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Abstract

Data augmentation is a widely employed tech-
nique to alleviate the problem of data scarcity.
In this work, we propose a prompting-based
approach to generate labelled training data
for intent classification with off-the-shelf lan-
guage models (LMs) such as GPT-3. An ad-
vantage of this method is that no task-specific
LM-fine-tuning for data generation is required;
hence the method requires no hyper-parameter
tuning and is applicable even when the avail-
able training data is very scarce. We evaluate
the proposed method in a few-shot setting on
four diverse intent classification tasks. We find
that GPT-generated data significantly boosts
the performance of intent classifiers when in-
tents in consideration are sufficiently distinct
from each other. In tasks with semantically
close intents, we observe that the generated
data is less helpful. Our analysis shows that
this is because GPT often generates utterances
that belong to a closely-related intent instead
of the desired one. We present preliminary ev-
idence that a prompting-based GPT classifier
could be helpful in filtering the generated data
to enhance its quality.1

1 Introduction

A key challenge in creating task-oriented conver-
sational agents is gathering and labelling training
data. Standard data gathering options include man-
ual authoring and crowd-sourcing. Unfortunately,
both of these options are tedious and expensive.
Data augmentation is a widely used strategy to
alleviate this problem of data acquisition.

There are two particularly promising paradigms
for data augmentation in natural language process-
ing that use pretrained language models (LMs) (Pe-
ters et al., 2018; Devlin et al., 2018). The first fam-
ily of methods fine-tunes an LM on task-specific

∗Work done during an internship at ServiceNow Research
1Our code is available at: https://github.com/

ElementAI/data-augmentation-with-llms

Input Prompt:

The following sentences belong to the same 
category music_likeness:

Example 1: i like soft rock music 
Example 2: current song rating three stars 
Example 3: save this song as a favorite 
Example 4: remind me that i like that song 
Example 5: save my opinion on the currently 
           playing song 
Example 6: i love the song do you 
Example 7: add the song to my favorites 
Example 8: store opinion on song 
Example 9: the song in background is cool 
Example 10: i am the living blues  
Example 11:

Completions:

i dislike classical music 
she is a music lover 
i am a lover of painting 
this is the best song ever 
video that looks like the other video 
save preference on my profile 
express negative opinion on the song 
i am a great blues follower 
the song is better than i thought 
this song is also fun 

Figure 1: Generation Process. Given a seed intent
(here, music_likeness) and K(=10) available examples
for that intent, we construct a prompt following the
shown template. Note that the last line of the prompt
is incomplete (there is no new line character.) We then
feed this prompt to a GPT-3 engine, which generates
some completions of the prompt. In this example, red
text denotes unfaithful examples and blue text
denotes faithful examples. Note: For brevity, we only
show ten generated sentences.

data and generates new examples using the fine-
tuned LM (Wu et al., 2018; Kumar et al., 2019,
2021; Anaby-Tavor et al., 2020; Lee et al., 2021).
A limitation of these methods is that, in a real-
world scenario, task-specific data is scarce and fine-
tuning an LM can quickly become the bottleneck.
The second family of methods sidesteps this bot-
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tleneck by employing off-the-shelf pretrained LMs
such as GPT-3 (Brown et al., 2020) to directly gen-
erate text without any task-specific fine-tuning. In
particular, data generation by the GPT3Mix ap-
proach by Yoo et al. (2021) boosts performance
on multiple classification tasks; however, they only
consider tasks with few (up to 6) classes and easy-
to-grasp class boundaries (e.g., positive and nega-
tive).

This work studies the applicability of massive
off-the-shelf LMs, such as GPT-3 and GPT-J (Wang
and Komatsuzaki, 2021) to perform effective data
augmentation for intent classification (IC) tasks. In
IC, the end goal is to predict a user’s intent given an
utterance, i.e., what the user of a task-oriented chat-
bot wants to accomplish. Data augmentation for IC
is particularly challenging because the generative
model must distinguish between a large number
(in practice up to several hundreds) of fine-grained
intents that can be semantically very close to each
other. Prior methods such as GPT3Mix prompt
the model with the names of all classes as well
as a few examples from randomly chosen classes.
We test GPT3Mix for one and observe that such
approaches are poorly suitable for intent classifica-
tion tasks with tens or hundreds of possible intents.
Instead, in this study, we use a simple prompt struc-
ture that focuses on a single seed intent (see Figure
1) as it combines the intent’s name and all available
examples.

Our experiments primarily focus on few-shot IC
on four prominent datasets: CLINC150 (Larson
et al., 2019), HWU64 (Xingkun Liu and Rieser,
2019), Banking77 (Casanueva et al., 2020), and
SNIPS (Coucke et al., 2018). We also consider a
partial few-shot setup to compare to the Example
Extrapolation (Ex2) approach by Lee et al. (2021)
who use a similar prompt but fine-tune the LM in-
stead of using it as is. The main findings of our ex-
periments are as follows: (1) GPT-generated sam-
ples boost classification accuracy when the consid-
ered intents are well-distinguished from each other
(like in CLINC150, SNIPS). (2) On more gran-
ular datasets (namely HWU64 and Banking77),
we find that GPT struggles in distinguishing be-
tween different confounding intents. (3) A small-
scale study to further understand this behaviour
suggests that GPT could be used as a classifier
to filter out unfaithful examples and enhance the
quality of the generated training set. Addition-
ally, we investigate how valuable the generated data

could be if relabelled by a human. Using an oracle
model, we show that (4) the human labelling of
GPT-generated examples can further improve the
performance of intent classifiers, and that (5) LM-
generated data has a higher relabelling potential
compared to edit-based augmentation techniques,
such as Easy Data Augmentation (EDA) (Wei and
Zou, 2019).

2 Method

We consider training an intent classifier, where an
intent is a type of request that the conversational
agent supports; e.g. the user may want to change
the language of the conversation, play a song, trans-
fer money between accounts, etc. However, collect-
ing many example utterances that express the same
intent is difficult and expensive. Therefore, this
paper experiments with a straightforward method
to augment the training data available for an intent:
creating prompts from the available examples and
feeding them to a large language model such as
GPT-3 (Brown et al., 2020). Figure 1 illustrates
the process of data generation for an intent with K
available examples.

3 Experimental Setup

3.1 Datasets
We use four intent classification datasets in our
experiments with varying levels of granularity
among intents. CLINC150 (Larson et al., 2019),
HWU64 (Xingkun Liu and Rieser, 2019) are multi-
domain datasets, each covering a wide range of
typical task-oriented chatbot domains, such as play-
ing music and setting up alarms. Importantly,
the CLINC150 task also contains examples of
out-of-scope (OOS) utterances that do not cor-
respond to any of CLINC’s 150 intents. Bank-
ing77 (Casanueva et al., 2020) is a single domain
dataset with very fine-grained banking-related in-
tents. Finally, the SNIPS (Coucke et al., 2018)
dataset contains 7 intents typical for the smart
speaker usecase. We refer the reader to Table 1
for exact statistics of all used datasets.

3.2 Setup
The main data-scarce setup that we consider in this
work is the few-shot setup, where only K = 10
training examples are available for every intent
of interest. Additionally, to compare to example
extrapolation with fine-tuned language models as
proposed by Lee et al. (2021), we consider a partial
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CLINC150 SNIPS HWU64 Banking77

domains 10 1 18 1
intents 150 7 64 77
train

examples
15000 13084 8954* 9002*
(100)

val.
examples

3000 700 1076* 1001*
(100)

test
examples

4500 700 1076 3080
(1000)

Table 1: Statistics of the intent classification datasets
that we use in our experiments. * indicates that we
split the original data into training and validation in-
stead of using a split provided by the dataset authors.
For CLINC150, the number of out-of-scope examples
in different data partitions is given in parenthesis.

few-shot setup. In the latter setting, we limit the
amount of training data only for a handful of few-
shot intents2 and use the full training data for others.
When data augmentation is performed, we augment
the few-shot intents to have N examples, where N
is the median number of examples per intent of the
original data.

To precisely describe the training and test data
in all settings, we will use Dpart to refer to dataset
parts, i.e. train, validation, and test. In addition,
we use DF and DM to refer to data-scarce and
data-rich intents (the latter only occur in the partial
few-shot setting). This notation is defined for all
parts, therefore, Dpart = D{F,part} ∪ D{M,part},
∀ part ∈ {train, val, test}. When GPT-3 or a
baseline method is used to augment the training
data we generate N −K examples per intent and
refer to the resulting data as D̃F,train. We experi-
ment with four different-sized GPT-3 models3 by
OpenAI and GPT-J by EleutherAI4 to obtain D̃.
The four GPT-3 models are: Ada, Babbage, Curie,
and Davinci. In order, Ada is the smallest model
and Davinci is the largest. Model sizes of GPT-3
engines are not known precisely but are estimated
by Eleuther AI to be between 300M and 175B
parameters5.

2We use the truncation heuristic provided by Lee et al.
(2021): https://github.com/google/example_
extrapolation/blob/master/preprocess_
clinc150.py

3https://beta.openai.com/docs/engines
4https://github.com/kingoflolz/

mesh-transformer-jax/
5https://blog.eleuther.ai/

gpt3-model-sizes/

3.3 Training and Evaluation

We fine-tune BERT-large (Devlin et al., 2018) on
the task of intent classification by adding a linear
layer on top of the [CLS] token (Wolf et al., 2019).
In all setups we use the original validation set for
tuning the classifier’s training hyperparameters. We
chose to use the full validation set as opposed to a
few-shot one to avoid issues with unstable hyperpa-
rameter tuning and focus on assessing the quality
of the generated data.

Full few-shot. In this setup, we treat all the in-
tents as few-shot and evaluate our method on the
following three scenarios: (i) Baseline: all the
intents are truncated to K = 10 samples per in-
tent, (ii) Augmented: D̃{F,train} is generated us-
ing GPT and models are trained on D{F,train} ∪
D̃{F,train} and (iii) EDA-baseline: same as above,
but D̃{F,train} is generated using Easy Data Aug-
mentation (EDA) by Wei and Zou (2019). For each
scenario, we report the 1) overall in-scope accuracy
on the complete test set Dtest, i.e. intent classifica-
tion accuracy excluding OOS samples in the test
set, and 2) few-shot classification accuracy of the
models on D{F,test}. For CLINC150, we also re-
port out-of-scope recall (OOS recall) on Dtest that
we compute as the percentage of OOS examples
that the model correctly labelled as such.

The purpose of this setting is to estimate what
further gains can be achieved if the data generated
by GPT were labelled by a human. We train an
oracle O on the full training data Dtrain. We also
use O to assess the quality of the generated data.
Namely, we compute fidelity of the generated data
as the ratio of generated utterances that the oracle
labels as indeed belonging to the intended seed
intent. A higher fidelity value means that the gen-
erated samples are more faithful to original data
distribution.

Partial few-shot. In this setup, we train S intent
classifiers, choosing different few-shot intents ev-
ery time to obtain DF . We then average the metrics
across these S runs. For CLINC150, S = 10 cor-
responding to the 10 different domains, whereas
for SNIPS, S = 7 corresponding to the 7 different
intents. We evaluate our method on the follow-
ing three scenarios introduced by Lee et al. (2021):
(i) Baseline: models are trained without data aug-
mentation on D{F,train}∪D{M,train}. (ii) Upsam-
pled: D{F,train} is upsampled to have N examples
per intent. Then models are trained on upsampled
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Figure 2: Partial few-shot validation performance
for different GPT-3 models and temperatures. (a)
few-shot accuracy, (b) OOS recall of intent classifiers
trained on augmented sets, and (c) fidelity measured as
the accuracy of the oracle on the augmented sets.

D{F,train}∪D{M,train}. (iii) Augmented: models
are trained on D{F,train}∪D̃{F,train}∪D{M,train}.
For each scenario in this setup, we report the overall
in-scope classification accuracy (and OOS Recall
for CLINC150).

For both partial few-shot and full few-shot set-
tings, we report means and standard deviations over
10 repetitions of each experiment.

4 Experimental Results

Full few-shot. Table 2 shows the results of our
few-shot experiments. For CLINC150 and SNIPS,
data augmentation with GPT-3 is very effective as it
leads to respective accuracy improvements of up to
approximately 3.7% and 6% on these tasks. These
improvements are larger than what the baseline
EDA method brings, namely 2.4% and 2.9% for
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Figure 3: Full few-shot validation performance for
different GPT-J temperatures on different datasets.
(a) few-shot inscope accuracy of intent classifiers
trained on augmented sets, and (b) fidelity (oracle accu-
racy) of augmented sets generated by GPT-J with dif-
ferent temperatures.

CLINC150 and SNIPS. Importantly, using larger
GPT models for data augmentation brings signifi-
cantly bigger gains. Data augmentation results on
Banking77 and HWU64 are, however, much worse,
with no or little improvement upon the plain few-
shot baseline. We present a thorough investigation
of this behaviour in Section 4.1. One can also see
that data augmentation with GPT models lowers
the OOS recall.

Next, we observe that relabelling EDA and GPT-
generated sentences by the oracle gives a signif-
icant boost to accuracies across the board, con-
firming our hypothesis that human inspection of
generated data could be fruitful. Importantly, we
note that the magnitude of improvement for EDA
is less than for GPT models. This suggests that
GPT models generate more diverse data that can
eventually be more useful after careful human in-
spection. Lastly, relabelling also improves OOS
recall on CLINC150, which is due to the fact that
much of the generated data was labelled as OOS
by the oracle.

Partial few-shot. Table 3 shows the results of
our partial few-shot experiments on CLINC150
and SNIPS. By augmenting the dataset with GPT-
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CLINC150 HWU64 Banking77 SNIPS

Model IA (96.93) OR (42.9) IA (92.75) IA (93.73) IA (98.57)

EDA 92.66 (0.40) 43.81 (2.03) 83.67 (0.48) 83.96 (0.66) 92.50 (1.61)
Baseline (Ours) 90.28(0.49) 50.18(1.14) 81.43 (0.57) 83.35 (0.59) 89.69 (1.63)

Augmented

Ada (Ours) 91.31 (0.34) 21.69 (1.57) 79.68 (0.83) 79.30 (0.42) 94.27 (0.52)
Babbage (Ours) 92.72 (0.33) 22.99 (2.39) 81.86 (0.78) 80.31 (0.41) 94.74 (0.67)
Curie (Ours) 93.37 (0.21) 25.85 (1.49) 82.85 (0.70) 83.50 (0.44) 94.73 (0.62)
GPT-J (Ours) 93.25 (0.19) 24.02 (1.45) 81.78 (0.56) 82.32 (0.90) 95.19 (0.61)
Davinci (Ours) 94.07 (0.18) 27.36 (1.08) 82.79 (0.93) 83.60 (0.45) 95.77 (0.86)

Augmented + Relabelled

EDA 93.43 (0.22) 48.56 (1.84) 85.58 (0.73) 84.82 (0.57) 94.91 (0.66)
Ada (Ours) 95.09 (0.16) 41.38 (1.77) 88.53 (0.61) 88.45 (0.19) 97.03 (0.18)
Babbage (Ours) 95.39 (0.17) 40.58 (1.63) 89.49 (0.32) 88.86 (0.26) 96.89 (0.49)
Curie (Ours) 95.08 (0.19) 40.09 (2.38) 89.78 (0.47) 88.30 (4.64) 96.86 (0.31)
GPT-J (Ours) 95.11 (0.13) 43.94 (1.76) 89.52 (0.54) 88.94 (0.40) 97.33 (0.38)
Davinci (Ours) 95.08 (0.13) 40.76 (1.37) 89.53 (0.45) 88.89 (0.31) 97.03 (0.38)

Table 2: Full few-shot results on CLINC150, HWU64, Banking77, and SNIPS datasets. IA: Inscope Accuracy
(mean (std)). OR: OOS-Recall (mean (std)). Towards the top of the table, we also report the test set performance
(enclosed in parentheses) when all examples are used for fine-tuning (without any augmentation.)

CLINC150 SNIPS

Overall Few-shot Overall Few-shot

Classifier IA OR A IA A

Baseline♠ T5 97.4 - 93.7 95.2 74.0
Upsampled♠ T5 97.4 - 94.4 95.9 80.0
Augmented (Ex2)♠ T5 97.4 - 95.6 97.8 94.0

Baseline (ours) BERT 96.28 (0.06) 39.14 (0.82) 91.36 (0.47) 95.47 (0.45) 78.38 (3.34)
Upsample (ours) BERT 96.20 (0.05) 40.21 (0.59) 90.93 (0.19) 95.29 (0.37) 79.28 (2.05)

Augmented (Ada) BERT 96.16 (0.05) 34.37 (0.27) 92.60 (0.15) 97.30 (0.24) 94.41 (0.72)
Augmented (Babbage) BERT 96.39 (0.06) 35.71 (0.46) 93.66 (0.21) 97.46 (0.25) 95.31 (0.74)
Augmented (Curie) BERT 96.41 (0.06) 36.77 (0.93) 93.90 (0.21) 97.37 (0.19) 94.79 (0.64)
Augmented (GPT-J) BERT 96.38 (0.05) 35.91 (0.94) 93.85 (0.25) 97.59 (0.21) 96.08 (0.39)
Augmented (Davinci) BERT 96.45 (0.03) 37.52 (0.54) 94.28 (0.24) 97.66 (0.21) 96.52 (0.35)

Table 3: Partial few-shot results on CLINC150 and SNIPS datasets. Refer to Section 3.3 for more details. IA:
Inscope accuracy (mean (std)). OR: OOS Recall (mean (std)). A: Accuracy (mean (std)). ♠ (Lee et al., 2021).

generated samples, the few-shot accuracy improves
by up to 2.92% on CLINC150 and 18.14% on
SNIPS compared to the baseline setting. Our
method achieves competitive results compared to
Ex2 (Lee et al., 2021), both in terms of absolute
accuracies and the relative gains brought by data
augmentation. Note that Ex2 uses T5-XL (Roberts
et al., 2020) with nearly 3 billion parameters as
its base intent classifier, while our method uses

BERT-large with only 340 million parameters.

4.1 Analysis

Effect of GPT sampling temperature. We inves-
tigate the impact of generation temperature on the
quality and fidelity of generated data. We perform
this investigation on the CLINC150 dataset using
the partial few-shot setup. Results in Figure 2 show
that, for all engines, the generated data leads to the
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Davinci generated sentences Seed Intent Oracle Prediction
HWU64

play a song with the word honey music_likeness play_music

you are playing music music_likeness play_music

‘let me hear some of that jazz!’ music_likeness play_music
i really like myspace music play_music music_likeness

i love the start lucky country music play_music music_likeness
thank you for the music play_music music_likeness

please play the next song music_settings play_music

play background music music_settings play_music

play the hour long loop of rock song music_settings play_music

need you to play that song one more time play_music music_settings
skip that song, its turkish play_music music_settings

pickup the beat or a temp track or audio plugin play_music music_settings
Banking77

My last attempt to top up didn’t seem to work , any success? topping_up_by_card top_up_failed
I tried to top off my wallet using my card but it says
“top up failed".

topping_up_by_card top_up_failed

I cannot top-up by my cellular phone number? How do I do
that?

topping_up_by_card top_up_failed

Can you transfer money to my Ola prepaid option? Or help
me top up my card to money . They never accept my card so I
always have to suffer

top_up_failed topping_up_by_card

Hi my app is activated on activate.co.in, but unable to top up my
phone. I tried credit card, debit card and Paytm but fails

top_up_failed topping_up_by_card

I try to top up my card but it’s not going through. It’s
still on pending status. Do I need to wait or did I do something

wrong

top_up_failed pending_top_up

I tried top-up with my card but notification
shows that ‘Pending’. This has been happening since

last night. Can you tell me what’s going on

top_up_failed pending_top_up

Top up didn’t go through. pending_top_up top_up_failed

Did my master card top-up fail? pending_top_up top_up_failed

Table 4: Davinci-generated sentences for closely-related intents in HWU64 and Banking77 datasets. High-
lighted sub-strings indicate a difference with respect to the seed intent.

highest classification accuracy when the generation
temperature is around 1.0, although lower tempera-
tures result in higher OOS recall. We also observe
that the fidelity of the generated samples decreases
as we increase the temperature (i.e. higher diversity,
see Figure 2c). This suggests that higher fidelity
does not always imply better quality samples as the
language model may simply copy or produce less
diverse utterances at lower temperatures. In Ap-
pendix A, we perform a human evaluation, reach-
ing similar conclusions as when using an oracle to
approximate fidelity.

Fidelity on different datasets. Our results in Sec-
tion 4 show that data augmentation gains are much
higher on CLINC150 and SNIPS than on HWU64
and Banking77. To contextualize these results, we
report the fidelity of GPT-J-generated data for all

these tasks in Figure 3b. Across all generation tem-
peratures, the fidelity of the generated data is higher
for CLINC150 and SNIPS than for HWU64 and
Banking77. For all datasets, the fidelity is higher
when the generation temperature is lower; however,
Figure 3a shows that low-temperature data also
does improve the model’s performance.

Data generation for close intents. To better
understand the lower fidelity and accuracy on
HWU64 and Banking77 datasets, we focus on in-
tents with the lowest fidelities. Here, by intent
fidelity, we mean the percentage of the intent’s gen-
erated data that the oracle classified as indeed be-
longing to the seed intent. In the Banking77 dataset,
the lowest-fidelity intent is “topping_up_by_card.”
For this intent, only 33% of the Davinci-generated
sentences were labelled as “topping_up_by_card”
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Fidelity (3 intents) HWU64 Banking77

w/o filtering (468) 60.26 57.31
w/ filtering (371) 72.51 65.54

3-way accuracy

Davinci 86.36 78.75
10-shot BERT-large 82.95 65.54
Full data BERT-large 94.32 95.00

Table 5: The impact and the accuracy of using GPT-3 as
a 3-way classifier on close intent triplets from HWU64
and Banking77 datasets. For fidelity, generated exam-
ples are rejected if the GPT-3 classifier labels them as
not belonging to the seed intent. Classification accu-
racies are reported on the reduced validation+test sets
where we only consider examples from the three con-
founding intents.

Banking77

topping_up_by_card
top_up_failed
top_up_by_card_charge
remaining

HWU64

music_likeness
play_music
general_quirky
remaining

Figure 4: Distribution of labels as predicted by the
oracle for lowest-fidelity intents in Banking77 and
HWU64 datasets (“topping_up_by_card" and “mu-
sic_likeness," respectively). Green areas denote the
portion of generated sentences deemed fit by the ora-
cle for the lowest-fidelity intents in the two datasets.
Red and Blue areas respectively correspond to the most
common and the second most common alternative in-
tent predicted by the oracle.

by the oracle, implying that two-thirds of the
sentences did not fit that intent, “top_up_failed"
and “top_up_card_charge" being the two most
common alternatives chosen by the oracle. Simi-
larly, only 50% of the Davinci-generated sentences

abide by the lowest-fidelity “music_likeness" in-
tent in the HWU64 dataset, “play_music” and
“general_quirky" being the most common intents
among the “unfaithful" sentences. Figure 4 visu-
alizes this high percentage of unfaithful generated
sentences. It also shows the proportion of the two
most common alternatives that the oracle preferred
over the seed intent. Table 4 presents generated
sentences for confounding intents in the HWU64
and Banking77 datasets. There are clear indica-
tions of mix-up of intents, e.g., Davinci generates,
“play a song with the word honey," which should be-
long to “play_music" rather than “music_likeness."
There are also instances where the LM mixes two
intents; for instance, Davinci generates “Hi my
app is activated on activate.co.in, but unable to
top up my phone. I tried credit card, debit card
and Paytm but fails," which could belong to ei-
ther “topping_up_by_card" intent (as it mentions
about using credit card in the context of a top up)
or “top_up_failed" (as the top up ultimately fails).

4.2 Can GPT Models Understand Close
Intents?

We perform extra investigations to better under-
stand what limits GPT-3’s ability to generate data
accurately. We hypothesize that one limiting factor
can be GPT-3’s inability to understand fine-grained
differences in the meanings of utterances. To verify
this hypothesis, we evaluate how accurate GPT-3 is
at classifying given utterances as opposed to gener-
ating new ones. Due to the limited prompt size of
2048 tokens, we can not prompt GPT-3 to predict
all the intents in the considered datasets. We thus
focus on the close intent triplets from HWU64 and
Banking77 datasets that we use in Table 4. We
compare the 3-way accuracy of a prompted GPT-3
classifier to the similarly-measured 3-way perfor-
mance of conventional BERT-large classifiers. We
prompt GPT-3 with 10 examples per intent (see
Figure 5). For comparison, we train BERT-large
classifiers on either the same 10 examples or the
full training set. Table 5 shows that the Davinci ver-
sion of GPT-3 performs in between the 10-shot and
the full-data conventional classifiers. This suggests
that while GPT-3’s understanding of nuanced intent
differences is imperfect, it could still be sufficient
to improve the performance of the downstream
few-shot model. Inspired by this finding, we exper-
iment with using GPT-3’s classification abilities to
improve the quality of generated data. Namely, we
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reject the generated utterances that GPT-3 classi-
fies as not belonging to the seed intent. For both
HWU64 and Banking77, this filtering method sig-
nificantly improves the fidelity of the generated
data for the chosen close intent triplets.

4.3 Comparison with GPT3Mix

To test our initial hypothesis that prior methods
such as GPT3Mix are not suitable for intent clas-
sification, we experiment with the said method on
the CLINC150 dataset using Curie. Specifically,
we include an enumeration of the 150 intent names
in the prompt and randomly select one example for
K intents. We observe a poor in-scope accuracy of
86.33% in the Augmented scenario6. Furthermore,
the generated samples have low fidelity (27.96%).
We also test a mixture of GPT3Mix prompt and
our prompt where we include all the K examples
for the seed intent instead of 1 example per K ran-
domly sampled intents. This mixed variant also
performs poorly on CLINC150 and only achieves
an in-scope accuracy of 86.05%7 and a fidelity
of 33.56%. Our interpretation of this result is that
GPT cannot handle the long list of 150 intent names
in the prompt.

5 Related Work

The natural language processing literature features
diverse data augmentation methods. Edit-based
methods such as Easy Data Augmentation apply
rule-based changes to the original utterances to
produce new ones (Wei and Zou, 2019). In back-
translation methods (Sennrich et al., 2016) avail-
able examples are translated to another language
and back. Recently, data augmentation with fine-
tuned LMs has become the dominant paradigm
(Wu et al., 2018; Kumar et al., 2019, 2021; Anaby-
Tavor et al., 2020; Lee et al., 2021). Our simpler
method sidesteps LM-fine-tuning and directly uses
off-she-shelf LMs as is.

The data augmentation approach that is closest
to the one we use here is GPT3Mix by Yoo et al.
(2021). A key part of the GPT3Mix prompt is a
list of names of all possible classes (e.g. “The
sentiment is one of ‘positive’ or ‘negative”’). The
LM is then expected to pick a random class from
the list and generate a new example as well as the
corresponding label. However, this approach does
not scale to intent classification setups, which often

6Average of 10 runs with a standard deviation of 1.17
7Average of 10 runs with a standard deviation of 0.59

Input Prompt:

Each example in the following list contains
a sentence that belongs to a category. A
category is one of the following:
music_likeness, play_music, music_settings: 

sentence: next i want to hear shinedown ; 
category: play_music
sentence: i am the living blues ; 
category: music_likeness 
sentence: open music player settings ; 
category: music_settings
sentence: play hopsin from my latest 
playlist ; category: play_music 
sentence: i like this song ; 
category: 

GPT-3 Predictions: 

play_music,music_likeness,music_settings, 
music_likeness,music_likeness,help_command

Figure 5: Using GPT-3 as a classifier. Given a triplet
of close intents, we mix and shuffle the multiple seed
examples available for each of them. Then, we append
an incomplete line to the prompt with just the generated
sentence and feed it to GPT-3 multiple times. Among
the responses, we choose the most generated in-triplet
intent as the predicted intent (“music_likeness" in the
above example). Note: For brevity, we don’t show all
the seed examples and predictions.

feature hundreds of intents (see Section 4.3). There-
fore, we choose a different prompt that encourages
the model to extrapolate between examples of a
seed intent similarly to (Lee et al., 2021).

Other work on few-shot intent classification ex-
plores fine-tuning dialogue-specific LMs as clas-
sifiers as well as using similarity-based classi-
fiers instead of MLP-based ones on top of BERT
(Vulić et al., 2021). We believe that improvements
brought by data augmentation would be comple-
mentary to the gains brought by these methods.

Lastly, our method to filter out unfaithful GPT
generations is related to the recent work by Wang
et al. (2021) that proposes using GPT3 for data
labelling. A crucial difference with respect to our
work, however, is that we use GPT-3 for rejecting
mislabelled samples rather than proposing labels
for unlabelled samples.

6 Conclusion

We propose a prompt-based method to generate
intent classification data with large pretrained lan-

54



guage models. Our experiments show that gener-
ated data can be helpful as additional labelled data
for some tasks, whereas, for other tasks, the gen-
erated data needs to be either relabelled or filtered
to be helpful. We show that a filtering method that
recasts the same GPT model as a classifier can be
effective. Our filtering method, however, requires
knowing the other intents that the generated data is
likely to belong to instead of the seed intent. Future
work can experiment with heuristics for approxi-
mately identifying the most likely actual intents
for the generated utterances. This would complete
a data generation and filtering pipeline that, ac-
cording to our preliminary results in Section 4.2
here, could be effective. Other filtering methods
could also be applied, such as looking at the like-
lihood of the generated utterances as explored in
a concurrent work by Meng et al. (2022). Lastly,
an interesting future work direction is identifying
which generated utterances most likely need a hu-
man inspection.

7 Ethical Considerations

As discussed for the GPT3Mix method in Yoo
et al. (2021), using large language models for data
augmentation presents several challenges: they ex-
hibit social biases and are prone to generating toxic
content. Therefore, samples generated using our
prompting-based approach need to be considered
carefully.

To address such ethical concerns, human inspec-
tion would be the most reliable way to identify
and filter out problematic generations. The prac-
titoners who apply our method may also consider
debiasing the language model before using it for
generation (Schick and Schütze, 2021).
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Appendix

A Human Evaluation

In Figure 2 we evaluate the fidelity of the samples
generated by GPT-3 with respect to the original
set of sentences used to prompt it. Fidelity is ap-
proximated by the classification performance of
an "oracle" intent classifier trained on the whole
dataset (Dtrain∪Dtest) and evaluated over the gen-
erated samples. In order assess whether the oracle
predictions are comparable to those of a human, we
perform a human evaluation study.
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Figure 6: Human evaluation. Error rate of human
evaluators at the task of finding whether any sentence
in a group of 5 was generated by GPT-3 or not. Each
color represents a different GPT-3 engine. Higher error
rate indicates that humans could not correctly identify
generated samples and thus it also indicates higher fi-
delity. The standard error is displayed as a vertical line
on top of each bar.

Figure 7: Human evaluation tool. Example of a ques-
tion for the human evaluators. Human evaluators are
asked to flag which example is GPT-3 generated if any
among the 5 presented ones.

We consider that a model produces sentences
with high fidelity if a human is unable to distinguish
them from a set of human-generated sentences be-

longing to the same intent. Therefore, for each
intent in the CLINC150 dataset, we sample five ran-
dom examples and we randomly choose whether to
replace one of them by a GPT-3 generated sentence
from the same intent. We generate sentences with
each of the four GPT-3 models considered in the
main text with two different temperatures (0.8 and
1.0). The sentence to replace is randomly selected.
Finally, the five sentences are displayed to a hu-
man who has to choose which of the sentences is
generated by GPT-3, if any.

The task is presented to human evaluators in
the form of a web application (see Figure 7). We
placed a button next to each sentence in order to
force human evaluators to individually consider
each of the examples. Once annotated, the evalua-
tor can either submit, discard, or leave the task to
label later. We used a set of 15 voluntary evalua-
tors from multiple backgrounds, nationalities, and
genders. Each evaluator annotated an average of 35
examples, reaching a total of 500 evaluated tasks.

For each model and temperature, we report the
error rate of humans evaluating whether a task con-
tains a GPT-generated sample. We consider that
evaluators succeeds at a given task when they cor-
rectly find the sentence that was generated by GPT
or when they identify that none of them was gener-
ated. Thus, the error rate for a given model and tem-
perature is calculated as #failed / total_evaluated.

Results are displayed in Figure 6. We find that
human evaluators tend to make more mistakes
when the temperature used to sample sentences
from GPT-3 is smaller. This result is expected since
lowering the temperature results in sentences closer
to those prompted to GPT-3, which are human-
made. We also observe that models with higher ca-
pacity such as Davinci tend to generate more in-
distinguishable sentences than lower-capacity mod-
els such as Ada, even for higher temperatures.
These results are in agreement with the "oracle"
fidelity results introduced in Figure 2.
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