to Ira Hayes in revealing the truth that Harlon Block was still
being misrepresented publicly as Hank Hansen?

590-6

Question: What was the impact of this column?
Common Ground: Israel, Krauthammer, Oslo accords, 2006 Lebanon War, column,
Let Israel Win the War
Comment: also in this case, the conversation touches upon several related facts,
and in order to correctly interpret the question in the light of such facts,
it should be rewritten like:
What was the impact of the column ’Let Israel Win the War’ written by Krauthammer
during the 2006 Lebanon War, in which he opposes the Oslo accords?

Table 3: Examples in which the rewrite is nearly impossible or very unnatural. In the left column we report the
conversation-turn IDs.
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Abstract
At the heart of improving conversational AI is
the open problem of how to evaluate conversa-
tions. Issues with automatic metrics are well
known (Liu et al., 2016), with human evalu-
ations still considered the gold standard. Un-
fortunately, how to perform human evaluations
is also an open problem: differing data col-
lection methods have varying levels of human
agreement and statistical sensitivity, resulting
in differing amounts of human annotation hours
and labor costs. In this work we compare five
different crowdworker-based human evaluation
methods and find that different methods are
best depending on the types of models com-
pared, with no clear winner across the board.
While this highlights the open problems in the
area, our analysis leads to advice of when to
use which one, and possible future directions.

1 Introduction

Any comprehensive analysis of the performance
of an open-domain conversational model must in-
clude human evaluations: automatic metrics can
capture certain aspects of model performance but
are no replacement for having human raters judge
how adept models are at realistic and interesting
conversation (Deriu et al., 2021; Liu et al., 2016;
Dinan et al., 2019b). Unfortunately, human evalua-
tions themselves must be carefully constructed in
order to capture all the aspects desired of a good
conversationalist. Any evaluation technique must
evaluate over many turns of a conversation in or-
der to detect emergent faults such as repetitiveness
or contradiction, while techniques that rely solely
on a single evaluation at the end of a conversation
may fail to take into account changes in model per-
formance over its span. Further, techniques that
rate model performance on a Likert scale may suf-
fer from inconsistencies in subjective numerical
ratings across evaluations of different models (Li
et al., 2019). When comparing various human eval-
uation methods to assess which works best, we find

that each has success and failure cases, leading us
to conclude that human evaluation is still an open
problem.

In this work, we analyze a representative set of
human evaluation techniques. First, we compare
per-turn evaluations, where ratings are given after
every model response, and per-dialogue evalua-
tions, where ratings are collected solely at the end
of the conversation. Per-turn evaluations have the
advantage of being more fine-grained, encouraging
annotators to focus on small differences; however,
the quality of a conversation is more than the sum
of its parts, and global per-dialogue evaluations can
capture this better. Second, we consider pairwise
methods, where two models are compared directly
by an annotator, to single-model methods, where
the annotator sees and rates only one model at a
time. Both approaches can be either per-turn or
per-dialogue. For example, in Pairwise Per-Turn
evaluation, a crowdworker chats with a dialogue
agent, and after each of the worker’s messages, they
must choose between two possible responses from
the agent, one from each of two different models.
The pairwise approach can spot subtle differences
apparent when comparing responses, and it can
mitigate problems with distribution shift that oc-
cur in absolute scoring. Single-model approaches,
however, can work well when direct comparison is
not paramount.

We compare all of these different techniques
for evaluating dialogue models in three different
settings, and we contrast their individual strengths.
We find that:

• Pairwise per-turn evaluations are adept at mea-
suring changes in model performance through-
out a conversation. This technique tends to
work well when pairs of models clearly differ
in how appropriate their responses are in the
context of the previous lines of dialogue, for
example, when comparing two models that
are trained on different datasets.
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• Pairwise per-dialogue evaluations tend to per-
form best when differences between models
only emerge after several conversation turns,
such as when these differences are very sub-
tle, or when noticing patterns in responses that
emerge globally across the entire conversation,
for example the average length of responses.

• Single-model evaluations, performed both per
conversation turn and at the end of a con-
versation, tend to not do as well in the two
previously described settings, but do perform
well when comparing models that differ only
slightly in quality but are otherwise similar,
for example two models with different num-
bers of parameters.

These findings, while highlighting the difficulty
of human evaluation, also provide guidance on
which method might be best to use in these different
circumstances, as well as possible future work. In
particular, investigating the best way to merge pair-
wise and single-model, per-turn and per-dialogue
benefits into a single method could be a fruitful
direction. We also analyze the interpretability of
these approaches when collecting human written
explanations. We have released code for these eval-
uation techniques in the ParlAI framework.1

2 Existing work

This work concerns itself with evaluation of open-
domain dialogue, which, unlike more restricted
domains such as question-answering and goal-
oriented conversations, may not have a precise goal,
and no widely accepted evaluation technique for
it currently exists (Deriu et al., 2021; Huang et al.,
2020; Roller et al., 2020). Automatic metrics are
relatively fast, efficient, and reproducible, but many
of them have been shown to “correlate very weakly
with human judgement” (Liu et al., 2016, see also
Dinan et al. (2019b)), and the best way to create a
reliable automatic metric is still up for debate (De-
riu et al., 2021). In this work we focus on human
evaluation, and in particular on employing crowd-
workers, which has an advantage over utilizing
trained experts (Deriu et al., 2021) or deployment
(Gabriel et al., 2020; Shuster et al., 2020) of allow-
ing for a larger pool of evaluators and for ensuring
alignment with research goals, respectively. How-
ever, the use of crowdworkers itself has a number
of pitfalls to avoid as well (Huynh et al., 2021).

1https://parl.ai/projects/humaneval

Particular instruction wording choices to crowd-
workers have a large effect on the quality of con-
versations and resulting evaluations (Huynh et al.,
2021). Wording can direct workers to evaluate spe-
cific facets, such as general “get to know each other”
chitchat (Zhang et al., 2018), getting a bot to gener-
ate unsafe utterances (Xu et al., 2020), and instruct-
ing crowdworkers to be adversarial vs. not (Dinan
et al., 2019a). One can also pick from a variety of
specific questions when asking crowdworkers to
rate conversations, including asking about interest-
ingness, making sense, fluency (See et al., 2019),
sensibleness, specificity (Adiwardana et al., 2020),
toxicity, and bias (Xu et al., 2020), and the exact
phrasing of these questions can have a large impact
on sensitivity (Li et al., 2019). Standard evaluation
protocols have a single human both converse with
a model and rate that conversation in the same task,
but other methods have a rater rate pre-existing
conversations between a human and a model or
between a pair of models (Li et al., 2019; Deriu
et al., 2020). These latter techniques allow for ef-
ficient reuse of existing conversational data, and
have shown to be useful experimentally (Li et al.,
2019; Roller et al., 2021), but it may be harder for
evaluators to rate conversations that they have not
been involved in.

Another choice when designing evaluation proto-
cols is whether conversations are rated individually,
e.g., with Likert-score ratings (Ashwin et al., 2017;
Venkatesh et al., 2018, see more in Appendix A),
or pairwise by comparing models (Li et al., 2019;
Liang et al., 2020, etc.). Likert scoring suffers
from weaknesses such as potential per-annotator
bias (Kulikov et al., 2019) and drift in the distri-
bution of errors over time (See et al., 2019), but is
more efficient than pairwise comparisons in that
new models’ ratings can be compared to those of
older models without having to re-collect those
older models’ ratings.

Lastly, evaluation techniques differ in whether
they collect ratings on each turn of the conversation
(Adiwardana et al., 2020; Komeili et al., 2021) or
only at the end of the conversation, as in Acute-
Eval (Li et al., 2019). Whole-conversation tech-
niques can work well if the quality of a conversa-
tion is assumed to be more than just the sum of its
parts, but could perhaps suffer due to the primacy
effect and recency effect that appear when more
weight is given to information presented at the start
and end of the rating session, respectively (Asch,
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1946; Anderson, 1965; Murdock Jr, 1962; Postman
and Phillips, 1965).

See Appendix A for a more thorough assessment
of related works.

3 Methods

3.1 Evaluation techniques
We investigate several human evaluation tech-
niques, spanning a cross-section of the different
methods discussed in existing work. Specifically:

• Single-model per-turn evaluations

• Single-model per-dialogue evaluations

• Pairwise per-turn evaluations

• Pairwise per-dialogue evaluations

• Pairwise per-dialogue self-chat evaluations

We thus compare the spectrum of single vs. pair-
wise and per-turn vs. per-dialogue variations, as
well as trying a self-chat method compared to con-
ventional human-bot conversation ratings. Figure
1 summarizes the methods. In the following, we
will describe our exact methodology for each. See
Appendix B.3 for details on quality checks used
when performing these evaluations.

3.1.1 Conversational setting
Our human-bot evaluations consist of a set of con-
versations. Each conversation consists of a human
worker crowdsourced from Amazon Mechanical
Turk2 (the “Human Speaker”) paired with a conver-
sational model (the “Bot Speaker”). The Human
Speaker will speak naturally in the conversation,
and they will be role-playing as a certain persona
with the help of two provided persona sentences
given to them at the start of the conversation: see
Figure 2 (left) for an example.

The Human Speaker’s first message in the con-
versation is fixed to “Hi!”, following the conven-
tion of Adiwardana et al. (2020). The conversation
ends after the Human Speaker and Bot Speaker
have both spoken for 6 turns each, to roughly match
the conversation lengths used for BlenderBot evalu-
ations in Roller et al. (2021). We test three different
evaluation metrics, preference, humanness and in-
terestingness, with exact wordings described in the
following subsections.

2Our crowdsourcing task pays workers well above mini-
mum wage, and the task does not request any personal infor-
mation from workers.

3.1.2 Pairwise per-turn evaluations
The Pairwise Per-Turn evaluation (PW-Turn) tech-
nique provides annotations for every turn of con-
versation by asking for the crowdworker to choose
from a pair of model responses after every sent
message. Hence, in this setting the Human Speaker
speaks to a Bot Speaker, the latter of which actually
represents the two models to be compared. The Hu-
man Speaker will speak naturally in the conversa-
tion. Every time that it is the Bot Speaker’s turn to
speak, the crowdworker will first be presented with
two options as possible responses: each response
will come from one of the two models being com-
pared, similarly to Clark and Smith (2021). We
randomize the ordering of these model responses.
The worker must choose the better response for the
given evaluation metric. The wordings we use for
the three metrics are adapted from Li et al. (2019):

• Preference: “Which next response from your
partner would you prefer in a long conversa-
tion?”

• Humanness: “Which next response from your
partner sounds more human?”

• Interestingness: “If you had to say one of
these responses is interesting and one is bor-
ing, which would you say is more interest-
ing?”

The worker must give a free-text justification for
their choice of response. The response that they
choose is set to be the actual response given by the
Bot Speaker, and the conversation continues from
there. Figure 2 provides a screenshot example of
the UI. A description of quality checks performed
when onboarding workers for this evaluation tech-
nique is given in Appendix B.2. In our experiments
we consider win rates based on simply averaging
over turns, as well as nonlinear combinations of
per-turn results over entire dialogues (e.g., winner-
takes-all voting) in order to measure their impact.

3.1.3 Pairwise per-dialogue evaluations
The Pairwise Per-Dialogue evaluation (PW-Dialog)
technique we introduce asks evaluators to choose
between two models by presenting a pair of con-
versations. The technique we employ is identical
to the Acute-Eval method (Li et al., 2019), but for
consistency with the names of other techniques, we
refer to it here as PW-Dialog evaluations. For each
of the model pairs and evaluation metrics used, we
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Figure 1: The human evaluation methods we compare in this work. SM-Turn rates each bot response during the
conversation, while SM-Dialog rates the entire conversation. PW-Turn compares two different bots’ responses
at every turn in the conversation, while PW-Dialog compares two entire conversations with two different bots.
PW-Dialog self-chat compares two conversations which only involve the two bots talking to themselves (self-chat).

collect evaluations on (1) conversations conducted
between a crowdworker and a model agent; and
(2) self-chat conversations conducted between two
conversational agents of the same model (the self-
chat variant). The wordings we use (from Li et al.
(2019)) are almost identical to the PW-Turn ver-
sions, but phrased for the per-dialogue, rather than
per-turn, case:

• Preference: “Who would you prefer to talk to
for a long conversation?”

• Humanness: “Which speaker sounds more
human?”

• Interestingness: “If you had to say one of
these speakers is interesting and one is boring,
who would you say is more interesting?”

Figure 3 provides a screenshot example of the
UI.

3.1.4 Single-model evaluations
In our single-model evaluation experiments, we
combine per-turn and per-dialogue into the same
UI (see Figure 4 for a screenshot).3 A crowdworker
chats with a conversational agent backed by a sin-
gle model, and for each response of that model

3This may have undesirable effects in correlating their
results, but nonetheless they do appear to perform quite differ-
ently in evaluations.

the worker must annotate whether it is engaging,
human-like, and/or interesting, with wording pro-
vided in the screenshot. At the end of the conver-
sation, again consisting of 6 messages per speaker,
the worker must rate their partner on a Likert scale
of 1 to 5 for each of the three evaluation metrics
listed in Section 3.1.2. We refer to the per-turn
annotations of model responses from this task as
Single-Model Per-Turn evaluations (SM-Turn) and
the end-of-conversation Likert scores as Single-
Model Per-Dialogue evaluations (SM-Dialog).

Empirically, we find that SM-Turn success rates
and SM-Dialog Likert scores are highly dependent
on the particular day that the evaluations are col-
lected: this is perhaps due to day-to-day variability
in the pool of crowdworkers. To counteract this, we
run these evaluations on all four of the models dis-
cussed in this work (Section 3.2) simultaneously.4

3.2 Models
We analyze the relative performance of these
five human evaluation techniques, SM-Turn, SM-
Dialog, PW-Turn, PW-Dialog, and PW-Dialog self-
chat, on four different well-performing but rela-
tively similar dialogue models from Roller et al.
(2021):

4For the pairwise evaluation techniques PW-Turn and PW-
Dialog, we collect evaluations over several days across mul-
tiple weeks for each of the three model pairs evaluated. This
helps to smooth out variability among days.
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• BlenderBot3B: The version of BlenderBot
with 2.7 billion parameters, pretrained on a
previously existing Reddit dataset (extracted
and obtained by a third party and made
available on pushshift.io (Baumgartner et al.,
2020)) and then fine-tuned on several purpose-
built dialogue datasets.

• BlenderBot3B-M0: BlenderBot3B uses a
minimum generation length of 20 tokens to
ensure relatively long, interesting responses.
We also compare to exactly the same model
but without a minimum generation length, re-
ferring to it with -M0 postfix.

• BlenderBot90M: The variant of BlenderBot
with 90 million parameters, trained on the
same datasets as BlenderBot3B.

• Reddit3B: BlenderBot3B, but only pretrained
on the third-party Reddit dump and not fine-
tuned on dialogue datasets.

For all models, we use the same generation set-
tings as in Roller et al. (2021), apart from the -
M0 adaptation. We choose these relatively similar
models in our experiments as a difficult challenge
for evaluation techniques to tell which one is best,
but we a priori expect from previous Acute-Eval
(PW-Dialog) self-chat measurements in Roller et al.
(2021) that BlenderBot3B may perform as well as
or better than the other three models.

For the three pairwise evaluation techniques, we
specifically perform comparisons between three
pairs of models, each of which differ in a charac-
teristic way:

• Length comparison: Comparing Blender-
Bot3B to BlenderBot3B-M0: these models
differ only in the length of their generations.

• Size comparison: Comparing two models
with different numbers of parameters, Blender-
Bot3B and BlenderBot90M.

• Fine-tuning comparison: Comparing the
fine-tuned BlenderBot3B to the pretrained-
only Reddit3B (both with the same number of
parameters).

4 Results

4.1 Model win rates from pairwise per-turn
evaluations

We compute the win rates of BlenderBot3B over
other models in Table 1 for the pairwise evalu-

All turns Turns 2 to 6

Comp. Metric Lin Lin Sqr WTA

Length Pref 63% 67% 72% 74%
Human 63% 68% 75% 79%

Inter 68% 70% 77% 84%

Size Pref 48% 52% 53% 49%
Human 51% 56% 58% 54%

Inter 49% 52% 54% 55%

FT Pref 80% 82% 88% 93%
Human 81% 84% 88% 93%

Inter 71% 75% 80% 85%

Table 1: PW-Turn win rates of BlenderBot3B vs.
BlenderBot3B-M0 (“Length”), vs. BlenderBot90M
(“Size”), and vs. the base pretrained model, Reddit3B
(“FT”), across three different evaluation metrics, Pref-
erence, Humanness, and Interestingness. Win rates are
computed both across all turns and across only the last
5 turns from the Bot Speaker (“Turns 2 to 6”). Lin:
the linear win rate x/(x + y) of BlenderBot3B, given
x wins of BlenderBot3B and y wins of the compari-
son model. Sqr: the “squared” win rate x2/(x2 + y2),
calculated per-conversation and then averaged across
all conversations. WTA: the winner-takes-all win rate,
defined as the percentage of all conversations for which
BlenderBot3B wins on more turns, or equivalently
x∞/(x∞+y∞) as calculated per-conversation. Winner-
takes-all scores are generally highest (highest values
bolded).

ation technique PW-Turn. We expect Blender-
Bot3B to be better, hence values closer to 100% are
deemed more preferable. We display the win rates
of four different variants: including all 6 conversa-
tion turns from the Bot Speaker, excluding the Bot
Speaker’s first turn from the evaluations, and com-
puting a nonlinear function of the turns: either cal-
culating squared or winner-takes-all win rates for
each conversation and then averaging those scores
across all conversations. We generally find that PW-
Turn win rates are higher when dropping the first
turn of the Bot Speaker, as discussed further in Ap-
pendix C.2. Win rates are typically even higher by
aggregating over conversations in a winner-takes-
all fashion, which has the effect of reducing the
turn-by-turn variability of which model’s response
is chosen by the crowdworker.

We find that, in general, win rates of Blender-
Bot3B do not vary much as a function of the evalu-
ation question used when asking workers to choose
one model response over the other. It is unclear
a priori whether this results from an ambiguity in
the precise definitions of these questions/metrics
when interpreted by the workers, correlations in
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how well models perform on some metrics vs. oth-
ers, or some other reason.

4.2 Model scores from single-model
evaluations

SM-Turn SM-Dialog

All Turns 3 to 6

Met. Model Lin Lin WTA

Pr
ef

er
en

ce BB3B 70% 71% 73% 4.19
BB3B-M0 71% 70% 70% 4.02

BB90M 65% 64% 65% 3.97
Reddit3B 55% 50% 50% 3.30

H
um

an

BB3B 70% 72% 73% 4.49
BB3B-M0 67% 66% 70% 4.22

BB90M 65% 66% 70% 3.94
Reddit3B 56% 54% 53% 3.50

In
te

re
st

in
g BB3B 44% 45% 47% 4.22

BB3B-M0 35% 35% 36% 3.76
BB90M 39% 40% 42% 3.83

Reddit3B 39% 39% 37% 3.30

Table 2: Performance of BlenderBot3B (BB3B),
BlenderBot3B-M0 (BB3B-M0), BlenderBot90M
(BB90M), and Reddit3B on SM-Turn and SM-Dialog
evaluations. SM-Turn mean success rates are calculated
across all turns (“All”) or across only the last 4 turns
from the Bot Speaker (“Turns 3 to 6”). Scores represent
the overall fraction of model responses marked as
successful on the given evaluation metric (“Lin”) or
the number of conversations for which at least half
of the model responses are marked as successful
(winner-takes-all, “WTA”). SM-Dialog evaluations are
Likert scores (with standard deviations in the range of
0.8 to 1.3). Highest scores across models are bolded.

Table 2 provides the per-turn success rates (SM-
Turn) and end-of-conversation Likert scores (SM-
Dialog) over all models. As with the pairwise eval-
uations of Section 4.1 and Roller et al. (2021),
BlenderBot3B generally outperforms the other
models using the SM-Turn and SM-Dialog meth-
ods as well. Table 5 (in the Appendix) shows suc-
cess rates from the SM-Turn technique as a func-
tion of conversation turn (rather than aggregated).
BlenderBot3B scores are generally stable across
conversation turn but are slightly lower on the first
two turns of the Bot Speaker, echoing similar find-
ings with PW-Turn in Appendix C.2. We thus also
consider removing SM-Turn scores from the first
two turns in order to maximize the performance of
BlenderBot3B relative to the other models. As with
PW-Turn, we find that calculating the winner-takes-
all score per conversation allows for an even bigger
separation in performance between BlenderBot3B

and the other models.
Unlike PW-Turn for which win rates are similar

across all three evaluation metrics (Section 4.1),
single-model success rates on the Interestingness
metric are generally lower than those on the other
two, especially for SM-Turn. We hypothesize that
the juxtaposition of all three evaluation questions
side-by-side in the UI of the SM-Turn and SM-
Dialog crowdworker task (Figure 4) may aid work-
ers in distinguishing among these three metrics and
rating models differently on them.

See Appendix C.4 for an exploration of which
turns of the conversation contribute most strongly
to workers’ final Likert-scale ratings.

4.3 Direct comparison of all evaluation
techniques

In this section we directly compare all the pairwise
and single-model evaluation techniques to each
other to discern their relative strengths. See Ap-
pendix C.1 for details on the number of evaluations
performed and number of crowdworker hours spent
per technique.

4.3.1 Computing win rates across all
techniques

In order to directly compare the performance of
SM-Turn and SM-Dialog with that of the pairwise
techniques, we calculate effective win rates for the
two single-model techniques by bootstrapping sam-
ples of ratings from different models and then cal-
culating how often SM-Turn success rates and SM-
Dialog Likert scores from one model are higher
than those of another. Following the analysis of
best performing methods from Sections 4.1 and 4.2,
we consider only Bot Speaker turns 2 through 6 for
PW-Turn and turns 3 through 6 for SM-Turn in
winner-takes-all (WTA) mode, in order to maxi-
mize the ability of these techniques to distinguish
different models’ performances.

Table 3 compares the win rates produced by all
evaluation techniques. Overall, we find that a dif-
ferent technique performs best for each of the three
model comparison types:

Length comparison The pairwise evaluation
techniques PW-Dialog and PW-Turn perform much
better than the single-model ones. BlenderBot3B
responses tend to contain many more words on
average than those of BlenderBot3B-M0, and so
we hypothesize that this difference in sensitivity
among the techniques may be due to the fact that
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PW-Turn PW-Dialog PW combo SM-Turn SM-Dialog

Comparison Metric Turns 2–6, WTA Human Self Turns 3–6, WTA

Length Pref 74% 77% 82% 80% 55% 58%
Human 79% 77% 83% 81% 52% 59%

Inter 84% 85% 73% 73% 60% 65%

Size Pref 49% 56% 55% 54% 59% 60%
Human 54% 61% 55% 55% 52% 66%

Inter 55% 59% 57% 56% 55% 64%

Fine-tuning Pref 93% 70% 66% 69% 64% 71%
Human 93% 54% 61% 65% 62% 73%

Inter 85% 59% 64% 66% 60% 70%

Table 3: Win rates of BlenderBot3B vs. other models, for all evaluation techniques. For the per-turn techniques
PW-Turn and SM-Turn, only the specified Bot Speaker turns are used to compute winner-takes-all scores, as
in Tables 1 and 2. We show PW-Dialog win rates as measured on conversations between a crowdworker and a
model (“Human”) as well as from model self-chats (“Self”). “PW combo” represents the win rate when sampling
ratings from PW-Turn (turns 2–6) and PW-Dialog (on model self-chats) at a ratio of 1:5. PW-Turn, PW-Dialog,
and SM-Dialog are each found to be most sensitive at measuring model performance for one of the three model
comparisons tested (highest win rates bolded). See Appendix C.1 for the number of evaluations and the estimated
total number of worker-hours per technique.

viewing responses from both models side-by-side
makes the length differences between them much
more evident, especially when comparing two en-
tire conversations as in PW-Dialog. Thus, if crowd-
workers tend to prefer longer responses on average,
the side-by-side comparison of model responses
might aid in their ability to choose BlenderBot3B
responses over those of BlenderBot3B-M0.

Size comparison The differences among the
techniques here are smaller than for the Length
comparison, with the full-dialogue techniques PW-
Dialog and SM-Dialog slightly outperforming the
per-turn ones. As shown by Roller et al. (2021),
BlenderBot3B and BlenderBot90M do not perform
statistically significantly differently on Acute-Evals
(i.e. PW-Dialog) on self-chat conversations. Thus,
it may make sense that any small differences in per-
formance between these models are more evident
on the level of whole conversations.

Fine-tuning comparison In this comparison,
PW-Turn performs best out of all techniques. Be-
cause the Reddit3B model was not fine-tuned on
conversational dialogue datasets, its responses to
its partner generally make less sense in context than
those of BlenderBot3B. We hypothesize that these
more nonsensical responses may be very obvious
to workers who are in the middle of having a con-
versation with the Bot Speaker during the PW-Turn
evaluation. However, these responses may be less
obvious to workers reading whole conversations in
the PW-Dialog evaluation who have not interacted

with the models directly, as well as to workers in
SM-Turn and SM-Dialog evaluations who cannot
directly compare Reddit3B responses to those of a
model that has been fine-tuned on dialogue.

Explainability in experiments: analysis of
crowdworker reasons During the crowdworker
evaluation tasks, we also ask for reasons for the
crowdworker’s judgments. These reasons can give
interpretability to the results. A full analysis is
given in Appendix C.5. Overall, we find justifica-
tions that make sense in each of the three model
comparisons, e.g. in the Length comparison we see
keywords like “information” and “detailed” ap-
pearing often. For the Fine-tuning comparison, we
often find keywords like “flows”, “personal” and

“contradicts”, which implies that the fine-tuning con-
versational datasets like Persona-Chat provide for
more personal, less contradictory, and flowing con-
versations.

Repeatability of experiments We provide an
analysis in Appendix C.6 of the variability of model
win rates over time for each of the evaluation tech-
niques. Overall, we find that PW-Turn, PW-Dialog,
and SM-Turn vary least across chunked experi-
ments, with SM-Dialog having more variability.
This makes the use of SM-Dialog less compelling.

4.3.2 Overall findings
The results of these three model comparisons hint
that perhaps a per-turn evaluation technique may
be more suitable for pairs of models that differ in
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their ability to reply sensibly in a way that is easily
detectable by their partner (i.e. BlenderBot3B vs.
Reddit3B), but that a whole-conversation technique
may be preferable when differences between mod-
els are more sensitive. However, evaluations on
many more pairs of models would be needed to suf-
ficiently support such a broad hypothesis. We also
find that single-model techniques perform compet-
itively to pairwise ones except for when model
generations differ by average length: in this case,
comparing the responses of both models side-by-
side may make the differences between them more
apparent than just viewing them separately.

Combining techniques Given how much the
relative sensitivities of different evaluation tech-
niques vary across different pairs of models, we
also explore whether combining results from mul-
tiple techniques together may allow for a compro-
mise technique that performs reasonably well in
all cases. We thus include in Table 3 the win rate
(“PW combo”) when sampling ratings from the
PW-Turn and PW-Dialog techniques together at
a ratio of 1:5. This sampling retains most of the
ability of PW-Dialog to quickly compare Blender-
Bot3B to BlenderBot3B-M0 and BlenderBot90M
(the Length and Size comparisons), and it also
gains some of PW-Turn’s superior strength at mea-
suring the performance of BlenderBot3B over Red-
dit3B (the Fine-tuning comparison).

By contrast, since ratings for the two single-
model techniques SM-Turn and SM-Dialog are
collected simultaneously, ratings from both tech-
niques on a given conversation can be averaged
together to achieve slightly finer sensitivity than ei-
ther technique individually. Figures 11, 12, and 13
show that, with the proper weighting, such aver-
aging can produce a statistically significant differ-
ence between models a bit faster than with only
SM-Dialog and dramatically faster than with only
SM-Turn (Appendix C.8).

Beyond win rates, another way to directly com-
pare the relative usefulness of our various evalua-
tion techniques is to estimate the amount of person-
hours that must be spent on evaluations by crowd-
workers in order to achieve a statistically signif-
icant result. These results (Figures 8, 9, and 10)
roughly follow the patterns found by win rates (Sec-
tion 4.3.1). See Appendix C.7 for a discussion of
the assumptions made when producing these time
estimates.

5 Conclusion

In this work we compare the extent to which dif-
ferent evaluation techniques are able to measure
performance differences between dialogue mod-
els, and we show instances in which the perfor-
mance varies between per-turn techniques and per-
dialogue techniques, and between pairwise tech-
niques and single-model techniques. A completely
exhaustive analysis of the cases in which each tech-
nique is most appropriate would require measure-
ment on many more pairs of models than the three
studied here, and would likely require a dramatic
scaling-up of labor for crowdworkers.

Nevertheless, the results shown here demonstrate
the difficulty in anointing one evaluation technique
as superior to all others regardless of the models be-
ing compared, and they suggest that a combination
of techniques, or else a different technique entirely,
may be necessary for optimal measurement of dif-
ferences among models. A more universally ideal
technique would likely need to investigate model
performance per-turn but still be able to give an
overall judgment of model quality across a conver-
sation in order to capture elements of performance
that manifest clearest in a single response vs. in ag-
gregate. We demonstrate that combining evaluation
scores from per-turn and per-dialogue techniques
can bridge the gap in the performance differences
between the two, but that this does not outperform
either individual technique in all cases, at least in
the way that we combined them.

Future improvements may also come from ex-
ploring other ways to amplify the weak signal from
models with only slight performance differences
such as BlenderBot3B and BlenderBot90M, per-
haps by training workers to select responses based
on general measures of conversational quality, as
opposed to content that appeals to their personal in-
terests. Improving sensitivity to roughly equivalent
pairs of models such as these should in turn en-
able the comparison of models whose performance
differences are smaller still.

While this work has concentrated on evaluating
techniques that enable differentiability (one can dif-
ferentiate between models) with efficiency (with
less annotator hours), there are other desirable qual-
ities as well. Some of these in particular are di-
versity of conversations (Hashimoto et al., 2019),
repeatability of experiments, and explainability of
results (Deriu et al., 2021). While there is some dis-
cussion of the latter two topics in our experiments,
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these topics are fully deserving of a more thorough
analysis than is provided here.
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A Additional existing work

Open-domain versus specific domain Our work
concentrates on the open-domain setting. In spe-
cific conversational domains, such as question an-
swering (QA), evaluation can be simpler and is
often reduced to measuring overlap or exact match
with the correct answer (Chen et al., 2019). How-
ever, this no longer as easily suffices for free-form,
conversational and long-form QA where answers
are more open-ended (Fan et al., 2019; Adolphs
et al., 2021). Similarly, for certain types of goal-
oriented conversations more targeted evaluations
can take place, for example evaluation of state
tracking (Williams et al., 2016), interaction qual-
ity (Schmitt and Ultes, 2015), and task completion
(Hastie, 2012; Henderson et al., 2014; Bordes et al.,
2017; El Asri et al., 2017; Wen et al., 2017). Open-
domain dialogue potentially covers all these other
cases as special cases, but also covers conversations
that are more free-form or do not have a precise
goal. Hence, finding a reliable evaluation technique
is more difficult, and there is currently no single
standard method that is agreed upon (Deriu et al.,
2021; Huang et al., 2020; Roller et al., 2020). Dif-
ferent techniques that have been proposed will be
described in the following paragraphs.

Automatic metrics Automatic metrics are the
most convenient for fast, efficient and reproducible
research with a quick turn-around and development
cycle, hence they are frequently used. Unfortu-
nately, many of them, such as BLEU, METEOR
and ROUGE, have been shown to only “correlate
very weakly with human judgement” (Liu et al.,
2016). A central problem is that, due to the open-
ended nature of conversations, there are many pos-
sible responses in a given dialogue, and, while
having multiple references can help, there is typ-
ically only one gold label available (Gupta et al.,
2019). Perplexity (computing the predicted proba-
bility of the given gold utterances) has been argued
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to correlate with human judgments (Adiwardana
et al., 2020), however this has also been shown
to not always be the case (Dinan et al., 2019b),
and moreover does not actually evaluate the gen-
erations themselves produced by a decoder archi-
tecture. Hence, changing the behavior of the gen-
eration method can dramatically change human
evaluations, while maintaining identical or near-
identical perplexity (See et al., 2019; Welleck et al.,
2020; Adiwardana et al., 2020; Roller et al., 2021).
An alternative recent trend is to employ trainable
metrics, whereby a neural network model is used to
score the conversational model (typically also an-
other neural network), see e.g. Lowe et al. (2017);
Ghandeharioun et al. (2019). Such systems pro-
vide a promise of improved speed of research and
development of dialogue agents, but so far have
not been met with wide adoption. Some issues are
that they may not generalize as well to data beyond
that which they are trained (overfit) and also may
be biased and gameable (Wu et al., 2019; Albrecht
and Hwa, 2007). For a comprehensive comparison
of automatic metrics – both standard and learned
metrics – see Yeh et al. (2021). In general, creating
a reliable automatic metric is still considered an
open problem (Deriu et al., 2021).

Crowdworkers versus experts versus organic
users While utilizing human evaluations in re-
search is the current standard, we contend that
choosing exactly which kind of human evaluation
is also still an open question. In this work we
concentrate on the study of crowdworker human
evaluations, however there are several alternative
paradigms. Utilizing trained experts, such as a
group of researchers in the same institution, is one
alternative (Deriu et al., 2021). Compared to em-
ploying crowdworkers, while model comparison
results can agree between the two types of anno-
tators, there can be vastly different sensitivity and
win rates (Welleck et al., 2020), with the experts
having more agreement and higher resulting sen-
sitivity. On the other hand, it is harder to recruit
and employ experts, limiting reproducibility. In
both the crowdworker and expert annotator cases,
neither of those groups are necessarily the intended
target audience of a given system. If it is possible
to deploy a model to people who genuinely want
to talk to it (e.g., without being paid), conversa-
tions may be more natural and evaluations will be
in line with genuine interests. Evaluation by de-
ployment can be successful (Gabriel et al., 2020;

Shuster et al., 2020), where behavioral metrics such
as the amount of conversation time per user or re-
tention rate can serve as a proxy for interestingness
and engagingness metrics. Model deployment how-
ever also has its issues. First, user desires may
not necessarily be aligned with the goals of the
research itself, meaning researchers may have to
develop features and improvements towards the
goals of the product rather than towards long-term
research. Further, experiments are difficult to set up
and may be difficult to reproduce by other groups.
Crowdworker tasks can be more reproducible es-
pecially when code is made available to reproduce
experiments, but there are also many pitfalls when
constructing the tasks, see e.g. Huynh et al. (2021).

Conversation instructions to raters When uti-
lizing evaluators in a evaluator-model conversa-
tional setup, the precise instructions on how to go
about the conversation will clearly have large ef-
fects. Such instructions can control the topic, e.g.
“get to know each other” as in the Persona-Chat
task (Zhang et al., 2018), versus “have a knowl-
edgeable conversation” in Wizard of Wikipedia
(Dinan et al., 2018). Instructions can also orient
workers towards a more fruitful strategy for a de-
sired dataset, for example orienting them towards
open questions on sensitive topics rather than pro-
fanity to get a bot to generate unsafe utterances (Xu
et al., 2020). The length of the conversation will
also play a role in the performance of models, for
example, short conversations do not test the ability
of models to retain knowledge in the long-term (Xu
et al., 2021). Overall, the style of conversation has
large effects (even if the topic is unchanged) for
example when instructing crowdworkers to be ad-
versarial vs. non-adversarial (Dinan et al., 2019a),
which relates to the classic Turing Test (Turing
and Haugeland, 1950). Further, particular instruc-
tion wording choices will change the quality of
conversations, as they will change how well crowd-
workers understand the task (Huynh et al., 2021).

Evaluation question phrasing for raters Be-
sides how the conversation is carried out, one also
needs to choose the precise question (or questions)
being asked to crowdworkers in order for them to
rate conversations. In open-domain conversation
there are a variety of qualities one could expect
from a good conversationalist, and potentially one
could ask about any of them individually, as well as
asking for overall performance. For example, See
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et al. (2019) asks evaluators for ratings of interest-
ingness, making sense, fluency, avoiding repetition,
listening ability and inquisitiveness as intermedi-
ate conversational aspects, and humanness and en-
gagingness questions to measure overall quality.
Adiwardana et al. (2020) asks questions based on
sensibleness and specificity. Responsibility, toxic-
ity and bias can also be measured (Xu et al., 2020).
Even after settling on the exact question(s) to be
asked, their exact phrasing also has impact on sen-
sitivity, as shown in Li et al. (2019). In that work,
the authors optimized the question phrasing by run-
ning evaluations with alternative phrasings, and
choosing the one with the highest agreement.

Rating existing versus own conversations The
standard setup is for a human to have a conversa-
tion with a model, and rate that conversation. Some
evaluation protocols deviate from this setup, and
ask evaluators to rate conversations they did not
participate in. One simple approach of that kind is
to present model completions of a dialogue from
the fixed test set of a given task, and ask for their
evaluation, with hence no human taking part in
the actual conversation (Vinyals and Le, 2015; Li
et al., 2016). In the Acute-Eval method (Li et al.,
2019) raters are asked to compare two existing con-
versation logs, and the authors consider both the
case of human-model chat logs, and model-model
(self-chat) logs, where the former are actually a
different set of human conversationalists compared
to the final raters. Deriu et al. (2020) considers
chat logs between pairs of models, again with no
humans taking part in the conversations. These
techniques allow efficient reuse of existing conver-
sational data and have some reproducibility gains:
conversations collected in previous trials and by
other systems can be directly compared with a new
system, without having to recollect additional data.
This can significantly reduce the resources needed
by a new evaluation, and ensure that multiple pa-
pers are comparing to prior work consistently. On
the other hand, it may be harder for evaluators to
rate conversations that they have not been involved
in (Finch and Choi, 2020). Conversations that do
not even involve humans should be treated with
some scepticism, as there is no human to guide
conversation and hence evaluate interactive qual-
ity. Nevertheless, such approaches do appear to be
useful experimentally (Li et al., 2019; Roller et al.,
2021).

Pairwise versus single-model ratings Conver-
sations are often either rated individually, e.g.
with Likert-score ratings (Ashwin et al., 2017;
Venkatesh et al., 2018; Zhang et al., 2018; Rashkin
et al., 2019; See et al., 2019; Dinan et al., 2019b,
2018), or pairwise by comparing models (Li et al.,
2019; Liang et al., 2020; Vinyals and Le, 2015;
Li et al., 2016; Lee et al., 2020). Likert scoring
relies on absolute identification rather than relative
discrimination, which is less reliable in humans
(Stewart et al., 2005), leading to different biases
per annotator (Kulikov et al., 2019). It is thus often
necessary to then re-evaluate existing models at the
same time as a new model, as the distribution of
human annotators can easily shift over time, caus-
ing measurement errors (See et al., 2019). Another
common difficulty is related to sequential effects
(Stewart et al., 2005), where the annotator can be
influenced by the first model they evaluate, caus-
ing difficulties in using an absolute scale. Pairwise
comparisons, on the other hand, make comparing a
set of models less efficient, and also have the same
problem that existing baseline models have to be
essentially reassessed with respect to new ones.

Per-turn versus per-dialogue evaluation Some
research evaluates single-turn responses in con-
versations given gold dialogue contexts, without
taking into account whole interactive conversations
(Lee et al., 2020; Vinyals and Le, 2015; Li et al.,
2016). This fails to take into account multi-turn
aspects of a conversation, for example a model
repeating itself over multiple turns. Per-turn evalu-
ation instead conducts an entire conversation, but
raters are still asked to evaluate each turn (response
by their partner) (Schmitt and Ultes, 2015; Adiwar-
dana et al., 2020; Komeili et al., 2021). Collecting
per-turn evaluation also allows for measuring learn-
ing effects where workers become more adept at
interacting with the bot for certain specific tasks
(e.g., see Xu et al. (2020)). In contrast, methods
like multi-turn Likert or Acute-Eval ask evaluators
to assess the entire dialogue as a whole, rather than
the individual turns, under the assumption that the
quality of a conversation is not simply the sum of its
parts. Literature from psychology predicts several
effects when considering how people combine their
impressions from single conversational turns into
an evaluation of an entire conversation. The pri-
macy effect refers to how overall judgment is more
shaped by characteristics presented earlier (Asch,
1946; Anderson, 1965). Conversely, the recency
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effect appears when more weight is given to infor-
mation presented the most recently, and both effects
combine to give more weight to items at the begin-
ning and end of a list (Murdock Jr, 1962; Postman
and Phillips, 1965), with the recency effect being
more prominent when judgment is elicited without
any delay when the recent information is still fresh
(Miller and Campbell, 1959; Hoch, 1984).

B Additional methods

B.1 Screenshots of crowdsourced human
evaluation tasks

See Figure 2 for a screenshot of the PW-Turn eval-
uation technique, Figure 3 for a screenshot of the
PW-Dialog technique, and Figure 4 for a screen-
shot of the SM-Turn and SM-Dialog techniques.
Figure 5 additionally displays the onboarding UI
for PW-Turn.

B.2 Pairwise per-turn evaluation onboarding

In order to perform quality control on crowdwork-
ers before the start of the conversation itself, we
ask each worker to first annotate a conversation in
which there are two possible responses for each
turn of one of the speakers, one response of which
is clearly better than the other (Figure 5). These
pairs of responses vary slightly depending on which
of the evaluation metrics is being tested. Workers
must ultimately choose the correct response for all
four pairs of responses but have two tries in which
to do so.

B.3 Quality checks on crowdworkers

In order to ensure that our comparisons between
evaluation techniques are not affected by variability
in the pool of crowdworkers when running one
technique vs. another, we adopt a consistent set
of criteria across all techniques regarding which
workers to exclude from our final set of data. If
a worker fails one of the checks in Appendix B.4
during one of the per-turn evaluations PW-Turn
or SM-Turn, we retroactively exclude their ratings
from all of the evaluation techniques.

In order to prevent any worker from dispro-
portionately contributing to the final results, each
worker is restricted to one conversation per model
pair and evaluation metric (for PW-Turn and PW-
Dialog) or one conversation per model (for SM-
Turn and SM-Dialog). All evaluations are collected
among residents of the United States on weekdays,

from roughly 9 AM to 6 PM in the U.S. Eastern
time zone, following Li et al. (2019).

B.4 Checks used when filtering per-turn
evaluations

We check each conversation between a crowd-
worker and a Bot Speaker collected during PW-
Turn and SM-Turn evaluations against the criteria
below to see if they have issues that warrant their
exclusion from the final filtered set of evaluations.
If at least one of the following problems is present,
all evaluations from the crowdworker in question
are filtered out of the results shown in this work:

• The messages consist of less than three words
on average

• The first message inputted by the worker con-
tains a greeting (redundant, since a dummy

“Hi!” message is already fixed to be the
worker’s first line of conversation)

• Several of the messages are written using all
capital letters

• Later messages are duplicates of the first one
(i.e. the worker is repeating their messages
throughout the conversation)

• One or more of the messages use offensive
language

C Additional results

C.1 Evaluation data collection

After filtering out workers with unacceptable mes-
sages following Appendix B.3, we are left with a
minimum of 144 and a mean of 231 ratings (typi-
cally 6 per conversation) for each of the PW-Turn
evaluations, a minimum of 191 and a mean of 324
ratings for PW-Dialog, a minimum of 349 and a
mean of 411 ratings (typically 6 per conversation)
for SM-Turn, and a minimum of 58 and a mean of
68 ratings for SM-Dialog evaluations (for which
there is only one rating per conversation). On av-
erage, the collection of ratings after filtering rep-
resents 5.73 hours of worker labor for PW-Turn
per model pair and evaluation metric, 6.03 hours
for PW-Dialog per model pair and evaluation met-
ric, and 4.39 hours for joint SM-Turn/SM-Dialog
evaluations per model.
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Figure 2: Screenshot of the Pairwise Per-Turn (PW-Turn) evaluation technique, in which we ask crowdworkers to
choose one of two possible responses from their conversation partner and describe why that response is better. The
two responses come from the two models that we are trying to compare the performance of.

Figure 3: Screenshot of the Pairwise Per-Dialogue (PW-Dialog) evaluation technique, in which we ask crowdworkers
to choose which of two speakers in two separate conversations is better on the given evaluation metric, here “Who
would you prefer to talk to for a long conversation?” The crowdworker must then describe why that speaker is
better.

C.2 PW-Turn model win rates as a function of
turn

Unlike PW-Dialog, the PW-Turn technique is able
to measure differences in the win rate of models
as a function of the number of turns into the con-
versation. In Figure 6 and Table 4, we see that
BlenderBot3B’s win rates tend to be closer to 50%

in the first 1 or 2 turns of the Bot Speaker, and
higher later: this may be because the first few lines
of the conversation typically consist of greetings
(“Hi, how are you?”) or pleasantries, which may
be harder to judge model performance on. How-
ever, it may also be because improvements are ac-
cumulated and factored into evaluators’ decisions
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Figure 4: Screenshot of the crowdsourcing task for collecting Single-Model Per-Turn (SM-Turn) and Single-Model
Per-Dialogue (SM-Dialog) evaluations. We ask the crowdworker to annotate each response from their partner along
several dimensions, as well as give a global Likert-scale rating of their partner’s performance at the end of the
conversation.

PW-Turn: turn index

Comp. Metric 1 2 3 4 5 6

Length Pref 40 56 67 67 74 72
Human 38 72 69 62 72 62

Inter 59 62 72 78 69 69

Size Pref 26 56 51 54 38 62
Human 29 58 50 46 67 58

Inter 31 59 62 52 45 45

FT Pref 70 78 74 89 81 89
Human 69 73 90 88 84 85

Inter 52 59 89 74 67 85

Table 4: Percentage win rates of BlenderBot3B vs. other
models on PW-Turn evaluations as a function of Bot
Speaker turn. The highest win rate for each model
comparison and evaluation metric is bolded. This is a
tabular representation of the curves in Figure 6.

later in the conversation. Strikingly, BlenderBot3B
performs very poorly vs. BlenderBot90M (the Size
comparison) on the first Bot Speaker turn: empiri-
cally, this may be due to the fact that BlenderBot3B
generally starts its first responses with the greet-
ings “Hi” or “Hello” much less frequently than
BlenderBot90M does.

C.3 SM-Turn success rates as a function of
conversation turn

See Table 5 for the success rates of model responses
using the SM-Turn technique, as a function of Bot

SM-Turn: turn index

Model Metric 1 2 3 4 5 6

BB3B Pref 67 71 72 70 72 70
Human 70 63 72 76 71 70

Inter 42 43 47 43 45 47

BB3B-M0 Pref 74 74 74 67 66 72
Human 66 72 64 67 69 66

Inter 29 40 38 34 36 33

BB90M Pref 71 67 65 64 64 64
Human 59 64 61 70 65 67

Inter 39 35 39 41 41 38

Reddit3B Pref 67 63 49 50 54 46
Human 60 57 54 53 51 58

Inter 44 36 39 46 31 39

Table 5: Percentage success rates of responses of various
models on various evaluation questions (metrics) for
SM-Turn, as a function of Bot Speaker turn. The highest
win rate turn for each model and evaluation metric is
bolded.

Speaker turn.

C.4 Relationship between per-turn ratings
and final ratings

Given that SM-Turn allows us to measure per-turn
ratings of model performance, it is worth explor-
ing whether there are certain turns of the conversa-
tion that contribute more strongly to the workers’
final Likert-scale ratings of the conversation (SM-
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Figure 5: Screenshot of the onboarding process for crowdworkers for the PW-Turn technique.

Dialog). Figure 7 plots the coefficients of workers’
per-turn SM-Turn ratings in an OLS regression,
with the SM-Dialog Likert score at the end of the
conversation as the dependent variable. (Here, we
reduce variability by taking the mean over the three
evaluation metrics for each turn’s SM-Turn ratings
and SM-Dialog Likert scores.) Generally, we see a
higher positive coefficient of the SM-Turn ratings
in later turns in the conversation, which implies
that the workers may have a recency bias: they may
remember the most recent turns of the conversation

more strongly when determining how to rate the
model’s performance overall.

C.5 Text justification for model response
selection

For PW-Turn evaluations, we collect and analyze
justification texts for each turn, after the worker se-
lects a model response. We then group justification
texts by model type and comparison.

To measure lengths of justifications, we split
text strings into words (space-delimited), and we
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Figure 6: Win rate of BlenderBot3B vs. other models
for the comparisons in Section 3.2 on the PW-Turn eval-
uations, as a function of the number of Bot Speaker
turns into the conversation, for the Preference (blue),
Humanness (orange), and Interestingness (green) met-
rics. BlenderBot3B tends to fare better against other
models in later turns of the conversation.

Figure 7: The per-turn coefficients of SM-Turn suc-
cess rates in an OLS regression with SM-Dialog Likert
scores as the dependent variable. SM-Turn rates and
SM-Dialog scores are averaged across evaluation met-
rics. The black curve represents data from all models
concatenated together. SM-Turn rates from later turns
tend to be more positively correlated to the final SM-
Dialog Likert scores, suggesting a possible recency bias.

calculate the mean number of words in each sample.
Results are shown in Table 6.

Comparison Model Avg. number of words

Length BB3B 8.85
BB3B-M0 7.70

Size BB3B 8.95
BB90M 8.81

Fine-tuning BB3B 9.40
Reddit3B 9.25

Table 6: Mean number of words in justifications given
for BlenderBot3B vs. other models on PW-Turn evalua-
tions.

For term importance, we use the
scikit-learn TfidfVectorizer class to
compute TF-IDF scores for each term in each
model comparison.

We use a list of English stopwords from the
NLTK library to filter out common terms. Addition-
ally, we discard terms that have a higher document
frequency than 0.8.

The top 20 terms (descending order) for each
model pairing are shown in Table 7.

Our analysis reveals the following:

• Length comparison: While it appears that
many crowdworkers prefer longer responses
overall, at least in some conversational turns
some crowdworkers may prefer shorter re-
sponses. The top terms in justifications for
BlenderBot3B-M0 responses include “sim-
ple”, “short” and “direct”, while top terms in
reasons for choosing BlenderBot3B include
“detailed” and “longer”. This shows that PW-
Turn evaluation does well in capturing sensi-
tivity to length, and that workers’ selections
are due to their own preferences at a given
conversational turn.

Interestingly, in PW-Turn we find that
workers’ justifications for choosing the
BlenderBot3B-M0 responses are themselves
on average shorter than for BlenderBot3B. Ta-
ble 6 shows the mean justification lengths for
different model pairings. The mean justifica-
tion length for BlenderBot3B is 8.85 words,
compared to a mean length of BlenderBot3B-
M0 justifications of 7.7 words. This suggests
that workers choosing shorter, “simple” re-
sponses may also be less detail-oriented.

• Size comparison: Top TF-IDF weighted
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terms from workers’ justifications for both
models contain a mix of references to the con-
versational content, such as “hiking”, “beach”
or “dogs”, and conversational structure, such
as “relates” or “engaging”. By inspection,
there are no discernible differences between
these terms.

• Fine-tuning comparison: High TF-IDF-
weighted terms in justifications given by work-
ers who choose the BlenderBot3B model are
mostly related to conversational flow, such as
“follows”, “responds”, and “acknowledges”.
In contrast, terms appearing in justifications
for the Reddit3B model are specific and of-
ten refer to the topic instead of conversational
style, such as “bath”, “robot”, and “paris”.
This suggests that workers who choose the
Reddit3B model often favor less natural re-
sponses because they contain particular refer-
ences.

These nuanced differences are clear when eval-
uating model responses per turn, but are difficult
to capture when evaluating the conversation as a
whole. Analysis of worker justifications supports
our hypothesis that differences in conversational
quality are easier to identify in the PW-Turn evalu-
ation.

C.6 Variability in win rate across evaluation
techniques

Table 8 shows the variability in the win rates of
BlenderBot3B per evaluation technique, as mea-
sured by splitting the ratings from each technique
into chunks of equal crowdworker time. The win
rates from PW-Turn, PW-Dialog, and SM-Turn
vary least across chunks, largely because the mean
time per rating is small, leading to a larger num-
ber of ratings per chunk and thus a more precise
estimate obtainable within a given block of time.5

This suggests that calculating the per-conversation
winner-takes-all win rate for the per-turn methods
PW-Turn and SM-Turn may be disadvantageous
if having a precise measurement of the win rate is
more important than one that is statistically signifi-
cant.

5We omit win rates of PW-Dialog on conversations be-
tween a human and a model for simplicity. For this technique,
the time to collect conversations varies non-linearly as a func-
tion of the number of ratings (Section C.7), and thus any divid-
ing of ratings into chunks of equal crowdworker time would
have to take this irregularly-spaced conversation collection
time into account.

C.7 Crowdsourcing time needed per
technique

Figure 8: The time needed for statistical significance for
the Length comparison between models (BlenderBot3B
vs. BlenderBot3B-M0).

Figure 9: The time needed for statistical significance for
the Size comparison between models (BlenderBot3B vs.
BlenderBot90M).

Figures 8, 9, and 10 show the time needed to
achieve a statistically significant difference be-
tween a pair of models for each of the evaluation
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Comparison Model Top terms

Length BB3B information, chosen, provides, follow, engaging, going, adds, speaker, detailed, interested,
conversational, looks, little, play, chat, new, pets, includes, longer, tallies

BB3B-M0 day, wow, game, going, simple, stays, short, direct, express, speaker, keeps, conversational,
precise, western, popular, silk, hands, use, tone, elaborate

Size BB3B message, information, easy, time, correct, want, interested, enjoy, change, relates, spend, prefer,
fun, well, hiking, pets, go, moves, beach, sound

BB90M never, going, ok, excited, fav, correct, changes, color, new, engaging, personal, explain, ohio,
fluent, enjoy, hop, hip, listen, back, dogs

Fine-tuning BB3B follows, going, contradicts, great, responds, follow, responsive, never, contradict, flows,
acknowledges, responses, responded, stays, looks, personal, keep, well, nothing, contradiction

Reddit3B bath, personal, robot, im, someone, bubble, detailed, flowing, play, information, paris, due,
softball, careers, unique, direct, watch, told, book, boring

Table 7: Top TF-IDF-weighted terms in justifications given for BlenderBot3B responses vs. other models on
PW-Turn evaluations. Terms that are irrelevant to conversational evaluation are italicized.

Technique Length Size Fine-Tuning

PW-Turn 10% 8% 11%
PW-Turn (WTA) 18% 24% 13%

PW-Dialog (self-chat) 9% 9% 6%

SM-Turn 14% 13% 12%
SM-Turn (WTA) 17% 16% 15%

SM-Dialog 14% 15% 16%

Table 8: The variability of win rates of BlenderBot3B
across different evaluation techniques, for different
model comparisons (columns). Variability was mea-
sured by splitting each time-ordered set of ratings into
chunks representing 45 minutes of crowdworker time
each, and then computing the standard deviation of the
win rate across chunks. Standard deviations are aver-
aged across the three evaluation metrics (Section 3.1.2).
Win rates for PW-Turn were compiled over Bot Speaker
turns 2 to 6 and for SM-Turn over turns 3 to 6, following
Section 4.3.1.

techniques studied. For these plots, we consider
ratings for each turn in Bot Speaker turns 2 through
6 for PW-Turn and Bot Speaker turns 3 through 6
for SM-Turn, as in Section 4.3.1.6 We use a two-
sided binomial test for PW-Turn and PW-Dialog
and a two-sided independent t-test for SM-Turn
and SM-Dialog. Significance is measured at a p-
value of 5%. When estimating the crowdsourcing

6We do not compute winner-takes-all scores for each con-
versation because in experiments this works less well. It
greatly diminishes the total number of ratings per technique,
and thus it increases the number of conversations needed to
achieve statistical significance. We note that, compared to
the per-dialogue technique SM-Dialog, the resulting rating is
binary per evaluation metric in this case, which may contribute
to poor performance.

Figure 10: The time needed for statistical signifi-
cance for the Fine-tuning comparison between models
(BlenderBot3B vs. Reddit3B).

time needed for each evaluation technique, we in-
clude an estimate of each technique’s time to com-
plete onboarding, which is mandatory before being
approved to work on an evaluation.

For PW-Dialog evaluations (i.e. Acute-Evals)
on conversations between a human and a model,
the labor costs involve collecting both conversa-
tions and rating pairs. This gives us a parameter
to tune in this method: how many conversations
to collect, and then how many times to reuse them
when rating pairs of them. In our experiments, the
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number of conversations necessary is chosen such
that each possible pairing of a conversation from
one model and a conversation from another model
should only be evaluated once at most: thus, if
we have N conversations for each of the two mod-
els being compared, we will be able to perform a
maximum of N2 PW-Dialog evaluations on these
conversations.7

C.8 Crowdsourcing time needed when
combining single-model methods

Figure 11: The time needed to measure a statistically sig-
nificant result when averaging together per-conversation
evaluations of SM-Turn and SM-Dialog with the given
weighting, for the Length comparison. The fastest
weighting is marked with “[BEST]”.

Figures 11, 12, and 13 show the time needed
to achieve a statistically significant difference be-
tween models when averaging together SM-Turn
winner-takes-all success rates from Bot Speaker
turns 3 to 6 (Section 4.2) with SM-Dialog Likert
scores. To perform the weighted average between
SM-Turn and SM-Dialog on each conversation, we
first shift and scale the originally 1-to-5 SM-Dialog
Likert scores to fall within the range [0, 1], match-
ing the range of the individual binary SM-Turn
success rates. We see that statistical significance
is reached fastest when weighting SM-Turn much

7The potential drawback of this assumption is that the
performance of the models will then likely be judged using
only a relatively small handful of conversations, which may
or may not be representative of the models’ true performance.

Figure 12: The time needed to measure a statistically sig-
nificant result when averaging together per-conversation
evaluations of SM-Turn and SM-Dialog with the given
weighting, for the Size comparison.

Figure 13: The time needed to measure a statistically sig-
nificant result when averaging together per-conversation
evaluations of SM-Turn and SM-Dialog with the given
weighting, for the Fine-tuning comparison.

less heavily than SM-Dialog at a ratio of 1:5 or
1:10, which is to be expected given the already
much stronger sensitivity of SM-Dialog.
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Abstract

Knowledge-grounded dialogue systems utilise
external knowledge such as knowledge graphs
to generate informative and appropriate re-
sponses. A crucial challenge of such systems
is to select facts from a knowledge graph perti-
nent to the dialogue context for response gen-
eration. This fact selection can be formulated
as path traversal over a knowledge graph condi-
tioned on the dialogue context. Such paths can
originate from facts mentioned in the dialogue
history and terminate at the facts to be men-
tioned in the response. These walks, in turn,
provide an explanation of the flow of the con-
versation. This work proposes KG-CRUSE,
a simple, yet effective LSTM based decoder
that utilises the semantic information in the
dialogue history and the knowledge graph ele-
ments to generate such paths for effective con-
versation explanation. Extensive evaluations
showed that our model outperforms the state-
of-the-art models on the OpenDialKG dataset
on multiple metrics.

1 Introduction

Inducing factual information during response gen-
eration has garnered a lot of attention in dialogue
systems research. While language models (Zhao
et al., 2020; Zheng et al., 2020) have been shown
to generate responses akin to the dialogue history,
they seldom contain factual information, leading to
a bland conversation with the agent. Knowledge-
grounded dialogue systems focus on leveraging
external knowledge to generate coherent responses.
Knowledge Graphs (KGs) are a rich source of fac-
tual information and can be combined with an ut-
terance generator for a natural and informative con-
versational flow.

Zhou et al. (2018) showed that utilising KGs in
dialogue systems improves the appropriateness and
informativeness of the conversation. Augmenting
utterances in a dialogue with the KG information

Could you recommend me movies
similar to The Dark Knight?

The sequel to Batman Begins is The
Dark Knight.

Okay. Who is the director of The Dark
Knight and any other movies from him

not related to Batman?

Christopher Nolan was the director.
He also directed Insomnia and

Inception.
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Figure 1: An example conversation wherein the agent
utilises relevant information from the KG while generat-
ing responses. The agent generates facts about “Christo-
pher Nolan” in utterance 4 while utilising the semantic
information in the dialogue history and the KG.

guides the conversational agent to include relevant
entities and facts in the response. For example,
Figure 1 shows an example conversation where
a user is interacting with a dialogue agent about
movies. The agent has access to a KG that aids
in suggesting relevant facts during the dialogue
flow. When responding to utterance 3, the agent
can utilise information from the KG and produce
relevant facts about “Christopher Nolan”. This
information would be more engaging than respond-
ing with information about “Batman” or “Batman
Begins”.

While KGs have been used extensively to in-
clude relevant facts in a dialogue, the explicability
of such systems is limited. Naturally, this fostered
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research on developing models for explainable con-
versation reasoning. Moon et al. (2019) addressed
this problem by inducing KG paths for conversa-
tion explainability. They posited a dialogue-KG
path aligned corpus wherein utterances are aug-
mented with a KG path to denote fact transitions in
the dialogue. The KG paths emanate from entities
or facts mentioned in the dialogue history and ter-
minate at the entity to be mentioned in the response
text. Such paths form a sequence of entities and
relations and aid the dialogue agent in introducing
appropriate knowledge to the dialogue. In addition
to this, they proposed an attention-based recurrent
decoder over the KG to generate entity paths. Jung
et al. (2020) designed a novel dialogue-context in-
fused graph neural network to propagate attention
scores over the knowledge graph entities for KG
path generation. While such approaches have their
inherent strengths, their limitations are manifold.

Given a dialogue context, it is desirable to gen-
erate paths that results in a natural dialogue flow.
Therefore it is essential to capture the semantic in-
formation in the dialogue context as well as the
KG elements. Transformer based models (Devlin
et al., 2019; Lan et al., 2020; Liu et al., 2019a)
have enabled the capture of contextual relation-
ships between different words in a sentence. Tex-
tual representations from such models have been
successfully adapted for the dialogue conditioned
KG reasoning task (Jung et al., 2020). However,
prior works use the embedding of the [CLS] token
to encode the dialogue history and the KG elements.
Reimers and Gurevych (2019) demonstrated that
such sentence embeddings are sub-optimal and lead
to degraded performance in downstream applica-
tion tasks. Sentence-transformers (Reimers and
Gurevych, 2019) are strong tools for capturing the
semantic information of a sentence into a fixed-size
vector. As KG elements can be long phrases, KG-
CRUSE uses the Sentence-BERT (SBERT) model
to encode both the dialogue history and the KG
elements for capturing their semantic information.

As a result of the long tailed distribution of node
neighbors in a KG, it can become difficult to gen-
erate relevant paths over the KG for explainable
conversation. Given the dialogue history, it is desir-
able to traverse paths that are semantically relevant.
KG-CRUSE utilises the rich sequential informa-
tion in the dialogue history and the path history to
sample the top-k semantically similar neighbors for
extending its walk over the KG.

We show that our KG-CRUSE improves upon
the current state-of-the-art on multiple metrics,
demonstrating the effectiveness of KG-CRUSE for
explainable conversation reasoning.

To summarise, our contributions are as follows:

• We propose a KG-CRUSE , a LSTM based
decoder leveraging Sentence-Transformer (S-
BERT) embedding to reason KG paths for
explainable conversation.

• We show the efficacy of our model by improv-
ing the current state-of-the-art performances
over multiple metrics on the OpenDialKG
(Moon et al., 2019) dataset. Additionally, we
conduct extensive empirical analysis to em-
phasise the effectiveness of KG-CRUSE for
the reasoning task.

• We release1 our system and baseline sys-
tems as an open-source toolkit to allow re-
producibility and future comparison on this
task.

2 Related Work

The use of external knowledge in dialogue agents
has become commonplace, owing to the rich het-
erogeneous information contained in them. He et al.
(2017) addressed the knowledge-grounded conver-
sation task by iteratively updating the knowledge
base embeddings to generate informative responses.
Following this, knowledge-based dialogue sys-
tems have been studied extensively including the
collection of new knowledge-grounded datasets
(Ghazvininejad et al., 2018; Qin et al., 2019; Zhang
et al., 2018) and developing knowledge-centric dia-
logue systems (Liu et al., 2018; Parthasarathi and
Pineau, 2018a; Zhang et al., 2020).

Young et al. (2018a) attempted to integrate a
large scale KG into an end-to-end dialogue system.
Other similar works (Chen et al., 2019; Zhou et al.,
2020; Sarkar et al., 2020) leveraged graph neu-
ral networks and KG embeddings to recommend
relevant products in conversational recommender
systems. Though successful in retrieving suitable
entities or facts from the KG, these systems fail to
provide explainability to the recommendations.

Such limitations encouraged explainable conver-
sation reasoning using external knowledge. Liu
et al. (2019b) develop the problem as a Partially

1https://github.com/rajbsk/kg-cruse
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Figure 2: Modular overview of KG-CRUSE architecture. KG-CRUSE utilises the SBERT architecture to encode
the dialogue history and the KG elements. To generate walk paths over the KG, KG-CRUSE leverages an LSTM
network to model the temporal information. To generate the path at timestep t, the LSTM takes as input (D,
(r1; e1), ..., (rt−1; et−1)) and outputs the hidden state representation ht of the step t. KG-CRUSE then computes
dot-product of ht with the embeddings of the actions available at timestep t ([rt,1; et,1], [rt,2; et,2], ...,[rt,m; et,m])
followed by a softmax layer to compute the probability of each available action.

Observable Markov Decision Process and use pol-
icy gradient for training the agent to generate KG
paths. Moon et al. (2019) posited a KG path-
parallel-dialogue corpus along with DialKG Walker
(DKGW) model, a recurrent decoder model to gen-
erate the KG path for a response entity selection.
Jung et al. (2020) suggested the use of graph neu-
ral networks using attention flow to generate KG
entity paths. While novel, DKGW does not ex-
plicitly utilise the graph structure during model
training. On the other hand, the performance of At-
tnIO (Jung et al., 2020) relies on the node sampler
during training. AttnIO becomes computationally
expensive due to dialogue specific graph neural
network (both during training and inference) as
the model concatenates the dialogue embedding to
the node embeddings while propagating attention
scores. To counter these issues, we design a very
simple, lightweight, yet efficient LSTM network
leveraging the dialogue and path history to extend
the path over the KG.

While, DKGW uses TransE (Bordes et al., 2013)
for encoding the elements of the KG, such transla-
tion embeddings have weak representation capac-
ity. On the other hand, Jung et al. (2020) utilise
the ALBERT (Lan et al., 2020) representation of
sentence to encode the dialogue history and the KG
elements. They use the [CLS] token representation
of the text sequence as the sentence representation.

Reimers and Gurevych (2019) suggested Sentence-
Transformers for encoding sentences. We encode
the dialogue history and the KG elements using
Sentence-Transformers to capture rich semantic
similarities between the dialogue history and the
KG elements.

The processing of semantically rich sequen-
tial information using a lightweight LSTM model
makes KG-CRUSE ideal for generating walks over
a KG for explainable conversation.

3 Methodology

In the following sections, we begin with formally
introducing the problem statement. We then outline
the embeddings used in KG-CRUSE. Following
this, we discuss the architecture of KG-CRUSE as
illustrated in Figure 2. Finally, we describe de-
coding process used by KG-CRUSE during the
inference step.

3.1 Formal Problem Definition

We describe the problem statement similar to Moon
et al. (2019). The KG is defined as G = VKG ×
RKG ×VKG , where VKG is set of entities andRKG
is set of relations in the KG. Facts in the KG are
denoted by triples, and each has the form (e, r, e’)
where e, e’ ∈ VKG are entities and r ∈ RKG is the
relation connecting them.
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In addition to the KG, each input contains a di-
alogue D ∈ D, represented as a sequence of utter-
ances D = {s1, ..., sn}, and the set of entities xe

= {x(i)e } occurring in the user’s last utterance sn,
where x(i)e ∈ VKG . The output is represented as
y = {ye, yr}, where ye is a set of entity paths ye =

{y(i)e }, with each element y(i)e = {y(i)e,t}
T
t=1 denoting

an entity path connecting x(i)e to the response entity
y(i)e,T . Likewise, yr = {y(i)r } is a set of relation paths,

where y(i)r ∈ RKG . The element y(i)r = {y(i)r,t}
T
t=1

is a sequence of relations from the KG connecting
x(i)e and {x(i)e,t}

T
t=1.

3.2 Dialogue and KG Representation

Capturing the semantic information in the dialogue
context is an important component of our model.
SBERT is a contextual sentence encoder that cap-
tures the semantic information of a sentence in a
fixed-size vector. We encode pieces of text using
Equation 1. The text is first sent though a pre-
trained BERT model to obtain the contextual repre-
sentation of its tokens. The sentence embedding is
computed by taking a mean-pool of the contextual
token representations. The dialogue context is con-
structed by concatenating a maximum of three pre-
vious utterances and is then passed through SBERT
encoder to obtain a fixed-size contextual dialogue
representation.

S = MeanPooling(BERT(S)) (1)

In order to align the semantic vector space of
the dialogue representations and the KG repre-
sentations, we use SBERT to encode the KG el-
ements. As KG entities and relations can be words
or phrases, SBERT can effectively capture their
semantic information. We use the publicly avail-
able SBERT-BERT-BASE-NLI2 model with mean-
pooling as our SBERT encoder.

3.3 KG-CRUSE Architecture

KG-CRUSE learns to traverse a path on the KG
by learning a function πθ that calculates the proba-
bility of an action at ∈ At given the state st. The
state st contains the dialogue history and entities
already traversed by KG-CRUSE while decoding
the paths, while at is the set of edges from the KG
available to KG-CRUSE for extending its path.

2
https://huggingface.co/sentence-transformers/

bert-base-nli-mean-tokens

The state st at step t is defined as a tuple (D, (r1,
e1, ..., rt−1, et−1)), where D is the dialogue context
and ri, ei(i < t) are the relation and entity already
decoded by KG-CRUSE at step i. The initial state
s0 is denoted as (D, ∅), where ∅ is the empty set.

At step t, an action has the form at = (rt, et) ∈
At, whereAt is the set of all possible actions avail-
able to the model at step t. At includes all outgo-
ing edges of et−1 in the KG G, i.e. At is the set
of all the outgoing edges of the entity decoded by
KG-CRUSE at timestep t− 1. To let the agent ter-
minate the search process, we add self-loop edges
to every entity node in the graph denoting no oper-
ation ("self-loop"). The action at is represented as
a concatenation of the relation and entity embed-
ding at = [rt; et], where r ∈ Rdr , e ∈ Rde and
Rde , Rdr are the size of the entity embedding and
relation embedding respectively. At step 1, KG-
CRUSE chooses between the entities mentioned in
sn for path traversal. The relation associated with
action at step 1 is the zero vector. As mentioned,
the state st contains the dialogue context and action
history (path history). This sequential information
in st is modelled using an LSTM:

d = WdD (2)

h0 = LSTM(0,d) (3)

ht = LSTM(ht−1, at−1), t > 0 (4)

where D is the contextual dialogue embedding ob-
tained using Equation 1 and Wd is a learnable ma-
trix that maps the dialogue embedding to the LSTM
input dimension. Given the hidden state representa-
tion ht at time t, KG-CRUSE assigns a probability
to each action using Equation 6.

xt = W3,θ(ReLU(W2,θh⊺
t )) (5)

πθ(at|st,At) =
exp(at · xt)∑

ai∈At
exp(ai · xt)

(6)

The hidden state representation ht is passed
through a two-layered dense network with ReLU
activation (Nair and Hinton, 2010) in the first
layer. The LSTM weights, W2,θ ∈ Rdh×dh and
W3,θ ∈ R(dr+de)×dh are the learnable parameters,
and dh is the LSTM hidden representation size.

3.3.1 Model Learning

We train KG-CRUSE by minimising the cross-
entropy loss on the entities decoded at each
timestep. Additionally, we train the model using
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teacher forcing (Sutskever et al., 2014), wherein
the model makes each action conditioned on the
gold history of the target path. To prevent overfit-
ting, we add L2 regularisation to the parameters of
the model. During training, we do not fine-tune
the SBERT architectures, but back-propagate the
gradients to the entity and relation embeddings.

3.3.2 KG-CRUSE Path Generation
Once the model is trained, KG-CRUSE takes the
dialogue history and the entities mentioned in the
current utterance as input, a horizon T and outputs
a set of entity paths, relations paths of length T

along with the probability score of each path. Dur-
ing inference, we remove self-loops from the KG
except for the self-loop with label "self-loop" intro-
duced in section 3.3. We do so to allow the agent
traverse diverse paths rather than staying at entities
mentioned in the dialogue history.

4 Experimental Setup

This section presents the dataset used, the baselines
compared with and the description of the model
settings of KG-CRUSE along with the metrics the
models have been evaluated on.

4.1 Dataset

We evaluate our proposed framework on the Open-
DialKG dataset (Moon et al., 2019). The dataset
has 91,209 turns spread over 15,673 dialogues in
the form of either task-oriented dialogues (recom-
mendations) or chit-chat conversations on a given
topic. Each turn is annotated with a KG path to
represent fact transitions in the conversation. The
KG is a subset of the Freebase KG (Bollacker et al.,
2008), which has 1,190,658 fact triples, 100,813
entities and 1,358 relations. Following Moon et al.
(2019), we split the dataset randomly into 70%,
15% and 15% for training, testing and validation.

4.2 Baselines and Evaluation Metrics

We compare KG-CRUSE against the following
baseline models suggested by Moon et al. (2019)
and Jung et al. (2020):

• Tri-LSTM (Young et al., 2018b): The model
encodes each utterance along with facts from
the KG within 1-hop distance from the entities
mentioned in the current utterance. This is
used to retrieve facts from the KG for dialogue
explanation.

• Ext-ED (Parthasarathi and Pineau, 2018b):
Moon et al. (2019) conditioned the response
generation with external knowledge vector in-
put to generate response entity token at the
final softmax layer, without using the struc-
tural information from the KG.

• Seq2Path (Jung et al., 2020): An attention
based Seq2Seq model is modified to gener-
ate entity paths by masking out unreachable
nodes at each decoding step.

• Seq2Seq: An LSTM based seq2seq
(Sutskever et al., 2014) model where the
decoder is modified to generate entity paths.
Similar to DKGW (Moon et al., 2019) model,
we use modality attention as the output of
the encoder. Following Moon et al. (2019),
we replace the softmax layer in the decoder
with a zero-shot learning layer in the KG
embedding space.

• DKGW (Moon et al., 2019): A model to
generate KG paths using domain-agnostic,
attention-based recurrent graph decoder re-
inforced with a zero-shot learning layer over
the KG embedding space.

• AttnIO (Jung et al., 2020): A dialogue condi-
tioned KG path traversal leveraging attention
flow using graph neural networks.

Since the authors of OpenDialKG and AttnIO
have not released their implementations, we report
their performance on our re-implementations. We
note that for most systems, our implementation
is similar or better than the reported results. Re-
garding AttnIO, we were not able to reproduce
the results although we note that errors in the im-
plementation of the node sampler or leakage of
the test dataset into the training dataset can easily
lead to overestimation of the accuracy. The code
and dataset used for re-implementation as well as
our system is accessible at https://github.
com/rajbsk/kg-cruse.

We evaluate our models on different recall@k
metrics for entity and path retrieval. Path@k mea-
sures if the ground-truth path is present in the top-k
paths with the highest probability searched by the
agent. Similarly, tgt@k measures if the response
entity is present in the top-k entities retrieved by
the agent. In situations where multiple paths point
to the same response entity, we consider the path
with the highest score for entity retrieval.
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Recall@k
Model path@1 path@5 path@10 path@25 tgt@1 tgt@5 tgt@10 tgt@25

Tri-LSTM 3.2 22.6 36.3 56.2 - - - -
Ext-ED 1.9 9.0 13.3 19.0 - - - -
Seq2Path 14.92 31.1 38.68 48.15 15.65 33.86 42.52 53.28

Seq2Seq∗ 6.53±0.78 26.21±1.21 35.02±1.27 45.78±1.18 7.13±0.85 30.64±1.62 41.01±1.43 52.97±1.55
DKGW∗ 14.16±1.16 37.26±1.91 47.85±2.60 59.20±2.33 14.96±1.04 39.53±1.81 51.06±2.15 63.85±1.58
AttnIO∗ 19.08±1.19 38.49±0.79 43.99±1.10 48.94±0.55 20.32±1.80 45.90±0.93 52.82±0.65 55.17±0.96

KG-CRUSE 19.59±0.43 44.62±1.08 56.16±1.21 70.59±0.38 20.20±0.36 47.76±0.62 60.11±0.92 75.30±0.57

Table 1: Performance of KG-CRUSE in comparison with other baseline methods on different Recall@k metrics.
The numbers reported are the mean values with the sample standard deviation (p=0.01). Results are statistically
significant with p=0.01. Models with ∗ denote our re-implementation.

4.3 Implementation Details

For the task, we set horizon T to 3. The dia-
logue, entity and relation embeddings are encoded
using SBERT into a 768 dimensional vector. In
KG-CRUSE, we consider 3 LSTM layers with
dh = de + dr = 1, 536. To prevent the agent from
overfitting on the dataset, we add L2 regularisation
with a weight decay parameter of 1e-3.

Similar to Jung et al. (2020), we set the batch
size to 8 and train the model with Adam optimiser
(Kingma and Ba, 2015) with a learning rate of 1e-4
for 20 epochs. For models with re-implementations,
we report the results on five different splits of the
data. For Tri-LSTM and Ext-ED, we report the
number reported by Moon et al. (2019), while for
Seq2Path, the numbers are reported from the work
of Jung et al. (2020). As entity occurrences in a
dialogue dataset is sparse, it is desirable to report
the performance on five different splits of the data
rather than an assessment of five models on one
split.

5 Results and Discussion

We begin with performing a quantitative evaluation
of the models. Following this, we study the im-
pact of our choice of sentence embeddings on the
model performance. Then we analyse the impact of
beam-width at each decoding step during inference.
Finally, we provide insights of examples where the
results of KG-CRUSE are not consistent with the
ground truth paths.

5.1 Quantitative Analysis

In this section, we compare the performance of
our proposed approach against the different base-
lines. From Table 1, it can be observed that KG-
CRUSE performs better than the different baseline

Model P@1 P@25 E@1 E@25 Rel@1

BERT 12.74 66.72 12.98 72.14 39.37
ALBERT 13.42 65.67 13.96 72.23 40.93
SRoBERTa 17.17 68.04 17.65 73.34 40.71
SBERT 19.52 70.72 20.20 75.72 40.02

Table 2: Influence of sentence embeddings on KG-
CRUSE performance. Comparison of different embed-
ding methods.

models on the OpenDialKG dataset. For entity
and path accuracy, AttnIO has the closest perfor-
mance compared to our model, with the latter be-
ing 2.7% relatively better on both path@1 and en-
tity@1 metrics. On increasing k of recall@k, we
find KG-CRUSE has at least 10% relative improve-
ment over the baseline models. It is interesting
to notice that on increasing the value “k”, KG-
CRUSE performs relative better than other models.
KG-CRUSE identifies paths semantically relevant
to the dialogue context although different from the
gold-label paths as discussed in Section 5.6. The
huge gain on the path@25 metric advocates for this
hypothesis. It is worthwhile to notice that although
AttnIO has the closest performance for path@1
and entity@1 to KG-CRUSE, the performance de-
grades when “k” increases in path@k and entity@k.
This might be due to the fact that the beam-width
reported by the authors is not expressive enough to
capture semantically relevant paths or entities.

5.2 Effectiveness of Sentence Embeddings

In our framework, we utilise sentence SBERT em-
beddings to encode dialogue context and KG el-
ements. In this section, we conduct an ablation
study on the efficacy of such embeddings. We
replace the SBERT embeddings with the [CLS]
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SBERT Aligned
Fine-tuned KG P@1 P@25 E@1 E@25 Rel@1

Yes No 17.82 69.47 18.21 74.47 40.24
Yes Yes 18.46 69.93 19.00 74.75 40.47
No No 18.00 62.01 18.52 74.54 38.48
No Yes 19.52 70.72 20.20 75.72 40.02

Table 3: Results on fine-tuning the SBERT architecture
used for encoding the dialogue history. Additionally, the
table reports the results of initialising the KG elements
with random initialisation.

token representation of BERT3 (Devlin et al.,
2019) and ALBERT model4 (Lan et al., 2020)
in KG-CRUSE. Additionally, we consider an in-
stance wherein the elements are encoded using
Sentence-RoBERTa (SRoBERTa)5 (Reimers and
Gurevych, 2019). The results in Table 2 demon-
strates the strength of our embedding choices
wherein SBERT and SRoBERTa outperforms the
BERT and ALBERT embeddings. Both the sen-
tence embedding models models are pre-trained
on NLI datasets, which allows them to capture
rich semantic information for textual similarity.
These embeddings have demonstrated strong per-
formances in the task of semantic search using
cosine-similarity (Reimers and Gurevych, 2019).
It should be noted that before the softmax layer in
KG-CRUSE, we compute the dot product of the
LSTM layer hidden representation with that of the
relation-entity embeddings available at the given
timestep. As a result of this step, we expect the per-
formance of SBERT and SRoBERTa embeddings
to be better that BERT and ALBERT embeddings.

Additionally, we see from the Table 2 that the
relation accuracy of different models is higher than
path accuracy. This is due to the outgoing edges
of a node (from the dialogue history) sharing sim-
ilar features if they are connected using the same
relation. Thus multiple entities can fit our choice
of the response entity given the dialogue context.

5.3 Impact of KG Embedding Alignment and
SBERT Fine-tuning

In this section, we study the impact of encoding KG
elements with SBERT embeddings. Additionally,
we analyse if fine-tuning the SBERT architecture
used for encoding the dialogue history is beneficial
for explainability.

3
https://huggingface.co/bert-base-uncased

4
https://huggingface.co/albert-base-v2

5
https://huggingface.co/sentence-transformers/

roberta-base-nli-mean-tokens

Size P@1 P@25 E@1 E@25

2, 5, 50 19.59 56.26 20.09 62.19
2, 10, 25 19.55 64.93 20.04 70.16
2, 10, 50 19.55 64.93 20.04 70.18
2, 25, 10 19.52 69.75 20.02 74.57
2, 25, 25 19.52 70.72 20.02 75.72
2, 25, 50 19.52 70.72 20.02 75.75
2, 50, 5 19.52 68.46 20.02 72.53
2, 50, 25 19.52 70.56 20.02 75.43

Table 4: Impact of the beam width at different timesteps
on the model performance. The results are reported
on one of the dataset split. Best results are shown in
bold, while the results on the default setting of KG-
CRUSE are underlined. All numbers are in percentage.

Model GPU Train Time Test Time

Seq2Seq Nvidia 1080Ti ≈8 mins ≈1 mins
DKGW Nvidia 1080Ti ≈4 mins ≈8 mins
AttnIO Tesla V100 ≈38 mins ≈82 mins
KG-CRUSE Nvidia 1080Ti ≈7 mins ≈8 mins

Table 5: Analysis of the time required by different
models for training and inference on the OpenDialKG
dataset. The numbers in the third column denote per
epoch train time.

Table 3 outlines four situations, where in two
cases we fine-tune the SBERT architecture used
for encoding the dialogue history. We also con-
sider two cases where the embeddings of the KG
elements are initialised with values drawn from a
normal distribution with mean 0 and standard de-
viation 1, corresponding to the value “No” in the
second column. It should be noted that we never
consider fine-tuning the SBERT architecture used
for encoding the KG elements.

We see from the Table 3 that in cases when the
KG elements are not encoded with SBERT em-
beddings, their performance drops as compared
to cases when we use SBERT embeddings. Addi-
tionally, we find that fine-tuning SBERT leads to a
decrease in the performance of KG-CRUSE. This
can be attributed to the change in semantic space of
the dialogue embeddings and the KG embeddings
during fine-tuning. Hence, we do not finetune the
SBERT architecture in the default setting of KG-
CRUSE.

5.4 Impact of Beam-Width on Path Reasoning

In this experiment, we study the influence of beam-
width at different timesteps on the model perfor-
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Dialogue Model Walk Path

A: Could you recommend movies similar KG-CRUSE Kung Fu Panda→written by→Cyrus Voris
to Kung Fu Panda? Ground Truth Kung Fu Panda→directed by→Mark

B: [response] Osborne→wrote→Monsters vs. Aliens

A: Oh cool, I also read Wocket in my Pocket! KG-CRUSE 1958→released year→Tom’s Midnight Garden
But sure, what else is there? Garden→has genre→Children’s literature

B: Cool! Yertle the Turtle and Horton Hears
a Who! are also written by Dr. Seuss. Ground Truth 1958→released year→Have Space Suit - Will

A: That first one is really old right? I think Travel→written by→Robert A. Heinlein
it was released in 1958. // B: [response]

A:Could you recommend a book by Jeffrey Zaslow? KG-CRUSE Jeffrey Zaslow→wrote→The Last Lecture
B: [response] Ground Truth Jeffrey Zaslow→wrote→Last Lecture

→has genre→Non-fiction

Table 6: Examples where KG-CRUSE generates path different from the true paths.

mance. The first column of Table 4 lists the tuples
(K1, K2, K3) where each Ki denotes the top-Ki

edges sampled at timestep i.
We conduct this analysis on a single split of the

dataset keeping all other parameters of the model
constant. We consider a diverse set of values for
each Ki. From Table 4, we find that although the
tuples (2, 5, 50), (2, 10, 25), (2, 25, 10) and (2, 50,
5) have an equal number of sampled paths, tuple (2,
25, 10) performs better than others. Interestingly,
we observe that the sampling sizes at the second
timestep play a significant role in finding optimal
paths for KG-CRUSE. The first two sets of fact
selection (i.e. during timesteps 1 and 2) largely de-
termine the facts reachable by KG-CRUSE. Sam-
pling more samples during the initial timesteps
enables the agent to explore diverse paths initially
and KG-CRUSE then makes an optimal selection
of facts dependent on the dialogue information.

5.5 Analysis of Computational Requirements

In this study, we conduct an analysis of the time re-
quired for training the model. We also compare the
performance of different architectures with regards
to the inference speed.

Table 5 shows that while DKGW has a bet-
ter train time per epoch than KG-CRUSE and
Seq2Seq has a better inference speed than KG-
CRUSE, we can observe from Table 1 that our
model achieves better performance compared to
these models. It is worthwhile to mention that
while AttnIO achieves the closest performance to
KG-CRUSE as shown in Table 1, it requires
roughly six times more training time and is ten
times slower during inference. This clearly indi-
cates the benefits of using KG-CRUSE for explain-

able conversation using KGs.

5.6 Qualitative Analysis

This section highlights three scenarios showcasing
the underlying working of KG-CRUSE. Table 6
displays three examples where KG-CRUSE gener-
ates paths different from the gold KG paths. In
the first example, it can be observed that KG-
CRUSE identifies a path that is not sufficient to
answer the given question. This can be due to the
limited dialogue context provided. Choosing this
fact might lead to a dialogue with the agent, how-
ever, the user query is not answer with the path
chosen by KG-CRUSE.

In the second example, the relation traversed by
KG-CRUSE is correct, however as the dialogue
context is not specific, it decodes a path that might
potentially fit the dialogue context but is different
from the gold path. However, in the third example,
even with limited context, KG-CRUSE identifies
a path relevant to the context, however the final
entity differs from the gold path. Such paths are
admissible as all of them fit the dialogue context
appropriately.

6 Conclusion

In this work, we propose KG-CRUSE, an LSTM
based lightweight framework for explainable con-
versational reasoning. We utilise SBERT embed-
dings to capture the rich semantic information in
the dialogue history and the KG elements. We con-
duct an extensive evaluation to demonstrate that our
framework outperforms several baseline models on
both explainability and response entity retrieval.
As annotating ground truth paths is expensive, we
plan on extending this model to scenarios when
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ground truth paths are not available involving the
generation of knowledge-conditioned dialogue.
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Abstract

Large Transformer-based natural language un-
derstanding models have achieved state-of-the-
art performance in dialogue systems. However,
scarce labeled data for training, the large model
size, and low inference speed hinder their de-
ployment in low-resource scenarios. Few-shot
learning and knowledge distillation techniques
have been introduced to reduce the need for la-
beled data and computational resources, respec-
tively. However, these techniques are incom-
patible because few-shot learning trains models
using few data, whereas, knowledge distilla-
tion requires sufficient data to train smaller, yet
competitive models that run on limited compu-
tational resources. In this paper, we address
the problem of distilling generalizable small
models under the few-shot setting for the in-
tent classification task. Considering in-domain
and cross-domain few-shot learning scenarios,
we introduce an approach for distilling small
models that generalize to new intent classes
and domains using only a handful of labeled
examples. We conduct experiments on public
intent classification benchmarks, and observe
a slight performance gap between small mod-
els and large models. Overall, our results in
both few-shot scenarios confirm the generaliza-
tion ability of the small distilled models while
having lower computational costs.

1 Introduction

Transformer-based language models, such as BERT
(Devlin et al., 2019), contribute widely to the de-
velopment of dialogue systems. A key component
in the development of these systems is natural lan-
guage understanding (NLU), such as intent clas-
sification (IC). Intent classification refers to de-
termining the intent of the speaker’s utterance in a
given domain in dialogue systems. Recently, BERT-
based language models have achieved state-of-the-
art performance in intent classification through fine-
tuning on task-specific datasets (Chen et al., 2019).
However, there are two main challenges in the

development of BERT-based intent classification
models for task-oriented dialogue systems. First,
training such models across many domains needs
labeled training data from multiple domains. Due
to the lack of large amounts of multi-domain train-
ing data, few-shot learning (FSL) methods, such
as metric-based meta-learning techniques (Vinyals
et al., 2016; Snell et al., 2017), have been used to
adapt BERT-based intent classification models to
new domains (Li et al., 2021). In cross-domain
few-shot learning methods, the model learns trans-
ferable knowledge from large-scale source domain
data and generalizes to unseen target domains using
only a handful of training samples.

The second challenge is the large model size
and long inference time of Transformer-based mod-
els, which hinder the deployment of such models
when limited computational resources are avail-
able. Approaches to reduce the size of models, e.g.,
knowledge distillation (KD; Hinton et al. 2015),
have been introduced. It has been shown that the
new compressed models retain a high percentage of
the performance while having a shorter inference
time than the original models (Liu et al., 2019).
Task-specific knowledge distillation approaches re-
quire sufficiently large training datasets (Tang et al.,
2019), ideally with labels (Hinton et al., 2015), to
distill a powerful small model. However, to ob-
tain both generalized and small models, knowledge
distillation methods seem to be incompatible with
few-shot learning due to the large need of sufficient
training data. Therefore, an adaptation of knowl-
edge distillation to few-shot learning is necessary.
To the best of our knowledge, task-specific knowl-
edge distillation in cross-domain few-shot learning
has largely remained unexplored with a few excep-
tions in computer vision (Zhang et al., 2020b; Li
et al., 2020) and natural language processing (NLP;
Pan et al. 2021; Zhou et al. 2021).

In this paper, we propose a task-specific ap-
proach for distilling small models with generaliza-

108



tion ability to new classes and domains in two few-
shot learning scenarios: 1) in-domain target class
generalization in single- and multi-domain intent
classification; 2) target domain adaptation in multi-
domain intent classification. To this end, we first
pretrain a Transformer-based prototypical teacher
network (Snell et al., 2017) on source classes and
domains using meta-learning. Then, we design a
prototypical student network and pass the trans-
ferable knowledge to the student using knowledge
distillation. During the distillation process, we con-
sider a prototype loss as a new component in the
standard distillation loss function. This loss mea-
sures how much each prototype that is produced by
the student model resembles the respective proto-
type produced by the teacher model. Moreover, as
opposed to standard batch training in knowledge
distillation, we introduce an episodic distillation
process. This way, we obtain a small student model
that is compatible with few-shot scenarios and gen-
eralizes to unseen target classes and domains.

Our contributions are summarized as follows:
1) We propose a new knowledge distillation ap-
proach compatible with few-shot learning by intro-
ducing an episodic distillation process and using
the prototype-based distillation loss. Our novel
approach combines advantages of few-shot learn-
ing with knowledge distillation. 2) We perform
extensive experiments on four public NLU bench-
marks and compare the distilled small model with
the large model in the few-shot intent classification
scenario. Results show a slight performance drop
for the small model while having lower memory
consumption and a slightly faster inference speed.
3) We show that the small model can effectively
generalize and adapt to target domains without the
teacher supervision in the few-shot target domain
adaptation. This is a more challenging and realistic
scenario for small student models.

2 Background and Related Work

2.1 Few-shot learning

Few-shot learning has received substantial interest
in NLP. One prominent technique in FSL is meta-
learning, such as metric-based meta-learning tech-
niques (Vinyals et al., 2016; Snell et al., 2017). In
these techniques, a model is trained on source train-
ing tasks with sufficient labeled instances, called
meta-training, and generalizes or adapts to new
tasks with only a handful of labeled examples,
called meta-testing. The meta-training step is per-

formed through episodes. In each episode, a set
of N classes (N-way) is chosen per task. For each
class, a support set, which contains K labeled ex-
amples, and a query set are created for training
and evaluating the performance of the classifier
for updating the model parameters. The learning
process is performed in the form of N-way K-shot
classification task. During meta-testing, an adapta-
tion to new tasks using a few labeled examples is
performed similarly to meta-training.

Recent attempts in few-shot intent classifica-
tion focus on both in-domain and cross-domain
generalization using different meta-learning tech-
niques. Some approaches introduce metric-based
meta-learning, such as Prototypical networks (Snell
et al., 2017) to train models on large-scale source
class or domain data and generalize to emerging
classes or domains using only a handful of training
samples (Geng et al., 2019; Nguyen et al., 2020;
Krone et al., 2020; Li et al., 2021). In metric-based
methods, a metric function is trained to classify
new examples by comparing them with labeled
examples. Other approaches propose to pretrain
models on different source tasks and transfer them
to the few-shot intent detection task (Casanueva
et al., 2020; Zhang et al., 2020a). Alternatively,
Xia et al. (2020) propose a novel model to augment
training data by generating utterances for unseen
intent class labels.

2.2 Knowledge distillation

Knowledge distillation approaches transfer the
knowledge and generalization ability of a large
trained model, called teacher, to a small model,
called student (Ba and Caruana, 2014; Hinton et al.,
2015). In the simplest case, the objective function
during distillation is to minimize the difference be-
tween the soft labels produced by the teacher and
the student predictions. As an alternative, the logits,
i.e., the inputs to the final softmax function, can be
used instead of the soft labels for training the stu-
dent (Bucila et al., 2006). Hinton et al. (2015) The
teacher and student models can have different ar-
chitectures. For instance, Liu et al. (2019) explore
Transformer-based teacher and both Transformer-
and LSTM-based student models for multi-task
knowledge distillation in NLP. KD has received
special attention in Transformer-based teacher mod-
els to train light-weight generic students (Sanh
et al., 2019; Sun et al., 2019; Jiao et al., 2020; Sun
et al., 2020; Wu et al., 2020) and task-specific stu-
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dents with practical applications (Tsai et al., 2019;
Liu et al., 2019; Clark et al., 2019) including intent
classification (Jiang et al., 2021).

2.3 Knowledge distillation and few-shot
learning

In NLP models, knowledge distillation for improv-
ing the overall efficiency and generalization abil-
ity to new classes and domains is not straightfor-
ward under the few-shot learning scenario. Recent
investigations suggest that larger models show a
better few-shot performance than smaller models
because of higher model capacity (Brown et al.,
2020).1 At the same time, knowledge distillation
needs sufficiently large training data, ideally with
labels (Hinton et al., 2015), to distill a small model
with small performance gap. Thus, employing few-
shot learning and knowledge distillation methods
jointly seems to be conflicting.

There have been only a few attempts to apply
knowledge distillation in the context of the few-
shot learning scenario in computer vision (Zhang
et al., 2020b; Li et al., 2020; Liu et al., 2020). To
the best of our knowledge, attempts in NLP are
restricted to the work by Pan et al. (2021) and Zhou
et al. (2021). In their work, Pan et al. (2021) train
a multi-domain Transformer-based meta-teacher
and introduce a meta-distillation approach to ob-
tain domain-specific student models. Similar to our
work, they consider in-domain generalization and
target domain adaptation scenarios during the distil-
lation process. However, we focus on a more chal-
lenging scenario where the student model does not
have access to the teacher for emerging domains.
That is, the student adapts to new target domains
using a handful of labeled examples independently
and without any distillation process. Thus, our
model architecture is different from that of Pan et al.
(2021) to preserve the model capacity for general-
ization and adaptation purposes. Zhou et al. (2021)
propose a meta-learning approach for knowledge
distillation in which both teacher and student are
trained through interacting with each other. The
teacher learns to improve its transfer ability by
receiving feedback about the performance of the
student on a new data split called quiz set. Alter-
native approaches to KD in a low-resource setting
consider data augmentation to generate unlabeled
data and distill small models using the augmented

1Although there has recently been a discussion around this
assumption (Schick and Schütze, 2021).

data (Melas-Kyriazi et al., 2019).

3 Approach

We first describe the teacher and student model ar-
chitectures, followed by our proposed model train-
ing procedure. We elaborate on details of the pro-
posed episodic distillation process and show how
our approach preserves the generalization ability
of the distilled models under few-shot learning sce-
narios.

3.1 Model architecture

Since we consider the few-shot learning scenario,
both teacher and student models are designed as a
prototypical network (Protonet; Snell et al. 2017),
which is a metric-based meta-learning approach.

A teacher Protonet T with trainable parameters
θT is composed of an encoding block, which is a
Transformer with L layers (L >= 2), followed by
two linear hidden layers. The objective of the net-
work is to learn a metric space by training model pa-
rameters θT . The input to the teacher is a sequence
x = t1 . . . tk with k tokens. The fixed-length en-
coded sequence is the mean pooling of the token
embeddings from the output of the last layer of the
Transformer e(x) = 1

k

∑k
i=1 h

L(ti). Then, e(x)
serves as the input to the hidden layers and the
output is an m-dimensional sequence representa-
tion. Given C classes, T computes m-dimensional
class representations rc ∈ Rm for c ∈ {1, . . . , C},
called prototype, as the mean aggregation of the m-
dimensional representations of support instances in
the respective class. For each new sequence, a clas-
sification is performed by computing the Euclidean
distance between the class prototypes and the cre-
ated m-dimensional sequence representation.

The student Protonet S with trainable parame-
ters θS consists of a Transformer with two layers in
the encoding block, followed by two linear hidden
layers. The Transformer layers are initialized from
the first two layers of the teacher’s encoding block.
Class prototypes are computed in the same way as
the teacher. In both architectures, all model param-
eters are trainable and shared across all domains in
multi-domain intent classification.

3.2 Model training and testing

Inspired by meta-learning, we implement meta-
training and meta-testing steps. Given two few-
shot scenarios in our work, we adjust these steps
accordingly. The first scenario is in-domain tar-
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get class generalization and the second scenario is
target domain adaptation in multi-domain classifi-
cation. Due to the joint FSL and KD approach,
meta-training consists of two steps: 1) teacher
pretraining on source classes (domains), referred
to as episodic pretraining, 2) student pretrain-
ing on source classes (domains) using the pro-
posed episodic knowledge distillation, referred to
as episodic distillation. At meta-testing, we imple-
ment an additional target domain adaptation step
for the second scenario, called Mini-episodic adap-
tion. In the following, we explain the details of
(mini-)episode construction and the training steps.

3.2.1 Episode construction

Assume there are disjoint sets of source classes
Ctrain and target classes Ctest for meta-training
and meta-testing, respectively. These sets belong to
source and target domains splits, Dtrain and Dtest.
In the in-domain target class generalization sce-
nario, Dtrain = Dtest. To construct an episode, a
domain d is uniformly chosen from domains Dsplit

where split is either train or test. Then, we create
variable size episodes by sampling the number of
ways n, support shot ks, and query shot kq from the
selected domain d, following the work by Krone
et al. (2020) and Triantafillou et al. (2020). Then
the support set Sc and the query set Qc for each
class c are sampled from the domain splits. As
discussed in Krone et al. (2020)’s work, by setting
variable shots and ways per episode, our approach
is more compatible with real-world cases where
unbalanced classes are available in the datasets.
Please refer to Appendix A.1 for the details of
episode construction. Meta-training consists of
epochs and each epoch contains distinct episodes.
Therefore, in line with Krone et al. (2020), once
an episode is constructed, we remove the respec-
tive samples from the meta-training split until all
samples are seen in an epoch.

3.2.2 Episodic pretraining

To pretrain a teacher T on source classes (domains),
we implement the standard meta-learning approach.
At each step, an episode is created through the
described variable episode construction approach.
Then, class prototypes rc ∈ Rm are computed uti-
lizing the labeled support set of each class Sc:

rc =
1

|Sc|
∑

(xi,yi)∈Sc

Tθ(xi). (1)

Next, the model computes the negative of the
squared Euclidean distance between each query
example representation and the class prototypes,
denoted as logits. Finally, we use the cross-entropy
loss between the computed logits of the query set
and query labels y as the classification loss:

Lcls =
∑

c∈Ctrain

|Qc|∑

i=1

cross-entropy(logitsi, yi),

(2)
and update the model parameters θT using the
Adam optimizer.

3.2.3 Episodic distillation process
Our goal is to obtain efficient small student models
that generalize to unseen classes (domains). There-
fore, we combine the advantages of FSL and KD
and introduce episodic knowledge distillation as
the main component in our approach. It is per-
formed during the pretraining step of the student
on source classes (domains).

Given a pretrained teacher T on source classes
(domains), we distill a student S on the same
classes (domains). The distillation process consists
of epochs. At each distillation step in an epoch,
we create an episode. The support set is used to
compute the class prototypes in both T and S for
the classification of the query set. We define the
overall distillation loss function as follows:

Lkd = Lsoft + Lpt, (3)

where Lsoft is the Kullback-Leibler (KL) diver-
gence between the soft labels of the teacher and
student output layer on the query set, which is com-
puted as follows:

pT = softmax(logitsT )

pS = softmax(logitsS)

Lsoft(T ,S) = KL(pT , pS).

(4)

To transfer the generalization ability of the teacher,
we use a new term Lpt in the distillation loss func-
tion, which is specific to the few-shot learning set-
ting. Lpt computes the difference between the class
prototypes in T and S . It is computed as the Mean-
Squared Error (MSE) on the class prototypes in the
teacher and student:

Lpt(T ,S) =
Ctrain∑

c=1

MSE(rTc , r
S
c ). (5)
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After computing the loss, the student model param-
eters θS are updated. Note that the student does not
have access to the query set labels during distilla-
tion.

3.2.4 Mini-episodic adaptation

Both pretrained teacher and student models can
be adapted on target domains in multi-domain IC.
However, our assumption is that the models have
access to only a handful of labeled examples. For
this purpose, similar to the episodic pretraining
step, the standard meta-learning approach is ap-
plied for adapting the teacher or student on the
target domain. To simulate the few-shot assump-
tion, we create mini-episodes from episodes, de-
vised originally by Luo et al. (2017). At each
adaptation step, akin to the k-fold cross-validation
approach, the ks instances in the support set of
the created episode are repeatedly split into n-way
ks − 1 mini-support instances and one mini-query
instance. Model parameters are updated after each
mini-episode. The episode’s query set is left for
evaluation purposes at inference time. We adapt
the teacher using mini-episodic adaptation. The
student is also adapted using the same procedure
without the teacher supervision.

3.2.5 Meta-testing

Model performance is evaluated at meta-testing
time through random test episodes on the meta-
testing split Ctest following the experimental setup
in (Krone et al., 2020; Li et al., 2021). In the first
scenario, we use the support and query sets at each
random test episode for prototype computations
and performance evaluation, respectively. In the
second scenario, we adapt the model to target do-
mains using mini-episodic adaptation and use the
mini-support and mini-query sets for model param-
eters update. Then, the episode’s support set is
used for prototype computations while the query
set is used for performance evaluation. If the model
is evaluated on target domains without any adapta-
tions, we use the support and query sets for proto-
type computations and performance evaluation.

4 Experiments

We conduct extensive experiments to evaluate the
proposed approach on public intent classification
datasets. We simulate two scenarios: in-domain tar-
get class generalization and the more challenging
scenario, target domain adaptation in multi-domain

intent classification. Experiments have been im-
plemented in PyTorch and performed on a single
NVIDIA 8GB GPU in Ubuntu 16.04.6 LTS.

4.1 Experiment setup

4.1.1 Datasets and splits

We use four public NLU benchmarks in our ex-
periments: SNIPS (Coucke et al., 2018), ATIS
(Hemphill et al., 1990), TOP (Gupta et al., 2018),
and Clinc150 (Larson et al., 2019). To simulate
few-shot class generalization in intent classifica-
tion, we use the proposed splits by Krone et al.
(2020). They create a meta-training split (train
split) and a meta-testing split (test split) from the
classes in each dataset. To simulate few-shot do-
main adaptation, we use the proposed splits by Li
et al. (2021). The statistics on the datasets and splits
for both scenarios are provided in Tables 7 and 8 in
Appendix B.1, respectively. Intent classes of each
split can be found in (Krone et al., 2020). We only
remove the atis_day_name intent from the test split
of ATIS as it contains only two utterances. More-
over, we use Work, Banking, and Credit card do-
mains as the source domains and Home and Kitchen
and Dining as the target domains in the Clinc150
dataset for the second scenario. We choose this
split to minimize the overlap between the source
and target domains. Moreover, we do not utilize
any validation set for model parameters optimiza-
tion. In this way, we increased the difficulty level
for a meaningful comparison in few-shot scenar-
ios. Furthermore, SNIPS is in fact a multi-domain
dataset and contains cross-domain intent classes,
and ATIS and TOP are highly unbalanced resulting
in rather difficult datasets for comparison in the
few-shot setting. TOP also contains various intent
classes in the navigation and events domain.

4.1.2 Training and testing Settings

In all scenarios, we use the Adam optimizer during
pretraining and distillation with a learning rate of
1e−5. Following the experiments setup in (Krone
et al., 2020) and (Li et al., 2021), training epochs
for both teacher and student are set to 30. At test
time, we report the average accuracy and standard
deviation of the models over three random seeds
and 100 random test episodes on the test split. We
use BERTbase_uncased as the base language model
with hidden size of 768. All hidden layers and
output features m in the Protonet are set to 200
based on practical experiments.
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In the in-domain target class generalization, we
pretrain the teacher using episodic training with
two different maximum support set size (Kmax)
for episodes: 20 and 100. This way, we compare
our results directly with the results of Krone et al.
(2020). In the target domain adaptation scenario,
we report the results of the distilled student on tar-
get domains without adaptation and with 10 epochs
of mini-episodic adaptation. In line with Li et al.
(2021)’s work, the ways n is set to the number of
the intent classes in the target domain during the
target domain adaptation of the student. Moreover,
we fix both ks and kq to 10 during the adaptation.
Therefore, variable episode construction is not uti-
lized in this step. Pretraining and episodic distilla-
tion steps remain the same as before.

4.2 Results and discussions

4.2.1 In-domain target class generalization

We investigate the generalization ability of the
small student model on unseen classes and com-
pare with the proposed models in (Krone et al.,
2020). They study different encoding blocks
(GloVe, ELMo, BERT) and algorithms (Fine-tune,
foMAML, Proto) for joint IC and slot filling un-
der the few-shot learning scenario. We report
the results of the BERT+Proto model (Baseline
BERT+Proto), which is the BERTbase_uncased model
with a Protonet, and the best results obtained
among all models (Baseline best result). Note that
the reported Baseline BERT+Proto model is ap-
proximately as large as the teacher model in the
number of parameters. Table 1 shows the evalua-
tion results on the three benchmark datasets, con-
sidering two different values of Kmax. For each
domain dataset, we train a teacher model on the
train split via the episodic pretraining step, and
distill an in-domain student using the episodic dis-
tillation process. We then evaluate the performance
of the student on the unseen intent classes, i.e., the
test split, in the respective dataset without further
adaptation. Moreover, following the experiments
in (Krone et al., 2020), we train a multi-domain
teacher using the train splits of all datasets jointly.
We then evaluate two types of distilled students on
the test split of each dataset individually: 1) a multi-
domain student distilled on all datasets, and 2) a
domain-specific student. Table 2 shows the results
of the multi-domain intent class generalization.

As can be computed from Table 1, the domain-
specific student retains 95.7% of the domain-

specific teacher’s performance on average, which
confirms its generalization ability given the limited
capacity of small models. The student outperforms
the Baseline BERT+Proto model by 5.6 points in
Kmax = 20 and 1.75 points in Kmax = 100 on
average. Note that Krone et al. (2020) proposed
a joint few-shot learning approach for IC and slot
filling tasks, which results in a more challenging
final task. Therefore, for fairness, we refrain from
comparing our teacher results with their models.
The performance boost by larger Kmax in the stu-
dent is 2.4 points. Since there is a semantic overlap
between the train and test intent classes in ATIS,
the student shows competitive performance with
the teacher. SNIPS contains semantically distant
classes. Similarly, TOP contains diverse intent
classes besides being highly unbalanced, which
explains the performance gap between the student
and the teacher in these datasets.

Table 2 shows that the multi-domain and domain-
specific students distilled from the multi-domain
teacher, achieve 82.31% and 92.06% of the teacher
performance, respectively. As is expected, the
multi-domain student underperforms the domain-
specific student by 7.35 accuracy points on average
since its representational capacity is limited for
several domains. However, the multi-domain stu-
dent outperforms the Baseline BERT+Proto in the
ATIS domain. This demonstrates that multi-domain
training is beneficial when the test set is highly im-
balanced, like the ATIS dataset. Compared to the
Baseline BERT+Proto, the domain-specific student
achieves a higher performance in four out of six
experiments and falls behind in the other two exper-
iments by 1.79 points on average. Therefore, there
is a trade-off between less memory consumption
by deploying a multi-domain small model and a
higher accuracy performance by deploying several
distinct domain-specific models in an application.
Slight improvements with Kmax = 100 can be
observed in our model.

4.2.2 Target domain adaptation
In this experiment, a multi-domain teacher is pre-
trained on source domains (pretrained T ) and a
student is distilled on source domains using the
episodic knowledge distillation (pretrained S). To
evaluate the generalization ability of the student on
unseen domains, we adapt the student to a target
domain without teacher access (adapted S) using
mini-episodic adaptation. We compare its perfor-
mance with the teacher adapted to the respective
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Kmax = 20 Kmax = 100

Model SNIPS ATIS TOP SNIPS ATIS TOP

Baseline best result 85.53± 0.35 65.95± 2.29 52.76± 2.26 87.69± 1.05 70.25± 0.39 61.30± 0.32
Baseline BERT+Proto 81.39± 1.85 58.84± 1.33 52.76± 2.26 83.51± 0.88 66.89± 2.31 61.30± 0.32
Domain-specific teacher 87.66± 1.69 69.44± 1.21 63.08± 1.80 87.58± 1.95 72.98± 2.29 64.65± 2.74
Domain-specific student 82.83± 0.92 69.45± 3.21 57.49± 3.17 84.19± 0.83 71.57± 2.98 61.21± 1.46

Table 1: Average test accuracy on in-domain target class generalization. Models are trained and tested on each
domain (dataset) separately.

Kmax = 20 Kmax = 100

Model SNIPS ATIS TOP SNIPS ATIS TOP

Baseline best result 87.64± 0.73 65.19± 1.29 52.64± 2.58 88.90± 0.18 71.89± 1.45 62.51± 1.79
Baseline BERT+Proto 81.44± 2.91 58.82± 1.55 52.64± 2.58 86.29± 1.09 65.70± 2.31 62.51± 1.79
Multi-domain teacher 87.74± 0.48 79.65± 6.27 62.83± 2.00 86.91± 3.06 83.77± 0.89 65.72± 0.77
Multi-domain student 72.97± 0.62 72.03± 2.07 45.36± 0.94 75.57± 0.82 68.90± 2.02 51.82± 0.76
Domain-specific student 85.74± 0.49 72.08± 3.16 56.37± 3.60 85.58± 0.73 71.36± 2.16 59.64± 3.64

Table 2: Average test accuracy on in-domain target class generalization. Multi-domain models are trained on all
three datasets and tested on each dataset separately.

domain (adapted T ) using mini-episodic adapta-
tion. Train and test splits are reported in Table 8 in
Appendix B.1.

Table 3 shows the average results on three tar-
get domains. We also report the results of two
cross-domain models proposed by Li et al. (2021),
referred to as Base Protonet and Base best. The
Base Protonet utilizes BERT as the encoding block,
which is approximately in the same size as our
teacher model. The Base best is the best results
obtained among different models. As can be seen,
the adapted student without teacher supervision
shows a significant improvement over its pretrained
counterpart. It also achieves 95% of the adapted
teacher’s performance and even outperforms it on
SNIPS slightly. Moreover, the adapted student out-
performs the large baselines by 7.03 points on av-
erage. This leads to a conclusion that our proposed
approach brings benefits in the few-shot generaliza-
tion problem on small distilled models with limited
representational capacity. Note that Li et al. (2021)
proposed a joint meta-learning approach for cross-
domain IC and slot filling, which results in a more
challenging final task. Therefore, for fairness, we
refrain from comparing our teacher results with
their models.

We extend the experiments with the Clinc150
dataset, which is a balanced dataset. Table 4
presents evaluation results for the Clinc150 target
domain split. Following the same discussion, the
pretrained teacher outperforms the pretrained stu-

Model SNIPS ATIS TOP

Base best 90.9± 0.3 76.0± 0.8 61.9± 1.1
Base Protonet 90.9± 0.3 75.3± 0.7 61.9± 1.1

Pretrained T 79.11± 1.68 82.20± 1.56 62.97± 1.91
Pretrained S 75.24± 3.02 76.56± 2.28 57.16± 0.73

Adapted T 89.90± 0.13 94.70± 0.33 76.12± 0.90
Adapted S 90.41± 0.89 92.36± 0.73 66.78± 0.97

Table 3: Average test accuracy on target domain adapta-
tion in SNIPS, ATIS, and TOP

dent. The adapted student achieves higher accuracy
than its pretrained counterpart and retains 87% of
the adapted teacher, which is slightly lower than the
previously studied domains. We argue that it is due
to the more challenging target domains with larger
number of intent types (15 intents per domain)
and highly overlapping intents (e.g., todo_list
and todo_list_update, restaurant_suggestion and
restaurant_review), which should be handled by a
single student in the Clinc150 dataset. This lim-
its the application of our approach in such multi-
domain settings.

To compare the computational cost of the teacher
and student, we report the memory size and average
inference time of the models per episode on target
domains. The number of parameters (in millions)
for teacher and student is 109.68M and 38.80M.
The student consumes 64% less memory (2.8 times
fewer parameters) than the teacher. The average
inference speed of the student for one episode in-
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Model Home Kitchen_dining

Pretrained T 78.08± 0.70 79.39± 0.40
Pretrained S 63.74± 0.86 69.76± 0.94

Adapted T 91.91± 0.07 91.44± 0.44
Adapted S 76.60± 0.29 82.17± 0.78

Table 4: Average test accuracy on Clinc150 target do-
mains

Source\Target SNIPS ATIS TOP

SNIPS –
58.42± 3.65
89.45± 1.99

40.50± 0.71
62.58± 0.87

ATIS 75.92± 2.78
89.51± 1.17

–
53.88± 0.39
66.93± 0.54

TOP 65.59± 3.18
82.46± 1.18

70.08± 1.90
91.42± 0.28

–

Table 5: Average test accuracy of models trained on one
source domain. Upper rows report pretrained student
and lower rows report adapted student.

cluding prototype computations and query set pre-
dictions on the Clinc150 target domains (Home and
Kitchen) is 5.6 and 1.1 times faster than teacher on
CPU and GPU, respectively.2

4.2.3 Ablation Study
We analyze the impact of source domains on the
performance of the student model on target do-
mains in the target domain adaptation scenario. For
this purpose, we pretrain the teacher and student
on one source domain and evaluate the pretrained
and adapted student on the two other target do-
mains individually and compare with the results
in Table 3. Table 5 shows the results of the pre-
trained and adapted student in each target domain.
We observe a performance gap between one ver-
sus multiple source domains in pretrained students,
specially when we opt out the source ATIS; The
performance of the pretrained student on TOP is
40.50 with source SNIPS and 57.16 with source
ATIS and SNIPS. This demonstrates that the pre-
trained student takes an advantage of diverse source
domains for evaluation on target domains. More-
over, the average higher performance of the student
in the multiple source domain setting indicates that
the knowledge is transferred effectively through the
episodic distillation process. Small performance
gap between one versus multiple source domains
is also observed in the adapted student.

Lastly, we analyze how FSL and KD influence
2The CPU is a 3.1 GHz Quad-Core Intel Core i7.

Student -
Teacher Student Teacher

MSL 77.78± 0.59 62.59± 0.92 -15.19
FSL 69.56± 2, 94 52.96± 2.44 -16.60

FSL - MSL -8.22 -9.63 –

Table 6: Average test accuracy on the effect of FSL and
KD on Clin150-Home

the IC performance separately. For this, we mea-
sure the performance of the teacher and the dis-
tilled student, which are pretrained on the Clinc150
source domains and tested on the Clinc150-Home
target domain without adaptation. We test these
models with support shot ks = 10 and ks = 70,
called FSL and many-shot learning (MSL) sce-
nario, respectively. We use the first 10 and 70
instances of each class in the official train set of the
Home domain as the support set. The official test
set with 30 instances per class is also used as the
query set. Evaluation results are shown in Table
6. We observe an accuracy drop from teacher to
student in both scenarios (15.19 and 16.60 points),
however, with a negligible difference . Therefore,
the distilled student loses approximately the same
amount of teacher’s performance accuracy in few-
and many-shot learning settings. This indicates the
effectiveness of the proposed episodic distillation
process in knowledge transfer under the FSL set-
ting. Moreover, the difference in the performance
loss from MSL to FSL in both teacher and student
models is small (9.63− 8.22 = 1.41 point). This
implies the capability of the proposed approach for
obtaining generalizable small models. Note that
the discrepancy between the performance results
in this section and previous section is due to the
different support and query splits at meta-testing.

5 Conclusion

We address the nontrivial merging problem of meta-
learning and knowledge distillation. Our proposed
approach distills large Transformer-based models
into smaller student models, which are compatible
with few-shot learning scenarios in intent classifi-
cation. Through a multi-step meta-training with an
episodic knowledge distillation, we obtain a small
distilled model that is generalizable and adaptable
to new classes and domains using only a few la-
beled examples. Our results in target domain adap-
tation show that the small model can adapt effec-
tively to new domains without teacher supervision.
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This removes the need for a large teacher when
time and computational resources are limited. Com-
pared to the large model, we observe a slight per-
formance loss and less memory consumption in the
distilled model. In summary, our results provide
insights into the advantages and limitations of a
joint few-shot learning and knowledge distillation
approach to foster future research in this area.

Our primary findings suggest that it is worth-
while to explore different FSL techniques jointly
with KD for cross-domain few-shot performance
improvements. Overall, this topic still merits more
attention to aid the practical deployment of NLU
models in dialogue systems under low-resource
scenarios. As future research, we will study novel
joint methods for the cross-domain generalization
problem under low-resource scenarios. Moreover,
we will investigate the methods in joint NLU tasks,
specifically slot filling and IC.
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A Approach

A.1 Variable episode construction

Following the work by Krone et al. (2020) and
Triantafillou et al. (2020), to create an episode, first,
the way n is uniformly selected from the range
[3, |Csplit|] for each domain d ∈ Dsplit. Then, the

query shot kq is computed as follows:

kq = min(10, ( min
c∈Csplit

⌊0.5 ∗ |Uc|⌋)),

where Uc is the set of instances in class c in domain
d. Then, we compute the overall support set size:

|S| = min
{
Kmax,∑

c∈Csplit

⌈β min{20, |Uc| − kq}⌉
}
,

where β is sampled uniformly from (0, 1]. Kmax

is a constant value indicating the maximum size of
the support set as a whole. Finally, we calculate
the support shot ks for each class c:

ks = min{⌊Rc ∗ (|S| − |Csplit|)⌋+ 1, |Uc| − kq},

where Rc noisily approximates the ratio of in-
stances belonging to class c in domain d:

Rc =
exp(αc) ∗ |Uc|∑

c′∈Cd
exp(αc′) ∗ |Uc′ |

.

αc is uniformly sampled from the interval
[log(0.5), log(2)). Then, we construct distinct ran-
dom episodes by choosing the set of support and
query instances of each class, Sc and Qc, from the
corresponding split.

B Experiment setup

B.1 Datasets and splits
Following (Krone et al., 2020) and Li et al. (2021),
the statistics on the datasets and splits for in-
domain target class generalization and target do-
main adaptation in cross-domain intent classifica-
tion are provided in Table 7 and 8, respectively.

Split\Dataset SNIPS TOP ATIS

Train (8230,4) (20345,7) (4373,5)
Test (6254,3) (4426,6) (827,6)

Table 7: Statistics of train and test splits in NLU datasets
for in-domain class generalization with (number of ut-
terances in the split, number of intents in the split).
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Target domain\Split Train Test

SNIPS
(TOP,20345,7)
(ATIS,4373,5)

(SNIPS,6254,3)

TOP
(SNIPS, 8230,4)
(ATIS,4373,5)

(TOP,4426,6)

ATIS
(TOP,20345,7)

(SNIPS, 8230,4)
(ATIS,827,6)

Clinc150-Home
(Work,1500,15)

(Banking,1500,15)
(Credit-card,1500,15)

(Home,450,15)

Clinc150-Kitchen_dining
(Work,1500,15)

(Banking,1500,15)
(Credit-card,1500,15)

(Kitchen_dining,450,15)

Table 8: Statistics of train and test splits in NLU datasets for target domain adaptation with (domain, number of
utterances, number of intents)
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Abstract

Language understanding in speech-based sys-
tems has attracted extensive interest from both
academic and industrial communities in recent
years with the growing demand for voice-based
applications. Prior works focus on independent
research by the automatic speech recognition
(ASR) and natural language processing (NLP)
communities, or on jointly modeling the speech
and NLP problems focusing on a single dataset
or single NLP task. To facilitate the develop-
ment of spoken language research, we intro-
duce MTL-SLT, a multi-task learning frame-
work for spoken language tasks. MTL-SLT
takes speech as input, and outputs transcription,
intent, named entities, summaries, and answers
to text queries, supporting the tasks of spo-
ken language understanding, spoken summa-
rization and spoken question answering respec-
tively. The proposed framework benefits from
three key aspects: 1) pre-trained sub-networks
of ASR model and language model; 2) multi-
task learning objective to exploit shared knowl-
edge from different tasks; 3) end-to-end train-
ing of ASR and downstream NLP task based
on sequence loss. We obtain state-of-the-art
results on spoken language understanding tasks
such as SLURP and ATIS. Spoken summa-
rization results are reported on a new dataset:
Spoken-Gigaword.

1 Introduction

The wide deployment of voice controlled comput-
ing has led to extensive interest in spoken language
tasks in recent years (Saade et al., 2019; Bastianelli
et al., 2020; Li et al., 2018). For instance, spoken
language understanding aims to extract the seman-
tics from user queries (Chung et al., 2021; Kim
et al., 2021a; Lai et al., 2021), spoken question
answering aims to predict the answer given the spo-
ken context (You et al., 2021; Kuo et al., 2020).
The rapid development of spoken language tasks
have followed dataset releases (Zhang et al., 2020;
Liu et al., 2019) and the evolution of pre-trained

Input

Speech I am going to the airport tomorrow, please
turn off bedroom light at nine thirty pm.

Q1 When should I turn off bedroom light?
Q2 When do I go to the airport?

Output

Sum. turn off the bedroom light
Intent hue_lightoff
Slots [date : tomorrow], [time : nine thirty pm]

[house_place : bedroom],
Ans1. nine thirty pm
Ans2. tomorrow

Table 1: An example of multiple spoken language
tasks. Given input utterances in the form of speech,
the ASR-NLP system can provide a summary of the
speech (summarization), intent detection and named en-
tity recognition (language understanding) and answer
textual queries. The spoken question answering task
requires additional questions as input.

models (Devlin et al., 2019; Lewis et al., 2020;
Chuang et al., 2020).

Multi-task learning (MTL) (Caruana, 1997) fo-
cuses on simultaneously solving multiple related
tasks and has attracted much attention in recent
years. Compared with single-task learning, it can
reduce the training and inference time while im-
proving generalization performance and predic-
tion accuracy by learning a shared representation
across related tasks. Prior works show the effec-
tiveness of MTL while they only focus on multi-
ple text-based tasks/datasets (e.g., MT-DNN (Liu
et al., 2019; Wang et al., 2019)) or multiple speech-
based tasks/datasets (e.g., SpeechStew (Chan et al.,
2021)). Also, some works (Raju et al., 2021; Rao
et al., 2021) prove the effectiveness of considering
speech information when performing NLP tasks.
Thus, as can be seen in Figure 1, we argue that it
is helpful when extend these MTL approaches to
spoken language tasks (i.e., ASR-NLP-shared).
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#Task1

c) ASR-NLP-shared

Shared ASR Model

Shared NLP Model

a) Independent

Better PerformanceHigher Efficiency More Robust More Deployment Friendly

b) ASR-shared

#Task2 #Task3

Audio
Frames

Audio
Frames

Shared ASR Model

Shared NLU ModelShared NLU ModelNLP Model

Shared ASR ModelShared ASR ModelASR Model

Shared NLU ModelShared NLU ModelNLP Model

#Task1 #Task2 #Task3#Task1 #Task2 #Task3

Audio
Frames

Figure 1: Different Implementations of Spoken Language Tasks.

In this paper, we develop multi-task learning
methods to optimize spoken summarization, spo-
ken question answering, spoken language under-
standing (intent classification and slot filling), as
well as speech recognition on multiple spoken lan-
guage datasets. An example of an application with
these four tasks can be seen in Table 1. Note that
instead of performing experiments only on under-
standing task (e.g., Feng et al. (2021)), we also con-
sider harder generation task into our framework,
whose data distribution has significant difference
to classification task (Observation can be witnessed
from Figure 2, the purple points are far away from
the other data).

A primary challenge with audio as an input
modality is the impact of speech recognition er-
rors and acoustic noise on spoken language tasks.
To mitigate this, our approach jointly optimizes
pretrained speech recognition and language mod-
els for semantic metrics of interest and we train
across multiple language tasks. The various lan-
guage tasks and the impact of multi-task training
can be visualized in the clustering plot of the hidden
state of a pretrained language model in Figure 2.
We demonstrate our results using listen-attend-spell
(LAS) (Chan et al., 2016) speech recognition model
and a BART (Lewis et al., 2020) based NLP model.

Overall, the main contributions are as follows:

• We propose a MTL-SLT framework to effec-
tively joint train an ASR model and an NLP
model on multiple spoken language tasks.

• Experimental results show that our proposed
multi-task learning framework is state-of-the-

art on spoken language understanding tasks.
Training multiple language tasks followed by
task-specific finetuning yields optimal models.
Jointly training ASR and NLP with policy gra-
dient methods improves metrics on all spoken
language tasks.

• We prepare a spoken summarization dataset
based on the Gigaword dataset (Rush et al.,
2015) using a multi-speaker text-to-speech
(TTS) model. The performance of the intro-
duced spoken-summarization task with the
MTL framework is studied.

• Our approach extends to multiple NLP tasks,
providing improvements in an end-to-end spo-
ken language learning setting. We make
our code and data publicly available for re-
searchers to accelerate the development of re-
lated spoken language tasks.

2 Related Work

MTL MTL aims to improve the performance on
a set of primary tasks through an inductive bias
(Caruana, 1997) introduced by additional training
objectives on auxilliary tasks. MTL has also been
used to train several tasks jointly, without the no-
tions of primary and auxilliary tasks (McCann
et al., 2018). MTL approaches for deep learning
include hard parameter sharing where the entire
layers and parameters are shared between tasks;
and soft parameter sharing, where each task has it’s
own model parameters but the distance between the
model parameters is regularized to help the task-
specific parameters to be similar (Ruder, 2017).
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Pre-trained Models The paradigm of pre-training
a language model (LM) followed by task-specific
fine-tuning has been shown to obtain remarkable
performance on many NLP tasks. BERT (Devlin
et al., 2019) pre-trains deep bidirectional represen-
tations from unlabeled text and showed competi-
tive performance on the GLUE (Wang et al., 2019)
benchmark. This provided a base for researchers
to build upon, leading to several extensions and
rapid progress in the space of pre-trained LMs.
The MultiTask Deep Neural Network (Liu et al.,
2019) is one such extension with multi-task learn-
ing across all GLUE tasks. The paper argues for
improved domain transfer by performing standard
BERT pretraining, followed by multi-task learning
and task-specific fine-tuning. BERT has been lever-
aged for various NLP tasks, for e.g. the effective-
ness of BERT for the summarization task was ex-
plored by Liu and Lapata (2019). The performance
of text generation tasks have been approaching a
near-human level by virtue of pre-trained encoder-
decoder models, such as BART (Lewis et al., 2020)
and T5 (Raffel et al., 2020).

Spoken Language Tasks Spoken language tasks
include standard NLP tasks with speech-input in-
stead of text-input. Speech recognition errors can
impact the performance of downstream NLP sys-
tems. Recently, Feng et al. (2021) proposed the
ASR-GLUE benchmark, augmented 6 NLP tasks
from GLUE with speech generated from Google
TTS, and analyzed the robustness of NLP to ASR
errors. However, all 6 tasks are sentence-level clas-
sification problems, and the models did not utilize
MTL framework. Chung et al. (2021) introduced a
speech-language joint pre-training framework for
SLU tasks. The paper showed the effectiveness
of the joint pre-training method with experiments
on four classification tasks, i.e., intent detection,
dialog act classification, spoken sentiment analysis
and spoken question answering. Prior works for
SLU show the impact of speech recognition errors
on downstream Natural Language Understanding
(NLU) performance and propose joint training of
ASR and NLU to improve overall performance
(Rao et al., 2021). Kim et al. (2021b) introduced
a speech-based benchmark for task-oriented dia-
logue systems, specifically targeting the problems
of multi-domain dialogue state tracking and knowl-
edge grounded dialogue modeling, and showed that
well-behaved models trained on written conversa-
tions do not perform well on spoken data.

Figure 2: T-SNE Visualization of BART’s last hidden
state features. Red and blue represent ATIS and SLURP
datasets, green denotes Spoken-SQuAD dataset, purple
denotes Spoken-Gigaword dataset.

3 Approach

3.1 Architecture of MTL-SLT
Figure 3 shows the proposed MTL framework
which consists of three different modules, i.e., the
ASR model, the NLP model and the interface be-
tween them. In this work, the MTL-SLT uses the
LAS architecture for ASR and BART for NLP.

ASR Model Unlike previous works on spoken
language tasks (SLT) that obtain transcriptions us-
ing existing ASR systems/tools (Feng et al., 2021;
Li et al., 2018), in our approach, the ASR model is
updated with the training of end-to-end spoken lan-
guage tasks. To address this, we generate the ASR
transcriptions from a LAS model explained in (Rao
et al., 2021; Chan et al., 2016), and pre-trained it
on the LibriSpeech dataset (Panayotov et al., 2015)
following previous works (Lugosch et al., 2019).

Enc-Decoder NLP Model Bidirectional and
Auto-Regressive Transformers (BART) (Lewis
et al., 2020) uses a separate bidirectional encoder
and autoregressive decoder similar to BERT (De-
vlin et al., 2019) except that (1) BART’s decoder
incorporates cross attention over the final encoder
layer and (2) BART’s encoder does not use a feed-
forward dense layer for word prediction. The
BART model can be used to perform both language
understanding (i.e., intent classification) and lan-
guage generation (i.e., summarization) problems
at the same time, we refer to it as an NLP model
in this work. We use the same pre-trained BART-
base model as the original paper, which includes 6
transformer layers in the encoder and decoder.

Spoken Language Interface The interface ex-
poses relevant outputs from the ASR model to the
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Task #1: Summarization
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Task #4: Question Answer
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2, … <eos>
w2

1, w2
2, … <eos>
…
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2, … <eos>
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Beam Candidate

Transcriptions

ASR Loss Generation Loss + Classification Loss

Ground Truth

Sum.1  Sum.2 …
Intent1  Intent2 …

Slots1  Slots2 …
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① Multi-task Pre-training: Teacher Force

② Multi-task Joint Training: Beam Decode

Sequence
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Figure 3: Our proposed MTL framework for LAS-BART-based Spoken Language Models. The model consists of an
ASR system to generate transcription for the input audio frames, and an encoder-decoder system to generate intents,
slots, answers, summarizations for different tasks. They share parameters of LAS, BART encoder and decoder, and
are first trained on multiple tasks with ASR Loss, Generation Loss and Classification Loss; then the two systems are
jointly trained with Sequence Loss.

downstream NLP model. Prior works have pro-
posed rich interfaces that expose neural embed-
dings from ASR in addition to the text recogni-
tion (Rao et al., 2020). In this work, we use a
simple text interface i.e. the best text recognition
hypothesis from the output of ASR as the input to
the NLP models. We leverage pre-trained models
for both ASR and NLP. Inspired by (Rao et al.,
2021; Raju et al., 2021), we introduce sequence
loss training for the joint ASR-NLP system that al-
lows direct optimization of non-differentiable SLT
metrics. Specifically, we consider the error rate of
ASR, summarization, QA, intent classification and
slot filling as the SLT metrics.

3.2 Joint MTL Training Strategy

The MTL Training Strategy can be divided into
three steps.

Backbone Pre-training The ASR model is first
pre-trained for the speech recognition task using
the LibriSpeech dataset. The NLP model uses the
pre-trained BART (Lewis et al., 2020) model which
is trained to reconstruct corrupted text.

MTL Pre-training Our joint pre-training on mul-
tiple tasks falls into the paradigm of multi-task
learning (MTL). Training details of the MTL-SLT
can be seen in Algorithm 1, in the training stage,
we take turns to load the training data of these

pre-training tasks. For example, we update model
parameters on a batch of training instances from the
first task, and then update parameters on a batch
of training instances of the second task, and the
process repeats. Note that, according to our pre-
liminary experimentation, the effect of different
orders of carrying out these pre-training tasks is
negligible.

Post Fine-tuning After pre-trained with MTL
objective, the MTL model is further fine-tuned on
each dataset with few training steps to improve the
performance.

3.3 Training Losses
There are three types of losses to be optimized
in our framework, i.e., ASR loss, language task-
specific losses and sequence losses. Our model is
first trained by updating θASR based on the ASR
loss, then trained by updating θNLP for each down-
stream task. Finally, sequence loss training is em-
ployed to update both θASR and θNLP .

ASR Loss Given input audio sequence x, the
ASR system is trained by teacher-forcing the
encoder-decoder network with the tokens of the
ground truth transcript w with the loss function
being Lasr = −

∑N
j=1 log p(wj |x, w:j−1;θ).

Intent Detection For sentence-level classifica-
tion problem, denote the sentence pooled represen-
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Algorithm 1: Training a MTL-SLT model.
Parameter: Pre-trained LAS model and

BART model θ, random initialized task
specific heads , epoch number M , task
number T .

//Prepare the data for T tasks.
for t in 1, 2, ..., T do

Pack the dataset t into mini-batch: Dt.
end
// Multi-task Learning.
for epoch in 1, 2, ...,M do

1. Merge all the datasets:
D = D1 ∪D2... ∪DT

2. Shuffle D
for bt in D do

//bt is a mini-batch of task t.
3. Compute loss : L(θ)
//Train the ASR and NLP tasks.
L(θ) += Lasr for ASR
L(θ) += Lgen for Summarization
L(θ) += Ltagging for Slot Filling
L(θ) += Lintent for Intent Detection
L(θ) += Lqa for Question Answer
if perform joint training then

L(θ) += Lseq for ASR and NLP
end
4. Compute gradient: ∇(θ)
5. Update model: θ = θ − ϵ∇(θ)

end
end

tation as e from input ASR token sequence w, and
the correct intent label is c, the model infers c from
e. The negative log-likelihood loss is used for the
classification loss Lintent = − log p(c|e;θ).

Slot Filling For token-level classification prob-
lem, denote the slot sequence as s, the input as
v, and the sequence length as N , the negative
log-likelihood loss is used for calculating slot loss
Ltagging = −∑N

j=1 log p(sj |v, s:j−1;θ).

Summarization The summarization of x is de-
fined as y = (y1, . . . , yM ). The model infers an
appropriate y from v. The generation loss Lgen
is calculated with the negative log-likelihood loss
Lgen = −∑N

j=1 log p(yj |v, y:j−1;θ).

Question Answering For question answering,
we employ binary cross entropy loss on the sen-
tence pooling representation Lhas_key and the span-
based losses (Rajpurkar et al., 2016) on the sen-

tence representation Lspan. The QA loss is Lqa =
Lhas_key + Lspan.

Sequence Losses Inspired by reinforce frame-
work (Prabhavalkar et al., 2018), sequence loss
training enables end-to-end joint training of ASR
and a downstream language task (Rao et al., 2021).
Denote C as a joint sequence of ASR and NLP
outputs, this is done by directly optimizing model
parameters θ for the expected metric cost M(c, c∗)
over the distribution of candidate hypotheses. Here
c∗ is the ground-truth output and c is a model can-
didate. This is expressed as,

Lseq = EC∈C [M(C, c∗)] (1)

⇒ ∇θLseq = ∇θEC∈C [M(C, c∗)] (2)

≈ ∇θ

∑

c∈C̄
p̄θ(c)M(c, c∗) (3)

≈
∑

c∈C̄
M(c, c∗)∇θp̄θ(c). (4)

Here, the approximation of the expectation in Eq.
(3) is from using an n-best candidate set C̄ produced
by the model with each candidate arising from a
normalized probability p̄θ(c) =

pθ(c)∑
c′∈C̄ pθ(c′)

. The
probability of a candidate c is given by the combi-
nation of ASR and language task probabilities.

Sequence loss training is a policy gradient ap-
proach that jointly trains θASR and θNLP by in-
creasing the prediction probability of candidates
with lower metric costs.

In this work, we optimize for a composite metric
which is a sum of metrics of interest, namely, word
error rate (WER) for ASR task and a language
task metric. The metrics for language task include:
(1) rouge error rate for the summarization task,
(2) exact match error rate and QA F1 error rate
for question answering, and (3) intent and domain
classification error rate as well as SLU-F1 error
rate for the language understanding task. These
metrics are further detailed in Sec. 4.3.

Sequence loss training can be done for an in-
dividual task and is used in conjunction with the
cross-entropy losses defined earlier that acts as a
regularizing term. It can also be combined with
multi-task learning by applying task-appropriate
sequence loss training to update relevant parame-
ters for a batch from the merged dataset.
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Datasets Spoken-Gigaword Spoken-SQuAD ATIS SLURP

Settings Models WER(↓) R1(↑) R2(↑) RL(↑) WER(↓) EM(↑) F1(↑) WER(↓) Acc(↑) F1(↑) WER(↓) Acc(↑) SLU-F1(↑)

1. ASR
LAS-S 22.63 - - - 27.11 - - 4.52 - - 18.00 - -
LAS-M 21.20 - - - 26.40 - - 3.03 - - 16.53 - -

2. NLP
BART-S - 43.12 25.72 40.78 - 56.30 65.82 - 97.63 96.19 - 87.24 85.10
BART-M - 43.30 26.02 41.29 - 57.92 67.79 - 98.38 97.55 - 88.31 85.62

3. Pipeline
S -> S 22.63 15.81 8.10 14.66 27.11 15.73 29.82 4.52 96.87 92.30 18.00 83.22 72.50
M -> M 21.20 16.33 8.61 15.29 26.40 17.44 32.30 3.03 98.11 94.19 16.53 83.75 72.81

4. Jointly
S + S 20.66 16.02 9.24 14.90 25.10 21.98 36.78 2.74 96.90 93.11 16.14 81.87 73.88
M + M 19.80 16.90 9.88 15.78 22.89 23.31 41.26 2.55 97.13 93.65 15.81 83.10 74.49

Table 2: Main results of different models and settings on different datasets. BOLD BLACK numbers are in the first
place for ASR and NLP settings, BOLD RED numbers are in the first place for Pipeline and jointly settings. A (↓)
means lower is better, and (↑) means higher is better. a) For evaluation, we choose four typical and large generation
and understanding datasets, i.e., Spoken-Gigaword, Spoken-SQuAD, ATIS and SLURP. b) For trainging settings,
ASR and NLP represent two independent systems for their own tasks. Pipeline means that the output transcriptions
from the pre-trained ASR system are used as the input of the pre-trained NLP system. Jointly training means that
the parameters of ASR and NLP system are jointly optimized through extra sequence losses. c) For models, we use
LAS for ASR system and BART for NLP system empirically. Single models (S) are treated as baselines and trained
only on their own task. MTL models (M) mean that parameters are shared across four tasks and trained together. S
-> S means pipeline training of LAS-S and then BART-S. S + S refers to pre-trained LAS-S and BART-S which are
further jointly trained with sequence loss.

4 Experiments

4.1 Datasets

We perform experiments on four datasets, three of
which are existing public corpora (ATIS, SLURP,
Spoken-SQuAD) and one is generated by us
(Spoken-gigaword).

ATIS Airline Travel Information Systems
(ATIS) (Hemphill et al., 1990; Shivakumar
et al., 2019) is a widely used Spoken Language
Understanding dataset for airline reservation,
where the user’s intent and utterance’s slots are
predicted given the input command.

SLURP SLURP (Bastianelli et al., 2020) is a re-
cently released Spoken Language Understanding
dataset. It is larger and more semantically complex
compared to ATIS dataset. The SLURP is a collec-
tions of 72k audio recordings of single turn user
interactions with a home assistant on 18 domains.

Spoken-SQuAD Spoken-SQuAD (Li et al.,
2018) is a large extraction-based Spoken Question
Answering (SQA) dataset, where the answer of
question is predicted given corresponding context.
For the dataset, the context is in the form of speech
and text, while the question and the answer are in
the form of text. The transcripts of Spoken-SQuAD
are collected from SQuAD benchmark dataset (Ra-
jpurkar et al., 2016).

Spoken-Gigaword Spoken-Gigaword is a large
summarization dataset. It is formulated as a sum-
mary generation problem, where the general head-
lines are generated given articles. Considering
that Gigaword is abstractive summaries generation
dataset with large amount of data, it can provide
possibility for designing data-driven models. The
transcripts of Spoken-Gigaword are collected from
Gigaword (Rush et al., 2015), the speech of Spoken-
Gigaword are generated by existing TTS model.

4.2 Experimental Settings

For the MTL-SLT model, we use LAS as the ASR
model, where the input audio features are 64-dim
log-mel filterbank features computed over a 25 ms
window, with 10 ms shifts, the text is tokenized
into subword tokens using a unigram language
model (Kudo, 2018) of vocabulary of 4500. We
use BART-base as NLP model, which has 6 en-
coder layers and 6 decoder layers, a hidden size
of 768, filter size of 3,072, and 12 attention heads.
We apply the default hyper-parameters from prior
works (Rao et al., 2021; Lewis et al., 2020) includ-
ing the learning rate schedule.

4.3 Experimental Metrics

In this section, we show the evaluation metrics
for each tasks. For extractive question answering
task (Rajpurkar et al., 2016), it is evaluated with
two metrics: Exact Match (EM) to check whether
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the answer extracted by the model are exactly the
same as the correct answer and F1 score to measure
the degree of word overlap at token level. For sum-
marization, we follow previous work (Rush et al.,
2015) and use ROUGE-1 (unigrams), ROUGE-2
(bigrams), and ROUGE-L (longest-common sub-
string) (Lin, 2004). For ATIS dataset, we evaluate
it with intent classification accuracy and slot fill-
ing F1 score (Hemphill et al., 1990; Ruan et al.,
2020). For SLURP dataset, we evaluate it with
intent-domain classification accuracy and slot fill-
ing SLU-F1 score proposed in Bastianelli et al.
(2020), which does not overly penalise misalign-
ments caused by ASR errors.

4.4 Main Results

Results of different models and settings on four
datasets are shown in Table 2.

ASR Taking word error rate (WER) as evalua-
tion metric, we can see that the MTL has some
advantages for the ASR task. From Setting 1, MTL
helps improve the performance of LAS model on
ASR when pooling data across tasks. From Setting
4, when jointly training with the NLP model, the
MTL setting sees better performance than indepen-
dently training ASR. Comparing the S+S in Setting
4 to the LAS-S and LAS-M in Setting 1, the im-
provements as per ASR from jointly training are
(1.91% on average) larger than from MTL (1.28%
on average), we attribute this to the optimization
of ASR using sequence loss training for word error
rate as well as related semantic metrics, similar
conclusion can be witnessed in Rao et al. (2021).

NLP NLP system is different from the ASR sys-
tem, in which all datasets are trained for same ob-
jective. For different NLP tasks, they share the
backbone BART parameters and update their own
task specific heads. From Table 2, we can see that
BART-M has improvements over all independent
models on all metrics, which proves the effective-
ness of MTL in NLP system. Classification tasks
see larger improvements than the generation tasks.
In Setting 3 and Setting 4, NLP tasks can be further
improved through jointly training, which shows the
potential of sequence loss training in ASR-NLP
system to make the system robust to acoustic noise.
In Setting 4, M+M performs better than S+S, prov-
ing the effectiveness of MTL in ASR-NLP system.

Pipeline and Jointly Training Methods After
pre-training the ASR and NLP model in single task

mode or on multiple tasks, we have two methods
to jointly use them, the pipeline method that is non-
differentiable and the outputs of ASR system are
directly treated as inputs of NLP system, and the
jointly training method with sequence loss that is
differentiable and can pass the gradient from NLP
system to ASR system. From Table 2, we can see
that results of different spoken language tasks in
Setting 4 are better than in Setting 3, under both of
independent training models and multi-tasks train-
ing models. Also multi-task trained models always
perform better than independent trained models, no
matter under pipeline setting or jointly training set-
ting showing that both these effects are orthogonal
and can complement one another.

Comparison with Existing Works We show
the comparison results of our method to previous
works on SLURP and ATIS in Table 4. Results
are reported on the test set of ATIS and SLURP,
as well as the development set of Spoken-SQuAD.
From Table 3, because it is a recently released large
SLU dataset, there are not too much previous works
that we can refer, but we still get best performance
compared the existing works to our knowledge.

Models Acc SLU-F1

Trained on text

NLU* (Bastianelli et al., 2020) 84.84 -
NLU+ (Seo et al., 2021) 87.73 84.34
BART (Lewis et al., 2020) 88.00 85.49
Ours: MTL-Text 88.31 85.62

End-to-End trained

ASR+ -> NLU+ (Seo et al., 2021) 82.93 71.12
Ours: MTL-SLT 83.10 74.49

Table 3: Comparison with existing works on SLURP.
NLU* represents the results from SLURP paper. NLU+
represents the results from a recently released paper.

5 Analysis

5.1 Effect of MTL

MTL on ASR Chan et al. (2021) shows that
by simply mixing multiple ASR datasets together,
ASR model can perform better on each dataset,
and can learn powerful transfer learning representa-
tion. Inspired by this, in our experiment, we would
also like to investigate the performance change af-
ter employing multi-task training only on the ex-
perimented audio data and transcription. Specifi-
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Models Acc F1

Trained on text

Attention BiRNN (Liu and Lane, 2016) 91.10 94.20
Capsule-NLU (Zhang et al., 2019) 95.00 95.20
LIDSNet (Agarwal et al., 2021) 95.97 -
SF-ID Network (E et al., 2019) 96.60 95.60
SyntacticTF (Wang et al., 2021) 97.31 96.01
BERT SLU (Chen et al., 2019) 97.50 96.10
Stack-Prop. (Qin et al., 2019) 96.90 95.90
Stack-Prop. + BERT (Qin et al., 2019) 97.50 96.10
ASR Error Robust SLU (Ruan et al., 2020) 97.13 96.03
Ours: MTL-Text 98.18 96.51

End-to-End trained

Phoneme-BERT (Sundararaman et al., 2021) 97.25 84.15
E2E SLP (Qian et al., 2021) 96.30 90.95
Pre-trained MTL (da Silva Morais et al., 2021) 96.60 91.20
Ours: MTL-SLT 96.92 91.43

Table 4: Comparison results on ATIS test set.

cally, during training, only the LAS model is shared
across different tasks. Results can be seen in Set-
ting 1 row LAS-M, in Table 2. We can see that
after employing more data, LAS performs better
on each dataset, which proves that it is effective to
perform more data on ASR model.

MTL on NLP We can see from Table 2 that with
multi-task training, BART performs better in both
the text-based setting (i.e., BART) and jointly train-
ing setting (i.e., LAS-BART).

5.2 Effect of Sequence Loss

With the used sequence loss ( Lseq), we can train
not only the ASR model NLP model independently,
but also train both of them in an end-to-end manner.
We compared the models with and without Lseq,
and the result are shown in Table 2. By using the
Lseq, we observe improvements in ASR and NLP
metrics by 2-5%. Sequence loss training allows
for the downstream language modelling task to be
trained with potentially erroneous ASR hypotheses
allowing for robustness to word errors. This also
minimizes the domain shift that occurs from train-
ing (language task has the clean ground truth tran-
scription as input) to inference (language task has
ASR hypotheses as input) resulting in improved
performance. Another impact of sequence loss
training is that ASR is optimized for differentiable
(eg. cross-entropy), non-differentiable (eg. WER)
ASR losses along with arbitrary non-differentiable
metrics of interest (eg. rouge scores, SLU-F1) of
the downstream language task.

5.3 Effect of Post Fine-tuning

The post fine-tuning step described in 3.2 is impor-
tant in our framework, because 1) it can eliminate
differences between datasets arising from different
domains; 2) the optimal performance of different
datasets falls on different positions of a pareto-
optimal surface, post fine-tuning can solve this
problem without introducing more parameters. Ef-
fect of post fine-tuning can be seen in Table 5.

Models ASR Summarization-R1

MTL-ASR 21.20 -
w/o Post FT 23.13 -

MTL-Text - 43.12
w/o Post FT - 26.50

MTL-SLT 19.80 16.02
w/o Post FT 21.45 14.39

Table 5: Ablation study on Post Fine-tuning.

6 Conclusion

We proposed a multi-task learning framework for
spoken language understanding tasks that take
speech as input and produces (1) intents and named-
entities in language understanding tasks, (2) ab-
stract text summaries, or (3) question answering.
This framework can be extended to other language
tasks such as translation.

In this framework, we make use of pretrained
ASR models and language models like BART and
jointly train these layers across multiple language
tasks. We demonstrate that this training across
tasks coupled with task-specific post-finetuning
produces significantly better results for ASR and
BART separately. We made use of the sequence
loss training framework to enable end-to-end train-
ing of ASR and BART to optimize for metrics
of interest for the classification, sequence tagging,
and generation tasks. This made the downstream
language task robust to errors in ASR hypotheses
that otherwise leads to performance degradation in
pipelined ASR and language task systems.

We demonstrate state-of-the-art results on pub-
lic corpora of SLURP and ATIS for spoken lan-
guage understanding. We also prepare the Spoken-
Gigaword dataset for abstractive summarization of
speech.
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A Experiment Settings

A.1 Statistics of datasets
For the experimental datasets (Spoken-SQuAD,
SLURP, ATIS), we follow the default train/dev/test
splits from the original paper.

A.2 Hyperparameters
We show the detailed hyperparameters for the MTL
Pre-training and Post Fine-tuning stages described
in Section 3.2 of the proposed method on different
datasets in Table 6.

Pre-training Fine-tuning

Speech Model Batch Size 16 16
Text Model Batch Size 16 16

Joint Training Model Batch Size 4 4
Learning Rate 2e− 5 2e− 5
Warmup Steps 0 0

Learning Rate Decay Linear Linear
Weight Decay 0 0

Gradient Clipping 1 1
Dropout 0.1 0.1

Attention Dropout 0.1 0.1
Training Steps 100k 20k

Table 6: Hyperparameters for the Pre-training and fine-
tuning stages in training MTL-SLT on the four datasets.

B Spoken-gigaword Dataset

The detail statistics of the generated Spoken-
Gigaword dataset are shown in Table 7. The articles
and summarizations are acquired from gigaword
headline generation dataset (Rush et al., 2015), we
then generate the speech data for the articles us-
ing Tacotron2 (Shen et al., 2018) to extract feature
and . Note that because the input article is noisy,
which make it hard to generate proper speech, so
we remove the ones with special symbols, and we
remove the articles that have more than 30 words.
The implementation is based on an open source
library 1.

C Model Structure of NLP task with
BART Model

As a pre-trained sequence-to-sequence denoising
autoencoder, BART uses a standard Transformer-
based neural machine translation architecture,
which consists of 6 encoder and 6 decoder seg-
ments. In our work, we attribute each tasks with
task specific classification head over the BART
model. Specifically, for the Intent Detection task,

1https://github.com/mozilla/TTS/

Types Spoken-Gigaword

Training Set 249199
Validation Set 12578

Article

words 119M
uni-words 110K
aver length 14.6
max length 30
min length 11

Headline

words 31M
uni-words 69K
aver words 8.3
max length 30
min length 2

Table 7: Statistics of the generated Spoken-gigaword.

we use the End-Of-Sentence (EOS) token on the
last decoder layer to do the prediction; for the slot
filling task, we predict the slot labels in BIO format
after the last encoder layer; for the summarization
task, generated sentences with EOS token at end
are used to calculate the summarized loss; for the
question answering task, EOS token in the last de-
coder layer is used to predict the answer.

D E2E Spoken Question Answering

In Section 3.3, we mention the Lhas_key in Spoken
Question Answering. Actually, Spoken-SQuAD is
a dataset with all examples having answers. How-
ever, since the input context of each example is
too long, if we process the input audio directly,
the model’s performance will be very poor. Thus,
instead of processing the input audio directly, we
first split the input into sentence-wise segments,
and then during the training, we predict the answer
on each sentence. Note that we have a classification
head to determine whether this sentence contains
the answer or not, and the loss over this classifica-
tion head is Lhas_key .
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Abstract

As humans, we experience the world with all
our senses or modalities (sound, sight, touch,
smell, and taste). We use these modalities,
particularly sight and touch, to convey and
interpret specific meanings. Multimodal ex-
pressions are central to conversations; a rich
set of modalities amplify and often compen-
sate for each other. A multimodal conversa-
tional AI system answers questions, fulfills
tasks, and emulates human conversations by
understanding and expressing itself via multi-
ple modalities. This paper motivates, defines,
and mathematically formulates the multimodal
conversational research objective. We provide
a taxonomy of research required to solve the
objective: multimodal representation, fusion,
alignment, translation, and co-learning. We sur-
vey state-of-the-art datasets and approaches for
each research area and highlight their limiting
assumptions. Finally, we identify multimodal
co-learning as a promising direction for multi-
modal conversational AI research.

1 Introduction

The proliferation of smartphones has dramatically
increased the frequency of interactions that humans
have with digital content. These interactions have
expanded over the past decade to include conversa-
tions with smartphones and in-home smart speak-
ers. Conversational AI systems (e.g., Alexa, Siri,
Google Assistant) answer questions, fulfill spe-
cific tasks, and emulate natural human conversation
(Hakkani-Tür et al., 2011; Gao et al., 2019).

Early examples of conversational AI include
those based on primitive rule-based methods such
as ELIZA (Weizenbaum, 1966). More recently,
conversational systems were driven by statisti-
cal machine translation systems: translating input
queries to responses (Ritter et al., 2011; Hakkani-
Tür et al., 2012). Orders of magnitude more data
led to unprecedented advances in conversational
technology in the mid-part of the last decade. Tech-

niques were developed to mine conversational train-
ing data from the web search query-click stream
(Hakkani-Tür et al., 2011; Heck, 2012; Hakkani-
Tür et al., 2013) and web-based knowledge graphs
(Heck and Hakkani-Tür, 2012; El-Kahky et al.,
2014). With this increase in data, deep neural-
networks gained momentum in conversational sys-
tems (Mesnil et al., 2014; Heck and Huang, 2014;
Sordoni et al., 2015; Vinyals and Le, 2015; Shang
et al., 2015; Serban et al., 2016; Li et al., 2016a,b).

Most recently, specialized deep learning-based
conversational agents were developed primarily
for three tasks: (1) goal-directed tasks in research
systems (Shah et al., 2016; Eric et al., 2017; Liu
et al., 2017, 2018; Li et al., 2019; Hosseini-Asl
et al., 2020; Wu et al., 2020; Peng et al., 2021; Xu
et al., 2021b) and commercial products (Siri, Cor-
tana, Alexa, and Google Assistant), (2) question-
answering (Yi et al., 2019; Raffel et al., 2020; Za-
heer et al., 2021), and (3) open-domain conversa-
tions (Wolf et al., 2019; Zhou et al., 2020; Adi-
wardana et al., 2020; Paranjape et al., 2020; Roller
et al., 2020; Bao et al., 2020; Henderson et al.,
2020; Zhang et al., 2020a). However, developing a
single system with a unified approach that achieves
human-level performance on all three tasks has
proven elusive and is still an open problem in con-
versational AI.

One limitation of existing agents is that they
often rely exclusively on language to communi-
cate with users. This contrasts with humans, who
converse with each other through a multitude of
senses. These senses or modalities complement
each other, resolving ambiguities and emphasizing
ideas to make conversations meaningful. Prosody,
auditory expressions of emotion, and backchannel
agreement supplement speech, lip-reading disam-
biguates unclear words, gesticulation makes spatial
references, and high-fives signify celebration.

Alleviating this unimodal limitation of conver-
sational AI systems requires developing methods
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to extract, combine, and understand information
streams from multiple modalities and generate mul-
timodal responses while simultaneously maintain-
ing an intelligent conversation.

Similar to the taxonomy of multimodal machine
learning research (Baltrušaitis et al., 2017), the
research required to extend conversational AI sys-
tems to multiple modalities can be grouped into
five areas: Representation, Fusion, Translation,
Alignment, and Co-Learning. Representation and
fusion involve learning mathematical constructs
to mimic sensory modalities. Translation maps
relationships between modalities for cross-modal
reasoning. Alignment identifies regions of rel-
evance across modalities to identify correspon-
dences between them. Co-learning exploits the
synergies across modalities by leveraging resource-
rich modalities to train resource-poor modalities.

Concurrently, it is necessary for the research ar-
eas outlined above to address four main challenges
in multimodal conversational reasoning – disam-
biguation, response generation, coreference reso-
lution, and dialogue state tracking (Kottur et al.,
2021). Multimodal disambiguation and response
generation are challenges associated with fusion
that determine whether available multimodal inputs
are sufficient for a direct response or if follow-up
queries are required. Multimodal coreference reso-
lution is a challenge in both translation and align-
ment, where the conversational agent must resolve
referential mentions in dialogue to corresponding
objects in other modalities. Multimodal dialogue
state tracking is a holistic challenge across research
areas typically associated with task-oriented sys-
tems. The goal is to parse multimodal signals to
infer and update values for slots in user utterances.

In this paper, we discuss the taxonomy of re-
search challenges in multimodal Conversational
AI as illustrated in Figure 1. Section 2 provides
a history of research in multimodal conversations.
In Section 3, we mathematically formulate multi-
modal conversational AI as an optimization prob-
lem. Sections 4, 5, and 6 survey existing datasets
and state-of-the-art approaches for multimodal rep-
resentation and fusion, translation, and alignment.
Section 7 highlights limitations of existing research
in multimodal conversational AI and explores mul-
timodal co-learning as a promising direction for
research.

Image Text Video Audio

Scene 
Mask

Dialogue SpeechAction

[h11, h12, ...... h1n]T [h21, h22, ...... h2n]T [h31, h32, ...... h3n]T [hm1, hm2, ...... hmn]T

Multimodal Fusion

Multimodal Representation Learning

Image
Embedder

Text
Embedder
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Embedder 
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Embedder 
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.....
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Figure 1: Taxonomy of multimodal Conversational AI
research

2 Background

Early work in multimodal conversational AI fo-
cused on the use of visual information to improve
automatic speech recognition (ASR). One of the
earliest papers along these lines is by Yuhas et al.
(1989) followed by many papers including work
by Meier et al. (1996), Duchnowski et al. (1994),
Bregler and Konig (1994), and Ngiam et al. (2011).

Advances in client-side capabilities enabled
ASR systems to utilize other modalities such as
tactile, voice, and text inputs. These systems sup-
ported more comprehensive interactions and facili-
tated a higher degree of personalization. Examples
include ESPRIT’s MASK (Lamel et al., 1998), Mi-
crosoft’s MiPad (Huang et al., 2001), and AT&T’s
MATCH (Johnston et al., 2002).

Vision-driven tasks motivated research in adding
visual understanding technology into conversa-
tional AI systems. Early work in reasoning
over text+video include work by Ramanathan
et al. (2014) where they leveraged these combined
modalities to address the problem of assigning
names of people in the cast to tracks in TV videos.
Kong et al. (2014) leveraged natural language de-
scrptions of RGB-D videos for 3D semantic pars-
ing. Srivastava and Salakhutdinov (2014) devel-
oped a multimodal Deep Boltzmann Machine for
image-text retrieval and ASR using videos. Antol
et al. (2015) introduced a dataset and baselines for
multimodal question-answering, a challenge com-
bining computer vision and natural language pro-
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cessing. More recent work by Zhang et al. (2019b)
and Selvaraju et al. (2019) leveraged conversational
explanations to make vision and language models
more grounded, resulting in improved visual ques-
tion answering.

While modalities most commonly considered in
the conversational AI literature are text, vision, tac-
tile, and speech, other sources of information are
gaining popularity within the research community.
These include eye-gaze, 3D scans, emotion, action
and dialogue history, and virtual reality. Heck et al.
(2013) and Hakkani-Tür et al. (2014) use gesture,
speech, and eye-gaze to resolve and infer intent in
conversational web-browsing systems. Grauman
et al. (2021) presents ego-centric video understand-
ing, Padmakumar et al. (2021), and Shridhar et al.
(2020) present task completion from 3D simula-
tions, and Gao et al. (2021) presents multisensory
object recognition.

Processing conventional and new modalities
brings forth numerous challenges for multimodal
conversations. To answer these challenges, we will
first mathematically formulate the multimodal con-
versational AI problem, then detail fundamental
research sub-tasks required to solve it.

3 Mathematical Formulation

We formulate multimodal conversational AI as an
optimization problem. The objective is to find the
optimal response S to a message m given underly-
ing multimodal context c. Based on the sufficiency
of the context, the optimal response could be a
statement of fact or a follow-up question to resolve
ambiguities. Statistically, S is estimated as:

S = argmax
r

p(r|c,m). (1)

The probability of an arbitrary response r can
be expressed as a product of the probabilities of re-
sponses {ri}Ti=1 over T turns of conversation (Sor-
doni et al., 2015).

p(r|c,m) =
T∏

i=1

p(ri|r1, . . . ri−1, c,m) (2)

It is also possible for conversational AI to re-
spond through multiple modalities. We represent
the multimodality of output responses by a ma-
trix R := {r1i , r2i , . . . rli} over l permissible output
modalities.

S = argmax
R

p(R|c,m) (3)

Learning from multimodal data requires manipu-
lating information from all modalities using a func-
tion f(·) consisting of five sub-tasks: representa-
tion, fusion, translation, alignment, and co-learning.
We include these modifications and present the fi-
nal multimodal conversational objective below.

S = argmax
R

p(R|f(c,m)) (4)

In the following sections, we describe each sub-
task contained in f(·).

4 Multimodal Representation + Fusion

Multimodal representation learning and fusion are
primary challenges in multimodal conversations.
Multimodal representation is the encoding of multi-
modal data in a format amenable to computational
processing. Multimodal fusion concerns joining
features from multiple modalities to make predic-
tions.

4.1 Multimodal Representations
Using multimodal information of varying granu-
larity for conversations necessitates techniques to
represent high-dimensional signals in a latent space.
These latent multimodal representations encode hu-
man senses to improve a conversational AI’s per-
ception of the real-world. Success in multimodal
tasks requires that representations satisfy three
desiderata (Srivastava and Salakhutdinov, 2014):

1. Similarity in the representation space implies
similarity of the corresponding concepts

2. The representation is easy to obtain in the
absence of some modalities

3. It is possible to infer missing information from
observed modalities

There exist numerous representation methods
for the range of problems multimodal conversa-
tional AI addresses. Multimodal representations
are broadly classified as either joint representations
or coordinated representations (Baltrušaitis et al.,
2017).

4.1.1 Joint Representations
Joint representations combine unimodal signals
into the same representation space. Traditional
techniques to learn joint representations include
multimodal autoencoders (Ngiam et al., 2011),
multimodal deep belief networks (Srivastava and
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Salakhutdinov, 2014), and sequential networks
(Nicolaou et al., 2011).

The success of the Transformer to represent text
(Vaswani et al., 2017) and BERT when modeling
language (Devlin et al., 2019) have inspired a vari-
ety of multimodal transformer-based architectures
for (1) vision-and-language understanding (Sun
et al., 2019b; Lu et al., 2019; Gabeur et al., 2020;
Chen et al., 2020b; Tan and Bansal, 2019; Singh
et al., 2021a), (2) vision-grounded speech recogni-
tion (Baevski et al., 2020; Hsu et al., 2021; Chan
et al., 2021), and (3) User Interface (UI) under-
standing (Bapna et al., 2017; He et al., 2021; Bai
et al., 2021; Li et al., 2021; Xu et al., 2021b; Heck
and Heck, 2022).

Transformer-based models used as joint multi-
modal representations can be described as illus-
trated in the taxonomy of Figure 1. Modality spe-
cific encoders {ji(·)}ni=1 embed unimodal tokens
{cik}nk=1 to create latent features {zik}nk=1 (Equa-
tion 5). Decoder networks use latent features to
produce output symbols. A transformer Ψ(·) con-
sists of stacked encoders and decoders with intra-
modality attention. Attention heads compute rela-
tionships within elements of a modality, producing
multimodal representations {hik}nk=1 (Equation 6).

zi1 , zi2 , . . . zin = ji(ci1 , ci2 , . . . cin) (5)

h11 . . . hmn = Ψ(z11 , z12 , . . . zmn) (6)

4.1.2 Coordinated Representations
In contrast, coordinated representations model each
modality separately. Constraints coordinate rep-
resentations of separate modalities by enforcing
cross-modal similarity over concepts. For exam-
ple, the audio representation ga(·) of a dog’s bark
would be closer to the dog’s image representation
gi(·) and further away from a car’s (Equation 7).
A notion of distance d between modalities in the
coordinated space enables cross-modal retrieval.

d(ga(dog), gi(dog)) < d(ga(dog), gi(car)) (7)

In practice, contrastive objectives are used to
coordinate representations between pairs of modal-
ities. Contrastive learning has been successful in
relating separate views of the same image (Becker
and Hinton, 1992; Chen et al., 2020a; He et al.,
2020; Grill et al., 2020; Radford et al., 2021), im-
ages and their natural language descriptions (We-
ston et al., 2010; Kiros et al., 2014; Zhang et al.,

2020b; Li et al., 2020), and videos with their corre-
sponding audio and natural language descriptions
(Owens et al., 2016; Korbar et al., 2018; Sun et al.,
2019a; Miech et al., 2020; Alayrac et al., 2020;
Akbari et al., 2021; Xu et al., 2021a; Qian et al.,
2021; Morgado et al., 2021).

4.2 Multimodal Fusion

Multimodal fusion combines features from multi-
ple modalities to make decisions, denoted by the fi-
nal block before the outputs in Figure 1. Fusion ap-
proaches are broadly classified into model-agnostic
and model-based methods.

Model-agnostic methods are independent of spe-
cific algorithms and are split into early, late, and
hybrid fusion. Early fusion integrates features fol-
lowing extraction, projecting features into a shared
space (Potamianos et al., 2003; Ngiam et al., 2011;
Nicolaou et al., 2011; Jansen et al., 2019). In con-
trast, late fusion integrates decisions from unimodal
predictors (Becker and Hinton, 1992; Korbar et al.,
2018; Shuster et al., 2020; Alayrac et al., 2020;
Akbari et al., 2021). Early fusion is predominantly
used to combine features extracted in joint represen-
tations while late fusion combines decisions made
in coordinated representations. Hybrid fusion ex-
ploits both low and high level modality interactions
(Wu et al., 2005; Schwartz et al., 2020; Piergio-
vanni et al., 2020; Goyal et al., 2020).

Model-based methods consist of graphical tech-
niques like Hidden Markov Models (Nefian et al.,
2002; Gurban et al., 2008), neural networks (Nico-
laou et al., 2011; Antol et al., 2015; Gao et al., 2015;
Malinowski et al., 2015; Kottur et al., 2018; Qian
et al., 2021), and transformers (Xu and Saenko,
2016; Hori et al., 2017; Peng et al., 2019; Zhang
et al., 2019a; Shuster et al., 2020; Chen et al.,
2020b; Geng et al., 2021; Xu et al., 2021b)

4.3 State-of-the-art Representation+Fusion
Models for Conversational AI

Having introduced the multimodal representation
and fusion challenges, we present the state-of-the-
art in these sub-tasks for conversational AI.

4.3.1 Factor Graph Attention

Schwartz et al. (2020) develops Factor Graph At-
tention (FGA), a joint representation for multi-turn
question answering grounded in images. FGA em-
beds images using VGG-16 (Simonyan and Zis-
serman, 2015) or F-RCNN (Ren et al., 2016) and
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textual modalities using LSTMs. Nodes in the fac-
tor graph represent attention distributions over el-
ements of each modality, and factors capture rela-
tionships between nodes.

There are two types of factors – local and joint.
Local factors capture interactions between nodes of
a single modality (e.g., words in the same sentence),
while joint factors capture interactions between
different modalities (e.g., a word in a sentence and
an object in an image).

Representations from all modalities are concate-
nated via hybrid fusion and passed through a multi-
layer perceptron network to retrieve the best candi-
date answer.

Table 1 compares the Recall-at-k (R@k) of dis-
criminative models on VisDial v1.0 test-std. The
F-RCNN version of FGA is the state-of-the-art.

Model R@1 R@5 R@10
LF (Das et al., 2017) 40.95 72.45 82.83

HRE (Das et al., 2017) 39.93 70.45 81.50
Memory Network (Das et al., 2017) 40.98 72.30 83.30

CorefNMN (ResNet-152) (Kottur et al., 2018) 47.55 78.10 88.80
NMN (ResNet-152) (Hu et al., 2017) 44.15 76.88 86.88

FGA (F-RCNNx101) (Schwartz et al., 2020) 52.75 82.92 91.07

Table 1: Comparison of models on VisDial v1.0 test-std
(Recall@k)(Schwartz et al., 2020)

4.3.2 TRANSRESNET

Shuster et al. (2020) presents TRANSRESNET for
image-based dialogue. Image-based dialogue is
the task of choosing the optimal response on a di-
alogue turn given an image, an agent personality,
and dialogue history. TRANSRESNET consists of
separately learned sub-networks to represent input
modalities. Images are encoded using ResNeXt
32×48d trained on 3.5 billion Instagram images
(Xie et al., 2017), personalities are embedded using
a linear layer, and dialogue is encoded by a trans-
former pretrained on Reddit (Mazaré et al., 2018)
to create a joint representation.

TRANSRESNET compares model-agnostic and
model-based fusion by using either concatenation
or attention networks to combine representations.
Like FGA, the chosen dialogue response is the
candidate closest to the fused representation.

On the first turn, TRANSRESNET uses only style
and image information to produce responses. Di-
alogue history serves as an additional modality
on subsequent rounds. Ablation of one or more
modalities diminishes the ability of the model to
retrieve the correct response. Optimal performance
on Image-Chat (Shuster et al., 2020) is achieved

using multimodal concatenation of jointly repre-
sented modalities (Table 2).

Modalities Turn 1 Turn 2 Turn 3 All
Image Only 37.6 28.1 20.7 28.7
Style Only 18.3 15.3 17.0 16.9

Dialogue History Only 1.0 33.7 32.3 22.3
Style + Dialogue 18.3 45.4 43.1 35.4
Image + Dialogue 37.6 39.4 32.6 36.5

Image + Style 54.0 41.1 35.2 43.4
Style + Dialogue + Image 54.0 51.9 44.8 50.3

Table 2: Recall@1 (%) on Image-Chat using
TRANSRESNETRET (ResNeXt-IG-3.5B, MM-Sum)

4.3.3 MultiModal Versatile Networks (MMV)
Alayrac et al. (2020) presents a training strategy
to learn coordinated representations using self-
supervised contrastive learning from instructional
videos. Videos are encoded using TSM with
a ResNet50 backbone (Lin et al., 2019), audio
is encoded using log MEL spectrograms from
ResNet50, and text is encoded using Google News
pre-trained word2vec (Mikolov et al., 2013).

Alayrac et al. (2020) defines three types of coor-
dinated spaces: shared, disjoint, and ‘fine+coarse’.
The shared space enables direct comparison and
navigation between modalities, by assuming equal
granularity. The disjoint space sidesteps naviga-
tion to solve the granularity problem by creating a
space for each pair of modalities. The ‘fine+coarse’
space solves both issues by learning two spaces.
A fine-grained space compares audio and video,
while a lower-dimensional coarse-grained space
compares fine-grained embeddings with text. We
further discuss the MMV model in Section 6.3.

5 Multimodal Translation

Multimodal translation maps embeddings from one
modality to signals from another for cross-modality
reasoning (Figure 1). Cross-modal reasoning en-
ables multimodal conversational AI to hold mean-
ingful conversations and resolve references across
multiple senses, specifically language and vision.
To this end, we survey existing work addressing
the translation of images and videos to text. We
discuss multimodal question-answering and mul-
timodal dialogue, translation tasks that extend to
multimodal conversations.

5.1 Image
Antol et al. (2015) and Zhu et al. (2016) present Vi-
sual Question-Answering (VQA) and Visual7W for
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multimodal question answering (MQA). The MQA
challenge requires responding to textual queries
about an image. Both datasets collect questions
and answers using crowd workers, encouraging
trained models to learn natural responses. Heck
and Heck (2022) presents the Visual Slot dataset,
where trained models learn answers to questions
grounded in UIs.

The objective of MQA is a simplification of
Equation 4 to a single-turn, single-timestep sce-
nario (T = 1), producing a response to a question
mq given multimodal context {ci}ni=1:

SMQA = argmax
R

p(R|f(c1, . . . cn,mq)) (8)

Multi-turn question-answering (MTQA) is the
next step towards multimodal conversational AI.
VisDial (Das et al., 2017) extends VQA to multiple
turns, translating over QA history in addition to
images. GuessWhat?! (de Vries et al., 2017) is
a guessing game, discovering objects in a scene
through dialogue. MANYMODALQA (Hannan
et al., 2020) requires reasoning over prior knowl-
edge, images, and databases. MIMOQA (Singh
et al., 2021b) is an example of multimodal re-
sponses, where answers are image-text pairs.

The objective of MTQA (Equation 9) is
an extension of MQA to include QA history
hqa = {mq1 , ra1 ,mq2 , ra2 , . . .mqi−1 , rai−1}.

SMTQA = argmax
R

p(R|f(c1, . . . cn,hqa)) (9)

Image-Grounded Conversations (IGC)
(Mostafazadeh et al., 2017) builds on MTQA by
presenting a dataset for multimodal dialogue (MD):
machine perception and conversation through
language. Image-Chat (Shuster et al., 2020)
extends IGC to agents with personalities. Crowd
workers hold three-turn conversations about an
image with one of 215 emotions (e.g., peaceful,
erratic, skeptical). Motivated by the popularity
of visual content in instant-messaging, Meme
incorporated Open-domain Dialogue (MOD)
(Fei et al., 2021) contains natural language
conversations interspersed with behavioral stickers.
SIMMC (Moon et al., 2020) and SIMMC2.0
(Kottur et al., 2021) present goal-oriented dialogue
for shopping. The challenge requires leveraging
dialogue and a state of the world to resolve
references, track dialogue state, and recommend
the correct object. IGC, Image-Chat, MOD,
SIMMC, and SIMMC2.0 solve the MD objective

that depends on previous dialogue responses
hd = {md1 , rd1 ,md2 , rd2 , . . .mdi−1

, rdi−1
}:

SMD = argmax
R

p(R|f(c1, . . . cn,hd)) (10)

5.2 Video

An extension of VQA to the video domain in-
cludes TVQA, TVQA+ (Lei et al., 2020) built on
TV shows, MovieQA (Tapaswi et al., 2016) based
on movies, and Audio Visual Scene-Aware Dia-
log (AVSD) (Alamri et al., 2019) based on CHA-
RADES (Sigurdsson et al., 2016). DVD (Le et al.,
2021) presents video-QA over videos synthesized
from the CATER dataset (Girdhar and Ramanan,
2020). Besides visual reasoning, video-QA re-
quires temporal reasoning, a challenge addressed
by multimodal alignment that we discuss in the
following section.

6 Multimodal Alignment

While image-based dialogue revolves around ob-
jects (e.g., cats and dogs), video-based dialogue re-
volves around objects and associated actions (e.g.,
jumping cats and barking dogs) where spatial and
temporal features serve as building blocks for con-
versations. Extracting these spatiotemporal fea-
tures requires multimodal alignment – aligning
sub-components of different modalities to find cor-
respondences. We identify action recognition and
action from modalities as alignment challenges rel-
evant to multimodal conversations.

6.1 Action Recognition

Action recognition is the task of extracting natu-
ral language descriptions from videos. UCF101
(Soomro et al., 2012), HMDB51 (Kuehne et al.,
2011), and Kinetics-700 (Carreira et al., 2019) in-
volve extracting actions from short YouTube and
Hollywood movie clips. HowTo100M (Miech
et al., 2019), MSR-VTT (Xu et al., 2016), and
YouCook2 (Zhou et al., 2017) are datasets con-
taining instructional videos on the internet and re-
quire learning text-video embeddings. YouCook2
and MSR-VTT are annotated by hand while
HowTo100M uses existing video subtitles or ASR.

Mathematically, the goal is to retrieve the cor-
rect natural language description y ∈ Y to a query
video x (Equation 11). Video and text representa-
tion functions g(·)video and g(·)text embed modali-
ties into a coordinated space where they are com-
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pared using a distance measure d.

argmin
y∈Y

d(gvideo(x), gtext(yj)) (11)

6.2 Action from Modalities
Equipping multimodal conversational agents with
the ability to perform actions from multiple modal-
ities provides them with an understanding of the
real world, improving their conversational utility.

Talk the Walk (de Vries et al., 2018) presents
the task of navigation conditioned on partial in-
formation. A “tourist” provides descriptions of a
photo-realistic environment to a “guide” who de-
termines actions. Vision-and-Dialog Navigation
(Thomason et al., 2019) contains natural dialogues
grounded in a simulated environment. The task is
to predict a sequence of actions to a goal state given
the world scene, dialogue, and previous actions.
TEACh (Padmakumar et al., 2021) extends Vision-
and-Dialog Navigation to complete tasks in an AI2-
THOR simulation. The challenge involves aligning
information from language, video, as well as action
and dialogue history to solve daily tasks. Ego4D
(Grauman et al., 2021) contains text annotated ego-
centric (first person) videos in real-world scenarios.
Ego4D includes 3D scans, multiple camera views,
and eye gaze, presenting new representation, fu-
sion, translation, and alignment challenges. It is
associated with five benchmarks: Video QA, object
state tracking, audio-visual diarization, social cue
detection, and camera trajectory forecasting.

6.3 Multimodal Versatile Networks (MMV)
In addition to a representation, Alayrac et al. (2020)
presents a self-supervised task to train modal-
ity embedding graphs for multimodal alignment.
Sampling temporally aligned audio, visual clips,
and narrations from the same video creates pos-
itive training examples, while those from differ-
ent videos comprise negative training examples.
A Noise-Contrastive Estimation (NCE) loss (Gut-
mann and Hyvärinen, 2010) is minimized to ensure
similarity between embeddings of positive training
examples while forcing negative pairs further apart.
A Multiple Instance Learning (MIL) (Miech et al.,
2020) variant of NCE measures loss on pairs of
modalities of different granularity. MIL accounts
for misalignment between audio/video and text by
measuring the loss of fine-grained information with
multiple temporally close narrations.

The network is trained on HowTo100M (Miech
et al., 2019) and AudioSet (Gemmeke et al., 2017).

Table 3 compares the performance of MMV on
action classification, audio classification, and zero-
shot text-to-video retrieval.

7 Discussion

The current datasets used for research in multi-
modal conversational AI are summarized in Table 4.
While MQA and MTQA are promising starting
points for multimodal natural language tasks, ex-
tending QA to conversations is not straightforward.
Inherently, MQA limits itself to direct questions
targeting visible content, whereas multimodal con-
versations require understanding information that
is often implied (Mostafazadeh et al., 2017). Ut-
terances in dialogue represent speech acts and are
classified as constatives, directives, commissives,
or acknowledgments (Bach and Harnish, 1979).
Answers belong to a single speech act (constatives)
and represent a subset of natural conversations.

Similarly, the work to-date on action recognition
is incomplete and insufficient for conversational
systems. Conversational AI must represent and
understand spatiotemporal interactions. However,
current research in action recognition attempts to
learn relationships between videos and their natural
language descriptions. These descriptions are not
speech acts themselves. Therefore, they do not
adequately represent dialogue but rather only serve
as anchor points in the interaction.

In contrast, Image-Chat (Shuster et al., 2020)
presents a learning challenge directly aligned with
the multimodal dialogue objective in Equation 4.
Image-Chat treats dialogue as an open-ended dis-
cussion grounded in the visual modality. Succeed-
ing in the task requires jointly optimizing visual
and conversational performance. The use of crowd
workers that adopt personalities during data col-
lection encourages natural dialogue and captures
conversational intricacies and implicatures.

MQA answers explicit questions about an im-
age ( →Is this at a farm?), and action recogni-
tion describes videos ( →Mountain biking). On
the other hand, Image-Chat requires both implicit
knowledge ( → Halloween, → Exercise) and
multi-turn reasoning ( → Halloween→ Holiday,
→ Exercise→ Fitness).

Despite its advantages over other datasets,
Image-Chat makes three assumptions about multi-
modal conversations limiting its extension to the
multimodal conversational objective:
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Model UCF101 (FT) HMDB51 (FT) ESC-50 (Linear) AS K600 YC2 MSR-VTT
MIL-NCE (S3D-G) (Miech et al., 2020) 91.3 61.0 / / / 51.2 32.4

AVTS (MC3) (Korbar et al., 2018) 89.0 61.6 80.6 / / / /
AA+AV CC (Jansen et al., 2019) / / / 28.5 / / /

CVRL (Qian et al., 2021) / / / / 64.1 / /
XDC (Alwassel et al., 2020) 91.2 61.0 84.8 / / / /

ELo (Piergiovanni et al., 2020) 93.8 67.4 / / / / /
AVID (Morgado et al., 2021) 91.5 64.7 89.2 / / / /

GDT (IG65M) (Patrick et al., 2020) 95.2 72.8 88.5 / / / /
MMV FAC (TSM-50x2) (Alayrac et al., 2020) 95.2 75.0 88.9 30.9 70.5 45.4 31.1

Table 3: Comparison of learnt representations on UCF101, HMDB51, ESC-50, AudioSet, Kinetics600, YouCook2,
and MSR-VTT. Top-1 Accuracy for UCF101, HMDB51, ESC-50, Kinetics600, mean Average Precision (mAP) for
AudioSet, Recall@10 for YouCook2 and MSR-VTT (Alayrac et al., 2020).

Dataset Modalities Task Data Collection POV
VQA (Antol et al., 2015) I,Q Question Answering Human-Human Third Person
Visual7W (Zhu et al., 2016) I,Q Question Answering Human-Human Third Person
Visual Slot (Heck and Heck, 2022) UI, Q Question Answering Human X
TVQA (Lei et al., 2019) V,Q,S Question Answering Human-Human Third Person
MovieQA (Tapaswi et al., 2016) V,C,Q,T,S Question Answering Human Third Person
MANYMODALQA (Hannan et al., 2020) I,C,Q,T,Tables Question Answering Human-Human Third Person
MIMOQA (Singh et al., 2021b) I,Q,T Question Answering Machine X
VisDial (Das et al., 2017) I,HQ,HA,C,Q Question Answering Human-Human Third person
Guesswhat (de Vries et al., 2017) I, HQ,HA Question Answering Human-Human Third Person
AVSD (Alamri et al., 2019) V,A,HQ,HA,C,Q Question Answering Human-Human Third Person
DVD (Le et al., 2021) V,Q,HQ,HA Question Answering Machine X
SIMMC (Moon et al., 2020) HD, Q, VR Shopping Machine Self-play First Person
SIMMC2.0 (Kottur et al., 2021) HD, Q, VR Shopping Machine Self-play First Person
IGC (Mostafazadeh et al., 2017) I,Q,D Chit-chat + Question Answering Human-Human Third-Person
Image-Chat (Shuster et al., 2020) I,D,Personality Chit-chat Human-Human Third Person
MOD (Fei et al., 2021) D, Personality Visual chit-chat Human-Human X
UCF101 (Soomro et al., 2012) V,A (partial) Action Recognition YouTube Third Person
HMDB51 (Kuehne et al., 2011) V Action Recognition YouTube+Movies Third Person
Kinetics 700 (Carreira et al., 2019) V Action Recognition YouTube Third Person
HowTo100M (Miech et al., 2019) V,T,S Text-Video Embeddings YouTube First+Third Person
YouCook2 (Zhou et al., 2017) V,T Text-video retrieval, activity recognition YouTube Third Person
MSRVTT (Xu et al., 2016) V,A,T Video-to-text Web videos First+Third Person
Talk the Walk (de Vries et al., 2018) I, Actions, D Navigation from Actions and Dialogue Human-Human First Person
CVDN (Thomason et al., 2019) VR, Actions, HQ,HA Navigation from Dialogue History Human-Human First Person
TEACh (Padmakumar et al., 2021) Scene, Actions, D Action prediction, Task from language AI2-THOR First+Third Person
Ego4D (Grauman et al., 2021) V,T,A,Gaze,3D Scan,S Spatial Reasoning Human First Person

Table 4: Datasets for multimodal representations. I=Image, V=Video, UI=User Interface, C=Caption, Q=Question,
T=Text, HQ = Question history, HA=Answer history, HD=Dialogue history, VR=Virtual Reality, D=Dialogue,
A=Audio, S=Speech

1. Conversations are limited to three turns, de-
void of long-term dialogue dependencies.

2. Language and images are the only modalities.

3. Personalities are independent of previous re-
sponses. This differs from natural human con-
versations where humans tend to understand
and reciprocate the personality of a dialogue
partner (Rashkin et al., 2019).

The discussion above highlights the limitations
of existing datasets for the multimodal conversa-
tional AI task. Datasets need to be improved to
better capture and represent more natural, multi-
turn dialogues over multiple modalities; dialogues
that more closely resemble how humans converse
with each other and their environment.

In addition, algorithmic improvements are re-
quired to advance the field of multimodal conversa-
tional AI - particularly with respect to the objective
function. Current approaches such as MQA and
action recognition models optimize a limited ob-
jective compared to Equation 4. We postulate that
the degradation of these methods when applied to
multimodal conversations is largely caused by this
and, therefore, motivates investigation.

Another open research problem is to improve
performance on Image-Chat. The current state-of-
the-art TRANSRESNETRET is limited. The model
often hallucinates, referring to content missing in
the image and previous dialogue turns. The model
also struggles when answering questions and hold-
ing extended conversations. We suspect these prob-
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lems are a reflection of the limiting assumptions
Image-Chat makes and the absence of multimodal
co-learning to extract relationships between modali-
ties. For further details, we refer readers to example
conversations in Appendix A.

Different modalities often contain complemen-
tary information when grounded in the same con-
cept. Multimodal co-learning exploits this cross-
modality synergy to model resource-poor modal-
ities using resource-rich modalities. An example
of co-learning in context of Figure 1 is the use of
visual information and audio to generate contextu-
alized text representations.

Blum and Mitchell (1998) introduced an early
approach to multimodal co-training, using informa-
tion from hyperlinked pages for web-page classifi-
cation. Socher and Fei-Fei (2010) and Duan et al.
(2014) presented weakly-supervised techniques to
tag images given information from other modali-
ties. Kiela et al. (2015) grounded natural language
descriptions in olfactory data. More recently, Upad-
hyay et al. (2018) jointly trains bilingual models to
accelerate spoken language understanding in low
resource languages. Selvaraju et al. (2019) uses
human attention maps to teach QA agents “where
to look”. Despite the rich history of work in multi-
modal co-learning, extending these techniques to
develop multimodal conversational AI that under-
stands and leverages cross-modal relationships is
still an open challenge.

8 Conclusions

We define multimodal conversational AI and out-
line the objective function required for its realiza-
tion. Solving this objective requires multimodal
representation and fusion, translation, and align-
ment. We survey existing datasets and state-of-
the-art methods for each sub-task. We identify
simplifying assumptions made by existing research
preventing the realization of multimodal conversa-
tional AI. Finally, we outline the collection of a
suitable dataset and an approach that utilizes multi-
modal co-learning as future steps.
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der, Relja Arandjelović, Jason Ramapuram, Jeffrey
De Fauw, Lucas Smaira, Sander Dieleman, and An-
drew Zisserman. 2020. Self-Supervised MultiModal
Versatile Networks. arXiv:2006.16228 [cs]. ArXiv:
2006.16228.

Humam Alwassel, Dhruv Mahajan, Bruno Korbar,
Lorenzo Torresani, Bernard Ghanem, and Du Tran.
2020. Self-Supervised Learning by Cross-Modal
Audio-Video Clustering. arXiv:1911.12667 [cs].
ArXiv: 1911.12667.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question An-
swering. In 2015 IEEE International Conference on
Computer Vision (ICCV), pages 2425–2433, Santi-
ago, Chile. IEEE.

Kent Bach and Robert M. Harnish. 1979. Linguistic
Communication and Speech Acts. Cambridge: MIT
Press.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A Frame-
work for Self-Supervised Learning of Speech Rep-
resentations. arXiv:2006.11477 [cs, eess]. ArXiv:
2006.11477.

Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas
Sunkara, Abhinav Rastogi, Jindong Chen, and Blaise
Aguera y Arcas. 2021. UIBert: Learning Generic
Multimodal Representations for UI Understanding.
arXiv:2107.13731 [cs]. ArXiv: 2107.13731.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe
Morency. 2017. Multimodal Machine Learning:
A Survey and Taxonomy. arXiv:1705.09406 [cs].
ArXiv: 1705.09406.

Siqi Bao, Huang He, Fan Wang, Hua Wu, and
Haifeng Wang. 2020. PLATO: Pre-trained Dialogue
Generation Model with Discrete Latent Variable.
arXiv:1910.07931 [cs]. ArXiv: 1910.07931.

Ankur Bapna, Gokhan Tur, Dilek Hakkani-Tur, and
Larry Heck. 2017. Towards zero-shot frame se-
mantic parsing for domain scaling. arXiv preprint
arXiv:1707.02363.

139



Suzanna Becker and Geoffrey E. Hinton. 1992. Self-
organizing neural network that discovers surfaces in
random-dot stereograms. Nature, 355:161–163.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory - COLT’ 98, pages 92–100,
Madison, Wisconsin, United States. ACM Press.

C. Bregler and Y. Konig. 1994. "Eigenlips" for ro-
bust speech recognition. In Proceedings of ICASSP

’94. IEEE International Conference on Acoustics,
Speech and Signal Processing, volume ii, pages
II/669–II/672 vol.2.

Joao Carreira, Eric Noland, Chloe Hillier, and Andrew
Zisserman. 2019. A Short Note on the Kinetics-
700 Human Action Dataset. arXiv:1907.06987 [cs].
ArXiv: 1907.06987.

David M. Chan, Shalini Ghosh, Debmalya Chakrabarty,
and Björn Hoffmeister. 2021. Multi-Modal
Pre-Training for Automated Speech Recognition.
arXiv:2110.09890 [cs, eess]. ArXiv: 2110.09890.

Ting Chen, Simon Kornblith, Mohammad Norouzi,
and Geoffrey Hinton. 2020a. A Simple Framework
for Contrastive Learning of Visual Representations.
arXiv:2002.05709 [cs, stat]. ArXiv: 2002.05709.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020b. UNITER: UNiversal Image-
TExt Representation Learning. arXiv:1909.11740
[cs]. ArXiv: 1909.11740.

Abhishek Das, Satwik Kottur, Khushi Gupta, Avi
Singh, Deshraj Yadav, José M. F. Moura, Devi
Parikh, and Dhruv Batra. 2017. Visual Dialog.
arXiv:1611.08669 [cs]. ArXiv: 1611.08669.

Harm de Vries, Kurt Shuster, Dhruv Batra, Devi
Parikh, Jason Weston, and Douwe Kiela. 2018.
Talk the Walk: Navigating New York City through
Grounded Dialogue. arXiv:1807.03367 [cs]. ArXiv:
1807.03367.

Harm de Vries, Florian Strub, Sarath Chandar, Olivier
Pietquin, Hugo Larochelle, and Aaron Courville.
2017. GuessWhat?! Visual object discovery
through multi-modal dialogue. arXiv:1611.08481
[cs]. ArXiv: 1611.08481.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Kun Duan, David J. Crandall, and Dhruv Batra. 2014.
Multimodal Learning in Loosely-Organized Web Im-
ages. In 2014 IEEE Conference on Computer Vision
and Pattern Recognition, pages 2465–2472, Colum-
bus, OH, USA. IEEE.

P. Duchnowski, Uwe Meier, and Alex Waibel. 1994.
See Me, Hear Me: Integrating Automatic Speech
Recognition and Lip-reading. In Proceedings of 3rd
International Conference on Spoken Language Pro-
cessing (ICSLP ’94), pages 547 – 550.

Ali El-Kahky, Xiaohu Liu, Ruhi Sarikaya, Gokhan
Tur, Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understanding
systems via intent transfer between domains using
knowledge graphs and search query click logs. In
2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 4067–
4071. IEEE.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and
Christopher D. Manning. 2017. Key-Value Retrieval
Networks for Task-Oriented Dialogue. In Proceed-
ings of the 18th Annual SIGdial Meeting on Dis-
course and Dialogue, pages 37–49, Saarbrücken,
Germany. Association for Computational Linguis-
tics.

Zhengcong Fei, Zekang Li, Jinchao Zhang, Yang Feng,
and Jie Zhou. 2021. Towards Expressive Communi-
cation with Internet Memes: A New Multimodal Con-
versation Dataset and Benchmark. arXiv:2109.01839
[cs]. ArXiv: 2109.01839.

Valentin Gabeur, Chen Sun, Karteek Alahari, and
Cordelia Schmid. 2020. Multi-modal Transformer
for Video Retrieval. arXiv:2007.10639 [cs]. ArXiv:
2007.10639.

Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang,
Lei Wang, and Wei Xu. 2015. Are You Talking to
a Machine? Dataset and Methods for Multilingual
Image Question Answering. arXiv:1505.05612 [cs].
ArXiv: 1505.05612.

Jianfeng Gao, Michel Galley, and Lihong Li.
2019. Neural Approaches to Conversational AI.
arXiv:1809.08267 [cs]. ArXiv: 1809.08267.

Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei,
and Jiajun Wu. 2021. ObjectFolder: A Dataset of
Objects with Implicit Visual, Auditory, and Tactile
Representations. arXiv:2109.07991 [cs]. ArXiv:
2109.07991.

Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman,
Aren Jansen, Wade Lawrence, R. Channing Moore,
Manoj Plakal, and Marvin Ritter. 2017. Audio Set:
An ontology and human-labeled dataset for audio
events. In Proc. IEEE ICASSP 2017, New Orleans,
LA.

Shijie Geng, Peng Gao, Moitreya Chatterjee, Chiori
Hori, Jonathan Le Roux, Yongfeng Zhang, Hong-
sheng Li, and Anoop Cherian. 2021. Dynamic Graph
Representation Learning for Video Dialog via Multi-
Modal Shuffled Transformers. arXiv:2007.03848
[cs]. ArXiv: 2007.03848.

140



Rohit Girdhar and Deva Ramanan. 2020. Cater: A diag-
nostic dataset for compositional actions and temporal
reasoning. In International Conference on Learning
Representations.

Palash Goyal, Saurabh Sahu, Shalini Ghosh, and
Chul Lee. 2020. Cross-modal Learning for Multi-
modal Video Categorization. arXiv:2003.03501 [cs].
ArXiv: 2003.03501.

Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar,
Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu
Liu, Miguel Martin, Tushar Nagarajan, Ilija Ra-
dosavovic, Santhosh Kumar Ramakrishnan, Fiona
Ryan, Jayant Sharma, Michael Wray, Mengmeng Xu,
Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal,
Dhruv Batra, Vincent Cartillier, Sean Crane, Tien Do,
Morrie Doulaty, Akshay Erapalli, Christoph Feicht-
enhofer, Adriano Fragomeni, Qichen Fu, Christian
Fuegen, Abrham Gebreselasie, Cristina Gonzalez,
James Hillis, Xuhua Huang, Yifei Huang, Wenqi
Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur,
Anurag Kumar, Federico Landini, Chao Li, Yanghao
Li, Zhenqiang Li, Karttikeya Mangalam, Raghava
Modhugu, Jonathan Munro, Tullie Murrell, Takumi
Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ra-
mazanova, Leda Sari, Kiran Somasundaram, Audrey
Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
Yuchen Wang, Xindi Wu, Takuma Yagi, Yunyi Zhu,
Pablo Arbelaez, David Crandall, Dima Damen, Gio-
vanni Maria Farinella, Bernard Ghanem, Vamsi Kr-
ishna Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Ki-
tani, Haizhou Li, Richard Newcombe, Aude Oliva,
Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo
Shi, Mike Zheng Shou, Antonio Torralba, Lorenzo
Torresani, Mingfei Yan, and Jitendra Malik. 2021.
Ego4D: Around the World in 3,000 Hours of Ego-
centric Video. arXiv:2110.07058 [cs]. ArXiv:
2110.07058.

Jean-Bastien Grill, Florian Strub, Florent Altché,
Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires,
Zhaohan Guo, Mohammad Gheshlaghi Azar, Bilal
Piot, koray kavukcuoglu, Remi Munos, and Michal
Valko. 2020. Bootstrap Your Own Latent - A
New Approach to Self-Supervised Learning. In
Advances in Neural Information Processing Systems,
volume 33, pages 21271–21284. Curran Associates,
Inc.

Mihai Gurban, Jean-Philippe Thiran, Thomas Drug-
man, and Thierry Dutoit. 2008. Dynamic modal-
ity weighting for multi-stream hmms inaudio-visual
speech recognition. In Proceedings of the 10th inter-
national conference on Multimodal interfaces - IMCI

’08, page 237, Chania, Crete, Greece. ACM Press.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, volume 9 of Proceed-

ings of Machine Learning Research, pages 297–304,
Chia Laguna Resort, Sardinia, Italy. PMLR.

Dilek Hakkani-Tür, Larry Heck, and Gokhan Tur. 2011.
Exploiting query click logs for utterance domain de-
tection in spoken language understanding. In 2011
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 5636–5639.
IEEE.

Dilek Hakkani-Tür, Larry Heck, and Gokhan Tur. 2013.
Using a knowledge graph and query click logs for
unsupervised learning of relation detection. In 2013
IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 8327–8331. IEEE.

Dilek Hakkani-Tür, Gokhan Tur, Rukmini Iyer, and
Larry Heck. 2012. Translating natural language utter-
ances to search queries for slu domain detection using
query click logs. In 2012 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 4953–4956. IEEE.

Dilek Hakkani-Tür, Malcolm Slaney, Asli Celikyilmaz,
and Larry Heck. 2014. Eye Gaze for Spoken Lan-
guage Understanding in Multi-Modal Conversational
Interactions. In Proceedings of the 16th International
Conference on Multimodal Interaction, ICMI ’14,
pages 263–266, New York, NY, USA. Association
for Computing Machinery. Event-place: Istanbul,
Turkey.

Dilek Hakkani-Tür, Gokhan Tur, and Larry Heck. 2011.
Research Challenges and Opportunities in Mobile
Applications [DSP Education]. IEEE Signal Process-
ing Magazine, 28(4):108–110. Conference Name:
IEEE Signal Processing Magazine.

Darryl Hannan, Akshay Jain, and Mohit Bansal. 2020.
ManyModalQA: Modality Disambiguation and QA
over Diverse Inputs. arXiv:2001.08034 [cs]. ArXiv:
2001.08034.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum Contrast for Un-
supervised Visual Representation Learning. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 9726–9735, Seattle,
WA, USA. IEEE.

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu,
Lijuan Liu, Nevan Wichers, Gabriel Schubiner, Ruby
Lee, Jindong Chen, and Blaise Agüera y Arcas. 2021.
ActionBert: Leveraging User Actions for Semantic
Understanding of User Interfaces. arXiv:2012.12350
[cs]. ArXiv: 2012.12350.

Larry Heck. 2012. The conversational web. In Keynote,
IEEE Workshop on Spoken Language Technology,
Miami, FL, USA.

Larry Heck and Dilek Hakkani-Tür. 2012. Exploiting
the semantic web for unsupervised spoken language
understanding. In 2012 IEEE Spoken Language Tech-
nology Workshop (SLT), pages 228–233. IEEE.

141



Larry Heck, Dilek Hakkani-Tür, Madhu Chinthakunta,
Gokhan Tur, Rukmini Iyer, Partha Parthasacarthy,
Lisa Stifelman, Elizabeth Shriberg, and Ashley Fi-
dler. 2013. Multimodal Conversational Search and
Browse. IEEE Workshop on Speech, Language and
Audio in Multimedia.

Larry Heck and Simon Heck. 2022. Zero-
Shot Visual Slot Filling as Question Answering.
arXiv:2011.12340 [cs]. ArXiv: 2011.12340.

Larry Heck and Hongzhao Huang. 2014. Deep learning
of knowledge graph embeddings for semantic parsing
of twitter dialogs. In 2014 IEEE Global Conference
on Signal and Information Processing (GlobalSIP),
pages 597–601. IEEE.

Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić,
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A Conversations with TRANSRESNET

Image Personality Conversations

Glamorous The star of the show is the man and his fabulous car
[-] I don’t see a man

Glamorous That tends to be the case with men that buy flashy cars and BIG houses!
[-] I would like to drive that car

Glamorous That tends to be the case with men that buy flashy cars and BIG houses!
[-] Would you drive that car?

Glamorous And I would pay him to do that in my backyard as well

[-] I love going to new restaurants

Wise Well, easy come easy go with your food then, raw is dangerous but it’s your life

[-] Do you like spicy food?

Wise It is most likely too spicy for you

[-] This is Lucy, my labrador
Businesslike I should start a dog walking business

[-] That’s a good idea!
Suave He would make a lovely companion for me.

[-] Do you have any pets?
Considerate I think I will. Dogs are a nice animal for the regular person to have

Caring I hope you’re injured too. If not, I can help you with that
[-] I’m not injured

Extreme At least if you crash you’ll beat the paramedics to the scene by at least 20 minutes!
[-] Haha that’s a nice joke

Silly I would die laughing if you did fall

[-] That doesn’t look great
Angry It makes me mad. Why did they have to hang it before the paint was dry?

[-] It’s not a painting
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] I didn’t say it wasn’t artistic
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] I’m not being negative
Angry Oh come on, you’re so negative! How is that NOT artistic?!

[-] Why are you repeating yourself?
Angry Because you have ruined the artistic integrity of the image. If you had the talent that I have,

you would understand this.
[-] I agree with you

Angry Why are people so judgemental about art? It’s infuriating!

Conversations from TRANSRESNET. Images are chosen from YFCC100M using the browser by Kalkowski et al.
(2015) and the internet, and personalities are chosen at random.

[-] indicates lines spoken by the author.
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Abstract
Human–computer conversation has long been
an interest of artificial intelligence and natu-
ral language processing research. Recent years
have seen a dramatic improvement in quality
for both task-oriented and open-domain dia-
logue systems, and an increasing amount of
research in the area. The goal of this work is
threefold: (1) to provide an overview of recent
advances in the field of open-domain dialogue,
(2) to summarize issues related to ethics, bias,
and fairness that the field has identified as well
as typical errors of dialogue systems, and (3) to
outline important future challenges. We hope
that this work will be of interest to both new
and experienced researchers in the area.

1 Introduction

Being an empathetic, entertaining, and knowledge-
able dialogue partner can be difficult even for hu-
mans. Unsurprisingly, the task of dialogue genera-
tion, i.e., creating a system that is able to hold an
intelligent conversation in a way a human would,
constitutes a hard challenge for the natural lan-
guage processing (NLP) community. In recent
years, partially due to the development of powerful
natural language understanding (NLU) and natural
language generation (NLG) models (Radford et al.,
2018; Devlin et al., 2019), the quality of dialogue
systems has been improving.

Systems fall into two broad categories, depend-
ing on if they support task-oriented or open-domain
dialogues. Task-oriented dialogue systems are built
for specific purposes, such as booking a flight, and
the topic of conversation is limited to the domain
of interest. While a narrow scope reduces the com-
plexity of the task, the fact that misunderstand-
ings can have severe consequences adds to it: ex-
act understanding of the user’s intentions is cru-
cial. In contrast, open-domain dialogue systems
have the ability to talk about a wide variety of
arbitrary topics. Thus, conversations with open-
domain dialogue systems more closely resemble

Utterance Fluent Meaningful Engaging

I have never been to Italy. ✓
Mulan I yesterday ✓
I saw Mulan yesterday. ✓ ✓
I saw Mulan yesterday and it ✓ ✓ ✓was great – have you seen it?

Table 1: Possible responses of an open-domain dialogue
system to Have you recently seen a good movie?

human–human conversations. Users often do not
have any specific goal beyond enjoying the con-
versation. Over the last few years – boosted by
the development of deep learning models for text
– the NLP community has seen rapid advances in
the area of dialogue generation. A consequence
of this success, as well as of the general growth
of the NLP community, has been an abundance of
publications on the topic: 275 submissions made
Dialogue Systems the fourth largest track at ACL
2021 in terms of submitted papers.1

To assist researchers in keeping up with the fast
progress and to provide a starting point for newcom-
ers, we aim at providing a comprehensive overview
of what we as a field currently can do (existing re-
search), what we yet cannot do (common errors of
dialogue systems) or believe must not do (problems
related to ethics, bias, and fairness), and what we
should do (open challenges for open-domain dia-
logue generation). Our work complements Serban
et al. (2015), Finch and Choi (2020), and Huang
et al. (2020) – surveys of dialogue datasets, evalu-
ation techniques, and model architectures, respec-
tively, by providing a holistic view of the field.

2 Open-domain Dialogue Generation

We use the following definition for open-domain
dialogue generation, the task of a social chatbot or
socialbot: Given zero or more previous dialogue

1These numbers are based on statistics presented during
the opening session of ACL-IJCNLP 2021.
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turns between itself and one or more other partic-
ipants, a system must output a fluent, engaging,
and meaningful natural language response. Table
1 shows example outputs of low and high quality.
In general, the conversation should continue un-
til all human participants signal that it should end.
An open-domain dialogue further does not have to
have an explicit goal, i.e., it does not have to center
around a task to solve. The conversation can further
shift between topics or domains, e.g., from movies
to politics to sports. While an ideal open-domain
dialogue system would also handle task-oriented
parts of the conversation, this is not yet common
practice. Thus, we consider open-domain and task-
oriented dialogue to be mutually exclusive for the
purpose of this survey.

Task evaluation. Evaluation strategies can be
sorted into two broad categories: automatic met-
rics and human evaluation. Automatic metrics are
cheap, but do not always correlate well with human
judgments (Liu et al., 2016). Common metrics for
generative systems are perplexity (Vinyals and Le,
2015), BLEU (Papineni et al., 2002; Ghazvininejad
et al., 2017), or DIST-n (Li et al., 2016a). For re-
trieval systems, recall at position k in n candidates
(Rn@k), mean average precision (MAP), mean re-
ciprocal rank (MRR) and precision at position 1
(P@1) are used (Wu et al., 2017).

Human evaluation is expensive, but done fre-
quently, due to a lack of good automatic alterna-
tives (Shang et al., 2015; Ram et al., 2018b). For
instance, Deriu et al. (2020) propose to evaluate
models by determining from which point in a con-
versation on one can tell they are not human.

A detailed description of open-domain dialogue
evaluation goes beyond the scope of this paper. We
refer the interested reader to a recent survey on the
subject by Finch and Choi (2020).

3 Open-domain Dialogue Datasets

English datasets. The Twitter dataset (Ritter
et al., 2010) consists of roughly 1.3 million Twitter
conversations with 2 to 243 posts each. Sordoni
et al. (2015) generalize it to the Twitter Triples
Corpus, which contains context–message–response
triples. The context represents previous dialogue
turns, and the response is the user’s reply to the
message. Adiwardana et al. (2020) mine the
Meena dataset, which consists of about 867 mil-
lion context–reply pairs from public posts. Each
context consists of all previous utterances in the

conversation that a reply is participating in.

The PersonaChat dataset (Zhang et al., 2018b)
consists of chats and personas which are collections
of five or more sentences that describe a person-
ality. The dataset also contains revised personas,
which are rewritten versions meant to prevent mod-
els from using simple word overlap to learn a per-
sona. The chats are dialogues between two workers
who each emulate one persona. The Target Guided
Conversation Dataset (Tang et al., 2019) is derived
from the PersonaChat corpus and leverages key-
words for transitions between turns. The persona
information is removed, and a rule-based keyword
extractor is used to find keywords. This dataset
allows for models to proactively guide the user to-
wards a target topic. Similar to the PersonaChat
dataset, the Wizard of Wikipedia dataset (Dinan
et al., 2019) consists of dialogues between two
crowdworkers: now, one worker is a "wizard" and
the other an "apprentice". The wizard is given text
about a topic from Wikipedia, and the two are told
to converse about it. The wizard labels each of
their utterances with a sentence in the article that
provides the knowledge used. The dataset is meant
to aid creating dialogue systems that are able to use
knowledge in retrieving or generating responses.

OpenDialKG (Moon et al., 2019) is created by
asking two workers to converse about a topic using
facts from a KG. One worker is given an entity
and told to start a conversation about it. The sec-
ond worker is given facts and told to respond using
the most natural and relevant-sounding fact. As
the conversation evolves, KG entities are surfaced
to allow workers to use them in their responses.
Another grounded dataset is the CMU Document
Grounded Dataset (Zhou et al., 2018). The au-
thors give workers a Wikipedia article on a movie,
and ask them to converse about it for at least 12
turns. 2 experimental scenarios are considered: in
the first, only one worker is given the article, and
is told to convince the other person to watch it;
in the second, both workers are given the article,
and they are instructed to talk about the content.
In a similar vein, Qin et al. (2019) create a large
corpus of grounded conversations by scraping com-
ments between users on Reddit. They consider
threads where users are discussing entities found
in a linked web document. Due to the common use
of anchors to relevant information in the URLs of
linked documents, the authors use this dataset to
train systems which can take advantage of machine
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reading comprehension models. The Topical-Chat
Corpus (Gopalakrishnan et al., 2019) is a grounded
corpus built using 300 entities across 8 topics. Two
workers are given reading sets, which are a collec-
tion of crowdsourced fun facts, Washington Post
articles, and condensed Wikipedia lead sections.
Different reading set configurations allow for a po-
tentially asymmetrical amount of information to be
given to each person. Conversations are required
to have a minimum of 20 turns, and workers are
asked to annotate the sentiment of their utterances,
where they found the information they spoke about,
and the quality of their partner’s utterances. The
DailyDialog dataset (Li et al., 2017b) is created
by scraping text from conversations held on an En-
glish learning website. Each utterance is labeled
with a dialogue act and an emotion.

The EmpatheticDialogues dataset (Rashkin et al.,
2019) contains conversations grounded in situation
descriptions. To get these situation descriptions,
crowdworkers are asked to write about an emo-
tional situation. Subsequently, two workers are
paired up and given a situation to roleplay. The
goal of the dataset is to help to train systems that
can identify user emotion from dialogue text. Li
et al. (2020c) also give workers roles in order to
create the AntiScam dataset. It consists of dia-
logues between crowdworkers, where one worker
is assigned the role of an attacker and the other
the role of a user. In their conversations, the at-
tacker poses as an Amazon customer service agent
and attempts to collect the user’s information. The
Persuasion for Social Good dataset (Wang et al.,
2020b) contains conversations between two crowd-
workers, one of whom is trying to convince the
other to donate to a specific charity. 300 of these
conversations are annotated with one of ten persua-
sion strategies, or marked as a non-strategy. The
objective of collecting this data is to improve the
persuasiveness of dialogue agents.

Chinese datasets. Song et al. (2020) introduce
the Key-value Profile Identification dataset (KvPI).
This data comes from the Sina Weibo social net-
work and consists of text in Mandarin Chinese.
KvPI contains post–response pairs, along with
three attributes describing the poster (gender, lo-
cation, and constellation). Each post–response
pair is annotated as either entailing, contradicting,
or being irrelevant to an attribute. This dataset
is designed to investigate how to automatically
detect consistency between dialogue posts and

the dialogue agent’s profile. The Weibo dataset
(Wang et al., 2013) is a standard open-domain dia-
logue generation corpus. Similar to the aforemen-
tioned ones it is collected from Sina Weibo. It
contains about 0.6 million query–response pairs.
Also from Weibo, Shang et al. (2015) create the
Short Text Conversation Corpus. Utterance pairs
are matching posts and their replies. PersonalDia-
log (Zheng et al., 2019) was also collected from
Weibo. Multi-turn conversations were created by
taking user posts and their comments, and each
utterance is connected with a specific person, who
is represented by a key-value dictionary of traits.
This dataset allows to incorporate personality in-
formation into generated responses. The PChat-
bot dataset is collected by Qian et al. (2021) from
Weibo posts and Chinese judicial forums. It is com-
posed of almost 200 million dialogue pairs. Each
utterance is linked to an anonymized user ID. One
potential use for this dataset is to have a model
learn to respond differently to users depending on
their dialogue history.

Wu et al. (2017) present the Douban dataset,
which consists of conversations between two peo-
ple on the Douban social network. All but the
last utterance of each conversation are considered
the context and the last utterance is considered
an appropriate response. The Douban dataset fur-
ther contains an additional test set that consists
of contexts from Douban posts paired with final
utterances from the Weibo that are labeled by hu-
mans as positive or negative matches based on the
context. The E-commerce dataset (Zhang et al.,
2018c) consists of conversations between Chinese
customers and customer service staff. As in the
Douban dataset, the last utterance is considered a
positive response for the rest of the conversation.
Negative responses are retrieved from other conver-
sations in an automated fashion. The E-commerce
and Douban datasets can be used for training and
testing retrieval-based multi-turn dialogue systems.

DuConv (Wu et al., 2019) is a KG-based dataset.
A KG is created from information about movies
and their characters. To create conversations, first
a "conversation path" is created by finding a path
between two sampled entries in the KG. Then, two
crowdsource workers are given roles – leader and
follower – and asked to converse. The leader has
access to the conversation path and the KG, and
the follower only has access to the leader’s utter-
ances. The conversation continues until the leader

150



reaches the conversation goal. DyKgChat (Tuan
et al., 2019) was created by scraping conversations
from two TV shows, one in Chinese, and one in
English. Additionally, manually created KGs are
provided to cover entities from the shows.

Finally, Chen and Kan (2013) collect NUS SMS,
consisting of over 70,000 SMS messages in both
Chinese and English.

Multilingual and multimodal datasets. Open-
domain dialogue datasets in languages besides En-
glish and Chinese are difficult to find. A Korean
dataset has been created by Kim et al. (2021) by
translating the English Wizard of Wikipedia dataset
(Dinan et al., 2019). To the best of our knowledge,
the only multilingual dataset is XPersona (Lin et al.,
2020a), an extension of the English PersonaChat
dataset (Zhang et al., 2018b) to Chinese, French,
Indonesian, Italian, Korean, and Japanese. It is cre-
ated by first automatically translating the training,
development and test data. The latter two splits
are then manually corrected, while the training set
only receives semi-manual cleaning. The authors
use this dataset to evaluate approaches based on
multilingual models and automatic translation.

Multimodal datasets also exist: Image-Chat by
Shuster et al. (2020) consists of images together
with English dialogues. Each dialogue is linked to a
pair of styles or emotions portrayed in the dialogue.
The images are of everyday things, such as food or
landscapes. The dialogues are from conversations
between two crowd workers who are asked to dis-
cuss the image and each given a style or emotion to
portray in their discussion. This dataset aims at cre-
ating dialogue systems that can speak in different
styles and express varying emotions. Meng et al.
(2020) present OpenViDial, which consists of dia-
logues and their visual contexts from movies and
TV series. MMChat (Zheng et al., 2021a) contains
Chinese conversations about images, which have
been scraped from Weibo.

We refer interested readers to Serban et al. (2015)
for more information on corpora; for a table with
all datasets mentioned here see Appendix A.

4 Open-domain Dialogue Systems

We sort approaches into three categories: (1) re-
trieval systems, which get their responses from a
dataset; (2) generative systems, which generate re-
sponses automatically; and (3) comprehensive sys-
tems, which consist of a dialogue manager (DM),

at least one system from the aforementioned cate-
gories, and optionally other functional modules.

4.1 Retrieval Systems

Retrieval systems first obtain a candidate response
set from a large repertoire of options and then de-
termine how well each candidate suits the dialogue
context. Models can be arbitrarily complex and op-
erate on a single-turn (Wang et al., 2013) or multi-
turn (Wu et al., 2017) basis. As retrieval systems
do not have a generative component and their out-
puts originate from human conversations, they are
generally fluent and understandable. They are also
relatively safe, as many types of harmful responses
can be filtered. However, retrieval systems are lim-
ited in their ability to converse about topics not
covered in the provided responses.

Non-neural approaches exist, such as support-
vector machine (SVM)-based ones (Wang et al.,
2013; Ji et al., 2014). More recently, neural models
which compute the matching score between can-
didate responses and dialogue contexts have been
developed. Initially, feed-forward networks have
been employed (Lu and Li, 2013). Wang et al.
(2015) extend prior approaches by representing
both a candidate response and the context as depen-
dency trees and extracting features from those rep-
resentations, before obtaining their score via a deep
feed-forward network. Later work has used a com-
bination of convolutional neural network (CNN)
and recurrent neural network (RNN) layers to de-
termine the matching scores of possible responses,
sometimes in combination with an attention mech-
anism (Yan et al., 2016; Zhou et al., 2016; Wu
et al., 2017; Zhang et al., 2018c; Tao et al., 2019).
Lu et al. (2019) add spatio-temporal features to
their model. The multi-hop selector network by
Yuan et al. (2019) looks for the relevant context in
a multi-turn dialogue, and uses the context utter-
ances determined to be relevant when retrieving a
response. The dually interactive matching network
(Gu et al., 2019b) retrieves responses based on per-
sonas. It extends Li et al. (2016b) to the previously
proposed interactive matching network (Gu et al.,
2019a).

Retrieval systems can also be based on trans-
formers (Vaswani et al., 2017). The transformer
memory network, for instance, takes knowledge
from the Wizard of Wikipedia dataset to retrieve
more knowledge-focused responses (Dinan et al.,
2019). Whang et al. (2020) go one step further and

151



use pretrained transformer models, namely BERT
(Devlin et al., 2019) and ELECTRA (Clark et al.,
2020), for matching. With this, they follow earlier
work on response retrieval for domain-specific dia-
logue systems. They further add multi-task training.
Gao et al. (2020) propose a DialoGPT (Zhang et al.,
2020c)-based model to rank retrieved responses.

Lin et al. (2020b) propose to train retrieval mod-
els using a ranking loss and so-called grey-scale
data: they construct training examples from ground-
truth, generated, and random responses.

4.2 Generative Systems

Generative systems generate responses freely, i.e.,
they are not limited to a predefined set of utter-
ances. Their responses are not guaranteed to be
well-formed. However, in contrast to retrieval sys-
tems, they are not restricted to talking about topics
within a predefined set of responses.

The arguably first generative dialogue system
has been ELIZA (Weizenbaum, 1966). ELIZA is
rule-based and plays the role of a therapist. Parry,
in contrast, is designed to act like a psychology
patient (Colby, 1975). Later, ALICE has been
created by Wallace (1995) as a proof of concept for
the Artificial Intelligence Markup Language.

The large majority of generative systems are neu-
ral sequence-to-sequence (seq2seq) models. The
first such models have been created by Shang et al.
(2015) and, concurrently, Vinyals and Le (2015).
Their systems are LSTM-based seq2seq models.
Parthasarathi and Pineau (2018) add two knowl-
edge sources to an LSTM seq2seq model: the
NELL knowledge base (Carlson et al., 2010) and
Wikipedia summaries (Scheepers, 2017). Li et al.
(2016b) propose a persona-based LSTM encoder-
decoder. They represent personas via sentences,
with a persona vector being the combination of the
sentences. Similarly, Zhang et al. (2018b) condi-
tion a dialogue system on profile sentences and also
build profiles of its users, allowing it to better tailor
its responses to individuals.

Luo et al. (2018)’s LSTM seq2seq model is
able to learn utterance-level semantic dependen-
cies, which makes responses more coherent and
fluent. Furthermore, Li et al. (2020b) propose two
additions to a standard LSTM model: a rank-aware
calibrator network, used to construct contrastive op-
timization objectives, and a knowledge inference
component, which learns keywords in order to help
the model use more informative words during gen-

eration. Zhang et al. (2020a) use a GRU-based
response generation model along with a deep ut-
terance aggregation model to generate a context
vector from previous turns.

Ghazvininejad et al. (2017) leverage a facts
dataset to inject knowledge into a GRU seq2seq
model, which helps the model generate more
knowledgeable responses. A collection of synonym
sets was used by Hsueh and Ma (2020) to help
address the problem of social chatbots repeatedly
responding with similarly worded sentences.

A variational hierarchical recurrent encoder-
decoder (VHRED) for open-domain dialogue gen-
eration is proposed by Serban et al. (2017). This
model uses latent stochastic variables to model hi-
erarchical structure between dialogue turns, and
feeds that information into an RNN. Subsequently,
Zhao and Kawahara (2020) introduce a VHRED
with a linear Gaussian prior.

Transformer-based models include generative
variants of the transformer memory network (Di-
nan et al., 2019). Further, Keskar et al. (2019) train
a conditional transformer language model, which
accepts various control codes as part of the in-
put. These control codes allow the control of style,
content, and other behaviors without requiring the
model to be retrained. Meena (Adiwardana et al.,
2020) is a transformer-based seq2seq model trained
on large amounts of real chat data. Know-EDG (Li
et al., 2020a) conists of a knowledge-enhanced con-
text encoder and an emotion identifier linear layer
in front of a transformer model. The input from the
emotion identifier allows the model to alter its gen-
erated responses based on the emotion its dialogue
partner is expressing. Zheng et al. (2021b) add
style embeddings to a transformer-based system to
alter its dialogue style. Dziri et al. (2021) tackle
the problem of factually untrue responses with a
generate-then-refine strategy: generated responses
are corrected with the help of a knowledge graph.

A mixture between a retrieval and a generative
system is the RetrieveNRefine model (Weston et al.,
2018). It first employs a key-value memory net-
work to retrieve a good dialogue response, which
is then refined by an LSTM seq2seq model.

Only recently, multimodal dialogue models,
which combine language and image processing
components have been developed (Shuster et al.,
2020). Shuster et al. (2021) explore the integration
of large pretrained transformer models for text into
such systems.
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4.3 Comprehensive Systems
Comprehensive systems consist of multiple com-
ponents together with a DM. They are typically
not trained in an end-to-end fashion. The DM se-
lects one or more of the available – in some cases
highly specialized – response generators to produce
a response for a given context.

XiaoIce (Zhou et al., 2020) is a comprehensive
system which consists of 3 layers: The user expe-
rience layer connects the system to social media
and chat services. The conversation engine layer
contains a core chat module, a skills module, a DM,
and an empathetic computing module. Finally, the
data layer contains profile information on XiaoIce
and users, knowledge graphs (KGs), topic indices,
and other information. Adapter-Bot (Madotto et al.,
2020) employs a DM which is based on BERT (De-
vlin et al., 2019), a backbone conversational model
based on DialoGPT (Zhang et al., 2020c), and a
series of additional smaller modules.

Alexa Prize competition. The Amazon Alexa
Prize (AP) is an annual competition, with the grand
challenge of designing a system capable of hold-
ing an open-domain conversation for 20 minutes
(Ram et al., 2018a). Contestants develop live sys-
tems which are randomly selected to converse with
Alexa users. Once the conversation is finished,
users are requested to give a rating, which is the
main metric used for evaluation. The teams with
the highest rating move on to the finals, where ex-
pert judges decide the winner.

Sounding Board (Fang et al., 2017), which won
the inaugural AP in 2017, is a comprehensive dia-
logue system which is comprised of an NLU mod-
ule, a DM, topic-specific modules with rule-based
mini-skills, and an NLG component. The NLU
module uses a series of text classifiers to extract
the user’s primary intent. The DM receives that
information and, using a hierarchical rule-based
architecture, decides which of the mini-skills to
use when generating dialogue acts and content to
pass to the NLG module. The NLG module builds
a response in a rule-based fashion. Gunrock (Chen
et al., 2018), the winner of the 2018 AP, differs
from Sounding Board in the techniques used for
each piece. The NLU module contains multiple
submodules, including a noun phrase extractor, a
topic model, and a sentiment analyzer. The infor-
mation from these submodules is passed to the DM,
which selects a topic and activates the correspond-
ing submodules. The information from the NLU

module and the topic submodule is then passed to
the NLG module, which builds a response using
templates. Gunrock 2.0 entered the 2019 AP (Liang
et al., 2020), and differs from its predecessor by
relying more on neural models. However, the 2019
AP was won by Emora (Finch et al., 2020). In addi-
tion to mentioning facts, Emora also supports talk-
ing about experiences and opinions. Besides the
winning system, finalists of the 2019 AP include
Chirpy Cardinal (Paranjape et al., 2020), which em-
ploys generators based on GPT-2 (Radford et al.,
2019), and Alquist (Pichl et al., 2020), which relies
on conversation graphs to dynamically use knowl-
edge in its responses. Many design choices were
common among other contenders. For NLU, sys-
tems often use dialogue act, topic, and intent clas-
sifiers. Systems also rely heavily on named en-
tity recognition and entity linking, such as Tartan
(Chen et al., 2020), whose response generators use
a knowledge base for slot filling. Other systems em-
ploy a mixture of strategies to generate responses,
such as Athena (Harrison et al., 2020), which at-
tempts to switch between rule-based, knowledge-
based, and retrieval-based modules on-the-fly, as
well as DREAM (Kuratov et al., 2020), which em-
ploys candidate and response annotators before
serving a final response. Other contenders include
Audrey (Hong et al., 2020), which focuses on emo-
tion and personality, Zotbot (Schallock et al., 2020),
which incorporates a commonsense-reasoning ele-
ment, and Bernard (Majumder et al., 2020), which
is built around non-deterministic finite automata.

5 Training and Data Augmentation

Retrieval-based systems are commonly trained with
a cross-entropy loss (Zhang et al., 2018c; Lu et al.,
2019), comparing a prediction against the gold stan-
dard from a training set. As an alternative, using
a ranking loss, where a model is trained on distin-
guishing suitable from unsuitable responses, has
been proposed (Lin et al., 2020b). In comprehen-
sive systems, the individual components are usually
trained separately.

Several algorithms to train generative systems
have been proposed. Given a training set D =
{(R1, C1, B1), . . . , (RN , CN , BN )} with N ex-
amples consisting of context Ci, background in-
formation Bi, and response Ri, models are most
commonly trained using maximum likelihood esti-
mation (Shang et al., 2015; Vinyals and Le, 2015).
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The goal is to minimize the loss

L = −
N∑

i=1

logP (Ri|Ci, Bi). (1)

However, it has been shown that this encourages
boring responses (Li et al., 2016a). As a remedy,
several ways to weight training examples have been
proposed (Shang et al., 2018; Li et al., 2020b).
With that, the loss changes to

L = −
N∑

i=1

wilogP (Ri|Ci, Bi), (2)

where wi is the weight corresponding to example
i. Further, Zhao and Kawahara (2020) address the
concern that generally multiple responses are pos-
sible. They propose multi-referenced training and
automatically create M different responses R̃im

for each original Ri. Their loss is

L = −
N∑

i=1

1

M

M∑

m=1

logP (R̃im|Ci, Bi). (3)

Contrastive learning (Hadsell et al., 2006; Gutmann
and Hyvärinen, 2012; Cai et al., 2020a) – where
a model is trained to assign higher and, respec-
tively, lower conditional probabilities to positive
and negative samples than a reference model – and
curriculum learning – during which examples are
presented to a model in a specific order – have
also been employed (Cai et al., 2020c). Finally,
dialogue systems can also be trained via reinforce-
ment learning (Li et al., 2016c; Zhang et al., 2018a;
Sankar and Ravi, 2019) or adversarial learning (Li
et al., 2017a).

Pretraining. Large pretrained models such as
BERT (Devlin et al., 2019) or GPT and its suc-
cessors (Radford et al., 2018, 2019; Brown et al.,
2020) have improved the state of the art for a vari-
ety of NLP tasks. Pretraining has also been used
for open-domain dialogue generation. Two dif-
ferent strategies exist: One option is to pretrain a
model on large unlabeled corpora to then finetune
it on dialogue data. Liu et al. (2020c), for instance,
initialize parts of their generative system with a pre-
trained BERT model, and Gu et al. (2020) finetune
BERT for multi-turn response selection in retrieval-
based chatbots. Shi et al. (2020) introduce an En-
glish language-learning chatbot based on GPT-2.
Boyd et al. (2020) condition a GPT-2 model for dia-
logue generation on several previous conversations

of a single individual to get it to use that individ-
ual’s style. Further, plug and play language models
consist of pretrained language models in combina-
tion with one or more simple attribute classifiers,
which control various aspects of its behavior, such
as style or dialogue content (Dathathri et al., 2020).

The second option is to pretrain a model on large
dialogue corpora, such that it can then be finetuned
on out-of-domain dialogue data. DialoGPT (Zhang
et al., 2020c) is such a model. Its architecture re-
sembles GPT, i.e., it is a transformer (Vaswani et al.,
2017) language model. For training, specifically
collected Reddit data is used. Like GPT, DialoGPT
is publicly available. The authors also experiment
with GPT-2 as a basis for DialoGPT and, similar
to the work mentioned in the last paragraph, find
pretraining on raw text to be beneficial. ConveRT
(Henderson et al., 2020) is another model which is
pretrained on dialogue data: pretraining is done on
a response selection task using Reddit.

Data augmentation. Data augmentation, i.e., the
creation of artificial training examples, can help in
the low-resource setting. Zhang et al. (2020b) aug-
ment paired dialogue data using unlabeled data
in the form of unpaired dialogue data. A dia-
logue pair consists of a social media post and a
corresponding response. Their method starts by
randomly selecting a sentence from the unpaired
dataset. Then, posts that are semantically similar to
the randomly selected sentence are retrieved from
the paired dataset. Next, responses corresponding
to the posts are collected from the paired dataset.
Finally, sentences that are semantically similar to
the responses are pulled from the unpaired data.
Each of these newly pulled sentences are matched
with the original randomly selected sentence, to
create a set of candidate pairs. Those candidate
pairs are then ranked, and the top-ranked pairs are
saved for later use.

Other approaches differ from the aforementioned
in that they do not require unlabeled data. Li et al.
(2019) propose a conditional variational autoen-
coder as a generative data augmentation model.
They combine this with a discriminator, which de-
cides whether the generated responses are suitable
for a given query. Cai et al. (2020b) design a data
augmentation and instance weighting model which
is trained using gradient descent and the model’s
performance on development examples.
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6 Common Errors of Dialogue Systems

We now discuss errors common across multiple
systems, considering mistakes at the turn level, the
conversation level, and the system level.

Turn level. At the turn level, errors consist
mostly of system responses being either ungram-
matical or nonsensical. Both types of problems are
more common in generative systems, as those com-
mit errors seen in other NLG tasks, such as highly
repetitive, nonsensical, or insignificant replies (Li
et al., 2016a; See and Manning, 2021). Models
which are motivated by semantic similarity may
resort to constantly echoing the user, rather than
returning a coherent response (Ritter et al., 2011;
Fedorenko et al., 2018).

Conversation level. Problems arising at the con-
versation level are arguably more substantial than
those at the turn level. Potential solutions will most
likely rely heavily on advancements in other areas
of NLP, such as reasoning and information extrac-
tion. A common issue consists of replies being flu-
ent, but either not relevant in the overall context of
the conversation or too generic (Adiwardana et al.,
2020). Off-topic replies can often be attributed to
a failure to recognize entities or previous dialogue
acts. Another common problem are answers that
are inconsistent across turns (Nie et al., 2021).

System level. At the system level, researchers
and model developers face the difficulty of incor-
porating world knowledge and common sense into
models (Wang et al., 2020a), as models still fre-
quently generate responses that are factually incor-
rect (Mielke et al., 2020; Santhanam et al., 2021).
There exists a trade-off between the range of topics
a system can cover and the depth of knowledge it
can leverage for any individual topic. Currently,
especially comprehensive systems frequently rely
heavily on curated content and static, handwritten
conversation paths to talk intelligently and deeply
about specific topics. However, the more a system
relies on handwritten paths, the more brittle it be-
comes. Similarly, curated content is impossible to
scale to a truly open-domain setting. Conversely,
leaning more towards dynamically structured con-
versations gives models more flexibility and allows
them to cover a wider range of topics, but often
results in less meaningful responses.

7 Ethics, Bias, and Fairness

The NLP research community is becoming increas-
ingly aware of the ethical challenges around the
systems we are building, and the area of dialogue
generation is no exception to this. We now summa-
rize prior work around safety and unwanted biases.

Safety. Dialogue systems should avoid being un-
intentionally offensive or harming the user (Hen-
derson et al., 2018). Therefore, attempts have been
made to detect sensitive language around religion,
race, violence, or contentious news as well as pro-
fanity (Tripathi et al., 2019). However, how to
respond when sensitive topics are being identified
is still an open question. As some of these topics
shape our identities and our lives, an ideal system
might not completely avoid them, and the best re-
sponse strategy depends on the objectives of the
system. When GPT-3 (Brown et al., 2020) and
Blender (Roller et al., 2021) detect toxic language
in a user utterance, they stop producing output (Xu
et al., 2020). While this is an ad-hoc solution, in
the long term, a graceful reaction could potentially
carry the conversation to healthier places as shown
by Wright et al. (2017).

Dinan et al. (2021) identify three potentially dan-
gerous behaviors a dialogue system can exhibit:
First, it can act as an instigator and provoke the
user using negative language, as has infamously
happened with the Microsoft Tay chatbot. Second,
even if a system exclusively uses non-harmful lan-
guage, it can cause harm to the user by being a
so-called yea-sayer, i.e., by being overly eager to
agree with the user on wrong or inappropriate state-
ments (Lee et al., 2019; Baheti et al., 2021). Third,
a dialogue system can unintentionally impose as
an expert and provide harmful advice.

Biases. An abundance of recent work has shown
that NLP models are learning undesirable biases
from the data they are being trained on (Bolukbasi
et al., 2016; Bordia and Bowman, 2019; Bartl et al.,
2020; Shah et al., 2020). Dialogue systems are
no exception to this: Liu et al. (2020a) investigate
fairness in dialogue models and find that dialogue
models exhibit significant prejudice against some
genders and races. They propose two debiasing
methods based on data augmentation and word
embeddings regularization. Dinan et al. (2020b)
point out that there are three types of gender bias
in chat bots: the first one being due to the gender
of the person that speakers are talking about, the
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second being due to the gender of the speaker, and
the last being due to the gender of the addressee.
Liu et al. (2020b) aim at mitigating the former
via adversarial learning. Similarly, Dinan et al.
(2020a) propose to reduce gender bias via data
augmentation, targeted data collection, and bias-
controlled training.

Barikeri et al. (2021) introduce RedditBias, a
dataset grounded in conversations from Reddit,
which enables the measurement and mitigation of
gender, race, religion, and queerness bias, and use
it to explore DialoGPT with and without debiasing.

8 Open Challenges for Future Research

Model evaluation and analysis. Surveying re-
search on open-domain dialogue generation (cf.
Section 4) as well as research on system evalua-
tion (Finch and Choi, 2020), it is clear that a good
automatic metric (or even manual evaluation strat-
egy) has not yet been found. What the field needs
are metrics that (1) evaluate different aspects of
dialogue systems (cf. Table 1), (2) do not require
references, since no reasonable set of references
can contain all possibly suitable responses, and
(3) correlate strongly with human judgments. One
possible way to move the field towards the devel-
opment of new evaluation strategies could be the
establishment of a shared task on open-domain
dialogue generation metrics, similar to the WMT
metrics shared task (Ma et al., 2019).

Furthermore, while entire surveys are neces-
sary to summarize work on the analysis of BERT
(Rogers et al., 2020), we still know little about what
dialogue systems, including DialoGPT (Zhang
et al., 2020c), learn from their training data. Prior
work on the analysis of dialogue models (with the
exception of still non-exhaustive investigations of
their biases) is limited; e.g., Saleh et al. (2020). We
argue that learning more about dialogue models,
which are likely to directly interact with users, is
crucial. We should investigate the following: (1)
What world knowledge do models acquire during
training? (2) What linguistic knowledge do dia-
logue models learn? (3) Which potentially harmful
biases do models learn from real-world data?

Multi-party dialogue. How to extend systems to
handle multi-party dialogue, as posed by Seering
et al. (2019), remains an underexplored area of
research. Having such systems will potentially
contribute to creating richer social interactions in
both online and offline communities. It will further

increase our understanding of the dynamics behind
turn taking (Bohus and Horvitz, 2011).

Multilingual dialogue. Section 3 makes it ob-
vious that open-domain dialogue datasets mostly
exist for two high-resource languages: English and
Chinese. Work on other languages is limited (e.g.,
Lin et al. (2020a)). We argue that, in order to speed
up research on other languages, the field needs
to develop datasets with the following properties:
(1) datasets should be created for a diverse set of
potentially low-resource languages and (2) the cre-
ated datasets should not be translations of existing
datasets. The latter is necessary since it has been
shown for other NLP tasks that translated datasets
show different properties from those natively col-
lected in a language (Artetxe et al., 2020).

9 Conclusion

Recent years have seen a drastic improvement in
the quality of open-domain dialogue systems as
well as in the amount of research in the area. There-
fore, we first presented an overview of the state of
the field of NLP for open-domain dialogue. Then,
we outlined important future challenges: better
model evaluation and analysis, multi-party dia-
logue, and multilingual dialogue.
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A Overview of Existing Datasets

Dataset Name Paper Language Method Source

KvPI Song et al. (2020) zh Scraped Weibo
PChatbot Qian et al. (2021) zh Scraped Weibo, Judicial
Douban Wu et al. (2017) zh Scraped Douban, Weibo
E-commerce Zhang et al. (2018c) zh Scraped Taobao
Weibo Wang et al. (2013) zh Scraped Weibo
PersonalDialog Zheng et al. (2019) zh Scraped Weibo
DuConv Wu et al. (2019) zh Human-Human -
Short Text Conversation Shang et al. (2015) zh Scraped Weibo
Switchboard Godfrey et al. (1992) en Human-Human -
Twitter Dataset Ritter et al. (2010) en Scraped Twitter
Twitter Triples Sordoni et al. (2015) en Scraped Twitter
Reddit Dataset Al-Rfou et al. (2016) en Scraped Reddit
PersonaChat Zhang et al. (2018b) en Human-Human -
Wizard of Wikipedia Dinan et al. (2019) en Human-Human -
EmphateticDialogues Rashkin et al. (2019) en Human-Human -
Meena Adiwardana et al. (2020) en Scraped Social Media
AntiScam Li et al. (2020c) en Human-Human -
Dailydialogue Li et al. (2017b) en Scraped -
Persuasion for Social Good Wang et al. (2020b) en Human-Human -
CMU Document Grounded Dataset Zhou et al. (2018) en Human-Human -
Grounded Conversation Dataset Qin et al. (2019) en Scraped Reddit
Topical Chats Gopalakrishnan et al. (2019) en Human-Human -
OpenDialKG Moon et al. (2019) en Human-Human -
Target Guided Conversation Dataset Tang et al. (2019) en Human-Human -
Image-Chat Shuster et al. (2020) en Human-Human -
OpenViDial Meng et al. (2020) en Scraped Movies/TV
MMChat Zheng et al. (2021a) en Sraped Weibo
NUS SMS Chen and Kan (2013) en,zh Human-Human SMS
Korean Wizard of Wikipedia Kim et al. (2021) ko MT Human-Human -
XPersona Lin et al. (2020a) zh,fr,ind,it,ko,ja MT Human-Human -

Table 2: Overview of existing dialogue datasets. Human–Human denotes datasets where two people converse with
each other. Scraped marks datasets which are gathered from an existing online resource.
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Abstract

In this work, we evaluate various existing di-
alogue relevance metrics, find strong depen-
dency on the dataset, often with poor correla-
tion with human scores of relevance, and pro-
pose modifications to reduce data requirements
and domain sensitivity while improving corre-
lation. Our proposed metric achieves state-of-
the-art performance on the HUMOD dataset
(Merdivan et al., 2020) while reducing mea-
sured sensitivity to dataset by 37%-66%. We
achieve this without fine-tuning a pretrained
language model, and using only 3, 750 unan-
notated human dialogues and a single negative
example. Despite these limitations, we demon-
strate competitive performance on four datasets
from different domains. Our code, including
our metric and experiments, is open sourced1.

1 Introduction

The automatic evaluation of generative dialogue
systems remains an important open problem, with
potential applications from tourism (Şimşek and
Fensel, 2018) to medicine (Fazzinga et al., 2021).
In recent years, there has been increased focus
on interpretable approaches (Deriu et al., 2021;
Chen et al., 2021) often through combining vari-
ous sub-metrics, each for a specific aspect of dia-
logue (Berlot-Attwell and Rudzicz, 2021; Phy et al.,
2020; Mehri and Eskenazi, 2020b). One of these
key aspects is “relevance” (sometimes called “con-
text coherence”), commonly defined as whether
“[r]esponses are on-topic with the immediate dia-
logue history” (Finch and Choi, 2020).

These interpretable approaches have motivated
measures of dialogue relevance that are not reliant
on expensive human annotations. Such measures
have appeared in many recent papers on dialogue
evaluation, including USR (Mehri and Eskenazi,
2020b), USL-H (Phy et al., 2020), and others (Pang

1https://github.com/ikb-a/
idk-dialogue-relevance

et al., 2020; Merdivan et al., 2020). Additionally,
dialogue relevance has been used directly in train-
ing dialogue models (Xu et al., 2018).

Despite this work, comparison between these ap-
proaches has been limited. Aggravating this prob-
lem is that authors often collect human annotations
on their own datasets with varying amounts and
types of non-human responses. Consequently, di-
rect comparisons are not possible. It is known that
metrics of dialogue quality often perform poorly
on new test sets of quality ratings (Yeh et al., 2021),
but it remains an open question whether poor gen-
eralization also plagues the much simpler dialogue
relevance task. We address this problem by evalu-
ating and comparing six prior approaches on four
publicly available datasets of dialogue annotated
with human ratings of relevance. We find poor cor-
relation with human ratings across various methods,
with high sensitivity to dataset.

Based on our observations, we propose a simple
metric of logistic regression trained on pretrained
BERT NSP features (Devlin et al., 2019), using “i
don’t know.” as the only negative example. With
this metric, we achieve state-of-the-art correlation
on the HUMOD dataset (Merdivan et al., 2020).
We release our metric and evaluation code to en-
courage comparable results in future research.

Our primary contributions are: (i) empirical ev-
idence that current dialogue relevance metrics for
English are sensitive to dataset, and often have
poor correlation with human ratings, (ii) a simple
relevance metric that exhibits good correlation and
reduced domain sensitivity, and (iii) the counter-
intuitive result that a single negative example can
be equally effective as random negative sampling.

2 Prior metrics

Prior metrics of relevance in dialogue can generally
be divided into more traditional approaches that are
token-based, and more current approaches based on
large pretrained models. These metrics are given
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the context (i.e., the two-person conversation up
to a given point in time), as well as a response
(i.e., the next speaker’s response, also known as the
‘next turn’ in the conversation). From these, they
produce a measure of the response’s relevance to
the context. The ground-truth response (i.e., the
‘gold response’) may or may not be available.

2.1 n-gram approaches
There have been attempts to use metrics based on
n-grams from machine-translation and summariza-
tion, such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) in dialogue. However, we discard these ap-
proaches due to their limitations: they require a
ground-truth response, and correlate poorly with
dialogue relevance (Merdivan et al., 2020).

2.2 Average-embedding cosine similarity
Xu et al. (2018) proposed to measure the cosine
similarity of a vector representation of the context
and the response. Specifically, the context and re-
sponse are represented via an aggregate (typically
an average) of the uncontextualized word embed-
dings. This approach can be modified to exploit
language models by instead using contextualized
word embeddings.

2.3 Fine-tuned embedding model for Next
Utterance Prediction (NUP)

This family of approaches combines a word em-
bedding model (typically max- or average-pooled
BERT word embeddings) with a simple 1-3 layer
MLP, trained for next utterance prediction (typi-
cally using negative sampling) (Mehri and Eske-
nazi, 2020b; Phy et al., 2020). The embedding
model is then fine-tuned to the domain of interest.
In some variants, the model is provided with in-
formation in addition to the context and response;
e.g., Mehri and Eskenazi (2020b) appended a topic
string to the context. This approach has also been
directly used as a metric of overall dialogue qual-
ity (Ghazarian et al., 2019). In this paper, we fo-
cus on the specific implementation by Phy et al.
(2020): max-pooled BERT embeddings passed into
a single-layer MLP followed by two-class softmax,
trained with binary cross-entropy (BCE) loss and
random sampling of negative samples.

Note that, for methods that are fine-tuned or oth-
erwise require training, it will often be the case
that annotated relevance data is not available on the
domain of interest. As a result, model performance

cannot be measured on a validation set during train-
ing. Therefore, either the method must be trained
to convergence on the training set, or a different
method other than validation set performance must
be employed to reduce the risk of halting training
on a model with poor performance.

Another concern with using trained metrics to
evaluate trained dialogue systems is that they may
both learn the same patterns in the training data.
An extreme example would be a dialogue model
that learns only to reproduce responses from the
training data verbatim, and a relevance metric that
learns to only accept verbatim responses from the
training data. We believe that this risk can be re-
duced by training the metric on separate data from
the model. However, this approach is only prac-
tical if the metric can be trained with a relatively
small amount of data and therefore does not com-
pete with the dialogue model for training examples.
Alternatively, a sufficiently generalizable metric
may be trained on data from a different domain.

2.4 Normalized conditional probability

Pang et al. (2020) also exploited pretrained models,
however they instead relied on a generative lan-
guage model (specifically GPT-2). Their proposed
metric is the conditional log-probability of the re-
sponse given the context, normalized to the range
[0, 1] (see Appendix D.1 for details).

Mehri and Eskenazi (2020a) also relied on a
generative language model (specifically, DialoGPT
(Zhang et al., 2020)), however their approach mea-
sured the probability of followup-utterances, e.g.,
“Why are you changing the topic?” to indicate ir-
relevance. Their relevance and correctness scores
are defined as c(q | r) = −∑|n|

i=1 logP (ni | r, q),
where ni ∈ n is a negative response suggesting ir-
relevance or incorrectness. Note that positive utter-
ances can be used, however the author’s measures
of correctness and relevance only used negative
utterances.

3 Datasets used for analysis

A literature review reveals that many of these meth-
ods have never been evaluated on the same datasets.
As such, it is unclear both how these approaches
compare, and how well they generalize to new data.
For this reason, we consider four publicly avail-
able English datasets of both human and synthetic
dialogue with human relevance annotations. All
datasets are annotated with Likert ratings of rele-
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Dataset Superset Contexts Turns per
Context

Responses
per
Context

Response types Relevance
Annotation

HUMOD (Merdivan et al., 2020) Cornell movie dialogue
(Danescu-Niculescu-Mizil and
Lee, 2011)

4, 750 2-7 2 Human, Random Human Likert 1-5

USR-TC (Mehri and Eskenazi, 2020b) Topical Chat (Gopalakrishnan
et al., 2019)

60 1-19 6 Human (x2), Transformer (x4) Likert 1-3

P-DD (Pang et al., 2020) DailyDialogue (Li et al., 2017) 200 1 1 LSTM Likert 1-5
FED (Mehri and Eskenazi, 2020a) N/A 375 3-33 1 Human, Meena (Adiwardana

et al., 2020), or Mitsuku
Likert 1-3
(relevance and
correctness)

Table 1: Summary of datasets used.

vance from multiple reviewers; following Merdi-
van et al. (2020), we average these ratings over
all reviewers. Due to variations in data collection
procedures, as well as anchoring effects (Li et al.,
2019), Likert ratings from different datasets may
not be directly comparable. Consequently, we keep
the datasets separate. This also allows us to observe
generalization across datasets.

Altogether, our selected datasets cover a wide va-
riety of responses, including human, LSTM, Trans-
former, Meena (Adiwardana et al., 2020), and Mit-
suku2 generated responses, and random distractors.
See Table 1 for an overview.

3.1 HUMOD Dataset
The HUMOD dataset (Merdivan et al., 2020) is
an annotated subset of the Cornell movie dialogue
dataset (Danescu-Niculescu-Mizil and Lee, 2011).
The Cornell dataset consists of 220, 579 conversa-
tions from 617 films. The HUMOD dataset is a
subset of 4, 750 contexts, each consisting of be-
tween two and seven turns. Every context is paired
with both the original human response, and a ran-
domly sampled human response. Each response is
annotated with crowd-sourced ratings of relevance
from 1-5. The authors measured inter-annotator
agreement via Cohen’s kappa score (Cohen, 1968),
and it was found to be 0.86 between the closest rat-
ings, and 0.42 between randomly selected ratings.
Following the authors, we split the dataset into a
training set consisting of the first 3, 750 contexts, a
validation set of the next 500 contexts, and a test-
set of the remaining 500 contexts. As it is unclear
how HUMOD was subsampled from the Cornell
movie dialogue dataset, we do not use the Cornell
movie dialogue dataset as training data.

3.2 USR Topical-Chat Dataset (USR-TC)
The USR-TC dataset is a subset of the Topical-
Chat (TC) dialogue dataset (Gopalakrishnan et al.,

22019 Loebner prize winning system

2019) created by Mehri and Eskenazi (2020b).
The Topical-Chat dataset consists of approximately
11, 000 conversations between Amazon Mechani-
cal Turk workers, each grounding their conversa-
tion in a provided reading set. The USR-TC dataset
consists of 60 contexts taken from the TC frequent
test set, each consisting of 1-19 turns. Every con-
text is paired with six responses: the original hu-
man response, a newly created human response,
and four samples taken from a Transformer dialog
model (Vaswani et al., 2017). Each sample fol-
lows a different decoding strategy, namely: argmax
sampling, and nucleus sampling (Holtzman et al.,
2020) at the rates p = 0.3, 0.5, 0.7, respectively.
Each response is annotated with a human 1-3 score
of relevance, produced by one of six dialogue re-
searchers. The authors reported an inter-annotator
agreement of 0.56 (Spearman’s correlation). We
divide the dataset evenly into a validation and test
set, each containing 30 contexts. We use the TC
train set as the training set.

3.3 Pang et al. (2020) Annotated
DailyDialogue Dataset (P-DD)

The P-DD dataset (Pang et al., 2020) is a subset of
the DailyDialogue (DD) dataset (Li et al., 2017).
The DailyDialogue dataset consists of 13, 118 con-
versations scraped from websites where English
language learners could practice English conversa-
tion. The P-DD dataset contains 200 contexts, each
of a single turn and paired with a single synthetic
response, generated by a 2-layer LSTM (Bahdanau
et al., 2015). Responses are sampled using top-K
sampling for k ∈ {1, 10, 100}; note that k varies
by context. Each response is annotated with ten
crowdsourced 1-5 ratings of relevance with a re-
ported inter-annotator Spearman’s correlation be-
tween 0.57 and 0.87. Due to the very small size
of the dataset (only 200 dialogues in total), and
the lack of information on how the contexts were
sampled, we use this dataset exclusively for testing.
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3.4 FED Dataset
The FED dataset (Mehri and Eskenazi, 2020a), con-
sists of 375 annotated dialogue turns taken from
40 human-human, 40 human-Meena (Adiwardana
et al., 2020), and 40 human-Mitsuku conversations.
We use a subset of the annotations, specifically
turnwise relevance, and turnwise correctness (the
latter defined by the authors as whether there was a
“a misunderstanding of the conversation”). As the
authors note, their definition of correctness is often
encapsulated within relevance; we thus evaluate on
both annotations. Due to the small size, we used
this dataset only for testing.

4 Evaluating Prior Metrics

For each of the aforementioned datasets, we evalu-
ate the following relevance metrics:

• COS-FT: average fastText 3 embedding cosine
similarity. Code by Csáky et al. (2019)

• COS-MAX-BERT: Cosine similarity with
max-pooled BERT contextualized word em-
beddings, inspired by BERT-RUBER (Ghaz-
arian et al., 2019)

• COS-NSP-BERT: Cosine similarity using the
pretrained features extracted from the [CLS]
token used by next-sentence-prediction head.

• NUP-BERT: Fine-tuned BERT next-utterance
prediction approach. Implementation by Phy
et al. (2020). We experiment with fine-tuning
BERT to the HUMOD train set (3750 dia-
logues), the full TC train set, and TC-S (a
subset of the TC training set containing 3, 750
dialogues).

• NORM-PROB: GPT-2 based normalized
conditional-probability; approach and imple-
mentation by Pang et al. (2020); note that the
P-DD dataset was released in the same paper.

• FED-RELEVANT & FED-CORRECT:
DialoGPT based normalized conditional-
probability; approach and implementation by
Mehri and Eskenazi (2020a)

In all cases, we use hugging-face
bert-base-uncased as the pretrained
BERT model. Only NUP-BERT was fine-tuned.
To prevent an unfair fitting to any specific dialogue
model, and to better reflect the evaluation of a new
dialogue model, only human responses were used

3https://fasttext.cc/

at train time. All hyperparameters were left at their
recommended values. NUP-BERT performance is
averaged over 3 runs.

Note that we also evaluate GRADE (Huang et al.,
2020) and DYNA-EVAL (Zhang et al., 2021); how-
ever these do not measure relevance, but rather
dialogue coherence: “whether a piece of text is
in a consistent and logical manner, as opposed to
a random collection of sentences” (Zhang et al.,
2021). As relevance is a major aspect of dialogue
coherence, we include these baselines for complete-
ness. As both metrics are graph neural networks
intended for larger train sets, we use checkpoints
provided by the authors. GRADE is trained on
DailyDialogue (Li et al., 2017), and DynaEval on
Empathetic Dialogue (Rashkin et al., 2019). Both
are trained with negative sampling, with GRADE
constructing more challenging negative samples.

A summary of the authors’ stated purpose for
each metric can be found in the Appendix C.

4.1 Analysis

Table 2 makes it clear that the normalized probabil-
ity and cosine similarity approaches do not general-
ize well across datasets. Although NORM-PROB
excels on the P-DD dataset, it has weak perfor-
mance on HUMOD and a significant negative cor-
relation on USR-TC. Likewise the FED metrics
perform well on the FED data, but are negatively
correlated on all other datasets. Consequently, we
believe that the NORM-PROB and FED metrics are
overfitted to their corresponding datasets. Similarly,
although COS-FT has the best performance on the
USR-TC dataset, it performs poorly on HUMOD,
and has negative correlation on P-DD. As such, it is
clear that, while both cosine-similarity and normal-
ized probability approaches can perform well, they
have serious limitations. They are very sensitive
to the domain and models under evaluation, and
are capable of becoming negatively correlated with
human ratings under suboptimal conditions.

Looking at the dialogue coherence metrics,
DYNA-EVAL performs strongly on FED, and
weakly on all other datasets. GRADE performs
very strongly on HUMOD and P-DD (the latter,
likely in part as it was trained on DailyDialogue),
but is uncorrelated on USR-TC. Given that these
metrics were not intended to measure relevance,
uneven performance is to be expected as relevance
and dialogue coherence will not always align.

The final baseline, NUP-BERT, is quite com-
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
COS-FT 0.09 0.10 *0.26 *0.24 −0.02 −0.04 0.08 0.04 0.11 0.07
COS-MAX-BERT *0.13 *0.10 *0.20 0.14 0.03 0.02 0.03 0.01 0.06 0.04
COS-NSP-BERT 0.08 0.06 0.08 0.09 *0.30 *0.23 −0.03 −0.01 −0.04 −0.02
NORM-PROB *0.19 *0.16 *−0.24 *−0.26 *0.65 *0.59 0.05 0.06 0.07 0.07
FED-CORRECT −0.06 −0.04 −0.08 −0.12 *−0.25 *−0.26 *0.17 *0.17 *0.15 *0.15
FED-RELEVANT −0.06 −0.05 −0.08 −0.12 *−0.26 *−0.27 *0.17 *0.17 *0.15 *0.15
GRADE *0.61 *0.61 0.00 0.03 *0.70 *0.68 0.12 0.12 *0.15 *0.15
DYNA-EVAL *0.09 *0.10 0.10 0.10 0.00 -0.02 *0.26 *0.27 *0.32 *0.31
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)

Table 2: Spearman (S) and Pearson (P) correlations of baseline models with average human ratings on the test sets.
BERT-NUP is averaged over three runs, with the standard deviation reported in brackets. Training data is specified
in brackets: (H) signifies HUMOD, (TC) signifies the Topical Chat training set, and (TC-S) signifies a subset of
TC containing 3, 750 dialogues (same size as the HUMOD train set). ‘*’ indicates all trials were significant at the
p < 0.01 level. ‘�’ indicates at least one trial was significant. Note that most cosine and language-model based
metrics attain negative correlation with human scores.

HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)
IDK (H) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK (TC-S) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)

Table 3: Comparison of our proposed metric (IDK) against the NUP-BERT baseline on the test set. Note the strong
improvement on HUMOD and equivalent, or slightly improved performance on USR-TC, at the cost of performance
loss on P-DD. Note IDK (H) and IDK (TC-S) performance is almost identical, suggesting that IDK performance is
largely independent of training data.

petitive, outperforming each of the other baselines
on at least 2 of the datasets. Despite this, we can
see that performance on HUMOD, USR-TC, and
FED is still fairly weak. We can also observe that
NUP-BERT has some sensitivity to the domain of
the training data; fine-tuning on HUMOD data re-
sults in lower Spearman’s correlation on USR-TC,
and fine-tuning on USR-TC performs worse on the
FED datasets. However, the amount of training
data (TC vs TC-S) has little impact.

Overall, the results of Table 2 are concerning as
they suggest that at least five current approaches
generalize poorly across either dialogue models or
domains. The absolute performance of all metrics
studied vary considerably by dataset, and the rel-
ative performance of closely related metrics such
as COS-FT and COS-NSP-BERT, or NUP-BERT
with different training data, varies considerably
between datasets. As a result, research into new di-
alogue relevance metrics is required. Furthermore,
it is clear that the area’s evaluation methodology
must be updated to use various dialogue models in
various different domains.

5 IDK: A metric for dialogue relevance

Based on these results, we propose a number of
modifications to the NUP-BERT metric to produce
a novel metric that we call IDK (“I Don’t Know”).
The architecture is mostly unchanged, however the
training procedure and the features used are altered.

First, based on the observation that the amount
of training data has little impact, we freeze BERT
features and do not fine-tune to the domain. Ad-
ditionally, whereas the NUP-BERT baseline uses
max-pooled BERT word embeddings, we use the
pre-trained next sentence prediction (NSP) features:
“(classification token) further processed by a Linear
layer and a Tanh activation function [...] trained
from the next sentence prediction (classification)
objective during pre-training”4.

Second, to improve generalization and reduce
variation in training (particularly important as the
practitioner typically has no annotated relevance
data), and operating on the assumption that rele-
vance is captured by a few key dimensions of the
NUP features, we add L1 regularization to our re-
gression weights (λ = 1). Note that experiments
with L2 regularization yielded similar validation

4https://huggingface.co/transformers/
v2.11.0/model_doc/bert.html
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set performance (see Appendix, Table 10).

Third, in place of random sampling we use a
fixed negative sample, “i don’t know". This allows
us to train the model on less data.

Additionally, we simplify the model, using lo-
gistic regression in place of 2-class softmax. We
train for 2 epochs using BCE loss – the same as the
NUP-BERT baseline. We use the Adam optimizer
(Kingma and Ba, 2015) with an initial learning rate
of 0.001, and batch size 6.

Table 3 reports the correlation between the met-
ric’s responses and the average human rating. We
achieve a Pearson’s correlation on HUMOD of
0.58, surpassing HUMOD baselines (Merdivan
et al., 2020), and achieving parity with GRADE
(0.61). Examples of the our metric’s output on
the HUMOD dataset, and a scatter plot of IDK vs
human scores are in Appendices A and F, respec-
tively.

Compared to NUP-BERT, our proposed met-
ric provides strong improvement on the HUMOD
dataset and equivalent or stronger performance on
USR-TC and FED, at a cost of performance on P-
DD. In particular, IDK (TC-S) performance on the
FED datasets is considerably stronger than NUP-
BERT (TC-S). As the performance drop on P-DD
is less than the performance gain on HUMOD, and
as HUMOD is human data rather than LSTM data,
we consider this tradeoff to be a net benefit.

Compared to GRADE in particular, we have re-
duced performance on P-DD, equivalent perfor-
mance on HUMOD, and stronger performance on
USR-TC and FED (in particular, correlation on the
USR-TC dataset is non-zero). It is worth noting
that, in general, our approach does not out-perform
the baselines in all cases – only the majority of
cases. As such, when annotated human data is
not available for testing, it would appear that our
approach is the preferred choice.

Our metric is also preferable, as it is less sensi-
tive to domain. To numerically demonstrate this,
we measure the domain sensitivity of the evaluated
metrics as the ratio of best Spearman’s correlation
to worst Spearman’s correlation – this value should
be positive (i.e., there is no dataset where the met-
ric becomes negatively correlated), and as close to
1 as possible (i.e., there is no difference in perfor-
mance). Looking at Table 10, we find IDK strongly
outperforms all prior metrics, reducing this ratio by
more than 37%-66% compared to the best baseline.

Prior Metric Ratio
FED-CORRECT −0.7
FED-RELEVANT −0.7
NORM-PROB −2.7
COS-NSP-BERT −7.5
COS-FT −13
GRADE ∞
DYNA-EVAL ∞
NUP-BERT (TC-S) 11.6
NUP-BERT (TC) 10.3
COS-MAX-BERT 6.7
NUP-BERT (H) 6.2
IDK (H) 3.9
IDK (TC-S) 3.9

Table 4: Ratio of best Spearman correlation to worst on
all datasets for all metrics. Sorted in improving order.

5.1 Testing NSP feature dimensionality

As a followup experiment, we tested our assump-
tion that only a fraction of the BERT-NSP features
are needed. Plotting the weights learned by IDK
on HUMOD, we found a skewed distribution with
a small fraction of weights with magnitude above
0.01 (See Appendix, Figure 1). Hypothesizing that
the largest weights correspond to the relevant di-
mensions, we modified the pretrained huggingface
NSP BERT to zero all dimensions of the NSP fea-
ture, except for the 7 dimensions corresponding to
the largest IDK HUMOD weights. We then eval-
uated NSP accuracy on three NLTK (Bird et al.,
2009) corpora: Brown, Gutenburg, and Webtext.
As expected, we found that reducing the dimen-
sionality from 768 to 7 had no negative impact (see
Appendix, Table 7). Again, note that the mask was
created using IDK trained on HUMOD data, and
the weights of BERT and the NSP prediction head
were in no way changed. Therefore, it is clear that
(at least on these datasets) over 99% of the BERT
NSP feature dimensions can be safely discarded.

5.2 Ablation tests

Table 5 outlines correlation when ablating the L1
regularization, or when using randomly sampled
negative samples in place of “i don’t know". Ran-
dom samples are produced by shuffling the re-
sponses of the next 3, 750 dialogues in the dataset.

Overall, it appears that the majority of the per-
formance gains come from the combination of L1
regularization with pretrained BERT NSP features.
The clearest observation is that L1 regularization is
critical to good performance when using “i don’t
know" in place of random samples – otherwise, the
model presumably overfits. Second, using “i don’t
know" in place of random samples has a mixed,
but relatively minor effect. Thirdly, the effect of
L1 regularization is quite positive when training on
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Data L1 idk S P S P S P S P S P
H ✓ ✓ *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
H ✓ *0.42 (0.06) *0.42 (0.05) *0.24 (0.00) *0.25 (0.00) *0.29 (0.06) *0.32 (0.03) *0.14 (0.00) *0.17 (0.01) *0.21 (0.01) *0.19 (0.02)
H ✓ *0.61 (0.00) *0.61 (0.00) 0.12 (0.00) *0.21 (0.01) *0.55 (0.00) *0.52 (0.01) 0.09 (0.00) *0.19 (0.01) *0.17 (0.00) *0.26 (0.01)
H *0.60 (0.00) *0.61 (0.00) 0.18 (0.00) *0.26 (0.01) *0.54 (0.00) *0.50 (0.01) 0.10 (0.02) �0.11 (0.02) �0.14 (0.02) 0.09 (0.03)
TC-S ✓ ✓ *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
TC-S ✓ *0.36 (0.04) *0.34 (0.05) 0.17 (0.01) 0.11 (0.01) *0.34 (0.03) *0.32 (0.04) *0.14 (0.00) *0.15 (0.01) *0.21 (0.00) *0.17 (0.01)
TC-S ✓ *0.59 (0.01) *0.54 (0.03) �0.18 (0.04) *0.27 (0.02) *0.52 (0.03) *0.43 (0.05) �0.14 (0.01) *0.21 (0.00) *0.22 (0.01) *0.29 (0.01)
TC-S *0.35 (0.07) *0.41 (0.01) �0.13 (0.10) *0.21 (0.03) �0.23 (0.10) �0.27 (0.11) 0.05 (0.06) 0.11 (0.03) �0.12 (0.12) �0.18 (0.04)

Table 5: Test correlation of various ablations of the proposed metric. The L1 column signifies whether L1
regularization is used (λ = 1), and the “idk” column indicates whether the negative samples are “i don’t know”, or a
random shuffle of 3, 750 other human responses. Note that L1 regularization is beneficial when training on TC-S.

TC data (regardless of the negative samples), and
mixed but smaller when training on HUMOD data.
Overall, this suggests that when a validation set
of domain-specific annotated relevance data is not
available, then L1 regularization may be helpful.
Its effect varies by domain, but appears to have a
much stronger positive effect than a negative effect.

The result that L1 regularization allows us to
use “i don’t know” in place of random negatives
samples is quite interesting, as it seems to counter
work in contrastive representation learning (Robin-
son et al., 2021), and dialogue quality evaluation
(Lan et al., 2020) suggesting that “harder” negative
examples are better. We believe that the reason
for this apparent discrepancy is that we are not
performing feature learning; the feature space is
fixed, pretrained, BERT NSP. Furthermore, we’ve
shown that this feature space is effectively 7 dimen-
sional. As a result, we believe that the L1 regular-
ization causes an effective projection to 7D. Con-
sequently, as our model is low-capacity, “i don’t
know” is sufficient to find the separating hyper-
plane. Having said this, it is still unclear why we
see improved performance on FED when training
on HUMOD data. Comparing the histograms of
learned weight magnitudes (see Appendix, Figure
2) we find that the ablated model has larger number
of large weights – we speculate that the random
negative samples’ variation in irrelevant aspects
such as syntactic structure is responsible.

5.3 Additional Experiments
We repeated our IDK experiments with two dif-
ferent fixed negative samples; performance and
domain sensitivity are generally comparable, al-
though unexpectedly more sensitive to the choice
of training data (see Appendix J). We also experi-
mented with using the pretrained BERT NSP pre-
dictor as a measure of relevance, however perfor-
mance is considerably worse on the longer-context
FED dataset (see Appendix I). Finally, we observed

that BCE loss encourages the model to always map
“i don’t know” to zero; yet, the relevance of “i
don’t know” varies by context. Unfortunately, ex-
periments with a modified triplet loss did not yield
improvements (see Appendix H).

6 Related Work

In addition to the prior metrics already discussed,
the area of dialogue relevance is both motivated
by, and jointly developed with, the problem of
automatic dialogue evaluation. As relevance is
a major component of good dialogue, there is a
bidirectional flow of innovations. The NUP-BERT
relevance metric is very similar to BERT-RUBER
(Ghazarian et al., 2019); both train a small MLP
to perform the next-utterance-prediction task based
on aggregated BERT features. Both of these share a
heritage with earlier self-supervised methods, such
as adversarial approaches to dialogue evaluation
that train a classifier to distinguish human from
generated samples (Kannan and Vinyals, 2017).
Another example of shared development is the use
of word-overlap metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) that have been
imported wholesale into both dialogue relevance
and overall quality from the fields of machine-
translation and summarization, respectively.

Simultaneously, metrics of dialogue evaluation
have been motivated by dialogue relevance. There
is a long history of evaluating dialogue models on
specific aspects; Finch and Choi (2020) performed
a meta-analysis of prior work, and proposed di-
mensions of: grammaticality, relevance, informa-
tiveness, emotional understanding, engagingness,
consistency, proactivity, and satisfaction. New ap-
proaches to dialogue evaluation have emerged from
this body of work, seeking to aggregate individual
measures of various dimensions of dialogue, often
including relevance (Mehri and Eskenazi, 2020b;
Phy et al., 2020; Berlot-Attwell and Rudzicz, 2021).
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These approaches also share heritage with earlier
ensemble measures of dialogue evaluation such as
RUBER (Tao et al., 2018) – although in the case
of RUBER, it combined a referenced and unrefer-
enced metric rather than separate aspects.

Metrics of dialogue relevance and quality also
share common problems such as the diversity of
valid responses. Our findings that existing rele-
vance metrics generalize poorly to new domains
is consistent with previous findings about metrics
of dialogue quality (Lowe, 2019; Yeh et al., 2021).
Thus, our work suggests that this challenge extends
to the subproblem of dialogue relevance as well.

At the same time, it must be remembered that
measuring holistic dialogue quality is a very dif-
ferent task from measuring dialogue relevance – it
is well established that aspects of dialogue such as
fluency, and interestingness are major components
of quality (Mehri and Eskenazi, 2020b,a), and these
should have no impact on relevance.

With respect to prior work comparing relevance
metrics, we are aware of only one tangential work.
Yeh et al. (2021) performed a comparison of vari-
ous metrics of dialogue quality; within this work
they dedicated three paragraphs to a brief com-
parison of how these quality metrics performed at
predicting various dialogue qualities, including rel-
evance. They reported results on only two of the
datasets we used (P-DD and FED). Interestingly,
the authors found that the FED metric performs
well on P-DD (reporting a Spearman’s correlation
of 0.507), however our results demonstrate that
the components of FED that are meant to mea-
sure relevance (i.e. FED-REL and FED-COR) are
significantly negatively correlated with human rel-
evance scores. Additionally, as Yeh et al. (2021)
focus on quality, they do not compare performance
between the two relevance datasets. Instead they
compare performance on quality against perfor-
mance on relevance, and use the discrepancy to
conclude that measuring relevance alone (as done
by NORM-PROB) is insufficient to determine qual-
ity. Although we agree that relevance alone is in-
sufficient for dialogue quality evaluation, our work
provides a richer understanding. Our finding that
NORM-PROB performs poorly across a range of
relevance datasets suggests that the poor perfor-
mance of NORM-PROB in the quality-prediction
task is also caused by the poor relevance general-
ization in addition to the insufficiency of relevance
to measure overall quality.

7 Discussion

Our experiments demonstrate that several pub-
lished measures of dialogue relevance have poor, or
even negative, correlation when evaluated on new
datasets of dialogue relevance, suggesting overfit-
ting to either model or domain. As such, it is clear
that further research into new measures of dialogue
relevance is required, and that care must be taken
in their evaluation to compare against a number of
different models in a number of domains. Further-
more, it is also clear that for the current practitioner
who requires a measure of relevance, there are no
guarantees that current methods will perform well
on a given domain. As such, it is wise to collect
a validation dataset of human-annotated relevance
data for use in selecting a relevance metric. If this
is not possible, then our metric, IDK, appears to
be the best option – achieving both good correla-
tion and the lowest domain sensitivity, even when
trained on different domains. Furthermore, when
training data is scarce, our results suggest that the
use of strong regularization allows for the use of
a single negative example, “i don’t know”, in the
place of randomly sampled negative samples. If
that is still too data intensive, then our results sug-
gest that our metric is fairly agnostic to the domain
of the training data; therefore training data can be
used from a different dialogue domain in place of
the domain of interest.

Having said this, it is clear that further research
into what exactly these metrics are measuring, and
why they fail to generalize, is merited. The re-
sults are often counter-intuitive; our demonstration
that 99% of the BERT NSP features can be safely
discarded is just one striking example. Similarly,
although our empirical results suggest that use of
a single negative example generalizes across do-
mains, there is no compelling theoretical reason
why this should be so. More generally, all the
metrics outlined are complex, dependent on large
corpora, and created without ground truth annota-
tions. As a result, they are all dependent on either
surrogate tasks (i.e., NUP), or unsupervised learn-
ing (e.g., FastText embeddings). Consequently, it is
especially difficult to conclude what exactly these
metrics are measuring. At present, the only strong
justification that these metrics are indeed measur-
ing relevance is good correlation with human judge-
ments – poor generalization across similar domains
is not an encouraging result.

Although the metric outlined is not appropri-
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ate for final model evaluation (as it risks unfairly
favouring dialogue models based on the same pre-
trained BERT, or similar architectures), our aim
is to provide a useful metric for rapid prototyping
and hyperparameter search. Additionally, we hope
that our findings on the domain sensitivity of exist-
ing metrics will spur further research into both the
cause of – and solutions to – this problem.

8 Conclusion

Our work demonstrates that several existing met-
rics of dialogue relevance are problematic as their
performance varies wildly between test-domains.
We take a first step towards resolving this issue by
proposing IDK: a simple metric that is less sensi-
tive to test domain and trainable with minimal data.
We reduce IDK’s data requirements through the
novel use of a fixed negative example, provide evi-
dence that the underlying BERT NSP features are
low-dimensional, and propose that this fact (com-
bined with IDK’s lack of feature learning) allows
for the counter-intuitive use of a single negative
example. Beyond this, we call for better evaluation
of future relevance metrics, and thus release our
code for processing four diverse, publicly available,
relevance-annotated data sets.

9 Acknowledgements

Resources used in preparing this research were
provided, in part, by the Province of Ontario, the
Government of Canada through CIFAR, and com-
panies sponsoring the Vector Institute https:
//vectorinstitute.ai/partners/. Ian
Berlot-Attwell is funded by an Ontario Graduate
Scholarship and a Vector Institute Research Grant.
Frank Rudzicz is supported by a CIFAR Chair in
AI. We would also like to thank the various review-
ers who helped to shape and improve this work;
without them it would not be what it is today.

References
Daniel Adiwardana, Minh-Thang Luong, David R. So,

Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu,
and Quoc V. Le. 2020. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on Intrinsic and Ex-
trinsic Evaluation Measures for Machine Transla-
tion and/or Summarization, pages 65–72, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Ian Berlot-Attwell and Frank Rudzicz. 2021. On the use
of linguistic features for the evaluation of generative
dialogue systems. CoRR, abs/2104.06335.

Steven Bird, Ewan Klein, and Edward Loper. 2009. Nat-
ural Language Processing with Python. O’Reilly.

Zhang Chen, João Sedoc, Luis Fernando D’Haro,
Rafael Banchs, and Alexander Rudnicky. 2021.
DSTC10: Track 5: Automatic evaluation and moder-
ation of open-domain dialogue systems. Accessed:
9-7-2021 https://drive.google.com/
file/d/1B2YBtWaLJU5X3uudSZEaOyNWQ_
QoTZLG/view.

Jacob Cohen. 1968. Weighted kappa: nominal scale
agreement provision for scaled disagreement or par-
tial credit. Psychological bulletin, 70(4):213.

Richárd Csáky, Patrik Purgai, and Gábor Recski.
2019. Improving neural conversational models with
entropy-based data filtering. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 5650–5669, Florence, Italy.
Association for Computational Linguistics.

Cristian Danescu-Niculescu-Mizil and Lillian Lee. 2011.
Chameleons in imagined conversations: A new ap-
proach to understanding coordination of linguistic
style in dialogs. In Proceedings of the 2nd Workshop
on Cognitive Modeling and Computational Linguis-
tics, pages 76–87, Portland, Oregon, USA. Associa-
tion for Computational Linguistics.

Jan Deriu, Alvaro Rodrigo, Arantxa Otegi, Guillermo
Echegoyen, Sophie Rosset, Eneko Agirre, and Mark
Cieliebak. 2021. Survey on evaluation methods for
dialogue systems. Artificial Intelligence Review,
54(1):755–810.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bettina Fazzinga, Andrea Galassi, and Paolo Torroni.
2021. An argumentative dialogue system for covid-
19 vaccine information. In Logic and Argumentation,
pages 477–485, Cham. Springer International Pub-
lishing.

174



Sarah E. Finch and Jinho D. Choi. 2020. Towards uni-
fied dialogue system evaluation: A comprehensive
analysis of current evaluation protocols. In Proceed-
ings of the 21th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue, pages 236–
245, 1st virtual meeting. Association for Computa-
tional Linguistics.

Sarik Ghazarian, Johnny Wei, Aram Galstyan, and
Nanyun Peng. 2019. Better automatic evaluation
of open-domain dialogue systems with contextual-
ized embeddings. In Proceedings of the Workshop
on Methods for Optimizing and Evaluating Neural
Language Generation, pages 82–89, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Karthik Gopalakrishnan, Behnam Hedayatnia, Qin-
lang Chen, Anna Gottardi, Sanjeev Kwatra, Anu
Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tür.
2019. Topical-Chat: Towards Knowledge-Grounded
Open-Domain Conversations. In Proc. Interspeech
2019, pages 1891–1895.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Lishan Huang, Zheng Ye, Jinghui Qin, Liang Lin, and
Xiaodan Liang. 2020. GRADE: Automatic graph-
enhanced coherence metric for evaluating open-
domain dialogue systems. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9230–9240,
Online. Association for Computational Linguistics.

Anjuli Kannan and Oriol Vinyals. 2017. Adver-
sarial evaluation of dialogue models. CoRR,
abs/1701.08198.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tian Lan, Xian-Ling Mao, Wei Wei, Xiaoyan Gao, and
Heyan Huang. 2020. PONE: A novel automatic eval-
uation metric for open-domain generative dialogue
systems. ACM Trans. Inf. Syst., 39(1):7:1–7:37.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Margaret Li, Jason Weston, and Stephen Roller. 2019.
ACUTE-EVAL: improved dialogue evaluation with
optimized questions and multi-turn comparisons.
CoRR, abs/1909.03087.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Ryan Lowe. 2019. A retrospective for "Towards an
automatic Turing test - learning to evaluate dialogue
responses". ML Retrospectives.

Shikib Mehri and Maxine Eskenazi. 2020a. Unsuper-
vised evaluation of interactive dialog with DialoGPT.
In Proceedings of the 21th Annual Meeting of the
Special Interest Group on Discourse and Dialogue,
pages 225–235, 1st virtual meeting. Association for
Computational Linguistics.

Shikib Mehri and Maxine Eskenazi. 2020b. USR: An
unsupervised and reference free evaluation metric
for dialog generation. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 681–707, Online. Association for
Computational Linguistics.

Erinc Merdivan, Deepika Singh, Sten Hanke, Johannes
Kropf, Andreas Holzinger, and Matthieu Geist. 2020.
Human annotated dialogues dataset for natural con-
versational agents. Applied Sciences, 10(3).

Bo Pang, Erik Nijkamp, Wenjuan Han, Linqi Zhou, Yix-
ian Liu, and Kewei Tu. 2020. Towards holistic and
automatic evaluation of open-domain dialogue gener-
ation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
3619–3629, Online. Association for Computational
Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Vitou Phy, Yang Zhao, and Akiko Aizawa. 2020. Decon-
struct to reconstruct a configurable evaluation metric
for open-domain dialogue systems. In Proceedings of
the 28th International Conference on Computational
Linguistics, pages 4164–4178, Barcelona, Spain (On-
line). International Committee on Computational Lin-
guistics.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,

175



pages 5370–5381, Florence, Italy. Association for
Computational Linguistics.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra,
and Stefanie Jegelka. 2021. Contrastive learning with
hard negative samples. In International Conference
on Learning Representations.

Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan.
2018. Ruber: An unsupervised method for automatic
evaluation of open-domain dialog systems.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.
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A Example Evaluations

Dialogue Turn Human IDK
Mommy – - -
Yes, darling. - -
Did you ever make a wish? - -
Oh, lots of times. - -
Did your wishes ever come
true?

5.00 4.97

What’s your real name? 1.00 3.81
Sometimes. 4.67 4.60
From high school Mary? Yeah,
I saw her about six months ago
at a convention in Las Vegas.

1.00 1.13

I made a wish today, and it
came true just like Edward said
it would.

5 4.9

When I am sure I am among
friends.

2.33 3.01

Yes, Albert? - -
John, we’re going huntin’. - -
Who’s goin? - -
We’re all going. - -
Nick’s going? 4.67 4.65
I will keep you safe. We are
both older.

2.00 1.09

Nick , Vince , Albert and John. 4.00 4.95
A ride? Hell, that’s a good idea.
Okay, let’s go. Hey, let’s go.

2.33 4.68

No women? 4.00 2.39
I guess so 3.00 2.59

Table 6: Two multi-turn examples from HUMOD test
set. The randomly sampled distractor turns are italicized,
and are not part of the context in subsequent turns. For
ease of comparison, the scores generated by our metric
(IDK trained on HUMOD) are linearly shifted and re-
scaled to 1-5.

B NSP Masking Experiment Results

The results of the NSP masking experiment are
outlined in Table 7. Note that masking > 99% of
the NSP feature had no impact on the pretrained
model, and actually improved accuracy by 2.8%
on the Webtext corpus.

C Exact objectives of prior metrics

In this section, we briefly outline the stated purpose
of each of our relevance metrics evaluated:

Masked Brown Gutenburg Webtext
85.7% 75.3% 65.4%

✓ 85.6% 75.5% 68.2%

Table 7: Next Sentence Prediction (NSP) performance
on various NLTK (Bird et al., 2009) corpora using a
pre-trained BERT and NSP head. When masked, we
zero-out the 768-dim BERT NSP feature, leaving only
the 7 dimensions corresponding to the largest magnitude
weights in IDK (H) (i.e., we zero out > 99% of the
feature vector).

• COS-FT: “In this work, given a dialogue his-
tory, we regard as a coherent response an ut-
terance that is thematically correlated and nat-
urally continuing from the previous turns, as
well as lexically diverse.” (Xu et al., 2018)

• NUP-BERT: “Maintains Context: Does the
response serve as a valid continuation of the
preceding conversation?” (Mehri and Eske-
nazi, 2020b)

• NORM-PROB: “context coherence of a di-
alogue: the meaningfulness of a response
within the context of prior query” (Pang et al.,
2020)

• FED-REL: “Is the response relevant to the
conversation?” (Mehri and Eskenazi, 2020a)

• FED-COR: “Is the response correct or was
there a misunderstanding of the conversation?
[...] No one has specifically used Correct,
however its meaning is often encapsulated in
Relevant.” (Mehri and Eskenazi, 2020a)

We also outline the stated purpose of the dia-
logue coherence metrics evaluated:

• GRADE: “Coherence, what makes dialogue
utterances unified rather than a random group
of sentences” (Huang et al., 2020)

• DYNA-EVAL: “dialogue coherence: consid-
ers whether a piece of text is in a consistent
and logical manner, as opposed to a random
collection of sentences” (Zhang et al., 2021)

D Details for Prior work

D.1 NORM-PROB
Pang et al. (2020) relied on a pretrained generative
language model (specifically GPT-2). Their pro-
posed metric is the conditional log-probability of
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the response given the context, normalized to the
range [0, 1]. Specifically, for a context q with can-
didate response r, their proposed relevance score is

defined as: c(q | r) = −max(c5th,
1
|r| logP (r | q))−c5th

c5th
,

where |r| is the number of tokens in the response,
P (r | q) is the conditional probability of the re-
sponse given the context under the language model,
and c5th is the 5th percentile of the distribution of
1
|r| logP (r | q) over the examples being evaluated.

E Learned HUMOD-IDK Weights

Figure 1 depicts the distribution of weight-
magnitudes learned by IDK on the HUMOD train-
ing set. Notably, there is a very small subset of
weights which is an order of magnitude larger than
the others. Figure 2 demonstrates that the use of
random sampling in place of “i don’t know” when
training on the HUMOD dataset causes a larger
number of large weights.

Figure 1: Histogram of log weight magnitudes learned
by IDK on HUMOD. Note the small number of weights
that are an order of magnitude larger.

F Scatter Plots

Figures 3, 4, 5, 6, and 7 illustrate IDK vs human
scores of relevance, where the IDK training data
is HUMOD. A regression line is fitted to highlight
the trend.

Figure 2: Histogram of log weight magnitudes learned
by IDK and Ablated IDK on HUMOD. The specific
ablation is the use of random negative samples in place
of “i don’t know”. Note that Ablated IDK has a larger
number of large weights than normal IDK.

Figure 3: IDK scores, linearly re-scaled to the range
1-5, versus human scores of relevance, on the HUMOD
test set.

Figure 4: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the USR-TC
test set.
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Figure 5: IDK scores, linearly re-scaled to the range 1-5,
versus human scores of relevance, on the P-DD test set.

Figure 6: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the FED-
CORRECT test set.

Figure 7: IDK scores, linearly re-scaled to the range
1-3, versus human scores of relevance, on the FED-
RELEVANT test set.

G Performance on validation data split

Correlations of the models on the validation set are
outlined in Table 8 for prior metrics, and in Table
10 for all ablations and variants of our model.
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HUMOD USR-TC
Prior Metric S P S P
COS-FT 0.08 0.08 *0.27 0.17
COS-MAX-BERT 0.08 0.05 0.18 *0.19
COS-NSP-BERT 0.06 *0.09 *0.23 *0.25
NORM-PROB *0.27 *0.25 *−0.29 *−0.30
FED-CORRECT *−0.10 *−0.09 −0.14 −0.15
FED-RELEVANT *−0.10 *−0.09 −0.14 −0.16
GRADE *0.64 *0.64 0.02 0.00
DYNA-EVAL *0.14 *0.15 −0.05 −0.06
NUP-BERT (H) *0.37 (0.01) *0.38 (0.00) *0.38 (0.02) *0.39 (0.01)
NUP-BERT (TC-S) *0.32 (0.01) *0.36 (0.02) *0.38 (0.04) *0.41 (0.04)
NUP-BERT (TC) *0.33 (0.02) *0.37 (0.02) *0.45 (0.07) *0.44 (0.02)

Table 8: Spearman (S) and Pearson (P) correlations of prior metrics with human ratings on the validation splits of
all provided dataset. As NUP-BERT is trained we perform 3 runs, reporing the mean and standard deviation. (*)
denotes p < 0.01 accross all trials. Underline indicates a negative correlation. NOTE: USR scores are human only
for COS-FT, NORM-PROB and NUP-BERT

HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Data L1 idk S P S P S P S P S P
H ✓ ✓ *0.59 (0.01) *0.55 (0.02) 0.17 (0.01) *0.28 (0.01) *0.54 (0.03) *0.44 (0.02) �0.13 (0.02) *0.21 (0.01) *0.21 (0.01) *0.30 (0.00)
H ✓ *0.15 (0.05) *0.19 (0.06) �0.19 (0.01) *0.25 (0.02) 0.10 (0.04) �0.17 (0.05) 0.10 (0.02) �0.11 (0.02) �0.14 (0.02) 0.09 (0.03)
H ✓ *0.45 (0.24) *0.42 (0.21) 0.14 (0.04) �0.23 (0.10) �0.39 (0.21) *0.34 (0.14) 0.11 (0.02) �0.18 (0.06) *0.20 (0.02) *0.25 (0.08)
H *0.61 (0.00) *0.60 (0.01) 0.17 (0.00) *0.23 (0.01) *0.55 (0.01) *0.53 (0.01) �0.14 (0.00) *0.20 (0.02) *0.22 (0.00) *0.27 (0.02)
TC-S ✓ ✓ *0.32 (0.44) *0.25 (0.55) 0.12 (0.06) �0.10 (0.24) *0.24 (0.47) *0.21 (0.46) 0.10 (0.04) �0.10 (0.14) �0.17 (0.07) �0.14 (0.21)
TC-S ✓ *0.27 (0.11) *0.26 (0.10) 0.16 (0.02) 0.14 (0.03) �0.22 (0.12) �0.22 (0.09) �0.13 (0.01) *0.15 (0.01) *0.19 (0.02) *0.17 (0.02)
TC-S ✓ *-0.20 (0.69) *-0.20 (0.65) -0.03 (0.17) �-0.05 (0.29) *-0.18 (0.62) *-0.19 (0.54) �-0.05 (0.18) *-0.07 (0.26) *-0.08 (0.27) *-0.09 (0.35)
TC-S �0.18 (0.20) *0.18 (0.06) 0.04 (0.07) 0.09 (0.17) 0.10 (0.07) 0.07 (0.06) 0.02 (0.10) �0.08 (0.07) 0.00 (0.10) �0.12 (0.10)

Table 9: Repeat of ablation experiments, instead using modified triplet loss (m = 0.4) in place of BCE. Contrary to
our intuition, we do not find any improvement in performance. Comparing against Table 5, we find either equivalent
or degraded performance, with an additional tendency to converge to a degenerate solution (e.g., see high variances
in TC-S with L1 and idk).
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Name HUMOD Spear HUMOD Pear TC Spear TC Pear
H_Rand3750_bce *0.58 (0.00) *0.57 (0.01) *0.46 (0.00) *0.43 (0.02)
H_Rand3750 *0.58 (0.00) *0.58 (0.00) *0.46 (0.00) *0.45 (0.02)
H_IDK_L1 *0.56 (0.01) *0.53 (0.02) *0.45 (0.03) *0.44 (0.02)
H_IDK_L2 *0.55 (0.00) *0.55 (0.01) *0.44 (0.00) *0.44 (0.00)
H_Rand3750_L1 *0.42 (0.22) *0.40 (0.20) *0.44 (0.00) *0.45 (0.01)
H_Rand3750_L2 *0.56 (0.00) *0.55 (0.01) *0.45 (0.00) *0.44 (0.02)
H_Rand3750_bce_L1 *0.58 (0.00) *0.58 (0.00) *0.45 (0.00) *0.46 (0.00)
H_Rand3750_bce_L2 *0.57 (0.00) *0.56 (0.00) *0.45 (0.00) *0.42 (0.00)
H_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.42 (0.01) *0.41 (0.00)
H_IDK_bce_L2 *0.50 (0.01) *0.51 (0.01) *0.39 (0.00) *0.42 (0.00)
H_IDK_bce *0.39 (0.05) *0.40 (0.05) *0.36 (0.02) *0.34 (0.00)
H_IDK *0.15 (0.05) *0.19 (0.06) 0.09 (0.05) �0.21 (0.05)
TC-S_IDK_L1 *0.29 (0.43) *0.23 (0.53) *0.39 (0.07) *0.41 (0.07)
TC-S_IDK_L2 *0.54 (0.01) *0.55 (0.01) *0.43 (0.01) *0.44 (0.00)
TC-S_IDK_bce_L1 *0.57 (0.00) *0.56 (0.00) *0.43 (0.00) *0.40 (0.00)
TC-S_IDK_bce_L2 *0.47 (0.02) *0.48 (0.01) *0.41 (0.00) *0.39 (0.01)
TC-S_IDK_bce *0.35 (0.04) *0.33 (0.05) *0.40 (0.01) *0.31 (0.01)
TC-S_IDK *0.25 (0.10) *0.24 (0.10) *0.34 (0.05) *0.36 (0.03)
TC-S_Rand3750_L1 *-0.19 (0.67) *-0.20 (0.63) *-0.13 (0.52) *-0.14 (0.50)
TC-S_Rand3750_L2 �-0.33 (0.27) �-0.32 (0.26) *-0.45 (0.02) *-0.43 (0.02)
TC-S_Rand3750_bce_L1 *0.56 (0.01) *0.52 (0.03) *0.44 (0.03) *0.40 (0.02)
TC-S_Rand3750_bce_L2 *0.04 (0.55) *0.09 (0.56) �-0.26 (0.27) �-0.23 (0.31)
TC-S_Rand3750_bce *0.31 (0.05) *0.36 (0.03) �0.16 (0.29) �0.18 (0.26)
TC-S_Rand3750 �0.15 (0.17) *0.11 (0.02) �-0.14 (0.24) �-0.06 (0.27)

Table 10: Validation correlation of all of tested variants and ablations of our model. H vs. TC-S indicates training
set (HUMOD or subset of TopicalChat respectively). IDK vs. Rand3750 indicates whether negative examples are “i
don’t know” or random. If bce is present, then BCE was used as the loss, otherwise our modified triplet loss is used.
If L1 or L2 is present, then L1 or L2 regularization with λ = 1 is used respectively, otherwise no regularization
is used. Again, standard deviation over three trials is reported in parentheses, and ‘*’ is used to indicate that
all trials were significant at p < 0.01. ‘�’ indicates at least one trial was significantly different from zero at
p < 0.01. Note that L1 and L2 regularization have similar effects, with the exception of worse performance between
TC-S_Rand2750_bce_L1 and TC-S_Rand2750_bce_L2; we suspect this could be overcome with hyperparameter
tuning.
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HUMOD USR-TC P-DD FED-Correctness FED-Relevance
Prior Metric S P S P S P S P S P
NUP-BERT (H) *0.33 (0.02) *0.37 (0.02) 0.10 (0.02) *0.22 (0.01) *0.62 (0.04) *0.54 (0.02) �0.14 (0.04) *0.21 (0.03) *0.22 (0.01) *0.30 (0.01)
NUP-BERT (TC-S) *0.29 (0.02) *0.35 (0.03) �0.17 (0.03) �0.20 (0.04) *0.58 (0.05) *0.56 (0.04) 0.05 (0.04) 0.12 (0.01) �0.16 (0.04) *0.21 (0.01)
NUP-BERT (TC) *0.30 (0.01) *0.38 (0.00) 0.16 (0.02) *0.21 (0.02) *0.62 (0.05) *0.58 (0.04) 0.06 (0.01) �0.12 (0.02) *0.18 (0.02) *0.23 (0.01)
IDK (H) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.24 (0.00) *0.53 (0.00) *0.48 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK (TC-S) *0.58 (0.00) *0.58 (0.00) 0.18 (0.00) *0.22 (0.00) *0.54 (0.01) *0.49 (0.01) *0.15 (0.00) *0.23 (0.00) *0.24 (0.00) *0.29 (0.00)
IDK-ICS (H) *0.55 (0.01) *0.53 (0.00) *0.25 (0.01) *0.27 (0.00) *0.44 (0.01) *0.39 (0.00) *0.16 (0.00) *0.22 (0.00) *0.22 (0.00) *0.30 (0.00)
IDK-ICS (TC-S) *0.58 (0.00) *0.47 (0.00) 0.17 (0.00) *0.27 (0.00) *0.52 (0.00) *0.36 (0.00) *0.14 (0.00) *0.16 (0.00) *0.22 (0.00) *0.24 (0.00)
IDK-OK (H) *0.58 (0.00) *0.59 (0.00) 0.15 (0.00) *0.23 (0.00) *0.49 (0.00) *0.47 (0.00) 0.11 (0.00) *0.19 (0.00) *0.19 (0.00) *0.26 (0.00)
IDK-OK (TC-S) *0.59 (0.00) *0.59 (0.00) 0.18 (0.00) *0.24 (0.00) *0.52 (0.00) *0.46 (0.00) *0.15 (0.00) *0.23 (0.00) *0.23 (0.00) *0.29 (0.00)
BERT NSP *0.59 *0.40 0.17 *0.25 *0.53 *0.31 0.12 0.10 *0.21 *0.18

Table 11: Comparison of our proposed metric (IDK) against the pretrained BERT NSP predictor on the test set.
We also trained IDK with different fixed negative examples, "i couldn’t say" (IDK-ICS) and "i’m ok." (IDK-OK).
Note BERT NSP tends to have comparable Spearman’s performance and worse Pearson’s correlation. The only
exception is FED where BERT NSP has inferior performance. In general, IDK with different fixed negative samples
outperforms NUP-BERT, and is less sensitive to training data, although not to the same extent as baseline IDK.
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H Additional Experiments: Triplet Loss

An intuitive limitation of using “i don’t know” as
a negative example with BCE loss is that this en-
courages the model to always map “i don’t know”
to exactly zero. However, the relevance of “i don’t
know” evidently varies by context. Clearly, it is
a far less relevant response to “I was interrupted
all week and couldn’t get anything done, it was
terrible!” than it is to “what is the key to artifi-
cial general intelligence?” Motivated by this in-
tuition, we experimented with a modified triplet
loss, L(c, r) = − log (1 +m− ft(c, r)) where
ft(c, r) = max (y(c, r)− y(c, r′) +m, 0).

Intuitively, a triplet loss would allow for the rele-
vance of “i don’t know” to shift, without impacting
the loss as long as the ground-truth responses con-
tinue to score sufficiently higher. Note that the loss
is modified to combat gradient saturation due to the
sigmoid non-linearity. However, the results (see
Table 9) suggest equivalence, at best. Often, this
loss performs equivalently to BCE but it can also
produce degenerate solutions (note the high vari-
ance when training on TC data). Furthermore, it
does not appear to produce superior correlations.

For this reason, we believe that, although adapt-
ing triplet loss for next-utterance prediction in place
of BCE could be made to work, it does not appear
to provide any advantages. If validation data is
available, it can be used to confirm whether the
model has reached a degenerate solution, and thus
this loss could be used interchangeably with BCE.
However, there does not appear to be any advantage
in doing so.

I Additional Experiments: BERT NSP

As a followup experiment we compared IDK
against directly using the pretrained BERT NSP
predictor. In general, Spearman’s correlation was
comparable on all datasets except for FED, and
Pearson’s correlation was degraded. Performance
on FED was inferior to IDK. We speculate that the
reason for this is that the FED datasets has longer
contexts, which is problematic for the NSP pre-
dictor as it was trained with sentences rather than
utterances. Results are summarized in Table 11.

J Additional Experiments: IDK with
other fixed negative samples

As a followup experiment we trained IDK using
two different fixed negative samples: "i couldn’t

say" (simply chosen as a synonym for "i don’t
know"), and "i’m ok." (chosen as an example of
a generic response from Li et al. (2016)). Results
are reported in Table 11; in general we still see an
performance improvement over NUP-BERT, and in
some cases we exceed the performance of baseline
IDK. We also see that performance remains con-
sistent between runs, maintaining a lower standard
deviation than NUP-BERT.

However, it is also clear that changing the fixed
negative sample has some unexpected consquences:
specifically, we see variation based on training data
that is not observed when using "i don’t know" as
the fixed negative sample (although the variation
due to training data appears to be less than NUP-
BERT).

We retain the reduced sensitivity to test set.
Specically, our ratios of best-to-worst Spearman’s
correlation are 3.44 for IDK-ICS (H), 4.14 for IDK-
ICS (TC-S), 5.27 for IDK-OK (H), and 3.93; most
are very close to the baseline IDK ratio of 3.9, and
all are an improvement on the best prior work; 6.2
on NUP-BERT (H) – it is worth noting that NUP-
BERT (TC-S) attains a ratio of 11.6, considerably
worse than when trained on HUMOD data.
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Abstract

While large pre-trained language models accu-
mulate a lot of knowledge in their parameters, it
has been demonstrated that augmenting it with
non-parametric retrieval-based memory has a
number of benefits ranging from improved
accuracy to data efficiency for knowledge-
focused tasks such as question answering. In
this work, we apply retrieval-based model-
ing ideas to the challenging complex task of
multi-domain task-oriented semantic parsing
for conversational assistants. Our technique,
RETRONLU, extends a sequence-to-sequence
model architecture with a retrieval component,
which is used to retrieve existing similar sam-
ples and present them as an additional context
to the model. In particular, we analyze two set-
tings, where we augment an input with (a) re-
trieved nearest neighbor utterances (utterance-
nn), and (b) ground-truth semantic parses of
nearest neighbor utterances (semparse-nn). Our
technique outperforms the baseline method by
1.5% absolute macro-F1, especially at the low
resource setting, matching the baseline model
accuracy with only 40% of the complete data.
Furthermore, we analyse the quality, model sen-
sitivity, and performance of the nearest neigh-
bor retrieval component’s for semantic parses
of varied utterance complexity.

1 Introduction

Roberts et al. (2020) demonstrated that neural lan-
guage models quite effectively store factual knowl-
edge in their parameters without any external infor-
mation source. However, such implicit knowledge
is hard to update, i.e. remove certain information
(Bourtoule et al., 2021), change or add new data
and labels. Additionally, parametric knowledge
may perform worse for less frequent facts, which
don’t appear often in the training set, and “hallu-
cinate” responses. On the other hand, memory-
augmented models (Sukhbaatar et al., 2015) de-

∗*Work done by author while interning at Facebook Con-
versational AI.

couple knowledge source and task-specific “busi-
ness logic”, which allows updating memory index
directly without model retraining. Recent stud-
ies showed their potential for knowledge-intensive
NLP tasks, such as question answering (Khandel-
wal et al., 2020; Lewis et al., 2020c).

In this work, we explore RETRONLU: retrieval-
based modeling approach for task-oriented seman-
tic parsing problem, where explicit memory pro-
vides examples of semantic parses, which model
needs to learn to transfer to a given input utterance.
An example semantic parse for task-oriented di-
alog utterance and its corresponding hierarchical
representation are presented in Figure 1.

Figure 1: An intent-slot based compositional semantic pars-
ing example(coupled) from TOPv2 (Chen et al., 2020).

In this paper we are focusing on the following
questions: (a) Data Efficiency: Can retrieval based
on non-parametric external knowledge alleviate re-
liance on parametric knowledge typically acquired
via supervised training on large labeled datasets?1

We examine how different training settings, depend-
ing on the amount of supervision data available,

1Parametric knowledge is information stored in model
parameters. Non-parametric knowledge refers to external data
sources that the model uses to infer.
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impact model prediction, i.e. fully supervised vs.
limited supervised training. (b) Semi-supervised
Setting: Can we enhance models by using abundant
and inexpensive unlabeled external non-parametric
knowledge rather than structurally labeled knowl-
edge? We examine the effect of utilizing unla-
beled similar utterances instead of labelled seman-
tic parses as external non-parametric knowledge
on model performance. (c) Robustness to Noise:
Can a model opt to employ parametric knowledge
rather than non-parametric knowledge in a resilient
manner, for example, when the non-parametric in-
formation is unreliable? We examine the model’s
resilience and its reliance on non-parametric ex-
ternal information. External knowledge is not al-
ways precisely labeled and reliable for all exam-
ples/utterances. (d) Utterance Complexity: Is non-
parametric external knowledge addition effective
for both uncommon and complex structured (hi-
erarchical) examples? We examine whether ex-
ternal knowledge addition is more beneficial in
certain cases than others, or if it supports accurate
predictions for all situations equally. It would be
fascinating to investigate if external information
could also help enhance difficult and complex ex-
amples/utterances. Finally, we examine the upper
limit on the utility of external information. We ex-
amine structural redundancy concerns in nearest
neighbor retrieval. (e) Knowledge Efficiency: Is it
beneficial to continue adding external information,
or are there certain boundaries and challenges? Our
contribution are as follows:

1. We demonstrate that combining paramet-
ric and non-parametric knowledge enhance
model performance on the complex structured
task of task-oriented semantic parsing.

2. We illustrate the effectiveness of our approach
in a critical situation of learning with sparse
labeled data (i.e. limited parametric knowl-
edge).

3. We establish the efficacy of retrieval-based
method in semi-supervised settings, where
model’s input is supplemented with unanno-
tated instances (i.e. unlabeled examples).

4. By comparing predictions on clean vs. noisy
neighbours, we establish the model’s re-
silience to external non-parametric knowledge
quality.

5. Finally, we examine performance gains with
inputs of varying complexity: semantic struc-
ture composition and it’s frequency (i.e. fre-
quent/rare).

Overall, we demonstrate that retrieval enhanced
method can improve performance on complicated
structured prediction tasks like task oriented seman-
tic parsing without extra supervision. Furthermore,
the augmentation approach is data efficient and per-
forms well in low resource settings with limited
label data. The dataset, and associated scripts, will
be available at https://retronlu.github.io.

2 Proposed Approach

Our proposed approach consists of four main steps:
(a) index construction by embedding training ex-
amples and computing cosine similarity; (b) re-
trieval, where we extract the nearest neighbor ut-
terances from the index given an example utterance;
(c) augmentation, in which we append the nearest-
neighbor utterance ground truth semantic parse
(semparse-nn) or the utterance itself (utterance-
nn) to the original input via a special separator
token (such as ‘|’); and (d) semantic parsing,
in which we train the parsing model using the
retrieval-augmented input with output ground truth.
Figure 2 illustrates the Retrieval Augmented Se-
mantic Parsing (RETRONLU) approach.

Indexing: To build an index we use a pre-trained
BART model to get training utterance embeddings.
More specifically, we get sentence embedding for
all the training utterances. These sentence embed-
dings are obtained as average of token embeddings
from last model layers of the BART models.2 We
then used the cosine similarity between embed-
dings to build a fast and efficient retrieval index
with efficient FAISS library (Johnson et al., 2019).

Retrieval: Next, given a new input (training or
test row), we obtain embeddings by running it
through same pre-trained BART, and then query
the index with it to retrieve nearest neighbors text
and their ground truth semantic parses based on
cosine similarity. For training data, we exclude an
example itself from the retrieved list. For exam-
ple, for input utterance “please add 20 minutes on
the lasagna timer”, we retrieve the nearest neigh-
bour “add ten minutes to the oven timer” along

2extract_features function https://github.com/
pytorch/fairseq/tree/main/examples/bart
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Figure 2: High level flowchart for retrieval augmented semantic parsing (RETRONLU) approach.

with the semantic parse as “[in:add_ time_ timer
add [sl:date_ time ten minutes] to the [sl:timer_
name oven] [sl:method_ timer timer]]”.

Augmentation: Once we got a list of nearest
neighbors, we can append either utterance text or
semantic parse to the input, following the left to
right order.3 The closest neighbor appears to the
immediate left of the input example utterance. One
can also directly append the nearest neighbor utter-
ance rather than the semparse, refer as utterance-nn.
For the last example the final input would after aug-
mentation would be “[in:add_ time_ timer add
[sl:date_ time ten minutes ] to the [sl:timer_ name
oven] [sl:method_ timer timer ]] | please add 20
minutes on the lasagna timer” for semparse-nn,
and “add ten minutes to the oven timer | please add
20 minutes on the lasagna timer” for utterance-nn.
Here, the token ‘|’ act as a separator between the
input utterance and the neighbour’s.

Semantic Parsing: The final step is to train a
sequence-to-sequence model such as LSTM or
Transformer. We fine-tune a BART model with
copy mechanism (Aghajanyan et al., 2020), which
incorporates benefits of pre-trained language model
(BART) and sequence copy mechanism (copy-ptr),
and most importantly obtain state-of-the-art results
on the TOPv2 (Chen et al., 2020), a challenging

3We followed GPT-3 and other generation model, where
task examples are pre-pended to the input. Hence, utterance
is always nearest to the decoder followed by the first nearest
neighbour inorder.

task oriented semantic parsing dataset with hierar-
chical compositional instances. The retrieval aug-
mented example is an input to the encoder and
the corresponding ground-truth semantic parse as
the labeled decoded sequence. At test time, we
simply pass the augmented input to the trained
RETRONLU model, and take it’s output as the pre-
dicted semantic parse for the input utterance.

3 Experiment and Analysis

Our experiments examines how our knowledge
retrieval-based augmentation technique impacts
model performance indicators such as accuracy and
data efficiency. We study the following questions:

RQ1. Can today’s pre-trained models leverage
non-parametric information in manner as described
in §2 to enhance task-oriented semantic parsing?

RQ2. If only part of the dataset has semantic
parses, i.e. limited supervision setting, can augmen-
tation with unannotated instances (utterance_nn)
enhance semantic parsing accuracy?

RQ3. How efficient is a retrieval-augmented
model in terms of data? Is it more accurate even
with less training data than the baseline seq2seq
model?

RQ4. Does non-parametric memory benefit in-
stances equally, e.g., do we notice greater benefits
for (a) more complex (i.e. compositional) or (b)
less frequent semantic frames (i.e. tail over head)?
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RQ5. (a) Does augmentation with more nearest
neighbors benefits? (b) How sensitive is the model
to retrieval noise? Can the model predict right
intent/slots for low-quality retrieve instances?

Our experiments are designed to demonstrate
how non-parametric external information can be
beneficial to a parametric model and to undertake
an in-depth assessment of the impact.4

3.1 Experimental setup

In this section, we discuss the datasets, pre-
processing, and the model used in the experiments.

Datasets. For our experiments, we used the multi-
domain complex compositional queries based pop-
ular TOPv2 (Chen et al., 2020) dataset for task-
oriented semantic parsing. We concentrated our
efforts on task-oriented parsing because of the com-
mercial importance of data efficiency requirements
in conversational AI assistants dialogues.5 The
TOPv2 dataset contains utterances and their seman-
tic representations for 8 domains: source domains -
‘alarm’, ‘messaging’, ‘music’, ‘navigation’, ‘timer’,
and ‘event’, and target domains: ‘reminder’ and
‘weather’, designed especially to test the zero-shot
setting. For our experiments we chose source do-
mains, which has a good mixture of simple (flat)
and complex (compositional) semantic frames. For
dataset statistics refer Table 1 in Chen et al. (2020).

Data Processing. To build a retrieval index we
used the training split of the dataset. Each utterance
was represented by its BART-based embedding and
indexed using FAISS library (Johnson et al., 2019).
6 With FAISS computation cost of updating index-
ing was kept to bare minimum. The only additional
cost will be increase in inference time due to aug-
mented neighbor. To produce augmented examples,
we retrieved nearest neighbors for each training
and test examples from the training set, except ex-
cluding all training instances with exact utterance
matches. In the augmented examples, we use the
special token ‘|’ to separate the nearest neighbors,
as well as utterance with the first neighbor.7 We
used only one neighbor for most experiments ex-
cept when we analyse multiple neighbors effects

4We did not seek to modify the architecture which ensure
the augmentation methodology is flexible.

5Regardless of augmented neighbors structure the ap-
proach remain consistent.

6We use L2 over unit norm BART embedding for indexing.
7Using different separator tokens for neighbor-neighbor

pair and utterance-neighbor pair didn’t improve performance.

on performance.
In nearest neighbor augmented input, we fol-

lowed right to left order, where the actual model
input comes last, and its highest ranked neighbor is
appended to the left of the utterance, followed by
other neighbors in the left based on their ranking.
8 For input data pre-processing, we follow (Chen
et al., 2020) procedure, we obtain BPE tokens of
all tokens, except ontology tokens (intents and slot
labels), which are treated as atomic tokens and ap-
pended to the BPE vocabulary. Furthermore, we
use the decoupled canonical form of semparse for
all our experiments. For decoupling, phrases irrele-
vant to slot values are removed from semparse, and
for canonicality, slots are arranged in alphabetic
order (Aghajanyan et al., 2020).

Models. For fair comparison with the earlier
baseline, we use the state-of-the-art BART based
Seq2Seq-CopyPtr model for task-oriented seman-
tic parsing. 9 The BART based Seq2Seq-CopyPtr
model initialize both the encoder and decoder with
pre-trained BART (Lewis et al., 2020b) model and
also use the copy mechanism similar to See et al.
(2017), refer Chen et al. (2020) for details. We
choose the BART based Seq2Seq-CopyPtr model
for the task because it’s a strong baseline, the
performance of the other language model such
as RoBERTa without augmentation was inferior
(Chen et al., 2020; Aghajanyan et al., 2020). On
out-of-domain instances, RoBERTa-CopyPtr per-
forms 0.6 % worse than BART-CopyPtr.10 The
model is using the copy mechanism (See et al.,
2017), which enables it to directly copy tokens
from the input utterance (or from example seman-
tic parses from nearest neighbors).

Hyperparameters. We use the same default
hyper-parameters for all models training , i.e.
baseline (without-nn) and RETRONLU models
(utternce-nn, semparse-nn). For training we use
100 epochs, Adam optimizer (Kingma and Ba,
2014) with learning rate α of 1e − 4 and decay
rate β1 and β2 of 0.9 and 0.98 respectively in all
our experiments. Also, we didn’t added any left or
right padding and rely on variable length encoding
in our experiments. We use warm-up steps of 4000,

8Similar performance is obtained by ordering utterances
left to right, followed by their neighbors in index order.

9We prefer transformer-based language model over non-
transformer models, such as LSTM, because the later does not
capture extended context as well as the former.

10Our findings, however, we believe, are universal and can
be applied to different models, including RoBERTa.
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dropout ratio of 0.4, and weight decay 0.0001, but
no clip normalization as regularization during the
training. We use batch size of 128 and maximum
token size of 2048. Furthermore, to ensure both
encoder and decoder BART, can utilise the extra
nearest neighbour information, we increase the em-
bedding dimension to 1024.

3.2 Results and Analysis
This section summarizes our findings in relation to
the aforementioned research questions.

Full Training Setting. To answer RQ1, we com-
pare performance of original baseline (without-nn)
with our retrieval augmented models, i.e. aug-
menting first neighbour utterance (utterance-nn)
and augmenting first neighbour semantic parse
(semparse-nn). Table 1 compares the frame ac-
curacy of retrieval augmented (a) top nearest neigh-
bour utterance (utterance-nn), (b) top nearest neigh-
bour ground-truth semantic parse (semparse-nn)
with original baseline (without-nn) with model
train on complete training data.

Domains without-nn utterance-nn semparse-nn
Alarm 86.67 87.17 88.57
Event 83.83 85.03 84.77
Music 79.80 80.73 80.71
Timer 81.21 81.75 81.01

Messaging 93.50 94.52 94.65
Navigation 82.96 84.16 85.20
micro-avg 84.43 85.28 85.74
macro-avg 84.66 85.56 85.82

Table 1: Performance of RETRONLU w.r.t original
baseline (without-nn) with full training.

Analysis: We observe performance improve-
ments with retrieval-augmented models for most
domains compared to the original baseline
(without-nn) in both cases. The increase in per-
formance (micro-avg) is more substantial 1.4%
with semparse-nn compare to 0.85% with utterance-
nn. The improvement in utterance-nn augmenta-
tion performance is likely due to memorization-
based generalization, as explained earlier by (Khan-
delwal et al., 2019).11 The results shows the re-
trieval augmented semantic parsing is overall effec-
tive. Furthermore, the performance enhancement
can be obtained also with unstructured utterance
(utternace-nn) as nearest neighbour. The utterance-
nn based augmentation is particularly beneficial in
semi-supervised scenarios, where we have a large
unlabelled dataset.

11The scores are averaged over three runs with std. of 0.3%

Limited Training Setting. To answer RQ2, we
compare model performance which are trained with
limited training data. Figure 3 shows frame accu-
racy (micro-avg) when we use only 10% to 50% of
the training data. The training datasets are created
in an incremental setting so that next set include
examples from the former set. Additionally, we use
the complete index to retrieve the nearest neigh-
bors.
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Figure 3: Performance of RETRONLU w.r.t original
baseline (without-nn) with limited supervised training.
The x-axis is linearly scaled upto 50% data.

Analysis: As expected, the performance of all
models increases with training set size. Both re-
trieval augmented models i.e. utterance-nn and
semparse-nn outperform the without-nn baseline
for all the training sizes. The improvement via
augmentation is more substantial with less training
data, i.e. 4.24% at 10% data vs 1.30% at 100% data.
Furthermore, the semparse-nn augmented model
outperforms the original completely train (without-
nn) model with only 40% of the data (i..e RQ3).
The results show that the retrieval augmented se-
mantic parsing is more data efficient, i.e. when
there is (a) limited labelled training dataset with
more unlabelled data for indexing (utterance-nn),
and (b) sufficient training data but limited training
time (semparse-nn).

The first case is useful when the ground truth
label is missing for utterances due to lack of an-
notation resources. In such a scenario, one can
build the index using large amount of unlabeled
utterances and use the index for augmentation. The
second case helps us train the model faster, while
maintaining all annotated examples in the index.
In such a case, one can update the retrieval index
only, without re-training the model again and again.
This is useful when training on full data is not pos-
sible due to limited access to model (black-box),
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a cap on the computation resources, or for saving
training time i.e. industries fast deployment need.
E.g. There is a constant stream of bugs relating
to misclassified examples in production systems.
Our RETRONLU approach enables rapid adjust-
ment of the system’s behavior without retraining or
establishing a new model.

Effect of Utterance Complexity. To answer
RQ4(a), we analyse the retrieval augmented model
performance improvements (with full training) on
simple utterance with only one level in semantic
representation (depth-1) vs complex utterance with
hierarchical semantic frames (compositional depth-
2 and above). Figure 4 shows frame accuracy of
without-nn, utterance-nn and semparse-nn model
with utterance complexity.

Figure 4: Performance comparison (micro-avg) of
RETRONLU w.r.t original baseline (without-nn) with
utterance complexity, i.e. simple and complex.
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Figure 5: Precision and Recall of intents and slots for
semparse-nn nearest neighbour w.r.t to gold semparse.

Analysis: As expected, all models perform rel-
atively poorly on complex utterances (79.5%) in
comparison to simple utterances (85.5%). Interest-
ingly, both augmentation models equally improve
performance on simple queries. And with semantic-
frame based augmentation we observe a substantial

performance improvement on complex challeng-
ing utterances, of 2%, with respect to the original
baseline (without-nn). This suggests, that by re-
trieving nearest neighbors and providing a model
with examples of complex parses, the model learns
to apply it to a new request. Figure 5 shows pre-
cision and recall for intents and slots in retrieved
semantic parses. The recall for intent and slot re-
trieval is 15% lower for complex utterances. 12

Thus, highlighting one reason for a performance
gap between simple and complex frames.

Effect of Frame Rareness. To answer RQ4(b),
we analyze the retrieval augmented model perfor-
mance improvement (with full training data) with
frame rareness, as shown in Figure 6.
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Figure 6: Performance of RETRONLU w.r.t original
baseline (without-nn) with varying frame frequency.
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Figure 7: Precision and Recall of intents and slots w.r.t
to frame frequency for semparse-nn of the RETRONLU.

Rare or uncommon frames are those example ut-
terances whose ground truth semantic parses with-
out slot value tokens appear infrequently in the
training set. To analyze this, we divided the test set
into five equal sizes i.e., Very Low, Low, Medium,
High, and Very High sets, based on the frequency of

12The precision gap was small 1% (intents) and 4% (slots).
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semantic frame structure. The experiment checks
if performance improvement is mainly attributed
to frequently repeating frames (frequent frames) or
for rarely occurring frames (uncommon frames).

Analysis: Figure 6 shows that all models perform
worse on rare frames. This is expected as the para-
metric model gets less data for training on these
frames. Furthermore, many of the low-frequency
frames are also complex utterances with more than
one intent and have more slots too. Moreover, the
nearest neighbour will be noisier for less frequent
frames. This is evident from the lower values of
precision (20% gap) and recall (25% gap) on the
intent and slots for nearest neighbors in Figure 7.
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Figure 8: Relative performance improvement of
RETRONLU w.r.t original baseline (without-nn) with
varying frame frequency.

However, compared to original baseline
(without-nn) the relative performance improve-
ment on rare frames with retrieval augmented
model is more substantial, as shown in Figure 8.
For example, the relative improvement for Very
Low frequency frames is 2.37% (utterance-nn)
and 4.11% (semparse-nn) compared to just 1.01%
(utterance-nn) and 1.11 % (semparse-nn)for the
Very High Frequency frames. We suspect this
is because of the model’s ability to copy the
required intent and slots from nearest neighbors
if the parametric knowledge fails to generate it.
This shows the retrieval augmented model is even
more beneficial for the rare frames. As earlier,
semparse-nn outperform utterance-nn.

Effect of the number of neighbors. To answer
RQ5(a), we compare k = 1, 2, and 3 nearest neigh-
bours for both utterance-nn and semparse-nn se-
tups13 The results are reported in Table 2.

13Extending beyond 3 neighbors was not useful for many
reasons: (a) the BART 512 tokenization limit, (b) exponential
rise in training time, and (c) only minimal performance gain.

#neighbors k = 1 k = 2 k = 3
without-nn 84.43 84.43 84.43

utterance-nn 85.28 85.35 85.40
semparse-nn 85.74 85.81 85.80

Table 2: Performance with increasing nearest neighbors.

Metric Average Precision Average Recall
Intent Farthest Closest Farthest Closest
Train 81.39 84.84 81.81 85.04
Valid 80.46 87.59 81.10 87.93
Test 79.09 86.23 79.35 86.22
Slot Farthest Closest Farthest Closest
Train 75.02 80.05 79.56 83.19
Valid 73.40 82.38 79.77 85.81
Test 74.59 83.21 79.51 85.11

Table 3: Intent-slots precision/recall for RETRONLU
semparse-nn with closest/farthest neighbors.

Analysis: As shown in Table 2 the model perfor-
mance only improves marginally with more nearest
neighbors. We attribute this to the following two
reasons (a) redundancy - many utterance exam-
ples can share the same frame, as evident from the
high accuracy for frequent frame Figure 6., and
(b) complexity - as k increases, the problem is get-
ting harder for the model with longer inputs, more
irrelevant and noisier inputs. To further verify the
above reasons, we examine the semparse-nn re-
trieve nearest neighbors quality by comparing the
intent and slot both Precision and Recall score for
closest (k=1) and farthest (k=3) neighbor w.r.t to
the gold semparse. From Table 3 it is evident that
precision and recall for intents and slots decrease
as we go down the ranked neighbors list. Adding
more nearest neighbour would only be beneficial
when added neighbour capture diverse and differ-
ent semantic structure which is missing from earlier
neighbor and essential for the correct semparse.

Effect of Retrieval Quality. To check if our
RETRONLU model is robust to the noise in the
retrieved examples (i.e. RQ5(b)), we analyse the
effect of quality of retrieval by comparing semantic
parsing accuracy of top neighbor augmented mod-
els on the test data with (a) the top neighbour with
random neighbor from domain other than the exam-
ple domain, and (b) random neighbor selected from
the top 100 ranked nearest neighbors in the index.
It should be noted that these 100 top rank nearest
neighbour can have some redundant semparse-nn
structure, only slot values might differ. Figure 9
shows the results of the experiments.

Analysis: From Figure 9 it is clear that quality
of nearest neighbor affect the semantic parsing ac-
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Figure 9: Performance of RETRONLU with varying
nearest neighbor quality on test data.

curacy. We observe a 0.4% drop when random
neighbor from top 100 nearest neighbors is chosen,
instead of first neighbor, the small drop is because
of redundancy in intent/slots structure between ex-
amples, only slots value could be major difference.
However, the performance is still 0.9% to 1.0%
better than the one without the nearest neighbor.
We suspect this is because of the fact that the data
has many utterances with similar semparse output.
Upon deeper inspection we found that top-100 still
includes many relevant frames, and therefore ran-
dom examples from top-100 are often still relevant.
Furthermore, there is also frame redundancy, many
different utterance queries have similar semantic
parse frames structure and only differ at the slot
values. This is also evident from table 2 which
shows adding more neighbors is not beneficial, be-
cause of frame redundancy. Surprisingly, we also
observe that the model performance with random
cross-domain neighbor is better than without-nn
for semparse-nn by 0.5%. This shows that the
model knows when to ignore the nearest neigh-
bors and when to rely on the parametric model.
Furthermore, it also indicates that underlying para-
metric model parameters is improved by retrieval
augmented training for the semparse-nn.

For the utterance-nn the performance drops
when testing on cross-domain nearest neighbor aug-
mented example. Thus, underlying the utterance-
nn model is more sensitive than semparse-nn to the
nearest neighbor quality. In addition, we also con-
ducted an experiment in which we added the best
possible neighbor based on the gold parse frame
structure. The trained model, though this approach
was not robust and relies too heavily on coping
frames from neighbors, resulting in poor general-
ization. Our technique, on the other hand, with

embedding-based retrieval, is good at generaliza-
tion and has enhances the underlying parametric
model. Overall, we can conclude that the semparse-
nn and utterance-nn model are both quite robust to
nearest neighbors quality. We can also conclude
that the semparse-nn model was able to capture
richer information through additional similar in-
puts than without-nn. However, to obtain the best
performance good quality neighbour is an essential.

4 Comparison with Related Work

Task-oriented Semantic Parsing. Sequence-to-
sequence (seq2seq) models have recently achieved
state of the art results in semantic parsing (Ron-
gali et al., 2020; Gupta et al., 2018), and they
also provide a flexible framework for incorporat-
ing session-based, complex hierarchical semantic
parsing (Sun et al., 2019; Aghajanyan et al., 2020;
Cheng et al., 2020; Mehri et al., 2020) and multi-
lingual semantic parsing (Li et al., 2021; Louvan
and Magnini, 2020). Architectures, such as T5 and
BART (Raffel et al., 2020; Lewis et al., 2020b),
with large pre-trained language models pushed the
performance even further. Such models are quite
capable of storing a lot of knowledge in their pa-
rameters (Roberts et al., 2020), and in this work we
explore the benefits of additional non-parametric
knowledge in a form of nearest neighbor retrieval
for the task of semantic parsing. To improve low
resource seq2seq parsers Chen et al. (2020) have
proposed looking at meta learning methods such
as reptile, and Ghoshal et al. (2021) have intro-
duced new fine-tuning objectives. Our approach is
focused on non-architecture changes to augment
generation with retrieval and thus can be combined
with either of these approaches.

Incorporating External Knowledge. An idea
to help a model by providing an additional infor-
mation, relevant to the task at hand is not new.
This includes both implicit memory tables (We-
ston et al., 2014; Sukhbaatar et al., 2015), as well
as incorporating this knowledge explicitly as an
augmentation to the input. Explicit knowledge
are incorporated in one of the following two ways
(a) suitable model architecture change to incorpo-
rate dedicated extended memory space internally
i.e. memory network (Bapna and Firat, 2019; Guu
et al., 2020; Lewis et al., 2020a; Tran et al., 2020)
or span pointer networks (Desai and Aly, 2021;
Shrivastava et al., 2021), and (b) appending ex-
ample specific extra knowledge externally with the
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input example directly without modifying model ar-
chitecture (Papernot and McDaniel, 2018; Weston
et al., 2018; Lewis et al., 2020c; Tran et al., 2020;
Khandelwal et al., 2021; Fan et al., 2021; Chen
et al., 2018; Wang et al., 2019; Neeraja et al., 2021)
. Retrieval-augmented approaches have been im-
proving language model pre-training as well (Guu
et al., 2020; Lewis et al., 2020a; Tran et al., 2020).
The idea here is to decouple memorizing factual
knowledge and actual language modeling tasks,
which can help mitigate hallucinations, and other
common problems.

Multiple works like DkNN (Papernot and Mc-
Daniel, 2018), RAG (Lewis et al., 2020c), kNN-
LM (Tran et al., 2020), kNN-MT (Khandelwal
et al., 2021), and KIF-Transformer (Fan et al.,
2021) show that external knowledge is useful for
large pre-trained language models, and can help
fine-tuning. DkNN shows that nearest neighbour
augmented transformer-based neutral network is
more robust and interpretable. RAG shows that one
can append external knowledge to improve open do-
mian, cloze-style question answering, and even fact
verification task such as FEVER. kNN-LM shows
that for cloze task for fact completion, one can com-
bine nearest neighbour predictions with original
prediction using appropriate weighting to improve
model performance. However, these works mostly
study knowledge dependent question answering
task, while we are exploring a complex task of
structural prediction of semantic frame structures
for task-oriented dialog.

Very recently, Pasupat et al. (2021) share similar
finding of exemplar augmentation and propose Con-
trollAble Semantic Parser via Exemplar Retrieval
(CASPER). In their work, the semantic parser gets
relevant exemplars from a retrieval index, augments
them with the query, and then generates an output
parse using a generative seq2seq model. The exem-
plars serve as a control mechanism for the generic
generative model: by modifying the retrieval index
or the construction of the augmented query, one
may alter the parser’s behavior. Compare to them,
our study focuses more on the influence of augmen-
tation on the performance of the state-of-the-art
Copy Transformer BART model for task-oriented
semantic parsing. By design, the copy transformer
effectively utilizes it’s copy mechanism to get non-
parametric information from augmented nearest
neighbor semparse/utterances. Additionally, we
conduct a detailed investigation of the influence of

retrieval quality, utterance and semantic complex-
ity, and the rarity of semantic frames. We anticipate
that our findings will shed light on the potential ad-
vantages of retrieval enhancing parametric neural
networks for the complex structural task of task-
oriented semantic parsing.

5 Conclusion and Future Work

We show that task-oriented semantic parsing per-
formance can be enhanced by augmenting neu-
ral model-stored parametric information with non-
parametric external memory. On the TOPv2
dataset, we demonstrated that adding instances
derived from a nearest neighbor index greatly
improves the semantic parsing performance of
a BART model with copy mechanism. Our
RETRONLU model is able to achieve higher accu-
racy earlier with less training data (limited supervi-
sion setting), which allows maintaining a large in-
dex with annotated data, while using only a subset
to train a model more efficiently. Lastly, we per-
formed an analysis of performance improvements
on different slices, and found RETRONLU to be
more effective on rarer complex frames, compared
to a traditional seq2seq model.

RETRONLU extensions, we focus on joint train-
ing of retrieval and parsing components. Having
task specific utterances representation can benefit
i.e. finding utterances with similar semantic parse.
Exploring few/zero-shot performance could be in-
teresting direction. Having an easily-updateable
index enables you to amend annotations, add new
ones, or remove existing ones, without affecting
the model. It will be useful to study other ap-
proaches of sentence embedding, such as Reimers
and Gurevych (2019). Finally, using cross-lingual
representations such as mBART (Liu et al., 2020),
could help multilingual semantic parsing.
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A Qualitative Examples

Below, we provide some qualiative example from
the TOPv2 datasets, in the first box, we shows
the input utterance, nearest neighbour utterance
i.e. nearest-nn utterance and it corresponding
semantic parse i.e. semparse-nn (from the training
set). In the second box we showed expected gold
semantic parse (expected-sparse) and the semantic
parse prediction with baseline i.e. without
nearest neighbor (without-nn), and our models
utterance only nearest neighbor, where the input is
appending with nearest-nn utterance (utterance-nn)
and semantic augmented model i.e. (semparse-nn),
where the input is augmented with semantic parse
of first nearest neighbor. We can clearly see from
the examples that augmented nearest neighbor en-
hance models in identifying correct intent and slots.

example 1 input
utterance : message just lizzie and trent from my group if
they have any updates yet ?

nearest-nn utterance : message kira and lena saying want
to get drinks this week ?
nearest-nn semparse : [in:send_message message
[sl:recipient kira ] and [sl:recipient lena ] saying
[sl:content_exact want to get drinks this week ]?]

example 1 output
expected-parse : [in:send_message [sl:recipient lizzie ]
[sl:recipient trent ] [sl:content_exact they have any updates
yet ]]
without-nn : [in:get_message [sl:content_exact they have
any updates yet ] [sl:group lizzie ] [sl:group trent ] ]
semparse-nn : [in:send_message [sl:recipient lizzie ]
[sl:recipient trent ] [sl:content_exact they have any updates
yet ] ]

utterance-nn : [in:send_message [sl:recipient lizzie ]

[sl:recipient trent ] [sl:content_exact they have any updates

yet ] ]

In example 1, the model misses the correct
intent and corresponding slots completely, the
correct intent is sending a message rather than
receiving a message is correctly identified by both
semparse-nn and utterance-nn.

example 2 input
utterance : no more country
nearest-nn utterance : no more music
nearest-nn semparse : [in:stop_music [sl:music_type
music ] ]

example 2 output
expected-parse : [in:remove_from_playlist_music
[sl:music_genre country ] ]
without-nn : [in:play_music [sl:music_genre country ] ]
semparse-nn : [in:remove_from_playlist_music
[sl:music_genre country ] ]

utterance-nn : [in:remove_from_playlist_music

[sl:music_genre country ] ]

In example 2, the baseline model without
nearest neighbour did the exact opposite of
intended task of removing music of genre country
from the playlist. However, after augmenting
nearest neighbor context the model quickly
correct the expected intent and slot. It should
also be noted the both the correct intent and
slot (i.e. in:remove_from_playlist_music and
sl:music_genre) are not present in the nearest-nn
semparse but it do contain similar intent and
slot (i.e. in:stop_music. and sl:music_type),
which help retrieval augmented model in correct
prediction. As earlier the model is able to predict
correct even with utterance only augmentation too.

example 3 input
utterance : block all songs of mariah carey
nearest-nn utterance : delete mariah carey songs
nearest-nn semparse : [in:remove_from_playlist_music
delete [sl:music_artist_name mariah carey] [sl:music_type
songs ] ]

example 3 output
expected-parse : [in:remove_from_playlist_music
[sl:music_artist_name mariah carey ] ]
without-nn : [in:unsupported_music [sl:music_type songs
]]
semparse-nn : [in:remove_from_playlist_music
[sl:music_type songs ] [sl:music_artist_name mariah carey
] ]

utterance-nn : [in:remove_from_playlist_music

[sl:music_type songs ] [sl:music_artist_name mariah carey

] ]

In example 3 the model without nearest neighbor
augmentation struggle to identify the intent from
utterance text token “block" therefore prediction
unsupported music as the intent and the music type
as songs, however the model with augmented near-
est neighbour example with “delete" intended slot
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Percentage 10 % 20 % 30 %
Domain w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn

Alarm 80.50 84.05 83.60 83.71 84.89 85.76 84.22 85.93 82.92
Event 68.56 78.33 79.38 75.01 80.85 82.32 77.64 81.91 82.92
Music 69.12 75.74 73.23 74.09 77.53 77.34 75.6 78.01 78.13
Timer 71.63 76.76 76.27 75.51 76.18 79.28 77.21 79.68 79.84

Navigation 74.30 73.86 76.44 77.89 79.40 79.96 80.11 81.79 81.61
Messaging 84.38 87.30 89.44 88.39 91.31 91.50 89.53 92.78 92.25

Table 4: Limited training setting results on various domain with original baseline (without-nn), RETRONLU model utterance-nn
and semparse-nn, shown here as w/o nn, utter-nn and sem-nn respectively.

#neighbour’s one two three
Domain w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn w/o nn uttr-nn sem-nn

Alarm 86.67 87.17 88.57 86.67 87.77 87.87 86.67 87.68 87.90
Event 83.83 85.03 84.77 83.83 84.92 85.26 83.83 85.26 85.34
Music 79.80 80.73 80.71 79.80 80.71 81.50 79.80 80.52 81.11
Timer 81.21 81.75 81.01 81.21 81.04 82.29 81.21 81.44 82.10

Messaging 93.50 94.52 94.65 93.50 94.92 95.05 93.50 94.88 94.92
Navigation 82.96 84.16 85.20 82.96 84.12 84.46 82.96 84.59 84.79

Table 5: Effect of number of nearest neighbours of RETRONLU performance across domains

correct identified both the intent and slots. Further-
more, using nearest neighbor augmentation, the
model resolves the active passive voice confusion.

B Domain based Limited Training Setting

In Table 4 shows the performance of model for
each domain on original baseline (without-nn), and
RetroNLU model utterance-nn and semparse-nn
with varying amount of supervised training data.
Overall, semparse-nn outperform utterance-nn over
most of the domains. Surprising, we also found
that for few domain (with large number of sam-
ples) utterance-nn perform marginally better than
semparse-nn, need to investigate exact reason for
that. As expected both model utternace-nn and
semparse-nn perform much better than original
baseline which is without any nearest neighbour
augmentation.

C Domain Specific Effect of Nearest
Neighbours

In Table 5 we shows the performance of model
for each domain on original baseline (without-nn),
and RetroNLU model utterance-nn and semparse-
nn with varying number of nearest neighbour aug-
mented. We found the utternace-nn performance
increases with increasing number of neighbours
where semparse performance remain mostly con-
stant after the first neighbour augmentation for
many domains. We suspect this is due to the fact
that the data contains a large number of utterances

with identical semparse output.. There is also frame
redundancy, since many unique utterance inquiries
have comparable semantic parse frames structure
with differences only on slot values.
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Abstract

Personality traits influence human actions and
thoughts, which is manifested in day to day con-
versations. Although glimpses of personality
traits are observable in existing open domain
conversation corpora, leveraging generic lan-
guage modelling for response generation over-
looks the interlocutor idiosyncrasies, resulting
in non-customizable personality agnostic re-
sponses. With the motivation of enabling stylis-
tically configurable response generators, in this
paper we experiment with end-to-end mech-
anisms to ground neural response generators
based on both (i) interlocutor Big-5 personal-
ity traits, and (ii) discourse intent as stylistic
control codes. Since most of the existing large
scale open domain chat corpora do not include
Big-5 personality traits and discourse intent, we
employ automatic annotation schemes to enrich
the corpora with noisy estimates of personal-
ity and intent annotations, and further assess
the impact of using such features as control
codes for response generation using automatic
evaluation metrics, ablation studies and human
judgement. Our experiments illustrate the effec-
tiveness of this strategy resulting in improve-
ments to existing benchmarks. Additionally,
we yield two silver standard annotated corpora
with intents and personality traits annotated,
which can be of use to the research community.

1 Introduction

Recent years have witnessed a growth in neural
methods for language modelling, specifically in
the domain of open domain dialogue and interac-
tive systems. Large neural language models with
billions of parameters, trained on one or more dia-
logue corpora, have accomplished state-of-the-art
results in response generation tasks (Roller et al.,
2020; Xu et al., 2021). Incorporating such genera-
tors in their pipelines, end-to-end dialogue systems
in Alexa Prize (Saha et al., 2021; Chi et al., 2021;
Konrád et al., 2021) have demonstrated capabilities
of engaging in prolonged live conversations with

Figure 1: Sample conversation between two users, de-
picting the influence of personality trait and dialogue
intent.

humans on a multitude of real world topics, thus
bettering human-computer interaction, and paving
a way for more human centered NLP applications.
Although such language models are capable of gen-
erating human-like responses, they often come with
their own set of predicaments. Leveraging only tex-
tual data sans any other explicit control mechanism
for training, such models often engender undesir-
able responses, diminishing the trust of users in
such systems. Rashkin et al. (2021) discusses the
issue of knowledge hallucinations in response gen-
eration and the importance of grounding factual re-
sponses to the correct knowledge, Nie et al. (2021)
elucidates the inconsistent and self-contradictory
nature of such models, and Saha et al. (2021) dis-
cusses the impact of such undesirable responses in
production grade human centered systems. How-
ever, in many applications it is also desirable for
generators to control the style of an utterance along
with its content, which is difficult to achieve us-
ing vanilla language modelling. With the moti-
vation of incorporating more stylistic control in
conversational systems, we experiment with ways
of enhancing language modelling by incorporating
personality and dialogue intent for controlling the
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mannerism and intention of the response.
Personality is the most fundamental dimension

of variation between humans (Mairesse et al.,
2007). Not only does it play a crucial role in how
humans react to different scenarios, but also re-
flects characteristic patterns of thoughts, feelings,
expressions, and behaviors. Speech being the ul-
timate form of expression is influenced by a per-
son’s personality trait (Sanford, 1942). For exam-
ple, the response to the query inquiring about New
Year’s eve plans in Figure 1 is not only subjective,
but also dependent on the personality of the inter-
locutor. Had the interlocutor been introverted, the
response could have been different. Apart from
personality, the response to a query is also greatly
influenced by the intentions of the interlocutors. In
the same example, responding with the intention
of asking subjective question would yield a differ-
ent response, albeit still exhibiting the extroverted
personality trait. Although relying solely on lan-
guage modelling might engender informative and
factual response, the style and intention exuded by
such generated responses are often generic and un-
predictable. For controlling the response style in
terms of personality and intent, we utilize control
codes based on the well established Big 5 person-
ality traits taxonomy (Soto, 2018; Costa Jr, 1992)
and diverse locutionary acts (Barbara, 2017).

2 Related Work

Personality Trait from Text: Research in auto-
matic personality detection from text is still nascent,
and can be attributed to the lack of publicly avail-
able large scale personality annotated datasets.
Mairesse et al. (2007) explored the usage of statis-
tical models for detecting personality traits from
text, which inspired Majumder et al. (2017) to im-
plement a document modeling technique based on a
CNN features extractor for identifying Big-5 traits
from the Essays dataset. Using the PersIA corpus
(Dix et al., 2003) for training, Ivanov et al. (2011)
experimented with statistical models to automat-
ically detect Big-5 personality traits. Ren et al.
(2021) experimented with leveraging BERT for
detecting Big-5 and Myers-Briggs Type Indicator
(Myers, 1962) personality traits from social media
text. Recently, Gjurković et al. (2021) published
the first large-scale dataset of Reddit comments la-
beled with 3 personality models, which we leverage
for out experiments, along with the Essays dataset.
Controllable Text Generation: Considerable

amount of work has been done for controllable text
generation. Mairesse and Walker (2007, 2008a)
proposed Personage: the first highly parametriz-
able language generator for modelling extraversion.
Mairesse and Walker (2008b) experimented with
statistical models, that can produce recognisable
variation along the personality dimension. Oraby
et al. (2018) and Harrison et al. (2019) explored
with neural generators capable of generating lan-
guage that exhibits variation in personality, for
task-oriented dialogue systems. Leveraging myPer-
sonality dataset, Wanqi and Sakai (2020) anno-
tated the Cornell Movie-dialogs corpus (Danescu-
Niculescu-Mizil and Lee, 2011) with personality
trait identifier, and experimented with GRU-based
seq2seq model with attention mechanism to gen-
erate personality conditioned responses. Keskar
et al. (2019) introduced the concept of leverag-
ing control codes for stylized text generation in
CTRL, and Dathathri et al. (2020) proposed Plug
and Play Language Models (PPLM), which com-
bines a pretrained language model with an attribute
classifiers for guiding text generation, without train-
ing the language model. Inspired by CTRL and
PPLM, Smith et al. (2020) leveraged 200 distinct
style based control codes, for stylized response
generation. Madotto et al. (2020) further demon-
strated plug-and-play methods for controllable re-
sponse generation, which neither require dialogue
specific datasets, nor rely on fine-tuning a large
model. Rashkin et al. (2021) explored tackling
knowledge hallucination by incorporating control
codes, which act as stylistic controls that encourage
the model to generate responses that are faithful
to the provided evidence. Hedayatnia et al. (2020)
proposed a policy driven neural response generator,
which generates a response policy, and adheres to
it for faithful generation. Our work is primarily
inspired by CTRL (Keskar et al., 2019), PD-NRG
(Hedayatnia et al., 2020), and the latest work by
Rashkin et al. (2021).

3 Task

Our goal is to experiment with ways of controlling
the style of language model generated responses,
using personality trait and dialogue intent based
control codes. For our purpose, we utilize the Big-
5 personality traits listed in table 1 as stylistic con-
trol codes. Further, as pointed out by Saha et al.
(2021), for practically incorporate factual response
generators in real world conversational systems,
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Type Control Code Abbreviation Description Possible Levels

Big-5
Personality

Traits

Agreeableness Agr Level of critical and rational nature. Strong/Weak
Openness Opn Level of imagination and insight. Strong/Weak

Conscientiousness Con Level of self-discipline and efficiency. Strong/Weak
Extraversion Ext Level of outgoing nature. Strong/Weak
Neuroticism Neu Tendency to experience negative emotions. Strong/Weak

Corpus
Based
Traits

Attitude Overall pre-dominant stance of an interlocutor. Positive/Negative/Neutral
Tone Overall pre-dominant intention of an interlocutor. Subjective/Objective/Both

Length Response length preference of an interlocutor. Talkative/Reserved

Intent

Subjectivity Subj Intention of sharing personal anecdotes or opinions. Present/Absent
Objectivity Obj Intention of sharing factual knowledge. Present/Absent

Subjective Question Subj Q Intention of seeking personal anecdotes or opinions. Present/Absent
Objective Question Obj Q Intention of seeking factual knowledge. Present/Absent

Table 1: Description of different types of control codes.

it is important to control the usage of facts in re-
sponse, in order to prevent the bot from entering a
recurrent fact telling mode and hurting the collo-
quialism of the bot. Hence, we propose leveraging
dialogue intents to control the nature of the gen-
erated response. For our use case, we re-purpose
the intent taxonomy defined by Saha et al. (2021),
and derive four intent categories based on subjec-
tivity and objectivity, as listed in table 1. Further,
we experiment with controlling the intensities of
each personality and intent based stylistic control
codes by defining levels, and use combinations of
multiple control codes during response generation.

4 Data

We leverage the publicly available multi-turn, large
scale Wizard of Wikipedia (Dinan et al., 2019),
and Topical chat (Gopalakrishnan et al., 2019; He-
dayatnia et al., 2020) corpora for our experiments,
which we further enrich with turn wise intent and
personality trait annotations.

4.1 Conversation Corpus

Wizard of Wikipedia (WOW): It is an asymmetric
chat corpus comprising of conversations between
a wizard who has access to Wikipedia knowledge,
and an apprentice, who does not have access to
external knowledge. The apprentice has the goal
of diving deep into a conversation, and the wizard
is assigned the role of being knowledgeable. The
conversation continues until one of the conversa-
tion partners ends the chat after a minimum of 4 or
5 turns, randomly chosen beforehand.
Topical Chat (TC): It is a more symmetric chat
corpus consisting of conversations between two
human interlocutors, where both the agents have
access to diverse external knowledge sources. The
conversation continues for at least 20 turns, be-
fore either interlocutor can end the conversation.
With 21.8 average turns per conversation in TC

compared to 9.0 in WOW, TC reflects real world
conversations better, with lengthier conversations.

4.2 Corpus Enrichment using Annotations

Employing automatic annotation schemes, we en-
rich both WOW and TC with discourse features
like intent, and interlocutor personality traits.

4.2.1 Dialogue Intent Annotation
Leveraging the BERT (Devlin et al., 2019) based
intent classifier by Saha et al. (2021), we automat-
ically annotate each turn with interlocutor intent.
Since our objective is to control the subjectivity
and objectivity of the response, we disregard the in-
tent classes ‘acknowledgement’, ‘rejection’, ‘clar-
ification’, ‘topic suggestion’, ‘general chat’ and
‘others’. Further, on evaluating 60 random annota-
tions by the author spanning both the WOW and
TC datasets, we observed an overall agreement
of 95% between the model predicted and human
assigned labels. Table 10 (in appendix A) further
illustrates the class wise annotation agreement. Fur-
ther, we noticed that the classifier mostly confused
between the subjective intent of sharing personal
anecdotes and opinions. Hence, we combine the
intent categories into four distinct classes: (i) Sub-
jectivity: The intention of sharing personal anec-
dotes or opinions; (ii) Objectivity: The intention of
sharing factual knowledge; (iii) Subjective Ques-
tion: The intention of seeking personal anecdotes
or opinions; (iv) Objective Question: The intention
of seeking factual knowledge.

4.2.2 Personality Trait Annotation
Big-5 Personality Traits We make the following
assumptions for personality annotation: (i) The
personality of an interlocutor can be best judged
after observing all their responses. Fewer turns
will result in partially observable and noisy traits.
(ii) By definition, people who exhibit openness are
intellectually curious. Hence, leveraging factual
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knowledge in a turn is considered as high for open-
ness. Leveraging the Pandora (Gjurković et al.,
2021) and the Essays (Pennebaker and King, 2000)
datasets, we train models for automatically detect-
ing Big-5 personality traits from text. Pandora is
the first large-scale dataset of Reddit comments
labeled with intensities of Big-5 traits, and the
Essays dataset is a smaller collection of stream-
of-consciousness texts written by psychology stu-
dents, with binary labels denoting the presence or
absence of each of the Big-5 traits, which are con-
verted to continuous intensities to maintain parity
between the two datasets. We fine tune RoBERTa
(Liu et al., 2019) with a regression head on both the
personality datasets separately and automatically
annotate each cumulative interlocutor turns in the
WOW and TC corpora with 2 sets of Big-5 trait
intensities. The regression model attains a Pearson
correlation of 0.266 on the Essays dataset, and a
correlation of 0.806 on the Pandora dataset. More
details about the training and evaluation of each
regression model are provided in appendix A. Post
annotation, we convert the intensities to strong and
weak classes, where intensities above 0.5 standard
deviation (SD) from the mean intensity for a trait
are considered strong, lower than -0.5 SD are con-
sidered weak, and the rest are considered not signif-
icant and ignored. Further, in order to evaluate the
accuracy of the automatic annotation we sampled
40 random examples, and calculated the agreement
between the automatic annotations and our judge-
ment. Overall we observed 50% agreement for
the Pandora based traits and 58% agreement for
the Essays based traits, which is warranted given
the complex nature of the task of determining per-
sonality traits from written conversation. Table 11
further illustrates the class wise annotation agree-
ment for both the personality datasets.
Corpus Based Traits We also define 3 interlocu-
tor specific universal traits (table 1), derived using
corpus statistics. (i) Attitude: Captures the pre-
dominant interlocutor stance (Jaffe et al., 2009) in
a conversation. Leveraging AllenNLP (Gardner
et al., 2017) textual entailment classifier trained
on the MNLI (Williams et al., 2018) dataset, we
calculate the frequency of contradicting turns be-
tween the interlocutors, and classify an interlocutor
as positive if no contradictions are found, negative
if more than 1 contradictions are found, and neutral
otherwise. (ii) Tone: Captures the predominant
interlocutor voice. Post intent annotation, we com-

pute the distribution of subjective and objective
voice from an interlocutor’s turns, and assign the
majority class with a margin of 10% as the pre-
ferred tone, else both. (iii) Length: Captures the
length of interlocutor responses. An interlocutor is
tagged as talkative, if the average number of tokens
used by the interlocutor in a turn is greater than the
median number of tokens per turn from the entire
corpus, else reserved.

5 Modelling

Mathematically, given a response Y consisting of
tokens (y1, ..., yn), and the conversation context
till the current turn C, language modelling for re-
sponse generation estimates p(Y |C). Employing
personality trait P , intent control codes I , and the
relevant facts F , we model the posterior probability
distribution p(Y |C,P, I, F ). Further, in order to
facilitate learning we incorporate a multi-task learn-
ing framework, where along with generating the
response Y , we perform fact selection and target
personality P and intent control code I prediction.
We employ parameterized neural networks, and
train end-to-end leveraging encoder-decoder trans-
formers (Vaswani et al., 2017) BART (Lewis et al.,
2020) and Blenderbot (Roller et al., 2020) as the
base architectures of our model. Figure 2 illustrates
the end-to-end system, and below we detail each
component. 1

5.1 Encoder

The encoding step utilizes the context encoder fc
and the fact encoder fk to encode the conversa-
tion context till the current turn C, along with
the golden fact required in the current turn F j , to
generate the final hidden representation Cemb =
[Ch;Fh] for the decoder, where Ch = fc(C), and
Fh = fk(F

j).
In order to facilitate learning, we devise a multi-

task learning framework, where along with gener-
ating the response, we also perform fact selection,
and target personality trait and intent prediction.
We input the personality traits and intent based
stylistic features of each turn in the context C as
additional input features S, along with a set of four
random facts as distractors F . Encoding the feature
S using a feature encoder fs, followed by an align-
ment with the context hidden representation Ch

1The code and datasets are publicly available at:
https://github.com/sougata-ub/
personality-response-generation.
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Figure 2: Proposed end-to-end system architecture for configurable stylistic response generation.

using multi-headed attention and feed forward lay-
ers fs′ , we get the feature hidden representation Sh,
which is further concatenated with the context hid-
den representation into a joint representation H⃗cs.
Employing two fully connected neural networks
fi_pred and fp_pred, we predict the target response
intent Itgt and personality control codes Ptgt, and
minimise the loss between the actual response in-
tent I and personality P respectively.

Sh′ = fs(S), Sh = fs′([MultiHead(Sh′ ,Ch);Sh′ ])

Hcs = [Ch;Sh], H⃗cs = avg(Hcs)

Itgt = fi_pred(H⃗cs), Ptgt = fp_pred(H⃗cs)

Deciding the most relevant fact not only depends
on the conversation context, but also on the in-
tent. For example, if the intention is to share a
personal anecdote, then most probably none of
the available facts should be relevant for gener-
ating the response. Each of the fact distractors F i

along with the golden fact F j are encoded using
the fact encoder fk to the initial encoding Fi

h′ =
fk(F

i), which is followed by an alignment with
the joint context and feature hidden representation
Fi
h = fk′([MultiHead(Fi

h′ ,Hcs);Fi
h′ ]). Finally,

each fact encoding is average pooled and concate-
nated with the predicted intent logits Itgt, followed
by a fully connected neural network fk_pred to
predict relevancy F i

pred = fk_pred([avg(Fi
h);Itgt]),

which is trained by minimizing the loss between
the prediction and the true label.

5.2 Decoder
Apart from the hidden encoder representation
Cemb, we also condition the response genera-
tion on the response personality and intent control
codes, which enables the model to adapt to the re-

quired style. Similar to Rashkin et al. (2021), the
control codes are prepended to the decoder input
ids, and passed to the decoder, which generates the
response by conditioning on the encoder context
Cemb, and the control codes. The entire system
is trained end-to-end by minimizing the weighted
sum of the language modelling cross entropy loss,
the binary cross entropy fact selection loss, binary
cross entropy intent prediction loss, and the cross
entropy trait prediction loss.

6 Experiments and Results

6.1 Experiment Set-up

We used the pre-trained 139M parameters (base)
version of BART (Lewis et al., 2020), and the
400M parameters distilled BlenderBot (Roller et al.,
2020) from the Huggingface library (Wolf et al.,
2020) as our base models, and added 24 new to-
kens comprising of speaker identifiers (agent_1,
agent_2), traits and intent control codes to the em-
bedding layer. Similar to Transfertransfo (Wolf
et al., 2019), we introduce a token type embed-
ding layer to demarcate turns. We utilized a learn-
ing rate of 2E-5, and batch size of 32 and 16
per GPU for BART and BlenderBot respectively,
with gradient accumulation (Lin et al., 2018) for 2
steps, for BlenderBot. We clipped (Pascanu et al.,
2013) the gradients to unit norm, and used AdamW
(Loshchilov and Hutter, 2019) with default Py-
Torch parameters for optimization. Beam search
was used during decoding with a beam length of 5,
with penalty for trigram repetitions within the gen-
erated text, and between the context and generated
text. The corpus based codes are only input to the
encoder to aid in trait and intent predictions, and
are not used as stylistic control codes.
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Corpus Model Perplexity BLEU 4 Rouge L BLEURT

WOW

E2E (Dinan et al., 2019) 23.1/32.8 1.5 / 0.3
GPT2 (Rashkin et al., 2021) 8.9 / 8.4
T5 (Rashkin et al., 2021) 8.4 / 8.7
BART 9.74 / 10.53 8.44 / 8.24 0.341 / 0.342 0.491 / 0.488
BART + All (P-Traits) 9.37 / 10.13 9.01 / 8.60 0.349 / 0.349 0.502 / 0.502
BART + All (E-Traits) 9.43 / 10.23 9.20 / 8.79 0.348 / 0.347 0.506 / 0.501
BlenderBot 7.48 / 8.54 6.31 / 4.77 0.302 / 0.282 0.462 / 0.444
BlenderBot + All (P-Traits) 7.38 / 8.39 6.22 / 4.90 0.305 / 0.294 0.450 / 0.437
BlenderBot + All (E-Traits) 7.37 / 8.38 6.22 / 4.77 0.304 / 0.294 0.451 / 0.441

TC

NRG (Gopalakrishnan et al., 2019) 26.30 / 36.30
PD-NRG (Hedayatnia et al., 2020) 12.25 / 12.62 1.9 / 2.0 0.113 / 0.108
Proto (Saha et al., 2021) 11.55 / 10.87
BART 13.81 / 14.71 3.62 / 4.10 0.235 / 0.250 0.365 / 0.388
BART + All (P-Traits) 13.21 / 14.10 3.72 / 4.37 0.242 / 0.259 0.370 / 0.400
BART + All (E-Traits) 13.22 / 14.02 3.73 / 4.28 0.246 / 0.258 0.376 / 0.403
BlenderBot 11.09 / 10.75 3.13 / 3.75 0.223 / 0.240 0.367 / 0.390
BlenderBot + All (P-Traits) 10.75 / 10.39 3.22 / 3.65 0.232 / 0.247 0.367 / 0.389
BlenderBot + All (E-Traits) 10.72 / 10.35 3.20 / 3.62 0.234 / 0.247 0.369 / 0.391

Table 2: Language modelling results on the seen/unseen and frequent/rare topic portions of WOW and TC test sets.

6.2 Evaluating Language Modelling

For automatically evaluating the language mod-
elling capabilities of our proposed model we com-
pute and compare language modelling perplexity,
BLEU-4 (Papineni et al., 2002) and ROUGE-L
(Lin, 2004) scores. Since BLEU and ROUGE are
known to be incomplete metrics, as they don’t com-
pletely capture sentence semantics, we also com-
pare the BLEURT (Sellam et al., 2020) scores. We
report our results and compare with baselines in
Table 2. For both WOW and TC, we consider
the models void of any control codes, using only
conversation context and facts as the internal base-
line (underlined), and compare against variations
containing both the Pandora and Essays based per-
sonality and intent based control codes, All (P-
Traits), and All (E-Traits) respectively. As ref-
erence, we also include results of the end-to-end
generative model (E2E) with gold knowledge that
was introduced in the original WOW paper (Dinan
et al., 2019), and the GPT-2 and T5 based knowl-
edge grounded models proposed by (Rashkin et al.,
2021) for WOW. For TC, we include results from
the neural response generator (NRG) model intro-
duced in the original paper (Gopalakrishnan et al.,
2019), the follow up work using policy driven ap-
proach (PD-NRG) (Hedayatnia et al., 2020), and
the recent work by Proto (Saha et al., 2021). For
each dataset and model type in Table 2, we high-
light in bold the best performing model by each
metric, and underline the metric wise best perform-
ing models for a dataset. We observe: (i) In com-
parison to both the internal and external baselines,
conditioning on intent and personality trait based

control codes consistently yields better automatic
evaluation scores. We reason that the introduc-
tion of control codes not only provides additional
supervision signals, but also helps the language
model to better factorize the probability distribu-
tions of the words. (ii) Using BlenderBot yields bet-
ter perplexity scores, at the cost of precision/recall
based metrics. We reason that although the exten-
sive pre-training of BlenderBot on the BST dataset
(Smith et al., 2020) helps in language modelling,
its low vocabulary size of 8,008 tokens compared
to 50,265 of BART, hinders adapting to the new
datasets. (iii) Both the Essays and Pandora based
codes work well; The Pandora based codes seem
to work slightly better for WOW, while the Es-
says based codes perform better for TC. We reason
that as depicted in Table 12, the Pandora based
personality classifier identifies more instances of
openness compared to the Essays based classifier.
Since being objective is associated with the trait of
openness, and the WOW dataset has 71% objective
exchanges, which is more compared to 51% in the
TC dataset (Table 7), it works better for WOW.

6.3 Evaluating Stylistic Control

We introduce two automatic metrics for comparing
the intent and personality traits exhibited by the
generated response and the golden response: (i)
Intent F1: Re-using the intent classifier used for
automatic annotation from section 4.2.2, we predict
the intents exhibited by each of the the generated
responses, and calculate the F1 score between the
exhibited intents and the actual desired intent. We
further derive a single metric by averaging the F1
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score for all classes. (ii) Trait Correlation: Re-
using the Big-5 personality trait intensity prediction
models from section 4.2.2, we predict the intensity
of each trait exhibited by the generated response,
and compute the Pearson’s correlation between the
actual intensity from the golden response. We fur-
ther average the correlation score across all the 5
traits to derive a single metric. Table 3 reports the
results; For each dataset and model type we high-
light the best performing model by each metric in
bold, and underline the metric wise best performing
models for each dataset. We observe: (i) Models
that utilize the stylistic control codes during re-
sponse generation yield better results, compared
to the baseline versions which don’t use any con-
trol codes. This indicates the effectiveness of our
proposed method of controlling the response gener-
ation using stylistic control codes. (ii) Compared to
using Pandora based personality codes, responses
from models incorporating the Essays based con-
trol codes correlate more to the desired response
trait. (iii) In majority cases, responses from models
incorporating the Pandora and intent based control
codes confirm more to the desired response intent,
compared to models using the Essays based control
codes along with intent for controlling personality.
This hints towards possible synergic relationships
between the personality and intent based codes.

Corpus Model Intent F1 Trait Correl.

WOW

BART 0.300 / 0.319 0.850 / 0.824
BART + All (P-Traits) 0.669 / 0.683 0.858 / 0.836
BART + All (E-Traits) 0.634 / 0.639 0.870 / 0.848
BlenderBot 0.316 / 0.321 0.825 / 0.804
BlenderBot + All (P-Traits) 0.466 / 0.469 0.828 / 0.810
BlenderBot + All (E-Traits) 0.480 / 0.491 0.835 / 0.818

TC

BART 0.264 / 0.256 0.726 / 0.763
BART + All (P-Traits) 0.505 / 0.523 0.731 / 0.765
BART + All (E-Traits) 0.465 / 0.468 0.748 / 0.782
BlenderBot 0.267 / 0.261 0.691 / 0.733
BlenderBot + All (P-Traits) 0.518 / 0.517 0.720 / 0.749
BlenderBot + All (E-Traits) 0.517 / 0.513 0.737 / 0.768

Table 3: Stylistic control results on the seen/unseen and
frequent/rare topic portions of WOW and TC.

6.4 Ablation Study
We further perform the following ablation study
with diverse combinations of the stylistic control
codes for observing the effect of each type of code
independently: (i) Intent: Using only intent based
control codes in the decoder. (ii) C-Traits: Using
only corpus based traits in the encoder, without
any control codes in the decoder. (iii) P / E-Traits:
Using only Pandora or Essays based personality
control codes in the decoder. (iv) Intent + P / E-

Traits: Using both intent and personality control
codes in the decoder. (v) All: Using both intent
and personality control codes in the decoder, along
with corpus traits in the encoder. Table 9 reports the
results of the ablation study. We observe: (i) Using
intent as stylistic control code mostly yields better
results for all metrics, compared to the baseline. (ii)
Leveraging the corpus traits in the encoder alone,
without incorporating any control codes in the de-
coder mostly yields poor results for all metrics. (iii)
Incorporating both intent and personality codes in
the decoder mostly yields best results across all
metrics. The addition of corpus based traits in the
encoder further improves the results in some cases.

6.5 Human Evaluation for Relevance

Since the ultimate desired impact of our model is
to find use in human facing systems, we further
perform human evaluation to qualitatively com-
pare the responses generate by the trained models.
Considering only the BART based models as they
resulted in better BLEU and ROUGE scores in ta-
ble 2, we sampled 100 examples from the test sets
of each dataset, and utilized Amazon Mechanical
Turk for performing human evaluation. An initial
manual evaluation by us revealed that almost all
the generated candidates were fluent, which can be
attributed to the extensive pre-training of the state-
of-the-art base language models. This is further
corroborated by the human evaluations performed
by Rashkin et al. (2021), where they observed flu-
ency to be the least dimension of variation. Hence,
employing 2 evlauators per sample, we evaluated
the relevance of each candidate responses to the
conversation context on a Likert scale from 1 to
5, where a rating of 1 signifies low relevance and
5 signifies high relevance. More details about the
annotation framework is presented in the appendix
A.4. Table 5 includes the averaged results from the
human evaluation. We highlight the best scoring
model per dataset in bold, and perform Welch’s
t-test to mark models which perform significantly
lower than the best score with asterisks. Further,
we calculate the inter annotator agreement using
Krippendorff’s alpha and find that the agreement to
be > 0.90, indicating a high agreement. The results
indicate that responses generated by controlling
the personality traits were deemed more relevant
to the conversation. Additionally, incorporating
intent based stylistic codes along with personality
achieves best results for the WOW dataset.
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ID Conversation Context Generated Stylistic Response Generated Variation Response Style

1
Agent 1: Fred missed the penalty, and
was dropped from the team. I wonder
what he is going through.

i’m sorry to hear that. i’m sure
he’s going through some tough
times. i hope he’s ok.

i’m not sure what he’s going
through right now. i’m sure he
is struggling.

Strong Agr

2

Agent 1: do you want to go on a hike
this weekend? Agent 2: sure. where
are we going? Agent 1: how about
Yosemite?

yosemite national park. it’s surr-
ounded on the southeast by the
Sierra national forest and on the
northwest by the Stanislaus nat-
ional forest. i’ve never been
there.

yosemite is a beautiful place.
i would love to hike there.

Objectivity

3 Agent 1: do you like to party? i love to party! do you? i do not. do you?
Strong Agr
Strong Ext
Weak Neu

4
Agent 1: how’s it going, do you follow
football? depending on the country it
could refer to rugby or soccer.

i do follow football. it’s one of
the four major professional sp-
orts leagues in north america
and the highest professional
level of american football in the
world. how about you?

i don’t really follow football. i
do know that the nfl is one of
the four major professional sp-
orts leagues in north america
and the highest professional
level of american football in the
world.

Strong Agr
Strong Ext
Weak Neu

5

Agent 2: i know! and brady won the
super bowl in the first year he was a
starter! Agent 1: wasn’t the only other
quarterback to do that kurt warner?

yes, he was! i think he was the
first to win a super bowl. i won-
der if he ever played in the nfl?
did you know those huge amer-
ican flags at football stadiums
weigh 1,100 pounds and cost
$50,000 to make?

no, i’m not sure, but i do know
that those huge american flags
at football stadiums weigh
1,100 pounds and cost $50,000
to make!

Strong Agr
Strong Opn
Strong Ext

6

Agent 2: congrats! that’s awesome!
when i fish in my local lake, i usually
use lures instead of bait. it’s easier
and the fish seem to respond just as
well. Agent 1: well we definitely got
our money’s worth, but it was so long
just to get out there, and it was cold.

that’s true. some hobbyists
even make handmade tackle
themselves, using plastic lures
and artificial flies. that’s pretty
cool!

that’s a shame! i’m glad you di-
dn’t have to use plastic lures or
artificial flies to catch the red fish.

Strong Agr
Strong Opn
Strong Con
Strong Ext
Weak Neu
Objectivity

Table 4: Generated samples with different combinations of stylistic control codes.

Model TC WOW
BART 3.54* 3.44**

BART + Intent 3.51* 3.61
BART + Big-5 Traits 3.73 3.58

BART + Intent + Big-5 Traits 3.47* 3.45**
BART + All 3.5** 3.71

Table 5: Human evaluation results: *, ** indicates that
this result is significantly different from the best result in
that column with p-value < 0.05 and < 0.02 respectively.

6.6 Discussion

Table 4 showcases a few style controlled responses
generated by our proposed models. For each con-
versation context, we leverage the control code in
the style column and generate the stylistic response.
We further contrast the stylistic response against a
variation response generated either using randomly
selected control codes or the baseline model with-
out any stylistic codes. Example 1 demonstrates
how incorporating strong agreeableness as stylis-
tic code results in the response exuding empathy,
in comparison to the variation response. Example
2 demonstrates the model’s capability of generat-
ing objective response, by leveraging external facts.
Through examples 3-6 we demonstrate the model’s
capability of simultaneously incorporating multi-
ple stylistic codes during generation. Examples 3-6

demonstrate how increasing agreeableness results
in a positive stance in the response. We also notice
in examples 4 and 5 how increasing extraversion
results in the model asking open-ended questions,
thus portraying an extroverted and outgoing per-
sonality. Further, in examples 4 and 6 we notice
the effect of controlling neuroticism, where the
variant response is not consistent compared to the
stylistic controlled response. Overall, we observe
that utilizing our proposed method, it is possible
to control the style of the response using stylistic
control codes, and further combine different codes
to generate compounded stylistic responses.

7 Conclusion

Here we experiment with training end-to-end meth-
ods for controlling the response style in generative
conversational models. We believe incorporating
such methods in human facing dialogue systems
should benefit the system by providing it with more
control. Using combinations of Big-5 personality
traits and dialogue intent based stylistic control
codes during language modelling, we are able to
successfully control the style of a response as de-
sired, the efficacy of which is further established
by the achieved results. Additionally, we engender
two annotated dialogue corpora with intents and
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personality traits for use by the community.
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A Appendix

A.1 Big-5 Personality Trait Annotation

We utilized the Pandora and Essays datasets to
train automatic personality predictors. The Pan-
dora dataset consists of multiple Reddit posts for
a user, along with the actual Big-5 trait intensities
for the user, whereas the Essays dataset consist of
essays written by psychology students, with actual
Big-5 trait labels, which we converted to intensi-
ties, for maintaining parity between the datasets.
For both the datasets, we tokenized the text into
sentences, and maintained a list of sentences for
each user. We further cleansed and normalised the
sentence lists, and preserved sentences containing
ASCII characters with 3 to 50 tokens. In order
to make the length distribution of the training ex-
amples similar to conversation datasets, for each
user we derived m non-overlapping samples by
randomly selecting and concatenating k sentences,
where k was randomly selected to vary between
2 and 30. The target intensities for each of the
Big-5 traits were kept same for the m samples, and
were scaled to vary between -1 and 1. Overall, we
derived 7,230 train and 804 validation examples
from Essays, and 75,172 training, and 39,447 val-
idation examples from the Pandora dataset. We
incorporated fully connected layers followed by
Tanh activation on top of RoBERTa base, to pre-
dict all the 5 trait intensities simultaneously, and
trained the models to minimize mean squared error
loss. With the intention of comparing the quality
and usefulness of the automatic personality anno-
tations, we trained 2 versions of the models, one

for each personality dataset. In order to leverage
pre-training, the model trained on Essays dataset
was initialized from a checkpoint of the Pandora
model. Both the models were trained with a batch
size of 32, and learning rate of 2E-5, till validation
loss ceased improving. We leveraged AdamW op-
timizer for optimizing the model parameters, and
resorted to mixed precision training to reduce the
training time. In Table 6, for each trait we report
Pearson correlation between the predicted intensity
and the actual values for both the datasets. Using 0
as a threshold, we further binarize the predicted in-
tensities and actual labels, and report classification
F1.

Trait
Essays Pearson

Correl.
Essays

F1
Pandora Pearson

Correl.
Pandora

F1
Agr 0.228 0.640 0.813 0.832
Opn 0.321 0.620 0.813 0.902
Con 0.276 0.578 0.797 0.776
Ext 0.255 0.568 0.808 0.799

Neu 0.249 0.658 0.799 0.848

Table 6: Correlation and F1 metrics on the respective
validation dataset for the Pandora based and Essays
based model.

A.2 Fact Selection Example Creation

During fact selection, for both the Topical Chat and
Wizard of Wikipedia we presented 5 external facts
per example to choose from, for each interlocutor
turn. The 5 facts comprised of the golden fact(s)
required for generating the current response, and
the remaining were randomly sampled from the
facts which are available to the interlocutor. Table 7
contains the percentage distribution of the positive
class for fact selection, and for each dialogue intent.

Corpus Split Subj Obj
Subj

Q
Obj
Q

Fact

WOW Seen 46% 71% 6% 2% 18%
WOW Unseen 43% 71% 6% 2% 18%

TC Frequent 68% 51% 12% 6% 5%
TC Rare 70% 52% 13% 4% 7%

Table 7: Percentage distribution of positive class for
each intent type, and fact selection in Wizard of Wikpe-
dia and Topical Chat.

A.3 Additional Results

Table 8 reports the F1 scores of the best perform-
ing models for predicting each of the additional
tasks in the multi-task learning framework. Table 9
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Type Model (WOW) F1 (WOW) Model (TC) F1 (TC)
Fact BART + Intent / BART + All (P-Traits) 0.50 / 0.44 BlenderBot / BlenderBot 0.13 / 0.12
Subj BART + All (E-Traits) / BART + All (E-Traits) 0.75 / 0.73 BART + All (E-Traits) / BART + Intent + E-Traits 0.83 / 0.84
Obj BART + All (P-Traits) / BART + All (P-Traits) 0.86 / 0.86 BART + Intent / BlenderBot + All (E-Traits) 0.69 / 0.70

Subj Q BlenderBot + E-Traits / BlenderBot + E-Traits 0.58 / 0.59 BART + E-Traits / BART + E-Traits 0.63 / 0.63
Obj Q BlenderBot + E-Traits / BlenderBot + E-Traits 0.58 / 0.60 BART + E-Traits / BART + E-Traits 0.61 / 0.64

Agr BART + All (E-Traits) / BART + All (E-Traits) 0.61 / 0.58 BART + Intent + E-Traits / BART + E-Traits 0.64 / 0.66
Opn BART + All (E-Traits) / BART + All (E-Traits) 0.46 / 0.44 BlenderBot + All (E-Traits) / BlenderBot + All (E-Traits) 0.47 / 0.46
Con BART + All (E-Traits) / BART + All (E-Traits) 0.61 / 0.62 BART + Intent + E-Traits / BART + Intent + E-Traits 0.63 / 0.63
Ext BART + All (E-Traits) / BART + All (E-Traits) 0.61 / 0.62 BART + All (E-Traits) / BART + Intent + E-Traits 0.62 / 0.65

Neu BART + All (E-Traits) / BART + All (E-Traits) 0.62 / 0.61 BART + Intent + E-Traits / BART + All (E-Traits) 0.61 / 0.66

Table 8: F1 scores of the best performing planning models for each policy component, in both the seen/unseen splits
of Wizard of Wikipedia (WOW), and frequent/rare splits of Topical Chat (TC) test sets.

Corpus Model Perplexity BLEU 4 RougeL BLEURT Intent F1 Trait Correl.

WOW

BART 9.74 / 10.53 8.44 / 8.24 0.341 / 0.342 0.491 / 0.488 0.300 / 0.319 0.85 / 0.824
BART + Intent 9.43 / 10.23 8.69 / 7.96 0.338 / 0.335 0.495 / 0.492 0.469 / 0.486 0.848 / 0.824
BART + C-Traits 9.76 / 10.52 8.32 / 8.11 0.338 / 0.338 0.487 / 0.486 0.297 / 0.300 0.849 / 0.826
BART + P-Traits 9.53 / 10.27 8.72 / 8.45 0.344 / 0.347 0.496 / 0.492 0.402 / 0.406 0.855 / 0.827
BART + E-Traits 9.52 / 10.27 8.99 / 8.58 0.345 / 0.349 0.496 / 0.494 0.395 / 0.397 0.866 / 0.844
BART + Intent + P-Traits 9.41 / 10.21 9.22 / 8.44 0.345 / 0.342 0.502 / 0.496 0.618 / 0.636 0.856 / 0.833
BART + Intent + E-Traits 9.37 / 10.14 9.25 / 8.51 0.346 / 0.345 0.502 / 0.500 0.654 / 0.656 0.866 / 0.849
BART + All (P-Traits) 9.37 / 10.13 9.01 / 8.60 0.349 / 0.349 0.502 / 0.502 0.669 / 0.683 0.858 / 0.836
BART + All (E-Traits) 9.43 / 10.23 9.20 / 8.79 0.348 / 0.347 0.506 / 0.501 0.634 / 0.639 0.870 / 0.848
BlenderBot 7.48 / 8.54 6.31 / 4.77 0.302 / 0.282 0.462 / 0.444 0.316 / 0.321 0.825 / 0.804
BlenderBot + Intent 7.35 / 8.38 6.52 / 5.29 0.311 / 0.297 0.462 / 0.449 0.570 / 0.564 0.834 / 0.809
BlenderBot + C-Traits 7.49 / 8.54 6.33 / 5.00 0.301 / 0.286 0.460 / 0.447 0.320 / 0.329 0.825 / 0.801
BlenderBot + P-Traits 7.42 / 8.44 6.24 / 4.90 0.306 / 0.293 0.456 / 0.445 0.369 / 0.370 0.831 / 0.809
BlenderBot + E-Traits 7.41 / 8.42 6.37 / 4.89 0.309 / 0.293 0.459 / 0.445 0.359 / 0.369 0.840 / 0.818
BlenderBot + Intent + P-Traits 7.37 / 8.38 6.26 / 5.01 0.307 / 0.295 0.455 / 0.442 0.472 / 0.485 0.833 / 0.811
BlenderBot + Intent + E-Traits 7.36 / 8.37 6.29 / 5.04 0.308 / 0.295 0.457 / 0.444 0.508 / 0.500 0.841 / 0.817
BlenderBot + All (P-Traits) 7.38 / 8.39 6.22 / 4.90 0.305 / 0.294 0.450 / 0.437 0.466 / 0.469 0.828 / 0.810
BlenderBot + All (E-Traits) 7.37 / 8.38 6.22 / 4.77 0.304 / 0.294 0.451 / 0.441 0.480 / 0.491 0.835 / 0.818

TC

BART 13.81 / 14.71 3.62 / 4.10 0.235 / 0.250 0.365 / 0.388 0.264 / 0.256 0.726 / 0.763
BART + Intent 13.25 / 14.12 3.62 / 4.30 0.234 / 0.251 0.373 / 0.399 0.359 / 0.377 0.723 / 0.767
BART + C-Traits 13.73 / 14.68 3.49 / 4.13 0.233 / 0.251 0.361 / 0.390 0.263 / 0.267 0.725 / 0.759
BART + P-Traits 13.59 / 14.57 3.60 / 4.12 0.236 / 0.253 0.363 / 0.390 0.286 / 0.317 0.731 / 0.766
BART + E-Traits 13.57 / 14.53 3.52 / 4.08 0.237 / 0.252 0.364 / 0.390 0.290 / 0.299 0.733 / 0.771
BART + Intent + P-Traits 13.25 / 14.14 3.69 / 4.20 0.239 / 0.252 0.364 / 0.392 0.461 / 0.471 0.729 / 0.773
BART + Intent + E-Traits 13.21 / 14.10 3.75 / 4.38 0.246 / 0.259 0.377 / 0.403 0.459 / 0.470 0.747 / 0.783
BART + All (P-Traits) 13.21 / 14.10 3.72 / 4.37 0.242 / 0.259 0.370 / 0.400 0.505 / 0.523 0.731 / 0.765
BART + All (E-Traits) 13.22 / 14.02 3.73 / 4.28 0.246 / 0.258 0.376 / 0.403 0.465 / 0.468 0.748 / 0.782
BlenderBot 11.09 / 10.75 3.13 / 3.75 0.223 / 0.240 0.367 / 0.390 0.267 / 0.261 0.691 / 0.733
BlenderBot + Intent 10.79 / 10.45 3.41 / 3.85 0.230 / 0.247 0.373 / 0.396 0.472 / 0.480 0.713 / 0.747
BlenderBot + C-Traits 11.09 / 10.75 3.22 / 3.75 0.222 / 0.240 0.365 / 0.390 0.273 / 0.268 0.695 / 0.737
BlenderBot + P-Traits 11.01 / 10.65 3.16 / 3.66 0.227 / 0.243 0.366 / 0.390 0.326 / 0.336 0.710 / 0.745
BlenderBot + E-Traits 10.98 / 10.61 3.18 / 3.66 0.229 / 0.246 0.369 / 0.391 0.329 / 0.334 0.732 / 0.766
BlenderBot + Intent + P-Traits 10.76 / 10.41 3.19 / 3.64 0.232 / 0.247 0.368 / 0.390 0.524 / 0.531 0.715 / 0.753
BlenderBot + Intent + E-Traits 10.73 / 10.37 3.13 / 3.66 0.234 / 0.247 0.370 / 0.392 0.513 / 0.525 0.733 / 0.770
BlenderBot + All (P-Traits) 10.75 / 10.39 3.22 / 3.65 0.232 / 0.247 0.367 / 0.389 0.518 / 0.517 0.720 / 0.749
BlenderBot + All (E-Traits) 10.72 / 10.35 3.20 / 3.62 0.234 / 0.247 0.369 / 0.391 0.517 / 0.513 0.737 / 0.768

Table 9: Ablation study on the seen/unseen and frequent/rare topic portions of the Wizard of Wikipedia (WOW),
and Topical Chat (TC) test sets. Best performing models are highlighted in bold.

contains the ablation study results. For each conver-
sation corpus, and personality dataset combination,
Table 12 lists the percentage distribution of strong
and weak categories (seperated by ‘/’) for each
Big-5 trait, by each split of the dataset. Table 13
contains results without access to the golden policy
consisting of control codes during inference. The
model leverages the predicted control codes as pol-

icy for response generation. Figure 3 plots the con-
text length wise style adaptation of the generated
response, which hints lengthier context facilitates
better adaptation to the desired response style.

A.4 Amazon Mechanical Turk for Evaluation

We leveraged Amazon Mechanical Turk (AMT) in
order to perform human evaluations on our model
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Intent Percentage
Occurance

Annotator
Agreement

State Knowledge Fact 0.33 0.95
State Opinion 0.30 0.81

State Personal Fact 0.13 1.00
Request (Opinion/Knowledge

Fact/Personal Fact)
0.13 1.00

Others 0.11 1.00

Table 10: Intent Automatic Annotation Evaluation.

Personality
Trait

Pandora
Occurance

Pandora
Agreement

Essays
Occurance

Essays
Agreement

agreeableness 0.195 0.696 0.197 0.760
openness 0.229 0.630 0.252 0.563

conscientiousness 0.169 0.550 0.181 0.391
extraversion 0.186 0.364 0.189 0.750
neuroticism 0.220 0.308 0.181 0.435

Table 11: Personality Trait Automatic Annotation Eval-
uation.

Figure 3: Turn length wise adaptation to the desired
response style, collated from all the full version models.

response. We set up human intelligence task (HIT)
in the AMT platform, with two evaluators per ex-
ample and each task worth $0.01. The evaluators
were provided with clear instructions on what to
annotate and how to annotate the examples. The
task comprised of reading a conversation context,
and rating 5 different responses on a Likert scale
of 1 to 5, where the responses were generated by
different models, unknown to the annotator. Figure
4 illustrates a sample screenshot of the HIT inter-
face along with the instructions used for collecting
the evaluations.
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Seen/ Frequent Topic Unseen/ Rare Topic

Corpus
Personality

Corpus
Agr Opn Con Ext Neu Agr Opn Con Ext Neu

WOW
Pandora 19/20 80/8 19/19 17/20 19/20 20/18 81/8 17/20 12/24 22/15

Essays 22/15 78/10 20/17 21/15 16/20 21/12 79/10 15/18 20/16 14/20

TC
Pandora 47/18 72/10 29/25 39/19 20/33 20/38 67/16 22/37 12/46 37/18

Essays 40/12 61/23 38/14 49/8 7/49 22/29 65/17 14/41 11/45 40/17

Table 12: Percentage of Strong/Weak categories for all traits in each chat corpus, split by each personality corpus.

Corpus Model BLEU 4 RougeL BLEURT

WOW

BART 8.44 / 8.24 0.341 / 0.342 0.491 / 0.488
BART + Intent 8.63 / 7.87 0.334 / 0.332 0.495 / 0.491

BART + C-Traits 8.32 / 8.11 0.338 / 0.338 0.487 / 0.486
BART + P-Traits 8.69 / 8.42 0.343 / 0.342 0.494 / 0.489
BART + E-Traits 8.94 / 8.60 0.342 / 0.344 0.495 / 0.490

BART + Intent + P-Traits 9.41 / 8.47 0.342 / 0.336 0.499 / 0.490
BART + Intent + E-Traits 8.86 / 8.12 0.337 / 0.332 0.497 / 0.491

BART + All (P-Traits) 9.09 / 8.60 0.343 / 0.343 0.496 / 0.498
BART + All (E-Traits) 9.26 / 8.82 0.340 / 0.343 0.499 / 0.495

BlenderBot 6.31 / 4.77 0.302 / 0.282 0.462 / 0.444
BlenderBot + Intent 6.36 / 5.20 0.301 / 0.287 0.457 / 0.446

BlenderBot + C-Traits 6.33 / 5.00 0.301 / 0.286 0.460 / 0.447
BlenderBot + P-Traits 6.28 / 4.98 0.306 / 0.289 0.453 / 0.441
BlenderBot + E-Traits 6.34 / 4.90 0.305 / 0.288 0.457 / 0.441

BlenderBot + Intent + P-Traits 6.32 / 4.99 0.301 / 0.289 0.450 / 0.440
BlenderBot + Intent + E-Traits 6.21 / 4.99 0.300 / 0.288 0.452 / 0.441

BlenderBot + All (P-Traits) 6.29 / 4.75 0.301 / 0.287 0.443 / 0.430
BlenderBot + All (E-Traits) 6.18 / 4.77 0.299 / 0.286 0.448 / 0.433

TC

BART 3.62 / 4.10 0.235 / 0.250 0.365 / 0.388
BART + Intent 3.40 / 4.00 0.228 / 0.243 0.369 / 0.397

BART + C-Traits 3.49 / 4.13 0.233 / 0.251 0.361 / 0.390
BART + P-Traits 3.54 / 4.10 0.233 / 0.250 0.362 / 0.389
BART + E-Traits 3.40 / 4.01 0.233 / 0.248 0.363 / 0.388

BART + Intent + P-Traits 3.32 / 3.92 0.227 / 0.240 0.361 / 0.389
BART + Intent + E-Traits 3.29 / 4.00 0.229 / 0.243 0.371 / 0.397

BART + All (P-Traits) 3.36 / 3.96 0.227 / 0.242 0.366 / 0.396
BART + All (E-Traits) 3.54 / 4.14 0.231 / 0.245 0.372 / 0.397

BlenderBot 3.13 / 3.75 0.223 / 0.240 0.367 / 0.390
BlenderBot + Intent 3.12 / 3.73 0.215 / 0.233 0.363 / 0.387

BlenderBot + C-Traits 3.22 / 3.75 0.222 / 0.240 0.365 / 0.390
BlenderBot + P-Traits 3.18 / 3.71 0.222 / 0.240 0.363 / 0.387
BlenderBot + E-Traits 3.11 / 3.52 0.221 / 0.239 0.364 / 0.385

BlenderBot + Intent + P-Traits 3.03 / 3.59 0.214 / 0.228 0.361 / 0.382
BlenderBot + Intent + E-Traits 3.04 / 3.69 0.213 / 0.230 0.362 / 0.384

BlenderBot + All (P-Traits) 3.06 / 3.50 0.214 / 0.229 0.359 / 0.382
BlenderBot + All (E-Traits) 3.03 / 3.52 0.213 / 0.229 0.359 / 0.385

Table 13: Experimental results and ablation study on the seen/unseen and frequent/rare topic portions of the Wizard
of Wikipedia (WOW), and Topical Chat (TC) test sets, using golden facts and model predicted stylistic control
codes.
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Figure 4: Sample screenshot from AMT HIT task.
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Abstract

Conversational Recommendation Systems rec-
ommend items through language based interac-
tions with users. In order to generate naturalis-
tic conversations and effectively utilize knowl-
edge graphs (KGs) containing background in-
formation, we propose a novel Bag-of-Entities
loss, which encourages the generated utter-
ances to mention concepts related to the item
being recommended, such as the genre or direc-
tor of a movie. We also propose an alignment
loss to further integrate KG entities into the re-
sponse generation network. Experiments on the
large-scale REDIAL dataset demonstrate that
the proposed system consistently outperforms
state-of-the-art baselines.

1 Introduction

Conversational recommendation systems (CRS)
have received increasing attention from the Natural
Language Processing community (Li et al., 2018;
Chen et al., 2019; Zhou et al., 2020a; Sarkar et al.,
2020; Liu et al., 2020; Zhou et al., 2020b; Hay-
ati et al., 2020). CRS aims to recommend items,
such as movies or songs, in naturalistic interactive
conversations with the user. This interactive form
allows the system to provide recommendations tai-
lored to preferences provided by the user at the
moment.

A crucial issue of CRS is to extract user prefer-
ences from the conversation, which often requires
background information provided by knowledge
graphs (KGs). As an example, in Figure 1, the
user mentions two movies that belong to the horror
genre. To this end, some existing studies (Chen
et al., 2019; Zhou et al., 2020a) leverage knowledge
graphs to understand user intentions.

We observe that when humans recommend items
to friends, they usually describe attributes of the
item. For example, to recommend a movie, they
may mention the director or actors. Such informa-
tion can be easily extracted from the knowledge

Hi! What kind of movies do you like?

Hi, I am looking for a movie 
recommendation. When I was 
younger, I really enjoyed the A 
Nightmare on Elm Street (1984)

I also enjoyed watching The Last 
House on the Left(1972).

Oh, you like scary movies? I recently 
watched Happy Death Day(2017). It 
was good for a new “scary movie”.

Chatbot

User

User

Chatbot

Figure 1: An example of a conversation between a user
and the Chatbot for movie recommendation.

graph, but has not been well utilized by existing
approaches. To emulate naturalistic conversations,
we propose a Bag-of-Entities (BOE) loss, which
encourages the generated utterances to mention
concepts related to the item. Moreover, we propose
an alignment loss that ties the word embeddings to
the entity embeddings.

Experiments demonstrate that the proposed two
losses improve model performance. The proposed
the Knowledge-Enriched Conversational Recom-
mendation System (KECRS) consistently outper-
forms state-of-the-art CRSs on the large-scale RE-
DIAL dataset (Li et al., 2018).

2 Related work

We briefly review work on conversational recom-
mendation systems and conversational characters
in e-commerce settings. A number of works on con-
versational recommendation systems focus solely
on interactive recommendation rather than lan-
guage understanding (Christakopoulou et al., 2016,
2018; Sun and Zhang, 2018; Zhang et al., 2018;
Lei et al., 2020a,b; Zou et al., 2020; Xu et al.,
2021; Zhang et al., 2022). In contrast, a second
category of works aims to provide both accurate
interactive recommendations and generate natural
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Recommendation Network

Entity Sequence 𝑬

Look Up 𝐻 Self Attention

Hidden Representation 𝒄𝑬
Graph Neural 

Network

Entity Embedding 𝑯 Knowledge graph
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0.9 0.7

…

Encoder Decoder

Vocabulary Embedding 𝑾𝒗

Conversation 
context

Entity 
Selection

Generation

Hidden Representation 𝒄𝑬

KG Entity Distribution

Vocabulary Distribution

Embedding 
Alignment

Response Generation Network

Predict: You’ll have to check out It (2017) if you like horror movies with murder mystery. 

Figure 2: The overall framework of the proposed KECRS model.

and human-like responses (Li et al., 2018; Chen
et al., 2019; Zhou et al., 2020a; Sarkar et al., 2020;
Liu et al., 2020; Zhou et al., 2020b; Hayati et al.,
2020). Finally, research on conversational charac-
ters for e-commerce has the broad goal of building
a complete shopping assistant that can answer a
variety of questions in addition to recommenda-
tion (Li et al., 2017; Yang et al., 2018; Fu et al.,
2020; Song et al., 2021).

3 Approach

The overall goal of a conversational recommenda-
tion system is to identify an item (e.g., a movie, a
song, or a piece of merchandise) that the user will
likely interact with and suggest the item to the user
in the form of natural language conversations.

Formally, we represent the historic conversation
X = ⟨x1, x2, ..., xn⟩ as a sequence of n utterances
xi. The knowledge graph G = {(vh, r, vt)} is a set
of entities E and a set of relationships r between
the head entity vh ∈ E and the tail entity vt ∈ E.

The conversational recommendation task is to
predict the next utterance xn+1 using the recom-
mendation network f(X,G) and the response gen-
eration network g(X,G, f(X,G)). f(X,G) pre-
dicts the next item to recommend to the user,
whereas g(X,G, f(X,G)) predicts the utterance
xn+1 one word at a time.

Figure 2 shows the overall structure of our pro-
posed method, the Knowledge-Enriched Conversa-
tional Recommendation System (KECRS).

3.1 Recommendation Network
First, we exhaustively match each word in the con-
versational history X with the name of each entity
in the KG. In this way, we identify K entities from
the history and sequence them according to their
original positions. Next, we apply a graph con-
volutional network, R-GCN (Schlichtkrull et al.,
2017) to encode the entire KG and obtain embed-
dings for each KG entity node. The D-dimensional
entity embeddings of the K entity form the ma-
trix HE ∈ RK×D. Subsequently, we apply an
attention operation where the attention vector α is
computed by 2 fully connected (FC) layers.

α = softmax
(
Wktanh(WqH

⊤
E)

)
,

cE = αHE ,
(1)

where Wq and Wk are learnable parameters. The
resulting cE ∈ RD is a condensed representation
of entities appearing in the conversational history.

The recommendation module classifies cE di-
rectly into one of the items. We directly take the
entity embedding ei from the R-GCN network as
the representation of the item. The probability of
recommending item i is computed with softmax:

Prec(i) ∝ exp(c⊤Eei). (2)

The module is trained using the cross-entropy loss.
To avoid the model recommending the same movie
that the user might have just mentioned, we only
consider as a ground-truth recommendation the
movie that is first time to be mentioned by the
recommender in the conversation.
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3.2 Response Generation Network

The response generation module predicts the ut-
terance to the user word by word. We use the
classic encoder-decoder Transformer architecture
(Vaswani et al., 2017), where the encoder encodes
the entire conversational history word by word.

At decoding time step j, the output of the Trans-
former decoder sj is concatenated with the entity
representation cE and goes through two fully con-
nected layers before the softmax function. The
probability distribution over the vocabulary is

Pres = softmax
(
WvWa[sj ; cE ] + b

)
, (3)

where Wv is the word embedding matrix shared
with the encoder. Wa is a trainable linear pro-
jection to align the dimensions, and b is the bias.
We train the module using cross-entropy at every
decoder time step.

To separate movie names from other words in
the conversation, for every movie name we create
specialized tokens in the vocabulary. For example,
the token for the movie name It is separate from
the word token it. This is feasible as the dataset,
REDIAL, has explicitly represented movie names
with special strings.

3.3 Bag-of-Entities Loss

Although the response generation module trained
using per-step cross-entropy is capable of recom-
mending items, it rarely mentions concepts related
to the recommended item. We postulate that men-
tioning related entities will produce natural con-
versations. For example, when recommending the
movie It, one may want to mention that it is a horror
movie based on a book by Stephen King.

For this purpose, we introduce the Bag-of-Entity
(BOE) loss, which encourages the decoder state
[sj ; cE ] to contain additional information about
first-order neighbors of the ground-truth recom-
mendation on the KG.

First, at every time step, we compute a score
rj ∈ RM for all M entities in the knowledge graph,

rj = HWb[sj ; cE ] + bent, (4)

where H contains the embeddings of all KG enti-
ties, as produced by the R-GCN. Wb is a trainable
matrix for dimension alignment and bent the bias.

As we do not constrain exactly which word in
the response should contain the information, we
sum up the word-level scores and then apply the

component-wise sigmoid function. The probability
that entity m is mentioned in the response is thus

PBOE(m) = sigmoid(
L∑

j=1

rjm), (5)

where L is the length of the response and rjm is
the mth component of rj .

We apply a binary cross-entropy loss for each
KG entity. The ground-truth label is 1 if the entity
is a first-order neighbor of the recommended item
on the knowledge graph and 0 otherwise.

3.4 Aligning Word and Entity Embeddings
We create two types of tokens in the vocabulary
V of the response generation network. The first
type corresponds to a plain word appearing in the
conversation text. The second type represents an
entity that appears in the conversation and in the
knowledge graph.

To tie the token embeddings of the second type
to the R-GCN encoding of the knowledge graph,
we propose the alignment loss. For a conversation,
we use the entity representation cE in Eq. (1) to
represent all entities in the conversation and calcu-
late the similarity score between cE and each word
embedding,

s = Wv[E]WccE + balign, (6)

where Wv[E] is the matrix resulting from selecting
the rows of Wv corresponding to entity tokens only.
Wc is a trainable matrix and balign is the bias. The
alignment loss is the mean square error between
the s and an indicator vector q ∈ {0, 1}|E|.

Lalign = ∥s− q∥2 (7)

Specifically, if an entity e exists in the conversa-
tion, the corresponding component of q is set to 1.
Otherwise, the component is 0.

Finally, to learn the parameters of generation
module, we minimize the following objective func-
tion:

Ltotal = Lgen + λ1LBOE + λ2Lalign, (8)

where λ1 and λ2 are two hyperparameters. In the
testing procedure, the probability distribution over
the vocabulary at time step j is calculated as fol-
lows,

Pall = Pres + λ3Pboe, (9)

where λ3 is a hyperparameter.
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Model
Automatic Human

Dist-2 Dist-3 Dist-4 Fluency Relevancy Informativeness
HRED-CRS 0.10 0.18 0.24 1.92 1.62 1.05
Transformer 0.15 0.31 0.46 2.03 1.73 1.36

KBRD 0.31 0.38 0.52 2.10 1.72 1.32
KGSF 0.38 0.61 0.73 2.32 2.11 1.56

KECRS(Ours) 0.48∗ 0.91∗ 1.23∗ 2.56∗ 2.29∗ 2.18∗

Table 1: Automatic and human evaluation results of the response generation achieved by different methods. Human
evaluation scores are from 0-3. Dist-2,3,4 is short for Distinct-2,3,4. ∗ indicates that the improvement over the best
baseline method is statistically significant with p < 0.01 using student t-test

4 Experiments

4.1 Dataset

We use the REDIAL dataset (Li et al., 2018), which
includes 10,006 conversations and 182,150 utter-
ances related to 51,699 movies. Following (Li et al.,
2018; Chen et al., 2019; Zhou et al., 2020a), we
split REDIAL into training, validation, and test-
ing sets with the ratio 8:1:1. We build the knowl-
edge graph, TMDKG, from The Movie Database1,
which contains 15822 entities and 15 types of rela-
tions.

4.2 Evaluation Metrics

Following (Chen et al., 2019; Zhou et al., 2020a),
we use Distinct n-gram (n=2, 3, 4) to measure the
diversity of generated responses. To better eval-
uate the performance of generated responses, we
adopt human evaluation. We randomly sample 100
multi-turn conversations from the test set and invite
three annotators to score responses generated by
different models from the following aspects: 1) Flu-
ency: whether responses are fluent;2) Relevancy:
whether responses are correlated with contexts;3)
Informativeness: whether responses contain rich
information of recommended items. Each aspect is
rated in [0, 3], and final scores are the average of all
annotators. For all evaluation metrics, the higher
value indicates better performances.

4.3 Baseline Methods

We compare KECRS with the following baseline
methods: 1) HRED-CRS (Li et al., 2018): This is a
basic CRS based on HRED(Serban et al., 2016); 2)
Transformer (Vaswani et al., 2017): This is a basic
transformer model that generates responses only
from utterance text and does not contain a separate
recommendation module; 3) KBRD (Chen et al.,

1https://www.themoviedb.org/

Model Dist-2 Dist-3 Dist-4
KGSF 0.38 0.61 0.73

KECRSw/o BOE 0.31 0.64 0.87
KECRSw/o align 0.36 0.69 0.95

KECRS 0.48∗ 0.91∗ 1.23∗

Table 2: Response generation performances of KGSF
and different variants of KECRS. ∗ indicates that the im-
provement over the best baseline method is statistically
significant with p < 0.01 using student t-test

2019):This is a knowledge-based CRS that employs
DBpedia to understand the user’s intentions and
leverage KG information as a bias for generation;
4) KGSF (Zhou et al., 2020a): This method ex-
ploits both entity-oriented and word-oriented KGs
to enrich the data representations. It adopts two
KG-enriched decoder layers for the generation.

4.4 Results and Discussion

The automatic and human evaluation results of dif-
ferent methods are shown in Table 1. We note
that Transformer performs better than HRED-CRS,
which demonstrates that Transformer is powerful to
understand and generate natural language. KBRD
performs better than Transformer, because it adds
a vocabulary bias to fuse knowledge from KG
into the generated responses. Among all the base-
line models, KGSF generates the most diverse re-
sponses, by exploiting both TMDKG and Concept-
Net (Speer et al., 2017). The potential reason is that
KGSF employs two additional KG-based attention
layers to make the generative model focus more on
items and relevant entities in TMDKG and Con-
ceptNet. Moreover, the proposed KECRS model
outperforms all baseline methods with a large mar-
gin in terms of all evaluation metrics. This demon-
strates that the proposed BOE loss and alignment
loss can work jointly to better leverage KG and
generate more diverse and informative responses.
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For human evaluation, we note that Fluency is
relatively higher compared to Informativeness and
Relevancy for all models. This indicates that re-
sponses generated by these models are fluent and
can be understood by human judges. However, re-
sponses generated by baseline models are more
likely to be generic responses (e.g., “I haven’t seen
that one”). By including additional supervision sig-
nals and aligning embeddings of word and entities,
the proposed KECRS model alleviates this issue.
Overall, KECRS can understand the dialogue con-
text and generate fluent, relevant, and informative
responses.

4.5 Ablation Study
To better understand effectiveness of each
component in KECRS, we study the perfor-
mances of following two variants of KECRS: 1)
KECRSw/o BOE, which removes the BOE loss, and
2) KECRSw/o align, which removes the infusion
loss.

Table 2 summarizes the response generation per-
formance in terms of Distinct n-gram (n=2,3,4).
Distinct n-gram measures the diversity of sen-
tences by calculating the number of distinct n-
gram in generated responses. KECRS outperforms
KECRSw/o BOE, which indicates the proposed BOE
loss can help the model learn to generate responses
not only from conversations but also from the
knowledge graph. Moreover, KECRSw/o align per-
forms poorer than KECRS. This indicates that
aligning the the word embeddings and entity em-
beddings also helps improve the model perfor-
mances. Compared with KGSF, both ablated ver-
sions of KECRS can achieve better performances
in terms of most metrics. This again demonstrates
that encouraging model to mention concept related
to the recommended items and aligning word em-
beddings with KG entity embeddings both can help
model generate more diverse responses.

4.6 Case Study
In Table 3, we present a qualitative comparison
of the responses generated by different models.
The conversation is selected from the dataset RE-
DIAL. When the user expresses preferences on
"There’s Something About Mary", KECRS infers
the user may like romantic comedy movie. Thus,
KECRS recommends another romantic comedy
movie "Meet the Parents" and provides an informa-
tive and natural response "It ’s a classic. It’s a little
older , but still funny and romantic".

User: Hi there, how are you?
Recommender: I’m doing great, how about you?
User: Fine thanks. I ’d love to see some-

thing similar to There’s Something
About Mary. That movie always
cracks me up !

Transformer: I haven’t seen that one.
KBRD: I haven’t seen that one. What about

My Best Friend’s Wedding?
KGSF: I recommend The Other Woman?
KECRS
(Ours):

I love Meet the Parents. It ’s a clas-
sic. It’s a little older , but still funny
and romantic.

Table 3: Case Study.

5 Conclusions

In this paper, we propose a novel Knowledge-
Enriched Conversational Recommendation System
(KECRS). Specifically, we develop the Bag-of-
Entity (BOE) loss and the alignment loss to im-
prove the response generation performances. The
experimental results on REDIAL demonstrate that
the proposed BOE loss can guide the model to
generate more knowledge-enriched responses by
selecting entities in KG, and the alignment loss can
ties the word embeddings to the entity embeddings.
Overall, KECRS achieves superior response quality
than state-of-the-art baselines.

For future work, we would like to investigate
how to use keywords to conduct the conversation
from chit-chat to the recommendation (Zhou et al.,
2020b; Liu et al., 2020). Moreover, we are also
interested in using external knowledge (e.g., KG)
to modify the REDIAL dataset and make responses
more relevant to the recommended items (Jannach
and Manzoor, 2020).
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Abstract

Exemplar-based generative models for open-
domain conversation produce responses based
on the exemplars provided by the retriever,
taking advantage of generative models and
retrieval models. However, due to the one-
to-many problem of the open-domain conver-
sation, they often ignore the retrieved exem-
plars while generating responses or produce
responses over-fitted to the retrieved exemplars.
To address these advantages, we introduce a
training method selecting exemplars that are
semantically relevant to the gold response but
lexically distanced from the gold response. In
the training phase, our training method first
uses the gold response instead of dialogue con-
text as a query to select exemplars that are se-
mantically relevant to the gold response. And
then, it eliminates the exemplars that lexically
resemble the gold responses to alleviate the
dependency of the generative models on that
exemplars. The remaining exemplars could
be irrelevant to the given context since they
are searched depending on the gold response.
Thus, our training method further utilizes the
relevance scores between the given context and
the exemplars to penalize the irrelevant exem-
plars. Extensive experiments demonstrate that
our proposed training method alleviates the
drawbacks of the existing exemplar-based gen-
erative models and significantly improves the
performance in terms of appropriateness and
informativeness.

1 Introduction

Exemplar-based generative models (Wu et al.,
2019; Weston et al., 2018; Cai et al., 2019b; Gupta
et al., 2021) for open-domain conversation combine
a retrieval model (Humeau et al., 2019; Mazare
et al., 2018; Kim et al., 2021) and a generative
model (Adiwardana et al., 2020; Roller et al., 2021;

†Equal contribution
∗Corresponding author

Given context
A: Do you ever feel like time is just going by way too fast?

Retrieved exemplar
B: It's hard to get anything done with coworkers around.

Generated responses

B: Do you have any hobbies that you like to do 

while you're at work? like gardening?

(a) RetNRef (Weston et al, 2018)

B: It's hard to get things done with coworkers 

when you're busy all the time.

(c) RetNRef w/ CORGE (Ours)

B: OMG! especially recently. a week seems like one day.

A: Yes! Time especially goes by fast when I'm working at my job. 

I'm constantly busy.

B: It's hard to get around. anything done with coworkers 

gets to get done with anything.

(b) RetNRef (Roller et al, 2021)𝛼

Figure 1: Responses generated by the three exemplar-
based generative models. RetNRef ignores the exemplar
during response generation, RetNRefα generates the re-
sponse highly over-fitted to the exemplar, and RetNRef
trained with our training method (CORGE) well utilizes
the exemplar to produce a more fluent response than
that of the others.

Zhang et al., 2020; Brown et al., 2020) into a sin-
gle framework to generate responses in two steps:
(1) the retriever searches an exemplar using the
given context as a query, and (2) the generator pro-
duces a response based on the given context and
the retrieved exemplar. Exemplar-based genera-
tive models produce more specific responses than
vanilla generative models while being more fluent
than retrieval models.

Despite their success, exemplar-based generative
models have two major shortcomings. Primitive
exemplar-based generative models (Weston et al.,
2018; Cai et al., 2019a) tend to entirely ignore the
exemplars and produce responses similar to those
of vanilla generative models. This is due to the
one-to-many problem (Li et al., 2016) where there
are many possible responses for each dialogue con-
text. During the training phase, the retrieved exem-
plar is not helpful for generating the gold response
when the exemplar retrieved for the given context
is significantly different from the gold response.
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This leads exemplar-based generative models to
ignore the exemplar while generating responses,
as shown in Figure 1(a). To address this issue, re-
cent exemplar-based generative models utilize the
gold response (Roller et al., 2021) or the slightly
perturbed gold response (Cai et al., 2019b) as an
exemplar in the training phase. However, these
training methods cause the generator to rely heav-
ily on the retrieved exemplar, i.e. the generator
resorts to copying the provided tokens, as shown in
Figure 1(b). These two disadvantages of existing
exemplar-based generative models can adversely
affect the quality of the generated response.

Therefore, we introduce CORGE (COnnecting
Retriever and GEnerator), a simple training method
of exemplar-based generative models considering
the one-to-many problem of the open-domain con-
versation. As inspired by Wu et al. (2019), CORGE
first utilizes the gold response instead of dialogue
context as the query for the retriever to select exem-
plars that are similar to the gold response. The re-
trieved exemplars ensure that exemplar-based gen-
erative models utilize their semantics while gener-
ating the gold response at the training phase. Since
the exemplars are retrieved by the gold response,
some of them are lexically identical or too sim-
ilar to the gold response. These exemplars lead
exemplar-based generative models to be trained to
depend on the exemplar heavily. Thus, CORGE
then eliminates the exemplars based on the distance
between the exemplars and the gold response to al-
leviate the dependency of the generative models
on the exemplars. Here, we employ Jaccard sim-
ilarity to measure the distance (Guu et al., 2018;
Cai et al., 2019a; Wu et al., 2019). However, as
the selected exemplars solely depend on the gold
response, some of them may be irrelevant to the
given context, which results in exemplar-based gen-
erative models still ignoring the retrieved exemplar.
To solve this, CORGE utilizes the relevance scores
between the context and the exemplar to weight the
relevant exemplars and penalizes irrelevant exem-
plars to the given context. Extensive experiments
show that CORGE is generally applicable to the
existing exemplar-based generative models and im-
proves the quality of generated responses regarding
appropriateness and informativeness.

Our main contributions: (1) We analyze the
shortcomings of existing exemplar-based genera-
tive models derived from the nature of the open-
domain conversation, the one-to-many problem.

(2) We introduce a training method (CORGE) to
improve the quality of generated responses by se-
lecting useful exemplars and weighting the exem-
plars by relevance scores assessed by the retriever.
(3) Through the human evaluation, we demon-
strate that CORGE significantly improves the per-
formance of exemplar-based generative models in
terms of appropriateness and informativeness.

2 Related Work

2.1 Exemplar-based Generation

While generative models have shown remarkable
performance on the open-domain conversation, it
is well-known that generative models tend to yield
uninformative and bland responses (Li et al., 2016;
Liu et al., 2016; Serban et al., 2017; Li et al.,
2020; Holtzman et al., 2019; Welleck et al., 2019).
Exemplar-based generative models are introduced
to overcome the aforementioned problem genera-
tive models suffer. Wu et al. (2019) introduce an
exemplar-based generative model for open-domain
conversation, which retrieves a context-exemplar
pair conditioned by the input context and encodes
the lexical difference between the input context
and the retrieved context to the edit vector. The re-
sponse is produced by feeding the exemplar and the
edit vector to the generator. Weston et al. (2018);
Roller et al. (2021) also retrieve the exemplar us-
ing the given context as a query and concatenate
the exemplar with the context, then feed the con-
catenated exemplar into the generator to produce
the final response for the open-domain conversa-
tion. Cai et al. (2019a,b) propose a method that
removes the irrelevant information from the exem-
plar, then uses the masked exemplar to inform the
generator to produce the response. Gupta et al.
(2021) condition the generator with the retrieved
exemplars and the extracted semantic frames of the
exemplars, which improves the coherence of gener-
ated responses. We do not consider this model as a
baseline because their model requires an additional
semantic frame extractor, and it can be mutually
complemented with our proposed training method.

2.2 Knowledge-grounded Generation

Knowledge-grounded generation models that uti-
lize retrieved results (e.g., relevant documents from
Wikipedia) to generate informative responses have
been proposed to perform knowledge-intensive
NLP tasks (e.g., open-domain question answer-
ing). The knowledge-grounded generation has a
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Embedding Space Given context 𝒄

Gold response 𝒓

Exemplars 𝒛

● Where do you live? I live in Dallas.

★ Wow, do you live there? I live in California.

(b) Slightly perturbed gold response 𝒛𝟐
♠ Wow, do [MASK] live there? I live in [MASK]

(a) Significantly different response 𝒛𝟏 from 𝒓
♥ Dallas is nice to live!

★
♠

♥

●

Generator

Over-fit
Generator

Ignore

♠

○

Figure 2: Illustration of the drawbacks of existing exemplar-based generative models. The black dotted line indicates
the boundary of the relevant exemplars to the given context.

similar form with the exemplar-based generation.
However, the main difference is that knowledge-
grounded generative models extract the knowledge
from external resources to generate the informative
response. Guu et al. (2020) show the effectiveness
of pre-training a knowledge retriever with the large-
scale language model for open-domain question an-
swering, and Lewis et al. (2020) demonstrate that
knowledge-grounded generative models produce
more informative and diverse sentences than vanilla
generative models on a wide range of knowledge-
intensive NLP tasks. Fan et al. (2021) similarly pro-
pose a knowledge-grounded generative model for
response generation, but they do not focus on the
open-domain conversation. In Method Section, we
demonstrate the difference between our approach
and knowledge-grounded generative models, and
we show that existing knowledge-grounded gen-
erative models are not directly applicable to the
open-domain conversation in Experiments Section.

3 Preliminaries

3.1 Exemplar-based Generation

Let D = {(ci, ri) | 1 ≤ i ≤ n} denote the dia-
logue dataset, which consists of n pairs of context c
and response r. Exemplar-based generative models
are composed of two components: a retriever R
and a generator G. For a given context ci, the re-
triever finds the top-scoring exemplar based on the
relevance score SR(z, ci) of the exemplar z ∈ R
, where R is a pre-defined response set. The gen-
erator computes the probability of the response for
the context ci while utilizing the exemplar z as
PG(r|ci, z).

3.2 Drawbacks of Existing Exemplar-based
Generative models

As mentioned in Roller et al. (2021), the primitive
exemplar-based generative model (Weston et al.,
2018) tends to ignore the retrieved exemplar dur-

ing response generation due to the one-to-many
problem in open-domain conversation (Li et al.,
2016). Since its retriever searches an exemplar
based on a given context, the retrieved exemplar is
often significantly different from a gold response
of the generator, although both of the retrieved ex-
emplar and gold response are relevant to the given
context, which is shown in Figure 2(a). As the re-
trieved exemplar is not helpful for generating the
gold response, the generator is trained to ignore the
retrieved exemplar and to produce a response using
only the given context.

To induce the generator to utilize retrieved ex-
emplars more actively, Roller et al. (2021) make
use of the gold response, and Cai et al. (2019b)
use perturbed gold response as an exemplar rather
than using retrieved exemplars during the model
training. However, since the exemplar zi and the
gold response ri are too similar (as shown in Fig-
ure 2(b)), the exemplar-based generative model
learns to rely overly on the exemplar. Eventually,
the generator produces a highly over-fitted response
to the exemplar by directly copying the tokens of
the exemplar.

4 Method

We hypothesize that selecting semantically rele-
vant but lexically distanced exemplars from the
gold response could solve the drawbacks above.
To validate this hypothesis, we introduce a train-
ing method of exemplar-based generative models,
called CORGE. Our proposed training method is
illustrated in Figure 3, and the illustrative exam-
ples about the exemplars selected by CORGE are
described in Table 1.

4.1 Selecting Exemplars Semantically
Relevant but Lexically Distanced to the
Gold Response

We describe how CORGE selects semantically rel-
evant but lexically distanced exemplars to the gold
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response. Conventionally, the retriever selects the
exemplars z based on the relevance score SR(z, ci)
for the given context ci. However, this searching
process could return a significantly different exem-
plar z from the gold response ri, and it induces
the generator G to ignore the retrieved exemplar
during response generation. Therefore, we select
exemplars based on the gold response ri to ensure
that the generator G utilizes the exemplars inspired
by Wu et al.. We select top-k scoring exemplars
based on the score SR′(z, ri), which we call k-
Nearest Exemplars (kNE).1 These kNE are more
semantically related to the gold response ri than
the exemplar obtained by using SR(z, ci).

However, some of the selected kNE are lexi-
cally identical or too close to the gold response
r unintentionally since the retriever searches the
exemplars based on the gold response. We observe
that using these exemplars also causes the over-
fitting problem of generated responses; therefore,
the generator excessively copies tokens from the
exemplars. From this, we are motivated to filter
out the exemplars which are lexically too close to
the gold response and preserve the exemplars prop-
erly distanced to the gold response to mitigate the
over-fitting problem. Here, we employ Jaccard sim-
ilarity to measure the lexical similarity (Guu et al.,
2018; Cai et al., 2019a; Wu et al., 2019) between
the exemplar and the gold response. Exemplars are
filtered out when their Jaccard distance with the
gold response r is larger than 0.6, and we replace
them with the randomly chosen responses from the
pre-defined response set R. The threshold of fil-
tering is empirically chosen as 0.6. The set of the
final exemplars z obtained through these steps is
referred to as Zi = {zi,1, zi,2, · · · , zi,k}.

4.2 Weighting the Selected Exemplars based
on the Relevance Score

As we select the exemplar totally based on the gold
response, some of kNE could be relevant to the
gold response ri but irrelevant to the given context
ci. Therefore, we condition the generator with the
relevance score of kNE to reward the relevant ex-
emplars and penalize irrelevant exemplars. Using
the retriever R, we calculate the relevance score
SR(zi,j , ci) per each selected exemplar zi,j , then
apply the softmax function to the relevance score to

1Note that SR(z, c) and SR′(z, ri) use the same retriever,
but they are computed differently. Please refer to how we
calculate the score SR′(z, ri) and SR(z, c) in the Supple-
mentary Materials.

♠

♠

♠

♠♠
★★★

●

Embedding space

kNE Boundary Jaccard Filter Boundary

● Given Context ★ Gold Response ♠ Selected Exemplars

(a) kNE (b) Jaccard filter (c) Relevance Score

● ●

♠

♠

♠

♠

Figure 3: The procedure of our proposed training
method, CORGE. (a): Selecting kNE of the gold re-
sponse r based on SR′(z, r). (b): Filtering out the
exemplars which are too close to the gold response r.
(c): Weighting the exemplars z depending on their nor-
malized relevance scores PR(z, c).

obtain the normalized relevance score PR(zi,j , ci).
Then we replace the traditional likelihood with the
weighted likelihood using the normalized score.
Our final training objective is to minimize the loss
function L =

∑n
i=1 L(ri, ci) where:

L(ri, ci) = − log
∑

z∈Zi

PR(z, ci)PG(ri|ci, z) (1)

The gradient of the generator G is calculated as
follows:

∇GL(ri, ci) = −α ·
∑

z∈Zi

PR(z, ci)∇G(PG(ri|ci, z)), (2)

where α−1 =
∑

z∈Zi
PR(z, ci)PG(ri|ci, z). This

equation demonstrates that the gradient of the gen-
erator G is scaled by the normalized relevance score
PR(z, ci), which indicates that the generator is less
updated when the retrieved exemplar z is not rele-
vant to the given context ci. This procedure helps
the model ignore the irrelevant exemplars. Thus,
the generator learns to fetch tokens from the ex-
emplar more easily, which is relevant to the gold
response.
Difference between CORGE and Knowledge-
grounded generative models The way of lever-
aging the relevance scores is already employed
by knowledge-grounded generative models (Lewis
et al., 2020; Sachan et al., 2021) in open-domain
question answering. However, there is a significant
difference between our CORGE and knowledge-
grounded generative models. CORGE uses the
relevance score PR(z, ci) to penalize the irrele-
vant exemplars z to the given context ci since the
exemplars are retrieved by SR′(z, ri). Knowledge-
grounded generative models use it as the latent vari-
able to jointly train the retriever R and generator G.
Especially, knowledge-grounded generative mod-
els also tend to ignore the retrieved exemplars due
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Input Context

What kind of animals you take care of?

Gold Response

I work with a variety of animals. I sometimes work
with lions and monkeys.

Context Retrieval Sim PR(z, c)

I raise two dogs. 0.1 0.9

kNE Sim PR(z, c)

I work with a variety of animals. 0.9 0.2

He works with various people. 0.3 0.0

I work with lots of different animals. 0.5 0.3

I do some work with animals they’re
amazing creatures. 0.3 0.3

Table 1: Samples of the exemplars selected by CORGE.
Context Retrieval indicates the exemplar retrieved by
using the context as a query, and kNE shows the ex-
emplars selected by using the gold response as a query.
Sim measures the lexical similarity between the gold
response and the exemplar and PR(z, c) indicates the
normalized relevance score calculated by retriever.

to the one-to-many nature in open-domain conver-
sation when the retriever and generator are jointly
trained. On the other hand, we do not perform the
joint learning of the retriever and the generator, but
freeze the retriever while training the generator.

5 Experiments

5.1 Dataset

We utilize the following four datasets used in
Roller et al. (2021), which are Blended Skill Talk
(BST) (Smith et al., 2020), ConvAI2 (Zhang et al.,
2018), Empathetic Dialogues (ED) (Rashkin et al.,
2019), and Wizard of Wikipedia (WoW) (Dinan
et al., 2018). To simplify the notation, we denote
the concatenated version of these four datasets as
BST+. We split BST+ into train, validation, and
test sets following Smith et al. (2020).

5.2 Baselines

Retrieval and Generative Models Bi-encoder
256M (Mazare et al., 2018) and Blender
90M (Roller et al., 2021) are considered as a
baseline retrieval model and a baseline generative
model. Further, they are also employed as a re-
triever and a generator of the following exemplar-
based generative baselines, respectively.

Exemplar-based Generative Models Since our
proposed training method is for training exemplar-

based generation models, we first consider recent
exemplar-based generation models, RetNRef (We-
ston et al., 2018), RetNRefα (Roller et al., 2021),
and MatToGen (Cai et al., 2019b), as baselines.
RetNRef concatenates the retrieved exemplar with
the given context as the input of the generator
to produce the response. RetNRefα is the dia-
logue retrieval version of RetNRef, which adopts
α-blending to escape from simply ignoring the re-
trieved exemplars (α = 0.5). MatToGen extracts
the meaningful tokens from the exemplar to pro-
vide them to the generator.

To verify the effectiveness of our training
method, we apply CORGE to RetNRef and Mat-
ToGen instead of their training method. They
are denoted as RetNRef +CORGE and MatTo-
Gen+CORGE, respectively.

Knowledge-grounded Generative Models Al-
though RAG (Lewis et al., 2020) and KIF (Fan
et al., 2021) are proposed to perform knowledge-
grounded generation tasks, we employ RAG and
KIF as baselines since they have a similar form
with exemplar-based generative models. Our exper-
iments demonstrate that these knowledge-grounded
generative models cannot be directly applied to the
open-domain conversation.

5.3 Evaluation Metrics

To verify the effectiveness of our training method
CORGE, we conduct a pair-wise comparison
through the human evaluation following Weston
et al. (2018). We use two criteria: Appropriate-
ness and Informativeness. Appropriateness mea-
sures how the generated response is fluent, logi-
cal, and appropriate to the given context. Informa-
tiveness measures how the generated response has
meaningful information relevant to the given con-
text. We use Amazon Mechanical Turk to collect
the annotations, and more details are described in
the Supplementary Material.

We also employ the automatic evaluation met-
rics, Perplexity (PPL), Dist-n, and BLEU (Pa-
pineni et al., 2002), to analyze the generated re-
sponses of each model. PPL measures how well
the model predicts a response based on the given
input context, and lower PPL indicates that the
model predicts the response better. To analyze
how much the exemplar-based generative model
leverages the retrieved exemplar, we introduce two
variants of PPL by utilizing conditional probability
when exemplars are given: (1) PPLgold uses the
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Model Names (A vs. B) Appropriateness (%) Informativeness (%)

Win Rate A win Tie B win Win Rate A win Tie B win

RetNRefα vs. Bi-encoder 256M 44.9 32.0 28.7 39.3 47.5 31.3 34.0 34.7
RetNRefα vs. Blender 90M 50.2 37.3 25.7 37.0 53.3 40.3 24.3 35.4

RetNRef + CORGE vs. Bi-encoder 256M 52.6 34.0 35.3 30.7 51.9 35.7 31.3 33.0
RetNRef + CORGE vs. Blender 90M 57.7∗ 33.7∗ 41.7∗ 24.6∗ 54.6 30.0 45.0 25.0
RetNRef + CORGE vs. RetNRefα 53.2 30.3 43.0 26.7 51.6 27.7 46.3 26.0
RetNRef + CORGE vs. RetNRef 54.4 41.0 24.7 34.3 53.4 37.0 30.7 32.3
RetNRef + CORGE vs. KIF 57.5∗ 37.0∗ 35.7∗ 27.3∗ 50.0 30.0 40.0 30.0
RetNRef + CORGE vs. RAG 53.5 37.7 29.7 32.6 52.1 29.7 43.0 27.3

MatToGen vs. Bi-encoder 256M 47.1 33.3 29.3 37.4 50.9 36.7 28.0 35.3
MatToGen vs. Blender 90M 48.1 34.0 29.3 36.7 46.3 31.6 31.7 36.7

MatToGen + CORGE vs. Bi-encoder 256M 54.2 43.0 20.7 36.3 54.4 41.3 24.0 34.7
MatToGen + CORGE vs. Blender 90M 58.0∗ 35.0∗ 39.7∗ 25.3∗ 58.1∗ 36.0∗ 38.0∗ 26.0∗

MatToGen + CORGE vs. MatToGen 52.6 33.3 36.7 30.0 53.3 32.7 38.7 28.6
MatToGen + CORGE vs. KIF 57.1∗ 44.0∗ 23.0∗ 33.0∗ 52.5 39.0 25.7 35.3
MatToGen + CORGE vs. RAG 51.6 38.3 25.7 36.0 55.6 41.3 25.7 33.0

Table 2: Pair-wise human evaluation results show that our proposed training method improves the performance
against the existing exemplar-based generation approaches in terms of appropriateness and informativeness. The
win rate is calculated by excluding the tie. ∗ indicates statistical significance (two-tailed binomial test, p < 0.05).

conditional probability PG(r|c, r), which assumes
the situation when the gold response is given as an
exemplar, and (2) PPLret uses the conditional prob-
ability PG(r|c, z) where z is the retrieved exemplar
by using SR′(z, r). Lower PPLgold denotes that
the exemplar-based generative model predicts the
gold response well when the gold response is given
as an exemplar. Lower PPLret indicates that the
exemplar-based generative model well leverages
the provided exemplar to predict the gold response.
Dist-n (Li et al., 2016) is the ratio of distinct n-
grams to a total number of n-grams for all the gen-
erated responses, which measures the degree of the
diversity of the generated responses. BLEU(z,r) is
adopted to measure the degree of the token overlap
between the provided exemplar and the generated
response pair (z, r). A higher BLEU(z,r) score
indicates that the generator copies more from the
provided exemplar while generating the response.

5.4 Implementation Details

We provide the details of our implementation in the
Supplementary Material. We will the source codes
of CORGE for the reproducibility of the conducted
experiments.

6 Experimental Results

6.1 Pair-wise Comparison Results

Table 2 shows the pair-wise comparison results
through the human evaluation. When RetNRef and
MatToGen adopt our proposed CORGE as their

training method, they outperform all baselines ex-
cept for a case of RetNRef +CORGE vs. KIF on the
informativeness. In detail, RetNRef +CORGE and
MatToGen+CORGE show better performance than
RetNRefα and MatToGen, respectively, in both met-
rics. Especially, MatToGen+CORGE outperforms
Bi-encoder 256M and exceeds Blender 90M, while
MatToGen performs worse than Bi-encoder 256M
and Blender 90M. Furthermore, CORGE enlarges
the win rate of RetNRefα for Blender 90M. These
evaluation results demonstrate that CORGE leads
the existing exemplar-based generative models to
produce more fluent and informative responses.

6.2 Investigating the Exemplar-based
Generative Models with Automatic
Metrics

Through the automatic evaluation, we verify that
existing exemplar-based generative models ignore
the provided exemplar or generate responses over-
fitted to the provided exemplar. As shown in Ta-
ble 3, RetNRef +CORGE and MatToGen+CORGE
show lower PPLret than Blender 90M, which
means that the exemplar-based generative mod-
els trained with CORGE make a better prediction
of the gold response than Blender 90M by uti-
lizing the provided exemplar. RetNRef +CORGE
has a smaller degree of PPLgold and PPLret than
those of RetNRef, which infers RetNRef +CORGE
leverages the provided exemplar better than Ret-
NRef. RetNRefα has lower PPLgold than Ret-
NRef +CORGE, however, RetNRefα has higher
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Models PPLgold PPLret Dist-2 Dist-3 BLEU(z,r)-2 BLEU(z,r)-3

Blender 90M 13.79 13.79 0.236 0.372 - -
Bi-encoder 256M - - 0.681 0.881 - -

RetNRef 8.518 13.37 0.256 0.386 0.030 0.009
RetNRefα 3.061 16.99 0.530 0.778 0.319 0.201
RetNRef + CORGE 4.863 11.53 0.349 0.520 0.102 0.048

MatToGen 5.291 17.71 0.362 0.567 0.169 0.095
MatToGen + CORGE 5.651 13.45 0.313 0.474 0.069 0.028

RAG 11.84 14.91 0.257 0.390 0.015 0.003
KIF 12.11 15.18 0.238 0.363 0.002 0.000

Table 3: Automatic evaluation results. Since Blender 90M can not utilize the exemplar, we report PPL calculated
from PG(r|c) in the place of PPLgold and PPLret.

PPLret than RetNRef +CORGE. This result demon-
strates that RetNRefα does not make good use of
the retrieved exemplar except when the gold re-
sponse is given as the retrieved exemplar. From
this observation, we claim that RetNRefα gener-
ates a response highly over-fitted to the selected
exemplar, which is caused by utilizing the gold re-
sponse as an exemplar in the training phase. The
same goes for MatToGen, where applying CORGE
mitigates the over-fitting issue.

Higher Dist-n of RetNRef +CORGE and Mat-
ToGen+CORGE compared to Blender 90M shows
that our exemplar-based generative models produce
more diverse responses than the vanilla generative
model. Moreover, RetNRef +CORGE has higher
Dist-n than RetNRef, which shows that utilizing
the exemplars helps the generator diversify the re-
sponses. Although RetNRefα is the only one that
achieves comparable Dist-n to that of the vanilla re-
trieval model, Bi-encoder 256M, it is derived from
an over-fitting to the exemplar considering the gap
between PPLgold and PPLret, resulting in the degra-
dation of appropriateness and informativeness in
human evaluation.

Average BLEU(z,r) scores implicitly measure
the overlap between the retrieved exemplar and
the generated response; thus, a higher degree of
BLEU(z,r) indicates that the generator depends
more on the retrieved exemplar. RetNRef shows a
negligible BLEU(z,r) score, which reaffirms that
the model is almost not utilizing the retrieved ex-
emplar. RetNRefα and MatToGen have higher
BLEU(z,r) scores compared to RetNRef +CORGE
and MatToGen+CORGE, respectively, which veri-
fies that the former depends more on the retrieved
exemplar than the latter.
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Figure 4: The standard deviation of the normalized
retriever score gets smaller when we jointly train the
retriever for exemplar-based generative models. Ours
stands for RetNRef +CORGE, and joint indicates jointly
training the retriever with the generator.

6.3 Incapability of Knowledge-grounded
Generative Models in Open-domain
Conversation

The automatic evaluation results in Table 3 confirm
that knowledge-grounded generative models are ig-
noring the exemplar. PPLgold, PPLret, and Dist-n
of RAG and KIF have a similar degree to those of
Blender 90M, which implies that the exemplars are
not providing useful information while generating
the response. The average BLEU(z,r) score also
has a poor degree, indicating almost no overlap
between the retrieved exemplars and the generated
responses. We explain that these results are origi-
nated from the difference between the open-domain
conversation and knowledge-grounded generation
tasks. While training knowledge-grounded genera-
tive models, they use PR(z, c) to fetch the external
knowledge. However, the generator also ignores
the retrieved exemplar due to the one-to-many na-
ture of the open-domain conversation.

In addition, we observe that jointly training the
retriever with the generator causes the retriever
stuck in the local minima. As shown in Fig-
ure 4, the standard deviation of normalized rele-
vance scores PR(z, c) computed by the retriever
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Input Context
A: No way i do it a lot, at least when i am feeling well enough.
B: Awesome. That’s the only thing i’ll never do. I do like the outdoors though.
A: I’m a thrill seaker. Do you like extreme sports?

Bi-encoder 256M I love extreme sports. Its the only real way I can get the adrenaline boost I need.
Blender 90M No, I don ’t think I’ ve ever done that. I’ d love to though.

Exemplar I love extreme sports. Its the only real way I can get the adrenaline boost I need.
RetNRef I don’ t really have a lot of time for sports. I spend most of my free time working.

Exemplar I love extreme sports. Its the only real way I can get the adrenaline boost I need.
RetNRefα I love extreme sports I need the adrenaline boost. Its the only way I can get the real adrenaline.

Exemplar I love extreme sports. Its the only real way I can get the adrenaline boost I need.
RetNRef + CORGE I love extreme sports as well. It’ s a great way to get out and enjoy life.

Exemplar nicde.
KIF I don’ t really have a lot of time for sports. I spend most of my time working.

Exemplar Do you like sports?
RAG I don’ t really have a lot of time for sports. I spend most of my time working.

Table 4: Examples for model responses and provided exemplars corresponding to given input contexts.

Models PPLgold PPLret Dist-2 Dist-3 BLEU(z,r)-2 BLEU(z,r)-3

RetNRef + CORGE 4.863 11.53 0.349 0.520 0.102 0.048
RetNRef + CORGE − RS 6.482 11.75 0.316 0.478 0.074 0.031
RetNRef + CORGE − kNE 8.657 13.82 0.250 0.380 0.034 0.010
RetNRef + CORGE − JF 1.698 32.91 0.537 0.785 0.332 0.207

Table 5: Results of the ablation study. −RS, −kNE, and −JF denote that relevance score (RS), kNE, and Jaccard
filter (JF) are removed from CORGE, respectively.

almost gets near zero when the retriever of RAG
is jointly trained. A smaller standard deviation
means the relevance scores are getting flattened.
Although knowledge-grounded generative models
empirically have shown that jointly training the
retriever and generator improves the performance
in knowledge-intensive NLP tasks (Lewis et al.,
2020), in open-domain conversation, the retrieved
exemplars are ignored. Thus, the retriever learns
to produce an uninformative relevance score. As
a result, the retriever collapses, which means the
retriever may return inappropriate exemplars to the
generator (also shown in the example of KIF and
RAG in Table 4). Intriguingly, jointly training the
retriever with CORGE also causes the retriever
scores to be flattened, as shown in Figure 4, and
we empirically observe the minor collapse of the
retriever as we experienced in RAG as well. Thus,
CORGE does not jointly train the retriever.

6.4 Ablation Study

To verify the effectiveness of each component in
CORGE, we conduct the ablation study. In Ta-
ble 5, PPLret from RetNRef +CORGE is lower
than any other ablation counterparts, which con-
firms each component contributes to predicting
the responses. RetNRef +CORGE−RS and Ret-
NRef +CORGE−kNE have a higher degree of

PPLret and PPLgold, which indicates RS and kNE
help the generator to utilize the exemplar while
generating the response. RetNRef +CORGE−JF
provides a strong signal of over-fitting, where it
has extremely low PPLgold but exceptionally high
PPLret. Dist-n shows our model produces the most
diverse responses among the models except Ret-
NRef +CORGE−JF, where RetNRef +CORGE−JF
excessively copies the tokens from the retrieved
exemplar. The average BLEU(z,r) scores also show
the same trend, where reaffirms the effect of the
components of CORGE.

7 Conclusion

In this paper, we introduce a generally applica-
ble training method for exemplar-based genera-
tive models to alleviate their disadvantages de-
rived from the one-to-many problem. Our train-
ing method selects exemplars that are semantically
relevant but lexically distanced from the gold re-
sponse and weights those exemplars with the rel-
evance score measured by the retriever. Through
the extensive analysis, including pair-wise human
evaluation, we verify that our method improves the
performance of existing exemplar-based generative
models in terms of appropriateness and informa-
tiveness.
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A Implementation Details

A.1 How the Retriever Calculates the Scores

Our retriever follows the architecture of Bi-
encoder (Mazare et al., 2018), and the score
SR(z, c) and SR′(z, r) are calculated as follows:

SR(z, c) = d(z) · q(c),
SR′(z, r) = d(z) · d(r),

d(z) = BERTr(z),

d(r) = BERTr(r),

q(c) = BERTc(c),

(3)

where d(z) and d(r) are encoded vectors pro-
duced by response encoder BERTr and q(c) is
an encoded vector produced by context encoder
BERTc. The notation R′ indicates that it only
uses the response encoder instead of using the con-
text encoder together. CORGE is not limited to use
Bi-encoder as a retriever and can be applied to other
types of a retriever (e.g. Poly-encoder (Humeau
et al., 2019)).

A.2 Model Details

As we mentioned in Section 5.2, we employ Bi-
encoder 256M and Blender 90M as a retriever
and a generator of each exemplar-based genera-
tive model, respectively. For MatToGen, additional
MLP layers are added to the retriever, as follows the
details in Cai et al. (2019b). When training the mod-
els, weights of the retriever and the generator are
initialized with the pre-trained Bi-encoder 256M
and Blender 90M, respectively, For Blender 90M,
we use the model released by ParlAI (Miller et al.,
2017), which is fine-tuned on the BST+ dataset.
For Bi-encoder 256M, we fine-tune the model re-
leased by ParlAI on the BST+ dataset, and we fol-
low the hyperparameter settings of Humeau et al.
(2019), which are implemented in the ParlAI li-
brary. The pre-defined response set is constructed
from the BST+ training set, which contains about
400K responses. We use NVIDIA DGX Station
A100 for training the models.

A.3 Hyperparameters

When training exemplar-based generative models
with CORGE, five (k=5) exemplars are utilized
for each training instance. The exemplar-based
generators are trained with a batch size of 32 and
an initial learning rate of 7e-6, and the learning
rate is decayed in half when the training loss meets

the plateau. The model is trained until there is no
progress in the validation PPL.

A.4 Generation Strategy

When we generate samples using generative model,
exemplar-based generative models, and knowledge-
grounded generative models, we adopt a beam de-
coding strategy which is widely used in generative
models (Graves, 2012). Following (Roller et al.,
2021), we choose a minimum beam length and a
beam size as 20 BPE tokens and 10, respectively,
and use tri-gram beam blocking on context and re-
sponse blocks. During the inference phase, both
exemplar-based generative models and knowledge-
grounded generative models use the top-1 scoring
candidate as an exemplar chosen from utilizing the
relevance score SR(z, c).

B Evaluation Details

We prepare dialogue cases that have three-turn in-
put contexts and the gold response from the BST
and evaluate them by human pair-wise compari-
son and automatic evaluation. There are 980 test
cases, and we randomly choose 100 test cases for
the human evaluation.

B.1 Pair-wise Human Evaluation

As we described in Section 5.3, we use Amazon
Mechanical Turk to collect the annotations. Each
test case is rated by three annotators to improve the
robustness of the evaluation result. We set a max-
imum number of annotations per worker in order
to reduce the potential bias. To control the qual-
ity of the annotations, we only allowed annotators
who satisfy the following requirements to evalu-
ate our results: (1) HITs approval rate greater than
95%, (2) Location is one of Australia, Canada, New
Zealand, United Kingdom, and the United States,
(3) Lifetime number of HITs approved greater than
1000, following Li et al. (2018). Figure 5 shows
the instructions and the interface for the human
evaluation. To mitigate the bias from the annotator,
we randomly shuffle the order of the model and the
corresponding response.

B.2 Automatic Evaluation

For automatic metrics, we calculate the met-
ric for each case and take the average of
those values. When calculating BLEU, we use
sentence_bleu function in nltk python pack-
age (Loper and Bird, 2002).
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Figure 5: The interface of pairwise human evaluation for appropriateness and informativeness.

C Measuring Inference Time

We measure how much time spend when the model
generates the responses. When generating the re-
sponse, Blender 90M takes 0.481 seconds, and Ret-
NRef +CORGE takes 0.523 seconds per instance.
There is only an 8.7% amount of inference time
gap between Blender 90M and RetNRef +CORGE.
This tells us that exemplar-based generation can
significantly improve the quality of responses re-
garding appropriateness, informativeness, and di-
versity without increasing the amount of time to
generate answers. We test our model on NVIDIA
DGX Station A100 with PyTorch 1.7.1, CUDA
11.0, CuDNN 8.0, and here we adopt the genera-
tion strategy we describe above. When we mea-
sure the inference time, we only use a single GPU
(NVIDIA A100 GPU, 40GB Memory), and the in-
ference time is measured as the average inference
time of 100 response generations.

D Additional Results

We provide additional samples for the retrieved ex-
emplar and the model response from the baselines
and our models in Table 6.
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Input Context
A: I crash around 230 to 300. I don’t have much of a social life.
B: Neither do I, you are not alone
A: I am alone but I’m not lonely. I have a dog who’s great company.

Bi-encoder 256M Any friends? My dog is one of mine.
Blender 90M That ’s good to hear, I ’ve a dog too, he’ s my best friend.

Exemplar Any friends? My dog is one of mine.
RetNRef I am sorry to hear that. Do you have any hobbies that you like to do?
RetNRefα My dog is one of my friends? Is yours one of any of his friends? lol.
RetNRef + CORGE What kind of dog is it? I’ ve got a chihuahua and she’ s my best friend.

Exemplar I love dogs too. My best friend is my dog.
MatToGen I love my best friend, he’ s the best dog I’ve ever had. What is your best friend?
MatToGen + CORGE I love dogs too, my best friend is my dog. Do you have any hobbies?

Exemplar nicde.
KIF I am sorry to hear that. Do you have any hobbies that you like to do?

Exemplar I’m usually alone because I don’t like my family.
RAG I am sorry to hear that. Do you have any hobbies that you like to do?

Input Context
A: Sounds like a horror movie, my favorite kind
B: Haha, yeah he melts my heart.
A: Did you do anything fun for Halloween?

Bi-encoder 256M I enjoy Halloween, it’s fun to dress up. Do you like it?
Blender 90M I went to a halloween party with my friends. It was a lot of fun. What about you?

Exemplar I enjoy Halloween, it’s fun to dress up. Do you like it?
RetNRef No, I don ’t think I could do it. I’ m not a big fan of halloween.
RetNRefα I like it, it’ s fun to dress up. Do you like halloween? I enjoy dressing up.
RetNRef + CORGE I like to dress up as a clown, but I don’ t think I’ ll be doing that this year.

Exemplar No we went to a haunted house and I got chased often.
MatToGen No we never got to go to the haunted house we went to once and got chased by a ghost.
MatToGen + CORGE No, I don ’t like to go to haunted houses. I’ m scared of them.

Exemplar nicde.
KIF Yes, I went to a haunted house and watched all the horror movies. It was so scary!

Exemplar Are you doing anything cool for halloween
RAG No, I don’ t think I’ m going to. I’ ve never been a fan of halloween.

Input Context

A: Oh God no! I can’t stay tied down to one woman. Why would you want to do that?
B: I know right? Most people consider marriage to be involving 2 people but in certain parts of the
world that varies between cultures and religions, so it doesn’t seem so bad
A: Marriage is very good.

Bi-encoder 256M I agree, but in some cultures, marriage is recommended and unmarried folks are frowned upon!
Blender 90M I agree! I’ m not sure if i could do it though. I don’ t think I could.

Exemplar I agree, but in some cultures, marriage is recommended and unmarried folks are frowned upon!
RetNRef I agree. I think it’ s important for people to have a healthy relationship with each other.
RetNRefα I agree, but some folks are recommended to marry in some cultures, and some are frown upon!
RetNRef + CORGE I agree! In some cultures marriage is recommended, but in some countries it’ s not recommended.

Exemplar I agree. I think it’ s important for people to have a healthy relationship with each other.
MatToGen I agree, some cultures are more strict than others, but i agree that some religions are more lenient.
MatToGen + CORGE I agree! In some cultures marriage is recommended by some religions, but I don’ t believe in it!

Exemplar nicde.
KIF I agree! I think it’ s important to remember that marriage is a legal, social, and financial union.

Exemplar That is good and great
RAG I agree! I think it’ s important for people to have a healthy relationship with each other.

Table 6: Additional examples for model responses and provided exemplars corresponding to given input contexts.
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