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Introduction

Welcome to the NAACL 2022 Student Research Workshop.

The NAACL 2022 Student Research Workshop (SRW) is a forum for student researchers in computatio-
nal linguistics and natural language processing. The workshop provides a unique opportunity for student
participants to present their work and receive valuable feedback from the international research commu-
nity as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have archival and non-archival
tracks for research papers and thesis proposals. The research paper track is a venue for Ph.D. students,
Masters students, and advanced undergraduates to describe completed work or work-in-progress along
with preliminary results. The thesis proposal track is offered for advanced Masters and Ph.D. students
who have decided on a thesis topic and are interested in feedback on their proposal and ideas about future
directions for their work.

This year, we received 96 submissions in total: 8 thesis proposals and 88 research papers. We accepted
5 thesis proposal and 41 research papers, resulting in an acceptance rate of 63% for thesis proposals and
47% for research papers. Out of the 41 research papers, 9 were non-archival and 33 are presented in these
proceedings. Out of the 5 thesis proposals, 1 was non-archival and 4 are presented in these proceedings.

Mentoring is at the heart of the SRW. In line with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 28 papers participated in the pre-submission mento-
ring program. This program offered students the opportunity to receive comments from an experienced
researcher to improve the writing style and presentation of their submissions.

We are deeply grateful to our sponsors, the National Science Foundation, Microsoft and Google. We
thank the program committee members for their careful reviews of each paper and all of the mentors for
donating their time to provide feedback to the student authors. We thank our faculty advisors, Danqi Chen
and Nianwen Xue, for their essential advice and guidance, and the NAACL 2022 organizing committee
for their support. Finally, we thank all the student authors for submitting their work and participating in
the NAACL 2022 edition of the SRW.
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Abstract

Systematicity is thought to be a key inductive
bias possessed by humans that is lacking in
standard natural language processing systems
such as those utilizing transformers. In this
work, we investigate the extent to which the fail-
ure of transformers on systematic generaliza-
tion tests can be attributed to a lack of linguistic
abstraction in its attention mechanism. We de-
velop a novel modification to the transformer
by implementing two separate input streams: a
role stream controls the attention distributions
(i.e., queries and keys) at each layer, and a filler
stream determines the values. Our results show
that when abstract role labels are assigned to in-
put sequences and provided to the role stream,
systematic generalization is improved.

1 Introduction

Transformers have achieved state-of-the-art per-
formance on many natural language processing
(NLP) tasks (Brown et al., 2020; Devlin et al., 2019;
Vaswani et al., 2017), but it has been suggested
that they remain inferior to human language learn-
ers when it comes to sample efficiency (Linzen,
2020) and more difficult generalization problems
(Baroni, 2020; Lake and Baroni, 2018; Lake et al.,
2019; Keysers et al., 2020). These architectures
have proven to scale remarkably well (Brown et al.,
2020), but may lack the strong inductive biases that
contribute to these human abilities (Battaglia et al.,
2018; Lake et al., 2017).

Systematicity, or the capacity to leverage struc-
tural or grammatical knowledge to compose famil-
iar concepts in novel ways (Fodor and Pylyshyn,
1988; Smolensky, 1990), has been highlighted as
one potential inductive bias present in humans

∗equal contribution

(Lake et al., 2019; O’Reilly et al., 2021) that deep
learning architectures may lack (Lake and Baroni,
2018; Lake et al., 2017). It has been argued that in
humans, the ability to understand sentences such as
“John loves Mary” necessarily implies the ability
to understand certain other sentences, e.g., those
that are constructed from the same elements and
grammatical relations such as “Mary loves John”
(Fodor and Pylyshyn, 1988).

The SCAN dataset (Lake and Baroni, 2018) was
introduced to evaluate the systematic generaliza-
tion capabilities of deep neural networks. In SCAN,
instructions generated from an artificial grammar
must be translated into action sequences, and train-
test splits require models to generalize to novel
compositions of familiar words. Although deep
learning models achieve good generalization per-
formance when train and test data are split ran-
domly, their performance suffers on these system-
atic generalization tests (Lake and Baroni, 2018),
even though humans perform well on analogous
generalization problems (Lake et al., 2019).

The mechanisms underlying human systematic-
ity remain unclear, but a number of candidates
have been proposed, including tensor-product rep-
resentations (Schlag et al., 2019; Smolensky, 1990)
and specialized attention mechanisms (Goyal et al.,
2019; Bengio, 2017; Russin et al., 2020; Webb
et al., 2021). Attention is central to the transformer
architecture (Vaswani et al., 2017) and has been
leveraged in mechanisms resembling systematic
symbolic processing (Graves et al., 2014; Webb
et al., 2021), thus making it a key potential target
for encouraging systematicity (Russin et al., 2020).

In this work, we explore the connection between
attention and systematicity using a novel trans-
former architecture designed to leverage structural
or abstract information in its attention mechanism.

1



Figure 1: Examples from the add-jump split of SCAN. All except the simplest instructions with the word “jump”
are held out of the training set, requiring models to generalize its usage to more complicated constructions.

We hypothesized that systematicity would improve
if attention distributions in the transformer were
strictly determined from abstract inputs containing
minimal token-specific information, as this may
prevent memorization of spurious relationships in
the training data. Previous work has experimented
with incorporating additional linguistic inputs into
NLP systems (e.g., Sachan et al., 2021), but here
we propose a novel way of utilizing additional lin-
guistic knowledge: a separate “role” input stream
is introduced to the transformer, which determines
the attention distributions at each layer but is kept
separate from the typical (“filler”) input stream
used to directly generate outputs. Many kinds of in-
formation can be passed to the role input stream (in-
cluding the original tokens themselves), thereby al-
lowing us to explore the kinds of inputs that, when
used to determine attention, result in improved sys-
tematicity. In our preliminary work, we explore
the use of abstract grammatical roles to determine
attention in the transformer on the SCAN dataset.

2 Related Work

2.1 SCAN

The SCAN dataset (see Figure 1) uses a simple
finite phrase-structure grammar to generate instruc-
tion sequences that must be translated into se-
quences of actions (Lake and Baroni, 2018). In
the simple split, train and test examples are sam-
pled randomly from the set of all possible instruc-
tions. In the systematic generalization test called
the add-jump split, all instruction sequences con-
taining one of the primitive verbs (“jump”) are sys-
tematically held out of the training set, except in
its simplest form (“jump” → JUMP). The original

work showed that recurrent neural networks such
as long short-term memory (LSTM) succeed at the
simple split but fail on the add-jump split (Lake
and Baroni, 2018).

Subsequent work introduced a new framework
for generating systematic generalization tests called
distribution-based compositionality assessment,
and showed that transformers perform poorly on
these tests in addition to the original add-jump split
(Keysers et al., 2020). Although standard deep
learning architectures consistently fail at this task,
a number of non-standard approaches have demon-
strated some success, including a meta-learning
(Lake, 2019), recurrent networks that factorize
alignment and translation (Russin et al., 2020) or
are designed for primitive substitution (Li et al.,
2019), masked language model pretraining (Fur-
rer et al., 2021); iterative back-translation (Guo
et al., 2020), use of analytic expressions (Liu et al.,
2020), and auxiliary sequence prediction (Jiang
and Bansal, 2021). Our preliminary work presents
a new approach that has many commonalities with
these previous ideas.

2.2 Utilizing Linguistic Knowledge

Prior work has shown that a remarkable amount of
linguistic structure emerges in the representations
learned by large transformers self-supervised on
natural language (Linzen and Baroni, 2021; Man-
ning et al., 2020; Tenney et al., 2019), and that
transformers can learn to approximate a composi-
tional process for solving math problems (Russin
et al., 2021). These findings may cast doubt on the
idea that injecting explicit linguistic structure will
aid these models in producing the kinds of system-
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atic behavior observed in human language learners.
However, given their poor systematic generaliza-
tion performance observed on tasks like SCAN
(Lake and Baroni, 2018), and their reliance on cer-
tain syntactic heuristics that lead to predictable fail-
ures on challenging sentences (McCoy et al., 2019;
Linzen and Baroni, 2021), it stands to reason that
these models may benefit from access to explicit
linguistic knowledge (Sachan et al., 2021).

Some work has attempted to incorporate
linguistically-informed labels such as part-of-
speech tags or syntactic parses into the inputs or
training regiments of deep learning models (Sachan
et al., 2021; Sennrich and Haddow, 2016; Strubell
et al., 2018), showing some improvements on ma-
chine translation (Sennrich and Haddow, 2016) and
semantic role labeling (Strubell et al., 2018). A
number of methods have been used to inject lin-
guistic knowledge into these models, including the
use of graph neural networks (Marcheggiani and
Titov, 2017; Sachan et al., 2021) and multi-task
learning (Strubell et al., 2018). In this work, we
develop a novel approach that attempts to establish
an explicit link between linguistic structure and the
attention mechanism of transformers to improve
their systematic generalization capabilities.

3 Methods

3.1 Architecture
The transformer architecture (Vaswani et al., 2017)
utilizes multi-head attention layers that take as in-
put query (Q), key (K), and value (V ) vectors:

Attn(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where dk is the dimension of the keys (K). Note
that the probability distribution over the sequence
length produced by the softmax is determined by
the queries (Q) and keys (K) alone. We modified
the existing transformer architecture by separating
two streams of processing (see Figure 2): 1) the
“filler” stream determines the values at each layer,
which will be averaged according to the weights
given by the attention distributions and contribute
directly to the output of the model, and 2) the “role”
stream determines at each layer the queries (Q) and
keys (K) — and therefore the attention distribu-
tions — but otherwise does not directly contribute
to the output of the model. This was achieved by
introducing a separate set of embeddings for each
input stream (M for the fillers and X for the roles).

The existing attention mechanism was modified so
that the roles in layer l + 1 are determined from a
weighted combination of the keys in layer l:

M = Attn(Q,K, V )

X = Attn(Q,K,K)
(2)

This ensures that no information from the filler
stream can enter into the determination of the atten-
tion distributions at each layer, and that the roles
can only affect the output of the model through
their control over the attention, similar to Russin
et al. (2020). The attention at each layer can have
multiple heads in the usual way (Vaswani et al.,
2017), and the separation between the two streams
is maintained throughout both the encoder and the
decoder (see Figure 2). Because the role stream
determines the way information from the input to-
kens will be combined throughout the architecture
(through its influence on the attention distributions),
positional encodings are added to the role embed-
dings rather than the filler embeddings.

Note that this setup allows us flexibility in terms
of the kind of information that is passed to the
role input stream. The original tokens themselves
can be embedded separately and passed to the role
stream, in which case the architecture becomes
very similar to the original transformer, with the
exception of the modification to the attention de-
picted in Figure 2. Here, we embed abstract roles
for the tokens in the SCAN dataset to investigate
the relationship between abstraction in the attention
mechanism and systematic generalization behavior.

3.2 Role Auxiliary Loss
Each transformer layer returns two sets of vectors
(X and M ). The output of the filler stream (M )
is a sequence of target predictions that are used to
compute the usual cross entropy loss before back-
propagation (“Filler loss”). The output of the role
stream (X) can optionally be used in an auxiliary
cross-entropy loss on the roles assigned to the target
sequence (“Role loss”). We performed experiments
with and without this auxiliary loss, and results are
reported for both.

3.3 Thresholded Attention
Drawing inspiration from Rahaman et al. (2021),
we also experimented with thresholding the
encoder-decoder attention:

threshold(Aij) =

{
Aij if Aij > τ
0 otherwise

(3)
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Figure 2: Modified transformer architecture. The architecture imposes two separate role and filler streams throughout
the encoder (left) and decoder (middle). The filler stream determines the values (V ) at each layer while the role
stream determines the keys (K) and queries (Q), and therefore the attention distributions. This was accomplished
by modifying the original attention mechanism (right).

Where τ is the attention threshold and A =
softmax(QKT

√
dk

). The thresholded attention matrix
is then re-normalized and multiplied by the value
matrix as in equation 1.

3.4 Implementation Details

The encoder and decoder had 2 layers with 8 at-
tention heads and used a thresholding parameter
(τ ) of 0.08. The embedding dimension was 256,
the hidden dimension was 512, and the dimen-
sion of the query, key and value vectors was 256.
The model was optimized for 400 epochs using
Adam (Kingma and Ba, 2015) with a learning rate
of 2.5 × 10−4. Experiments were performed us-
ing both absolute positional encodings (Vaswani
et al., 2017) and relative positional embeddings
(Dai et al., 2019); absolute positional encodings
were found to lead to slightly better performance
with reduced variance, so for simplicity we only
report those results.

4 Experiments

To test our hypothesized link between attention, lin-
guistic abstraction, and systematic generalization,
we developed abstract roles to label each token
in the SCAN vocabulary, and performed experi-
ments testing our architecture with and without

these abstract roles. We report results on the diffi-
cult add-jump split of the SCAN dataset, and com-
pare against previous work. Our main purpose is
to show that systematic generalization is improved
in the transformer when linguistic abstractions are
used as inputs to the role stream for determining
attention, and that there is an asymmetry in the
transformer such that these abstractions should be
used to determine attention (i.e., keys and queries)
and not to directly produce outputs (i.e., values).

4.1 SCAN Roles

The phrase-structure grammar used in SCAN is
very simple, so the grammatical roles used as ad-
ditional inputs were relatively straightforward to
implement. In the case of the add-jump split, we hy-
pothesized that the best abstract role scheme would
be one that assigned all primitive verbs to a sin-
gle role (“prim”) in both the instructions (source)
and the actions (target). Except where indicated
(section 4.2.2), all results used this scheme.

4.2 Results

Our main results are shown in Table 1. We re-
produce previous work and show that the baseline
transformer (Vaswani et al., 2017) achieves perfect
accuracy on the simple split of the SCAN dataset,
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Model Simple Add jump
LSTM+Attn (Keysers et al., 2020) 99.9 ± 2.7 0.0 ± 0.0
Syntactic Attention (Russin et al., 2020) 100.0 ± 0.0 78.4 ± 27.4
CGPS-RNN (Li et al., 2019) 99.9 ± 0.0 98.8 ± 1.4
T5-11B (Furrer et al., 2021) X 98.3 ± 3.3
Semi-Sup (Guo et al., 2020) X 100.0 ± 0.0
LANE (Liu et al., 2020) 100.0 ± 0.0 100.0 ± 0.0
Aux. seq. (Jiang and Bansal, 2021) X 98.32 ± 0.3
Transformer 100.0 ± 0.0 0.19 ± 0.18
Filler loss, no thresh (ours) 99.9 ± 0.01 16.2 ± 25.1
Filler loss, thresh (ours) 99.9 ± 0.01 85.6 ± 1.15
Filler + Role loss, no thresh (ours) 99.9 ± 0.02 87.4 ± 5.6
Filler + Role loss, thresh (ours) 100.0 ± 0.0 92.7 ± 3.3

Table 1: Performance (average accuracy ± standard deviation) on the simple and add-jump splits of SCAN.

but fails dramatically on the add-jump split testing
its systematic generalization capabilities. Our ar-
chitecture improves performance on the add-jump
split when the role labels are used as inputs to
the role stream. Marginal improvement relative to
baseline was observed without the use of attention
thresholding and without backpropagating the aux-
iliary role loss (“Filler loss, no thresh”). Each of
these two tweaks improved performance (“Filler
loss, thresh”, “Filler + Role loss, no thresh”) and
when both were used (“Filler + Role loss, thresh”),
the architecture achieved 92.7% accuracy on the
test set of the add-jump split.

4.2.1 Abstraction in Roles vs. Fillers
To further investigate the connection between atten-
tion and systematicity, we varied the inputs used
in each of the filler and role streams of the ar-
chitecture (see Table 2). When the filler tokens
(i.e., the words from the original SCAN vocabu-
lary) were used as inputs to both the role and filler
streams, our architecture resembled the original
transformer architecture, as these inputs were used
to simultaneously determine the outputs (i.e., the
values) and the attention (i.e., the keys and queries)
at each layer. This was confirmed in the perfor-
mance on the SCAN task, where using the fillers in
both streams (“Fillers-Fillers”) resulted in similar
performance to the baseline transformer.

As a sanity check, we also reversed the role and
filler inputs, so that the role labels were inputs to
the filler stream and the words from the original
SCAN vocabulary were used as inputs to the role
stream (“Roles-Fillers”). In this case, performance
again matched the baseline transformer on the add-
jump split, confirming our intuition that linguistic

Model Simple Add jump
Transformer 100.0 ± 0.0 0.19 ± 0.18
Fillers-Fillers 100.0 ± 0.0 2.8 ± 1.6
Roles-Fillers 100.0 ± 0.0 0.22 ± 0.16
Fillers-Roles 100.0 ± 0.0 92.7 ± 3.3

Table 2: Performance on the add-jump split only im-
proved when abstract annotations were used in the role
stream (“Fillers-Roles”).

abstractions are best used to determine attention
distributions, not values.

4.2.2 Varying the Level of Abstraction
We believe that the previous result highlights a
strength of our setup, as it allows us the flexibility
to diverge from the original transformer in a con-
tinuous way by varying the amount of abstraction
used in the inputs to the role stream. For exam-
ple, in a natural language task it would be possible
to vary the kinds of abstract labels or annotations
supplied as input to the role stream from highly
abstract part-of-speech tags to more complex anno-
tations from more sophisticated automated parses.

To test this idea in the SCAN setting, we experi-
mented with different schemes for assigning roles
that varied in their level of abstraction, as measured
by the empirical entropy of the resultant source role
vocabulary (see Figure 3). After our initial role-
assignment scheme, we made roles progressively
more abstract by assigning additional instruction
words to the same role (e.g., “left” and “right” to
“dir”, “twice” and “thrice” to “num”, etc.). Results
validated the assumption that the best scheme was
one that used a single role for each of the primitive
verbs, and assigned a different role to each of the
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Figure 3: Add-jump performance varies with the level
of abstraction in the inputs to the role stream (highest
performance outlined in red).

other words (entropy = 3.127). This experiment
shows that there is an ideal level of abstraction to
use in the role stream: too much abstraction results
in an inability to distinguish relevant distinctions,
and too little results in the unsystematic memoriza-
tion typical of the vanilla transformer.

5 Conclusion

Our preliminary work establishes a connection be-
tween linguistic abstraction, the attention mecha-
nism used in transformers, and systematic general-
ization behavior as measured by performance on
the SCAN dataset: when abstract roles are assigned
to inputs and used to determine the attention at each
layer, systematic generalization improves. We de-
veloped an architecture that may facilitate greater
understanding of the original transformer (Vaswani
et al., 2017) by allowing more precise investigation
into the relative contributions of attention distribu-
tions and representation learning. Future work will
test our setup on other compositional or systematic
generalization tasks (Keysers et al., 2020; Kim and
Linzen, 2020) and determine the kinds of linguistic
abstraction that allows success on these tasks. In
addition, future work will experiment with using
our novel architecture on natural language datasets
using varying levels of linguistic abstraction.

The extent to which human-level language un-
derstanding requires stronger inductive biases than
those currently implemented in deep learning sys-
tems remains an open question. Our work shows
that utilizing linguistic abstraction in the attention
mechanism of transformers may be a promising ap-
proach for improving the systematic generalization
capabilities of deep neural networks.
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Abstract

Building open-domain dialogue systems capa-
ble of rich human-like conversational ability is
one of the fundamental challenges in language
generation. However, even with recent advance-
ments in the field, existing open-domain gener-
ative models fail to capture and utilize external
knowledge, leading to repetitive or generic re-
sponses to unseen utterances. Current work
on knowledge-grounded dialogue generation
primarily focuses on persona incorporation or
searching a fact-based structured knowledge
source such as Wikipedia. Our method takes
a broader and simpler approach, which aims
to improve the raw conversation ability of the
system by mimicking the human response be-
havior through casual interactions found on so-
cial media. Utilizing a joint retriever-generator
setup, the model queries a large set of filtered
comment data from Reddit to act as additional
context for the seq2seq generator. Automatic
and human evaluations on open-domain dia-
logue datasets demonstrate the effectiveness of
our approach.

1 Introduction

Humans have long wanted to talk with the machine
and have them comprehend and generate natural
language. The task of chit-chat dialogue response
generation can be described as one of the major
goals in natural language processing. As such,
there has been considerable interest in the sub-field
of open-domain dialogue models.

Nevertheless, the existing dialogue response gen-
eration models still suffer from some very funda-
mental problems: lack of interesting (“Ok”, “I see",
etc.) or uninformative responses (“I don’t know")
(Li et al., 2016a, Shao et al., 2017, Ghazvininejad
et al., 2017). The primary cause for this is that,
unlike humans, the models do not have access to
knowledge, experience about out-of-domain topics
or human conversational habits and hence can only
produce limited unengaging generic responses.

Recent work has proposed considering addi-
tional context information such as multi-turn con-
versational history (Zhang et al., 2018), persona (Li
et al., 2016b) or a fact-based knowledge base (Di-
nan et al., 2019). Among these, our work ap-
proaches this problem from a more general stand-
point of improving the raw conversational ability
of generative models. We attempt this by taking
inspiration from how humans learn to converse, i.e.,
through mimicking social interactions. Applying
this in the context of dialogue models, we use a
human-readable external knowledge base consist-
ing solely of unstructured social media interactions
(hereinafter referred to as SMIkb), which tends
to include a more diverse language structure and
hence improve generated responses.

For our approach, we jointly train a generator-
retriever model where the retriever searches
through pre-indexed SMIkb and feeds the related
information together with the input utterance to the
generative seq2seq model, allowing for additional
context at the time of generation.

In particular, we utilize the Dense Passage Re-
triever proposed by Karpukhin et al. (2020) on top
of BART (Lewis et al., 2020a) as our generational
model trained on a mix of open-domain dialogue
datasets, together with a collection of Reddit sub-
missions and comments as our main source of so-
cial interactions. Experiments showed that our ap-
proach outperformed the existing vanilla seq2seq
baseline (BART) across all of the automatic and
human evaluation metrics. By making use of in-
teractions grounded in social media, the generated
responses were not only more engaging but were
also shown to be much more relevant and natural,
thus establishing the effectiveness of our approach.

2 Related Work

Dialogue Systems In recent years, major break-
throughs beginning with the Transformer (Vaswani
et al., 2017) and BERT (Devlin et al., 2019) have
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Figure 1: Our proposed dialogue response generation approach grounded in SMIkb through a jointly trained
retriever-seq2seq generator setup. Utterance u is encoded and matched against titles (in red) where the respective
comments (k, in blue) are retrieved from the SMIkb. These act as an additional context for the generator to generate
the final dialogue response r.

quickly shifted the landscape of modern NLP re-
search. These were shortly followed by auto-
regressive seq2seq models (T5 (Raffel et al., 2020),
BART) that significantly improved performance on
generation-based tasks such as dialogue systems.
We adopt the widely accessible BART as our strong
baseline.

Knowledge-based Conversational Models In-
corporating additional context or external informa-
tion into existing models has been a field of much
interest lately. Persona-chat (Zhang et al., 2018)
or Empathetic Dialogues (Rashkin et al., 2019)
take into account persona or empathetic informa-
tion. Furthermore, advancements making use of
knowledge bases in the area of open-domain di-
alogue systems have become increasingly com-
mon (Ghazvininejad et al., 2017; Dinan et al.,
2019). The closest work to ours, in terms of includ-
ing a retrieval step for dialogue generation, is We-
ston et al. (2018), which proposed an approach
involving pre-training the retriever and generat-
ing only over the candidates retrieved in advance
from the training set. More recently Roller et al.
(2021) also tested retrieval-based dialogue genera-
tion. However, similar to Weston et al. (2018), they
utilized a retrieval model that was kept fixed during
training. Our work meanwhile follows a different
direction that does not require pre-training of the
retriever but fine-tunes it along with the generator
to retrieve over a much larger knowledge base of

interactions at generation time.
We would also like to mention Shuster et al.

(2021), which investigates factual hallucination in
dialogue retrieval-generation models with a fact-
based knowledge base such as Wikipedia. Our
work takes a more generalized approach, focusing
solely on improving the raw conversational ability
of dialogue models. Instead of factual accuracy,
we propose a simple approach for generating an
engaging conversation grounded in unstructured
social media interactions.

3 Proposed Approach

In this section, we discuss our approach to intro-
ducing social media interactions as an external
knowledge base (SMIkb) to ground in for more
natural and human-like response generation. We
begin with formulating the task of dialogue genera-
tion and then proceed to explain our joint retriever-
generator model as the proposed setup for utilizing
the aforementioned unstructured data source. Note
that in this work, we primarily focus on response
generation for single-turn dialogues or dialogues.
We decided that other settings such as a multi-turn
case were best addressed in future work.

3.1 Task Formulation

Our task of response generation grounded in ex-
ternal knowledge can be formulated as training a
model to predict a response r = (r1, r2, ..., rm) of
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m words when given an input utterance u and a set
of documents D that might contain relevant knowl-
edge. We define our goal as to allow the model to
learn the parameters such that when given an input
utterance u and a knowledge base D, the model
can generate a response r following the probability
p(ri|u, r<i,D; θ), where θ refers to the parameters
of the model.

3.2 Model

Inspired by recent advances in retrieval assisted
QA (Guu et al., 2020; Lewis et al., 2020b), we
adopt a simple joint retriever-generator setup to
the task of dialogue generation. Concretely, we
utilize BART, a seq2seq model pre-trained on a
denoising objective, as our generative model along
with the pre-trained neural Dense Passage Retriever
(DPR) (Karpukhin et al., 2020) as the retriever of
choice. DPR is a highly efficient neural retriever
pre-trained for retrieving the top-k similar docu-
ments to an input query u. It executes this by
encoding both the query and the entire knowledge
base through independent BERT-based encoders
(as t). Furthermore, we follow Karpukhin et al.
(2020) to build an offline searchable dense vector
index of these embeddings for our SMIkb using
the FAISS (Johnson et al., 2017) library for faster
lookup. An overview of our architecture is shown
in Figure 1. Application of our model to dialogue
response generation can be formulated as a two-
step process: (1) the retriever searching top-k docu-
ments from the pre-indexed interaction knowledge
base, relevant to the input utterance, and (2) the
generator predicting the response to the previous
utterance along with the retrieved context.

Following the notion set in Section 3.1, the prob-
ability of generating the response r given the utter-
ance u and each of the top-k documents dj from
the knowledge base D can be defined as

p(r|u; θ, λ) =∑k
j pλ(dj |u;λ)

∏
i pθ(ri|u, r<i, dj ; θ),

(1)
where θ and λ are parameters for the generator and
retriever, respectively. They are both fine-tuned
jointly in an end-to-end fashion, with the retriever
providing additional context that is concatenated
together with the input at the time of generation.
As there is no “correct” document source in the
knowledge base, we consider it to be a latent vari-
able. Therefore, during decoding we marginalize
these probabilities over all the retrieved documents
to return the most probable (best) response using

Dataset Total (turns) Train Valid Test
DailyDialog 76,743 53,721 11,511 11,511
DailyDialog++ 39,913 27,939 5,987 5,987
Cornell Movie-Dialogs 221,088 154,762 33,163 33,163
Reddit (pseudo extracted) 200,000 140,000 30,000 30,000

Table 1: Overview of datasets in use.

beam search.

4 Experiments

We evaluate our model together with various ex-
ternal knowledge datasets on a mixture of open-
domain dialogue datasets. The results are then
compared with two BART-based baselines.

4.1 SMIkb

Aiming to improve the raw communication ability
of dialogue systems by mimicking human response
behavior, we built our external knowledge base of
unstructured social media interactions (SMIkb). It
comprises of entries from top thread titles and their
top 100 comments from Reddit, an American social
news aggregation and discussion site, throughout
2020 (January-November). A total of 1.6 million
entries were first scraped through the open-sourced
Pushshift API (Baumgartner et al., 2020) of which
a random selection of 600,000 (due to memory
limitations) makes up our SMIkb. A snapshot of
the same is shared in Table 5.

Furthermore, to verify the effectiveness of us-
ing a conversational knowledge base like Reddit,
we compared ours to a pure Wikipedia knowledge
base (ref. “Wiki”) of the same size (random sam-
ple of 600k entries) containing the wiki page title
and the leading 100 words. Additionally, we also
tested a 1:1 combination of the above two bases
(ref. “Mix”).

4.2 Datasets

We fine-tune our models on a variety of open-
domain and scraped dialogue datasets.

Open-domain datasets We use a combination
of DailyDialog (Li et al., 2017) and DailyDia-
log++ (Sai et al., 2020) as high-quality daily life-
based dialogue sets. We also consider the Cornell
Movie-Dialogs Corpus (Danescu-Niculescu-Mizil
and Lee, 2011), which is a corpus of scripts of
movie dialogues.

Reddit Furthermore we extract another 200,000
comment pairs from Reddit, distinct from the
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Model Setup Training Knowledge Base BLEU-4 Dist-1 Dist-2
Data (Retrieval)

Baseline 1 ODD None 1.31 0.20 0.96
Baseline 2 ODD + SMIkb None 1.05 0.12 0.47

k = 3 k = 5 k = 7
BLEU-4 Dist-1 Dist-2 BLEU-4 Dist-1 Dist-2 BLEU-4 Dist-1 Dist-2

Ours (SMIkb) ODD SMIkb 9.78 2.80 16.90 10.51 5.50 26.63 10.48 5.51 26.62
Ours (Wiki) ODD Wiki 6.93 2.57 14.91 7.14 4.94 23.38 7.11 5.02 23.79
Ours (Mix) ODD SMIkb + Wiki 6.03 2.45 14.08 6.20 4.71 22.25 6.21 4.71 22.23

Table 2: Automatic evaluation of generated responses across various values of k for top-k document retrieval. The
baselines do not have a retrieval step and therefore do not have an effect due to changing k. bold refers to the best
scores across all k among the generated responses. ODD is the collection of Open-Domain Datasets from Section
4.2.

Model Setup Human Eval.

Relevance Engagement Knowledge

Gold (Test-Data) 3.50 3.33 3.47

Baseline 1 2.82 2.35 3.00
Baseline 2 3.03 3.02 2.89

Ours (SMIkb) 3.84 3.75 3.60
Ours (Wiki) 3.40 3.75 3.76
Ours (Mix) 3.62 3.80 3.71

Table 3: Human evaluation of responses for the best
k = 5.

SMIkb, to act as a pseudo dialogue dataset to sup-
plement our knowledge base.

An overview of the datasets is listed in Table 1.

4.3 Experimental Setup
Implementation Details Our joint retriever-
generator model consists of a pre-trained Dense
Passage Retriever and BART-large (24 layers,
406M), which are later fine-tuned together on
SMIkb and dialogue datasets. The model is trained
mostly with the default parameters, batch size of 1,
and an initial learning rate of 3× 10−5. We further
experiment with various values of k for our top-k
document retrieval, while beam search with size of
5 is used as our response decoding strategy.

Baseline We consider two strong baselines based
on a vanilla BART-large with no retriever to inves-
tigate the effectiveness of our approach. The first is
fine-tuned solely on the datasets mentioned in Sec-
tion 4.2 (ref. “Baseline 1”) with no SMIkb. Next
to confirm the effectiveness of our providing exter-
nal data through our retriever-generator setup, we
merge the entire SMIkb interactions into our train-
ing data, and simply fine-tune the vanilla model on
this new extended set. (ref. “Baseline 2”). Note
that although we choose BART as our generator
and baseline for its size and relative ease in training,

our proposed SMIkb based modeling setup could
possibly also be extended to larger models.

4.4 Evaluation

To measure the impact of social media interactions,
the generated responses were evaluated through
both automatic and human evaluations. The results
are compiled in Tables 2 and 3.

Automatic We perform a series of automatic
evaluations on the generated responses. Starting
with the BLEU (Papineni et al., 2002) score for
relevancy, we also calculate Distinct-N (Li et al.,
2016a) for the amount of diversity introduced.

Human It has been widely reported that auto-
matic metrics do not sufficiently evaluate the actual
quality of the generated outputs (Liu et al., 2016).
Thus, we additionally performed human evaluation
of the responses with the highest BLEU (k = 5)
through Amazon Mechanical Turk, on the follow-
ing three metrics: Relevance, whether the response
is relevant to the utterance; Engagement, whether
the response makes the conversation engaging; and
Knowledge, whether the response seems knowl-
edgeable or sensible. The evaluators were asked
to score 100 responses selected at random from
the test set, on a scale of 1-5. Each response was
scored by 7 different evaluators, and their average
was calculated. We selected our evaluators to be
English speakers from the United States with an
approval rate of over 90%.

4.5 Discussion

First, with automatic evaluation, we observe that
our method of introducing social interactions
through a retriever at generation time maintains
task performance and allows for a more diverse set
of responses, as shown with an increase in all of the

12



Input Utterance SMIkb Wiki Mix Baseline

Here comes the birth-
day cake.

Wow, what a lovely
cake. I’ll have a piece.

Wow, what a beauti-
ful cake. It must have
tasted as good as I ex-
pected.

Really? Wow. Happy
birthday to you! You
look so healthy.

Thank you.

I’d better go. I gotta get
up early. Go over to my
parents’.

What are you going to
do for breakfast?

You mean you don’t
wanna go with me?

Why don’t you stay at
my place? I’ll cook din-
ner.

I don’t think so.

Something’s burning? Oh my goodness, it’s on
fire!

Oh my goodness, it ’ s
burning!

Oh, my bread! It’s burn-
ing!

No, it’s not.

Would you mind if we
just called it an early
night?

Even I couldn’t. I have
work tomorrow.

I’d love to. But I’ve got
to work tomorrow.

What are you talking
about? We just ate?

I don’t think so.

Isn’t it wonderful walk-
ing here?

What do you mean?
Was it bad?

Not at all. The air
is fresh, the walk is
easy and the sunshine is
kind.

Yes, you can see the
whole city from here.

Yes, it’s very beautiful.

Table 4: A comparison of responses generated from various sources.

SMIkb
title text

LPT: If you borrow something like a tool or a generator
from someone, return it in BETTER shape than you got it.

My dad always said that returning something in the
same condition you received it is the absolute bare minimum.

SoftBank Nears $40 Billion Deal to Sell Arm Holdings to Nvidia Nvidia is priced decentlyfor what they offer.

Apple to Give Employees Paid Time Off to Vote in U.S. Election
This exactly. A large majority of disenfranchised

communities work jobs that don’t observe federal holidays.

Apple may be working on a foldable iPhone
I can confirm that Apple would be stupid to not be working on one.

Whether they ever release one is up for debate,
but they’re definitely working on one.

Table 5: Snapshot of SMIkb.

measured metrics over both the baselines. More-
over, our Reddit-based SMIkb model outperformed
other combinations, confirming an increase in re-
sponse quality. Furthermore, experiments compar-
ing the effect of top-k on generation quality showed
k = 5 as the sweet spot with the highest BLEU,
which was then evaluated further.

Similar to the automatic evaluation, all of the
proposed combinations showed improvements over
the baseline in human evaluation. In line with our
initial hypothesis, the SMIkb model recorded the
highest score in terms of conversational relevance.
Meanwhile, the mix of SMIkb and Wikipedia
seems to find the appropriate balance between con-
versational ability and “knowledgeability” with the
metrics even exceeding the gold score. We hy-
pothesize that this is not just due to high genera-
tion quality but also the nature of our task, which
might make our model responses more relevant

to a worker when assessed in a single-turn con-
text. Overall, the results verified our proposed
approach of learning directly from social media
interactions leading to large improvements over the
baseline in all metrics of interest. Furthermore,
significance tests of bootstrap re-sampling showed
that the above evaluation score differences between
baselines and our models were statistically signifi-
cant (p < 0.01). Examples of the various generated
responses across all the models are shared in Table
4.

In addition, we looked at cases where our model
struggles or fails at generating a natural response,
a select few of which are compiled in Table 6. In
some of these particular cases, the baseline gener-
ations, although generic, turn out to be more rel-
evant. We believe some of these long responses
with unrelated information to be an artifact of our
generation model being overly dependent on the
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Input Utterance SMIkb Wiki Mix Baseline

Who was the conduc-
tor?

Oh speaking of the con-
ductor, he was indeed a
genius. A descendent of
Chinese.

I don’t remember the
name.

Oh, speaking of the con-
ductor, he did an excel-
lent job.

I know.

Oh god you scared me! Ahahah! We need a fit-
ness instructor.

I’m sorry. Sorry. I was trying to
scare you.

Is something wrong?

Table 6: Selected examples where the proposed model struggles or fails at generating a relevant response.

knowledge base. While social media may simulate
human-like conversations in a large variety of sit-
uations, it is still far from being a perfect stand-in
for real-life dialogue. Therefore, our future work
in this direction should look at not only the quality
and scope of the knowledge base, but also consider
selecting when to ground and make use of the said
knowledge during response generation.

5 Conclusion

We aimed to improve the raw conversational ability
of dialogue systems by grounding the responses in
much more human-like social media interactions.
Our approach involved a neural retriever-seq2seq
generator model fine-tuned jointly, where relevant
knowledge was retrieved at the time of generation
to assist a more engaging and natural dialogue re-
sponse. Our experiments showed significant im-
provements with both automatic and human evalu-
ation metrics ranking the SMIkb-grounded replies
to be much more diverse, engaging, and relevant.
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Abstract
Neural models trained with large amount of
parallel data have achieved impressive per-
formance in abstractive summarization tasks.
However, large-scale parallel corpora are ex-
pensive and challenging to construct. In this
work, we introduce a low-cost and effective
strategy, ExtraPhrase, to augment training
data for abstractive summarization tasks. Ex-
traPhrase constructs pseudo training data in
two steps: extractive summarization and para-
phrasing. We extract major parts of an input
text in the extractive summarization step and
obtain its diverse expressions with the para-
phrasing step. Through experiments, we show
that ExtraPhrase improves the performance of
abstractive summarization tasks by more than
0.50 points in ROUGE scores compared to
the setting without data augmentation. Ex-
traPhrase also outperforms existing methods
such as back-translation and self-training. We
also show that ExtraPhrase is significantly ef-
fective when the amount of genuine training
data is remarkably small, i.e., a low-resource
setting. Moreover, ExtraPhrase is more cost-
efficient than the existing approaches1.

1 Introduction

Neural encoder-decoders have achieved remark-
able performance in various sequence-to-sequence
tasks including machine translation, summariza-
tion, and grammatical error correction (Bahdanau
et al., 2015; Rush et al., 2015; Yuan and Briscoe,
2016). Recent studies indicated that neural meth-
ods are governed by the scaling law for the amount
of training data (Koehn and Knowles, 2017; Brown
et al., 2020). In short, the more training data we
prepare, the better performance a neural model
achieves. In this paper, we address increasing the
training data for summarization to improve the per-
formance of neural encoder-decoders on abstractive
summarization tasks.

1The datasets used in our experiments are available at
https://github.com/loem-ms/ExtraPhrase.

In sequence-to-sequence tasks, we need a paral-
lel corpus to train neural encoder-decoders. Since
it is too costly to construct genuine (i.e., human-
generated) parallel corpora, most studies explored
the way to construct pseudo training data automati-
cally. Back-translation is a widely used approach
to construct pseudo training data for sequence-to-
sequence tasks (Sennrich et al., 2016a; Edunov
et al., 2018; Caswell et al., 2019). In the back-
translation approach, we construct a model gen-
erating a source side sentence from a target side
sentence, and apply the model to a target side cor-
pus to generate a pseudo source side corpus. In
addition to machine translation, back-translation
is also used in grammatical error correction (Kiy-
ono et al., 2019) and summarization (Parida and
Motlicek, 2019) tasks. However, back-translation
on summarization is an unrealistic problem because
a model is required to restore deleted information
in the given summary without any guide.

He et al. (2020) indicated that the self-training
approach, which makes a model generate target
sentences from source sentences and use the pairs
to train a model, can improve the performance
on machine translation and summarization. How-
ever, pseudo data generation for summarization
by self-training is hard to generate diverse sum-
maries (Gu et al., 2018). Moreover, self-training
and back-translation approaches require expensive
computational cost because we need to train addi-
tional neural encoder-decoders on a large amount
of training data to obtain high-quality pseudo
data (Imankulova et al., 2019).

To solve these issues, we propose a novel strat-
egy: ExtraPhrase consisting of extractive summa-
rization and paraphrase to construct pseudo train-
ing data for abstractive summarization. Firstly, Ex-
traPhrase extracts an important part from a source
text as a summary without requiring additional
model training. Then, we apply a paraphrasing
technique to the extracted text to obtain diverse
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Chinese men’s team have put 
a major step towards a new 
title at the military pentathlon 
world championships.

Chinese men’s team 
have put a major step 
towards a new title.

Chinese men’s team 
has taken a big step 
towards a new title.

Chinesemen’s team

have put

a step major

towards a title
at championships
the world

military
pentathlon

new

Chinese men’s team 
have put a major step 
towards a new title.

Chinese men’s team 
has taken a big step 
towards a new title.

Die chinesische Herrenmannschaft 
hat einen großen Schritt in Richtung 

eines neuen Titels gemacht.

En-De Translation De-En Translation

The depth of this tree is 6; thus, 
we prune nodes deeper than 3.

Extractive 
Summarization Paraphrasing

Figure 1: Example of pseudo summary generated by ExtraPhrase. The upper part shows output sentences in each
step of ExtraPhrase. Paraphrased words after paraphrasing (round-trip translation) in step-2 are highlighted in blue.

pseudo summaries.
We conduct experiments on two summarization

tasks: headline generation and document sum-
marization tasks. Experimental results show that
pseudo training data constructed by our proposed
strategy improves the performance on both tasks.
In detail, the pseudo data raises more than 0.50 in
ROUGE F1 scores on both tasks. Moreover, we
show that ExtraPhrase is robust in low-resource set-
tings and is much more cost-efficient than previous
self-training and back-translation approaches.

2 Proposed Method: ExtraPhrase

As described in Section 1, our ExtraPhrase consists
of two steps: extractive summarization and para-
phrasing. Figure 1 illustrates the overview of Ex-
traPhrase briefly. ExtraPhrase receives a (genuine)
sentence as an input, and generates a pseudo sum-
mary corresponding to the input sentence. When
we construct a pseudo summary from a document,
we independently apply ExtraPhrase to multiple
sentences included in the given document.

2.1 Step-1: Extractive Summarization

In this extractive summarization step, we extract
important parts of a given source sentence with
sentence compression. Previous studies proposed
various sentence compression methods such as rule-
based methods (Dorr et al., 2003), the approach
detecting important parts in a syntax tree (Turner
and Charniak, 2005; Filippova and Altun, 2013;
Cohn and Lapata, 2009), sequential labeling ap-
proach (Hirao et al., 2009), and neural-based meth-
ods (Filippova et al., 2015; Kamigaito et al., 2018).

In this study, we adopt the most straightforward
approach: a rule-based method based on the syntax

tree of the given sentence. Because the rule-based
approach does not require any training corpus, we
can use it in the situation where we do not have
genuine parallel corpus. We emphasize that we can
use more sophisticated way if we need because we
do not have any restrictions for the summarization
method in this step.

We define a rooted subtree of the syntax tree for
the given sentence as important parts of the sen-
tence. First, we parse the given sentence to obtain
its dependency tree. Follow Filippova and Altun
(2013), we combine functional words with their
heads on the dependency tree. Then, we prune the
dependency tree to obtain a smaller rooted subtree.
We can roughly control the output summary length
(the number of words) by the depth of the subtree.
The left lower part of Figure 1 illustrates these pro-
cesses. Finally, we linearize the extracted rooted
subtree to obtain its sequential representation by
following the word order of the original sentence.

2.2 Step-2: Paraphrasing

The constructed summaries by the previous step
consist of words included in the source sentences
only. To increase the diversity of the summaries,
we apply the paraphrasing method to the sum-
maries. For paraphrasing, we adopt the approach
using machine translation models (Sun and Zhou,
2012; Mallinson et al., 2017) because some studies
published high-quality neural machine translation
models (Ott et al., 2018; Ng et al., 2019). In this
approach, we obtain paraphrases by conducting
round-trip translation that translates a sentence into
a different language and the translated sentence
into the original language. The right lower part of
Figure 1 illustrates this process.
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3 Experiments

To investigate the effect of ExtraPhrase, we conduct
experiments on two summarization tasks: headline
generation and document summarization tasks.

3.1 Datasets

For the headline generation task, we use the de-
facto headline generation dataset constructed by
Rush et al. (2015). The dataset contains pairs of
the first sentence and headline extracted from the
annotated English Gigaword (Napoles et al., 2012).
We use the same splits for train, valid, and test as
Rush et al. (2015). We use the byte pair encod-
ing (Sennrich et al., 2016b) to construct a vocabu-
lary set with the size of 32K by sharing vocabulary
between source and target sides.

For the document summarization task, we use
CNN/DailyMail dataset (See et al., 2017). The
training set contains 280K pairs of news articles
and abstractive summary extracted from CNN and
DailyMail websites. We construct a vocabulary set
with the byte pair encoding (Sennrich et al., 2016b)
and set the vocabulary size to 32K with sharing
vocabulary between source and target sides.

3.2 Comparison Methods

We compare ExtraPhrase with several existing
methods to increase the training data size as fol-
lows. We use the training set of each dataset de-
scribed in Section 3.1 to construct pseudo data.

Oversampling This strategy is the simplest ap-
proach to increase the dataset size. We sample
source-summary pairs from the genuine training
set and add the sampled instances to training data.
Thus, the training data constructed by this approach
contains genuine data only.

Back-translation In back-translation, we train a
neural encoder-decoder that generates a source text
from a summary by using each training set. Then,
we input summaries in the training set to the neural
encoder-decoder to generate corresponding source
texts2. We use the pairs of pseudo source texts and
genuine summaries as pseudo training data.

2For the back-translation approach in machine translation,
we generate sentences in the source language from monolin-
gual corpus in the target language. In the abstractive sum-
marization, we need summaries as sentences in the target
language but it is hard to obtain corpus containing summaries
only. Thus, we use genuine summaries in training data as an
input of back-translation.

Self-training In self-training, we train a neural
encoder-decoder that generates a summary from a
source text by using each training set. Then, we
input source texts in the training set to the neu-
ral encoder-decoder to generate the corresponding
summaries. We use the pairs of pseudo summaries
and genuine source texts as pseudo training data.

ExtraPhrase We apply ExtraPhrase to each train-
ing set. In the headline generation task, we con-
struct pseudo summaries from the source sentence
in the training data. Because ExtraPhrase generates
pseudo summary in sentence unit, the number of
sentences in generated summary is not reduced in
the case of multi-sentence source text. Thus, we
use the first three sentences in the source document
to reduce the number of input sentences beforehand
in the document summarization task. As described
in Section 2, we apply ExtraPhrase to each sen-
tence one-by-one, and then concatenate them in
the original order. In this study, we use spaCy3

(Honnibal et al., 2020) for dependency parsing and
prune nodes whose depths are deeper than half
of the dependency tree in the extractive summa-
rization step. For the paraphrasing step, we use
English-to-German and German-to-English trans-
lation models4 constructed by Ng et al. (2019). We
translate sentences with beam width 5.

For all pseudo training data, we attach a special
token, <Pseudo>, to the front of the source text
because Caswell et al. (2019) indicated that this
strategy improves the performance in training on
pseudo data.

3.3 Encoder-Decoder Architecture

We use the de-facto standard neural encoder-
decoder model, Transformer (Vaswani et al., 2017)
in our experiments. We also use the Transformer
for back-translation and self-training in addition to
each abstractive summarization model. We use the
Transformer-base setting described in Vaswani et al.
(2017) as our architecture. The setting is widely
used in studies on machine translation (Vaswani
et al., 2017; Ott et al., 2018). In detail, we use the
implementation in the fairseq5 (Ott et al., 2019) for
our experiments.

3https://spacy.io/
4https://github.com/pytorch/fairseq/

tree/main/examples/translation
5https://github.com/pytorch/fairseq
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Method
Headline Generation Document Summarization

Training Data R-1 R-2 R-L Training Data R-1 R-2 R-L
Genuine only 3.8M 37.95 18.80 35.05 280K 39.76 17.55 36.75
Oversampling 7.6M 38.26 19.14 35.41 560K 40.14 17.86 37.05
Back-translation 7.6M (3.8M) 38.49 19.24 35.63 560K (280K) 39.93 17.74 36.85
Self-training 7.6M (3.8M) 38.32 19.06 35.37 560K (280K) 40.19 17.87 37.21
ExtraPhrase 7.6M (3.8M) 38.51 19.52 35.72 560K (280K) 40.57 18.22 37.51
w/o paraphrasing 7.6M (3.8M) 38.85 19.43 35.86 560K (280K) 40.32 17.94 37.28
w/o extractive 7.6M (3.8M) 38.52 19.32 35.71 560K (280K) 40.33 18.10 37.38

Table 1: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks. The
number of genuine training data is shown in parentheses.

3.4 Results

Table 1 shows F1 based ROUGE-1, 2, and L scores
for each setting on the headline generation and
document summarization tasks. We use the same
size of training data for each method except for
Genuine only.

Table 1 indicates that Oversampling outperforms
Genuine only. This result indicates that the more
training data we prepare, the better performance an
encoder-decoder achieves even if the training data
contains many duplications. For Back-translation
and Self-training, they achieve better performance
than Genuine only, but their scores are compara-
ble to ones of Oversampling in both tasks. These
results imply that the improvements in their ap-
proaches are not based on the quality of their gener-
ated pseudo data, but based on the increase of train-
ing data. Since Back-translation and Self-training
require training an additional model to construct
pseudo data, these approaches are more costly than
Oversampling.

In contrast, our ExtraPhrase achieves better per-
formance than other approaches. In particular, our
pseudo training data significantly improves the
ROUGE-2 score compared to Genuine only set-
ting in the headline generation. For the document
summarization, our pseudo training data signifi-
cantly improves all ROUGE scores6. These results
indicate that ExtraPhrase is more effective than
existing approaches including oversampling, back-
translation, and self-training to construct pseudo
data for the abstractive summarization tasks.

In addition to configurations described in Sec-
tion 3.2, we also report results when using each
step of the proposed method to generate pseudo
training data to investigate the effect of each step.

6These results are statistically significant according to Stu-
dent’s t-test (p < 0.05) in comparison with Genuine only.

ExtraPhrase w/o paraphrasing in Table 1 refers
to applying only the extractive summarization de-
scribed in 2.1 on source articles of genuine training
data to obtain pseudo summaries. Similarly, Ex-
traPhrase w/o extractive refers to applying only
the paraphrasing described in 2.2 on summaries of
genuine training data.

For the headline generation task, ExtraPhrase
w/o paraphrasing achieves better performance than
Genuine only setting. Surprisingly, although with
a small margin, this result also outperforms Ex-
traPhrase, where the paraphrasing step is applied af-
ter the extractive summarization, in ROUGE-1 and
ROUGE-L. ExtraPhrase w/o extractive achieves
comparable ROUGE-1 and ROUGE-L scores com-
pared to ExtraPhrase, but with a decrease in
ROUGE-2 score. However, this result is better
than Oversampling, where duplicated data is used,
which infers that the paraphrasing step effectively
boosts the diversity in augmented training data.

For the document summarization task, summa-
rization performance decreases in both ExtraPhrase
w/o paraphrasing and ExtraPhrase w/o extractive.
These results imply that ExtraPhrase is better than
using each composing step alone.

4 Analysis

4.1 Low-resource Setting

In this section, we investigate the effectiveness of
ExtraPhrase when the amount of genuine training
data is small.

We randomly sample 1K source text and sum-
mary pairs from each training set in the head-
line generation and document summarization tasks.
Then, we conduct the same experiments in Section
3 by using the sampled 1K instances as genuine
training data. We construct pseudo training data
from the rest of each training data and combine
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Method
Headline Generation Document Summarization

Training Data R-1 R-2 R-L Training Data R-1 R-2 R-L
Genuine only 1K 4.84 0.58 4.66 1K 2.48 0.29 2.45
Oversampling 3.8M 9.89 1.39 9.30 280K 13.63 0.89 12.63
Back-translation 3.8M (1K) 12.19 2.43 11.31 280K (1K) 9.73 0.50 8.92
Self-training 3.8M (1K) 7.27 1.07 6.98 280K (1K) 14.37 1.52 13.36
ExtraPhrase 3.8M (1K) 23.58 6.56 21.12 280K (1K) 34.47 12.91 31.36
w/o paraphrasing 3.8M (1K) 22.56 5.25 19.87 280K (1K) 32.95 12.07 29.44
Extractive – 18.72 4.26 17.09 – 28.52 8.02 23.83

Table 2: ROUGE F1 scores (R-1, 2, and L) for the headline generation and document summarization tasks in
low-resource setting. The number of genuine training data is shown in parentheses.

Task Method BLEU BERTScore

Headline generation
Self-training 28.64 92.44
ExtraPhrase 1.51 86.19

Document summarization
Self-training 19.91 90.02
ExtraPhrase 5.89 87.33

Table 3: BLEU scores and F1 based BERTScores between genuine and pseudo training data.

the pseudo data with the sampled genuine data for
training. For Self-training and Back-translation,
we train neural encoder-decoders with the sampled
1K instances, and then apply them to the rest of
training data for the pseudo data construction.

Table 2 shows the F1 based ROUGE scores of
each method on the headline generation and docu-
ment summarization tasks when we have a small
amount of genuine training data. This table indi-
cates that Back-translation and Self-training out-
perform Genuine only. These results are consistent
with the result in Section 3.4. However, the per-
formance improvement by Back-translation and
Self-training are smaller compared to ExtraPhrase.
These results show that Back-translation and Self-
training tend to be ineffective when the amount of
genuine training data is small (see appendix A).

For ExtraPhrase, it achieves significantly better
performance than others in both tasks. Thus, Ex-
traPhrase is more effective when the amount of the
genuine training data is small. The lowest parts of
Table 2 shows the results of ExtraPhrase without
paraphrasing for the ablation study. In ExtraPhrase
w/o paraphrasing setting, we train the model with
genuine and pseudo training data generated by Ex-
traPhrase without the paraphrasing step. Moreover,
Extractive in these parts shows the ROUGE scores
of summaries generated by the extractive summa-
rization step. These parts indicate that ExtraPhrase
outperforms the one without paraphrasing. Thus,
we need the paraphrasing step to improve the qual-

ity of the pseudo training data, although the setting
excluding paraphrasing significantly outperforms
others. Moreover, ROUGE scores of Extractive
are much lower than ones of ExtraPhrase. This re-
sult implies that we need to train a neural encoder-
decoder by using the pseudo data as the training
data to generate better abstractive summaries.

4.2 Diversity of Pseudo Summaries

We assume that our ExtraPhrase can generate more
diverse summaries in comparison with the self-
training approach. To verify this assumption, we
compare pseudo summaries generated by Self-
training and ExtraPhrase.

Table 3 shows BLEU scores (Papineni et al.,
2002) between genuine summaries in each training
data and generated pseudo summaries. In addition,
this table also shows F1 based BERTScores (Zhang
et al., 2020) of them as the indicator of seman-
tic similarities. This table indicates that both
BERTScores of Self-training and ExtraPhrase are
remarkably high. This result implies that the gener-
ated summaries are semantically similar to genuine
summaries. Thus, generated summaries are suit-
able as pseudo data semantically.

In contrast, the BLEU score of ExtraPhrase is
much lower than one of Self-training. This re-
sult indicates that ExtraPhrase generates pseudo
summaries that contain many different phrases
from the genuine summaries in comparison with
Self-training. Therefore, ExtraPhrase can generate
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Task Method Training Generation Cost
Back-translation 256 H 7 H 333 USD

Headline generation Self-training 256 H 4 H 328 USD
ExtraPhrase – 7 H 12 USD
Back-translation 384 H 16 H 511 USD

Document summarization Self-training 320 H 8 H 417 USD
ExtraPhrase – 15 H 26 USD

Table 4: Cost on pseudo data generation using Amazon Elastic Compute Cloud (Amazon EC2). Consuming times
are calculated in case of one GPU.

much more diverse summaries than Self-training.

5 Efficiency of Pseudo-data Generation

Our proposed ExtraPhrase does not require addi-
tional neural encoder-decoders such as the back-
translation and self-training approaches. We dis-
cuss the advantage of this property.

Table 4 shows time required by each pseudo data
construction method. This table also shows costs
when we use Amazon EC2, which is a cloud com-
puting service, to construct pseudo data. This table
indicates that Back-translation and Self-training
require much time to train their neural encoder-
decoders. In contrast, for ExtraPhrase, we do not
spend any time on such training. Therefore, Ex-
traPhrase is much more cost-efficient than others.

6 Related Work

Data Augmentation Back-translation and self-
training are widely used techniques in data aug-
mentation for sequence-to-sequence tasks (Sen-
nrich et al., 2016a; Kiyono et al., 2019; Parida and
Motlicek, 2019; He et al., 2020).

Sennrich et al. (2016a) proposed back-
translation to augment training data for machine
translation by translating monolingual data on the
target side to generate source side pseudo data.
Edunov et al. (2018) reported the effectiveness
of the back-translation approach in large-scale
monolingual settings for machine translation.
In addition, Hoang et al. (2018) introduced an
iterative version by repeatedly applying back-
translation several times. Back-translation is an
effective approach for machine translation but it
is unrealistic to apply the approach to abstractive
summarization.

In self-training, we train a model on genuine
data and apply it to generate pseudo data. Zhang
and Zong (2016) applied self-training to enlarge
parallel corpus for neural machine translation. He

et al. (2020) introduced noisy self-training that uses
dropout as the noise while decoding in self-training.
These studies reported the effectiveness of self-
training but self-training is hard to generate diverse
pseudo data (Gu et al., 2018).

Perturbation Using perturbation that is a small
difference from genuine data can be regarded as
data augmentation (Kobayashi, 2018). Takase and
Kiyono (2021) investigated the performance of var-
ious perturbations including adversarial perturba-
tions (Goodfellow et al., 2015), word dropout (Gal
and Ghahramani, 2016), and word replacement on
various sequence-to-sequence tasks. Since these
perturbations are orthogonal to our ExtraPhrase,
we can combine them with ours. In fact, Takase
and Kiyono (2021) reported that simple perturba-
tions such as word dropout are useful on pseudo
data generated by back-translation.

7 Conclusion

This paper proposes a novel strategy, ExtraPhrase,
to generate pseudo data for abstractive summa-
rization tasks. ExtraPhrase consists of two steps:
extractive summarization and paraphrasing. We
obtain the important parts of an input by the ex-
tractive summarization, and then obtain diverse
expressions by the paraphrasing. Experimental re-
sults indicate that ExtraPhrase is more effective
than other pseudo data generation methods such as
back-translation and self-training. Moreover, we
show that ExtraPhrase is much more cost-efficient
than others in pseudo data construction.
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Ratio Difference R-1 R-2 R-L
Headline generation

0.86 -5 35.14 15.13 28.59
Document summarization

0.81 -297 13.76 1.09 13.07

Table 5: F1 based ROUGE scores (R-1, 2, and L) be-
tween source texts generated by back-translation and
genuine source texts. Ratio and Difference are compar-
isons between the number of tokens in generated source
texts and genuine ones.

A Quality of Back-translation

As described in Section 1, the back-translation ap-
proach for the abstractive summarization task is
essentially impossible because it requires restoring
source texts from summaries without any additional
information. Thus, we investigate the quality of
source texts generated by Back-translation.

Table 5 shows the length difference and ratio be-
tween genuine and source text generated by Back-
translation. This table indicates that the generated
source texts are shorter than the original genuine
data. This result implies that Back-translation fails
to restore the full information in the genuine data.
In other words, this result implies that it is difficult
to generate source texts from summaries.

Table 5 also shows ROUGE scores of source
texts generated by Back-translation when we regard
the genuine source texts as the correct instances to
investigate whether the generated texts correspond
to the genuine data. For the document summariza-
tion, ROUGE scores are extremely low. This result
also indicates that Back-translation fails to generate
source texts.

On the other hand, ROUGE scores on the head-
line generation are much higher than ones on the
document summarization. This result implies that
Back-translation might restore the core parts of
source texts from summaries. Because the headline
generation is the task of generating a headline from
a given sentence, the summary (headline) often
contains the dominant part of the source sentence.
We consider this property causes such high scores.
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Abstract

Including memory banks in a natural language
processing, architecture increases model capac-
ity by equipping it with additional data at infer-
ence time. In this paper, we build upon kNN-
LM (Khandelwal et al., 2020), which uses a
pre-trained language model together with an
exhaustive kNN search through the training
data (memory bank) to achieve state-of-the-art
results. We investigate whether we can improve
the kNN-LM performance by instead training
a LM with the knowledge that we will be using
a kNN post-hoc. We achieved significant im-
provement using our method on language mod-
eling tasks on WIKI-2 and WIKI-103. The
main phenomenon that we encounter is that
adding a simple L2 regularization on the activa-
tions (not weights) of the model, a transformer
(Vaswani et al., 2017), improves the post-hoc
kNN classification performance. We explore
some possible reasons for this improvement. In
particular, we find that the added L2 regular-
ization seems to improve the performance for
high-frequency words without deteriorating the
performance for low-frequency ones.

1 Introduction

The problem of language modeling (LM) usually
consists of two main challenges. Firstly, mapping
the context, i.e. the sentence prefixes, to a vector
representation, and secondly using this representa-
tion to predict the subsequent word. In Khandelwal
et al. (2020), the authors claim that the first problem
is much easier to solve. Hence, given a pre-trained
LM, they post-hoc modify the representation using
a k-nearest neighbor scheme (kNN) and achieve
significant improvements on challenging datasets,
such as WIKI-103.

Given that kNN improves the overall language
modeling of a pre-trained network, we examine
training strategies that can make the underlying
network’s representations more amenable to the

∗Work done as an intern at Apple

kNN step. Our results show improvements over
applying kNN to a generic LM network.

We first explore a simple learning scheme for
the language model, where during training we in-
tentionally push representations that predict the
same word closer together in the L2 sense, using a
Momentum Contrastive (MOCO) (He et al., 2020)
style implementation. We go on to note that this
MOCO style learning can be replaced by simply
adding L2 regularization to the activation of the
layer used for kNN, eliminating implementation
complexity. Lastly, we present some initial experi-
ments toward understanding why this L2 regular-
ization brings improved performance.

2 Background

Our work builds upon kNN-LM (Khandelwal et al.,
2020). In essence, kNN-LM tackles the problem of
how to improve a trained LM’s representations,
and how to adapt LMs to capture non-frequent
sentences that are usually forgotten by the model
during training. kNN-LMs achieve significantly
higher performance through a simple interpolation
between the original LM predictions and the kNN
predictions.

At inference time, given a new context sentence,
kNN-LM works as follows:

1. The context sentence ci is passed through the
pre-trained network to produce a representa-
tion rcontexti ∈ Rd as well as the correspond-
ing logits yLMi to predict the next word.

2. rcontexti is used to find the k-nearest neighbors
in the training data. The logits ykNN are com-
puted by a weighted average of the neighbors’
labels, using the inverse exponential distance
as the weight for each neighbor.

3. The logits are interpolated to give the final
prediction:

yfinal = λykNN + (1− λ)yLM ,
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where λ is the interpolation parameter that can
be tuned on validation data.

This simple post-hoc implementation allows Khan-
delwal et al. (2020) to improve upon the SOTA
in LM by a significant margin. One thing to note
about kNN-LM is that they do not need to retrain
the LM and hence the whole algorithm can be run
on CPU only. Furthermore, kNN-LM uses FAISS,
which is an efficient library that allows them to
quickly find kNNs.

One detail to note in (Khandelwal et al., 2020)
which was crucial for this work was that the au-
thors tried both the inner product and the L2 for
their distance metric in kNN. They concluded that
L2 worked significantly better. This observation
implies the fact that the default training recipe of
LMs implicitly prefers one distance over the other.
Given that we know that a post-hoc kNN adapta-
tion significantly improves the performance, it is
natural to ask whether we could train a LM with
this in mind. In the next section, we describe how
to adapt the training of the LM for this purpose.

3 Proposed Method

In our initial attempt, we experimented with the
idea of explicitly minimizing the L2 distance be-
tween context vectors that predict the same target
word. This strategy directly mirrors the use of con-
text vectors at the kNN step, and we hoped that
training the representations in a way similar to test-
ing will further improve the effectiveness of kNN
LM. However, a naïve implementation of it is infea-
sible due to having to store all the representation in
memory. We then resorted to a MOCO-(He et al.,
2020) style training scheme. Specifically, for each
target word w, we construct a queue Q of fixed
length L, which stores the recent L context repre-
sentations for w. During training, we optimize a
regularized objective as follows:

Lnew = LCE + ω

N∑

j=1

L∑

i=1

||sg(Qwj

i )− rj ||2,

(1)

where N is the batch size, rj is the context rep-
resentation of the jth word, Qwj

I is the ith item
in the queue corresponding to the jth target word
wj ; ω is the regularization parameter; sg(·) is the
stop gradient operator. Specifically, Q is updated
with a momentum target encoding network which

is initialized with the same parameters of the LM,
similar to MOCO (He et al., 2020).

Empirically, we found that Equation 1 provides
a practical solution and yields improved represen-
tations for the kNN LM, as shown in Fig 1. In
particular, we see from the figure that there is an
optimal value for ω for which the added regulariza-
tion seems to improve the kNN LM model perplex-
ity significantly i.e. from 76 to 70 at ω = 2 (orange
line). The interesting part to note in this case, is
the fact that the standard LM (without post-hoc
kNN) does not vary much up to ω = 5, leading
us to conclude that the added regularization has
changed the representation in a way that kNN can
more effectively exploit the neighbors.

However, the use of the queue and momentum
target network still adds overhead to a large-scale
model training as we are required to access the
queue for each batch. Hence we tried to decrease Q
and L, which interestingly did not decrease the per-
formance at all and therefore, to promote efficiency,
we tested an even simpler formulation, where we
replace Q with all zero vectors. This eliminates the
need to explicitly construct and update the queue,
while instead encouraging the model to learn con-
servative representations w.r.t. the L2 norms of its
context representations. The corresponding loss is
as follows:

Lnew = LCE + ω

N∑

j=1

||rj ||2. (2)

To our surprise, Equation 2 yields similar perfor-
mance to Equation 1 in practice see Table 1, while
being much easier to implement and tune. This is a
new interesting finding that we will try to explain
in the ablation study below. We thus use Equation
2 as the default loss function in our experiments
unless otherwise mentioned.

4 Experiments

We tested our method on the WIKI-2 and
WIKI-103 datasets, which are widely used bench-
marks for language modeling. We are interested
in demonstrating two empirical results: improved
performance using our approach over that of kNN-
LM, and exploring a possible mechanism for this
improved performance.

4.1 Experimental setup
Dataset WIKI-2 is a benchmark with 30k word
vocabulary and consists of 2M tokens. WIKI-103
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kNN-LM (ω=0) ω=0.1 ω=1.0 ω=10.0

Train Ppl. LM 19.99 20.05 20.11 21.37
Valid Ppl. LM 75.96 75.68 76.37 81.29
Valid Ppl. kNN-LM 74.11 73.13 70.63 80.52

Table 1: Experiments on WIKI-2 with corresponding validation perplexity using L2 regularization. We see that a
weighting of ω = 1 yields the best performance for our method

Figure 1: Validation perplexity on WIKI-2 of the LM
before (blue) and after (orange) adding kNN. NOTE:
weight=0 corresponds to the standard version that
does not include our added MOCO-style regularization
term i.e. kNN-LM from Khandelwal et al. (2020)

is a benchmark with 250k word vocabulary and
consisting of 103M tokens (Merity et al., 2016).

Language Model Architecture For the lan-
guage model architecture, we will be using the ex-
act setup as described in (Khandelwal et al., 2020).
This setup consists of the language model (Baevski
and Auli, 2018), which consists of 16 layers, each
with 16 self-attention heads, 1024 dimensional hid-
den states, and 4096 dimensional feedforward lay-
ers. Thus, following (Baevski and Auli, 2018), this
LM has adaptive inputs and an adaptive softmax
(Joulin et al., 2017) with tied weights (Press and
Wolf, 2016) for all our experiments. We trained
the each language model on a Tesla V100 with
40GB of RAM.

In addition, we follow the exact same training
procedure as in (Khandelwal et al., 2020) and re-
fer to their paper for further details on the training
parameters. The only difference in terms of imple-
mentation is the MOCO style learner as well as the
L2 regularization added to the final layer. Lastly,
we would like to note that while crossvalidating
though the interpolation parameter λ we note that
for all models, λ = 0.3 works the best which is
similar to the finding in (Khandelwal et al., 2020).

4.2 Experiments on WIKI-2

We first apply our proposed method on the standard
WIKI-2 dataset, where we run each configuration
5 times and plot the standard deviation, as seen in
Figure 1. Note that ω = 0 in Figure 1 corresponds
to the standard kNN-LM version, i.e. without the
added term in the loss. Comparing Figure 1 and
Table 1, we see that the MOCO and L2 approaches
produce similar results. From these results, we note
the following phenomena:

1. A clear "U"-shape demonstrating the added
benefit of our loss term on the validation per-
plexity of the LM for moderate values of ω.

2. Training performance does not decrease for
moderate values of ω, showing that the extra
term does not destroy training and generaliza-
tion of the standard LM.

3. There is no difference in terms of validation
perplexity between the standard LM and our
version before applying kNN, but there is
a significant difference after applying kNN.
Our approach likely finds a different local min-
imum for the language model that is better
suited for kNN.

The above finding supports our belief that using our
added regularization, we are able to find better rep-
resentations, that can subsequently be used more
efficiently when for kNN LM. Next, we apply our
methods on the much bigger data WIKI-103.

4.3 Experiments on WIKI-103

We illustrate our findings on the more challeng-
ing WIKI-103 dataset and demonstrate that our
L2 fix significantly improves the performance of
the LM. In the Table 2, we illustrate that when
changing the regularization strength we again see
a significant gain in performance when adding our
regularization during training of the LM. Due to
the computational costs when training these mod-
els, we resort to the same hyperparameters as in
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kNN-LM (ω=0) kNN-LM (ω=1) kNN-LM (ω=10)

Train Ppl. LM 11.31 11.24 11.07
Valid Ppl. LM 18.00 17.95 17.71
Valid Ppl. kNN-LM 16.09 15.89 17.46

Table 2: Experiments on WIKI-103. We report the training and validation perplexities for standard kNN-LM i.e.
(ω = 0) as well as our weighted versions. Here we show that our method is much better once we apply kNN

the WIKI-2 dataset and hence present fair com-
parisons of the different variants of the model.

Note that again, we see significant improvements
in terms of validation perplexity when using the
kNN-LM scheme by simply adding an L2 regular-
ization when training the language model.

On another note, when taking a closer look at
the validation perplexity before applying kNN, we
note that ω = 10 seems to have the lowest vali-
dation perplexity. This better generalization phe-
nomenon is interesting and has recently been noted
in the machine vision community in the context
of investigating the regularization effects of batch
normalization in classification settings (Dauphin
and Cubuk, 2021). This also relates to the findings
of (Merity et al., 2017), those who used L2 regular-
ization in LSTMs. In this paper, we found initial
indications that the L2 regularization on the activa-
tions might be useful for Transformer models.

Finally, we believe that these two standard bench-
mark datasets in language modeling are sufficient
evidence to demonstrate the merit our of findings.
Further studies with more hyperparameters could
be done on WIKI-103, however, due to computa-
tional costs, we leave this for future work.

4.4 Further investigations into the
representations and possible explanations

To get a better understanding of why the L2 regu-
larization on the activations seems to improve the
performance of kNN-LM, we looked closer at the
learned representations for WIKI-02.

Effect of the target word frequency on the loss:
Figure 2 shows a histogram of word frequency,
where the color represents the respective losses
each word incurred. More concretely, each bar rep-
resents the number of words with a given frequency.
For a given histogram bar, we compute the loss for
each of these corresponding words. The colors rep-
resent the loss i.e. if we have a darker violet color,
we incurred a higher loss for these words, and the
lighter color the bar the smaller the error. Note that
firstly, there is little difference in the loss for the
less frequent words (right tail end of the histogram).

If we shift our attention to the more frequent words
(left side of the histogram) however, we see a differ-
ent picture. Looking at our L2 regularized model,
we note that for the most frequent words, our model
seems to incur lower loss (see the brighter colors
bars at the peak of the histograms) compared to the
standard LM with kNN. This observation suggests
that the main differences in terms of representa-
tions come from the frequent words rather than
rare ones. This is an indication that L2 regulariza-
tion helps representations cluster and hence when
performing the interpolation between the predic-
tions of the LM and kNN, the resulting kNN LM is
more confident in these predictions hence leading
us to obtain lower perplexities for common words.

Secondly, knowing that the main differences are
within the words that are most frequent, we in-
vestigated these representations in more detail. In
particular, we analyzed the most frequent words
and divided the data into "high loss/score i.e.
loss > −10" meaning they contributed a lot to
the loss (bad predictions) and "low loss/score i.e.
loss < −10" meaning they are good predictions i.e.
they contributed a little to the loss.

We employed a simple mixture of Gaussians
model (GMM) (m = 10) and used the log-
likelihood as an indicator for how well the data
are clustered. GMMs allow us to put probability
mass on each of the representations and given that
we are using a mixture of Gaussians, we inherently
capture clusters. Intuitively, this means that if the
likelihood of the GMM is high, the representations
can be easily captured using a mixture of Gaus-
sians, which is indicative of being more clustered
i.e. close to one of the gaussian mixture means.

In Figure 3 we compare the distributions of the
loglikelihoods for the representations that have
been trained using the standard LM and our modi-
fied L2 regularization. In particular, for each repre-
sentation, we obtain the corresponding likelihood
from the GMM (x-axis on Figure 3). As mentioned
before, we split the words into "high loss/scores"
and "low loss/scores" and plot their histograms in
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Figure 2: Frequency/Loss histograms. The x-axis denotes the frequency of the word with high-frequency words to
the left. The y-axis denotes the number of words with x frequency and the colors of each bar represent the loss
accumulated. (LEFT) Standard LM after kNN, (RIGHT) Our L2 regularized LM after kNN.

Figure 3: x-axis denotes the Loglikelihood under the Gaussian Mixture. y-axis denotes the normalized histogram.
(LEFT) Standard training of the Language Model (RIGHT) using an L2 regularization for the Language Model.

blue and orange respectively. Fig. 3 demonstrates
one key finding, which is that the difference be-
tween the likelihoods of the "high loss/scores" and
"low loss/scores" varies much more dramatically
in the L2 regularized case. Recall that the higher
the likelihood, the higher the "clusterness" is. By
noting that the likelihood differs much more in the
L2 regularized case, we can conclude that the rep-
resentations in the latter are more clustered (for the
low scores) due to the regularization, which could
be one potential explanation why kNN LM is im-
proved. Hence, one of our hypotheses is that kNN-
LM improves the classification accuracy mostly for
the non-frequent words (Khandelwal et al., 2020),
whereas our proposed method with L2 regulariza-
tion, in addition, also improves the classification
accuracy of the frequent words by clustering them
closer together and hence improving kNN-LM.
5 Conclusion
In conclusion, we propose a useful training mecha-
nism that is inspired by the fact that the post-hoc
application of kNN seems to significantly improve
the performance of standard LMs. We have found
that training a LM with L2 regularization at the
final layer, i.e. layer which is used for the post-
hoc kNN search, improves validation performance.

We have also found initial indications that the L2
regularization mostly improves performance for
the most frequent, lower-loss words. In addition,
we have found further evidence for the hypothesis
proposed (Dauphin and Cubuk, 2021) which states
that L2 regularization helps generalization in vi-
sion tasks. This paper found similar results when
working with Transformer models in NLP tasks.

There are, however, some shortcomings in our
work. Firstly, we have only given a preliminary
explanation for why the added L2 regularization
significantly improves upon standard kNN LM, but
we believe that we have given sufficient evidence
that our proposed method promotes clustering of
the representations which subsequently improves
the kNN. Secondly, even though we have found
great and promising improvement using our find-
ings on WIKI-2, further work with more com-
pute should be done on WIKI-103. We however
leave this for future work due to computational
constraints. Lastly, we believe that training models
with post-hoc kNN in mind is a promising area
and hence future work will consider more diverse
datasets from the NLP literature. These findings
motivate exploring various regularizations in differ-
ent Transformer architectures and LM tasks.
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Abstract
Earlier NLP studies on framing have focused
heavily on shallow classification of issue fram-
ing, while framing effect arising from prag-
matic cues remains neglected. We put forward
this latter type of framing as pragmatic fram-
ing. To bridge this gap, we take presupposition-
triggering adverbs such as ‘again’ as a study
case, and investigate how different German
newspapers use them to covertly evoke differ-
ent attitudinal subtexts. Our study demonstrates
the crucial role of presuppositions in framing,
and emphasizes the necessity of more attention
on pragmatic framing in future research.

1 Introduction

Framing, i.e., intentionally selecting certain aspects
of an issue and making them more salient in a
communicating text (Entman, 1993), is ubiquitous
in political discourse. The release of corpora with
manual annotation – mostly based on the codebook
of issue framing by Boydstun et al. (2014) – has
popularized the task of issue framing classification
(see Section 2), e.g., classifying whether influx
of migrants is presented from the perspective of
economy or domestic security. However, the heavy
focus on classification accuracy in earlier studies
has resulted in very few in-depth investigations of
the effects of individual linguistic cues in framing.
Yet, in a study on framing strategies employed by
different German newspapers in the discourse of
the “European Refugee Crisis”1 (2014–2018), we
observed from an exploratory reading that iterative
adverbs, including erneut ‘again’, immer wieder
‘again and again’, and schon wieder ‘yet again’, can
act as subtle but effective cues of framing. Consider
sentence (1):

(1) Erneut dutzende Flüchtlinge ertrunken
‘Again dozens of refugees drowned’
(BILD, Feb. 8, 2016)

1For details on the event: https://en.wikipedia
.org/wiki/2015_European_migrant_crisis

Iterative adverbs like ‘again’ in (1) are known as
presupposition-triggers in theoretical pragmatics,
as they carry presuppositions (see, e.g., Levinson,
1983; Beaver et al., 2021). A presupposition of an
utterance is background information that is “taken
for granted” by the speaker, i.e., information that is
not explicitly uttered but assumed by the speaker to
be shared belief of all discourse participants (Stal-
naker, 1972; Beaver, 1997; Zeevat, 2002). The
word ‘again’ in sentence (1) triggers the presup-
position P below, as its usage assumes that all
discourse participants already know P .

(2) P = ‘It has already happened before (at
least once) that refugees got drowned.’

We argue from two aspects that presuppositions
and their triggers are crucial devices for framing.
First, presuppositions can smuggle additional in-
formation into hearers’ belief systems: It is well
studied in theoretical pragmatics that presupposi-
tions can be accommodated, i.e., in many cases
where the presupposition of an utterance conveys
information that is new instead of known to its
hearers, the hearers will just tacitly admit to this
information in order to make sense of the utterance
(Lewis, 1979; Stalnaker, 2002; von Fintel, 2008).
A reader that did not know P above at the time
of reading sentence (1) will normally admit to P
silently in order to understand the author’s usage of
‘again’. Second, given a certain political context,
presuppositions may bring up attitudinal subtextual
messages as a concomitant: Once P above is in the
belief system of the readers of sentence (1) (either
because they already knew P before the reading,
or because they accommodated P), the attitudinal
subtext A below is likely to be evoked in their mind.
We use⇝ to denote the pragmatic relation that P
does not logically entail A, but can plausibly give
rise to A. Concomitant attitudinal subtexts of this
kind can covertly bias the hearers’ opinion towards
the issue and thus give rise to framing effect.
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(3) P ⇝ (A = ‘Refugees are in urgent need of
help as their safety is severely threatened.’)

Such framing effects that arise indirectly from
cues with significant pragmatic effects, e.g.,
presupposition-triggers discussed above, remain
neglected in existing studies on framing. We put
forward this type of framing as pragmatic fram-
ing (see Section 3 for detailed discussion). The
automated detection of pragmatic framing is yet a
challenging task: It can be only found via a close
examination of the relevant linguistic cues, and
(weakly-)supervised models as proposed by numer-
ous earlier studies (see Section 2) are not neces-
sarily able to capture the effect of such cues, as
these cues can be extremely sparse. Following our
observation on the iterative adverbs, this work quan-
titatively investigates whether iterative adverbs in
different newspapers give rise to different attitudi-
nal subtexts via presupposition, and thus result in
different pragmatic framing styles. With this study,
we aim at a) validating the argued importance of
presupposition in framing, and b) exploring the
possibility of automatically detecting pragmatic
framing. Our contribution is two-fold:

1) Theoretically, we put forward the notion of
pragmatic framing, and demonstrate its signifi-
cance for research on framing detection via our
case study on presupposition-triggering adverbs.
To the best of our knowledge, this is also the first
study on the role of presuppositions in framing.

2) Methodologically, we show that consciously
combining theoretically motivated linguistic cues
with NLP methods can yield crucial information
for more in-depth framing detection.

2 Earlier NLP Studies on Framing

Along with the release of large-scale corpora anno-
tated with issue frames (e.g., Card et al., 2015; Liu
et al., 2019), numerous studies have been done on
(weakly-)supervised classification of issue framing.
The methods used vary from linear classifiers such
as in Baumer et al. (2015) (naïve Bayes) and Field
et al. (2018) (logistic regression), probabilistic soft
logic as in Johnson et al. (2017), neural networks
such as in Naderi and Hirst (2017) (LSTM) and Ji
and Smith (2017) (RNN), to transformer-based lan-
guage models such as BERT and RoBERTa (e.g.,
Khanehzar et al., 2019; Huguet Cabot et al., 2020;
Akyürek et al., 2020; Mendelsohn et al., 2021).

Despite the classification accuracy of these pro-
posed models, there still lacks an in-depth drilling

down into the effects of individual linguistic com-
ponents. A few earlier studies have attempted to
incorporate features that are motivated by theo-
retical linguistics: Baumer et al. (2015) validated
the positive impact of various semantic and prag-
matic features (including factive verb, assertive
word, entailment and hedging) on the performance
of a naïve Bayes classifier for frame classifica-
tion. Demszky et al. (2019) investigated the usage
of expressions for necessity modality (including
should, must, have to and need to) among tweets
about mass shooting events, as necessity modality
bears the illocutionary force of calling for action
or change in the discourse under discussion. Ziems
and Yang (2021) examined the usage of agent-less
passive constructions (e.g., using ‘He was killed’
instead of ‘He was killed by police’) in the dis-
course of police violence in view of the fact that
such constructions obscure the actor entirely and
thus remove blame from the actor.

Nevertheless, in the last decades theoretical lin-
guistic researchers have uncovered many more
pragmatic cues which have fundamental effects on
conveying attitudes and steering the discourse de-
velopment. Such cues are highly relevant for fram-
ing but remain unstudied, especially because many
of them are stop words and prone to be dismissed
in NLP practice. These include, but are not lim-
ited to, the aforementioned presupposition-triggers
like again or too (Levinson, 1983; Beaver et al.,
2021), focus particles like even or only (Rooth,
1985), modal particles like indeed (Zeevat, 2004;
Zimmermann, 2011), and conventional implicature-
bearing words like luckily or confidentially (Bach,
1999; Potts, 2005). With our case study on iterative
adverbs, we aim at bridging this gap between NLP
and theoretical linguistics.

3 Pragmatic Framing as a New Dimension
of Framing

As described in Section 2, earlier NLP studies on
framing detection are centered around issue fram-
ing, i.e., what aspects of an issue are covered in
the discourse. However, our observation on the
effect of presupposition-triggers in political dis-
course suggests that certain subtle pragmatic cues
can evoke implicit, second-level subtextual commu-
nication, and this phenomenon remain neglected
in the research on framing. We argue that such
subtextual communication also constitutes a type
of framing, as they covertly smuggle extra informa-
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tion into the discourse besides the information con-
veyed by the surface form of the text (see Section
1). Grounded in this observation, we propose the
notion of pragmatic framing as a new dimension
of framing besides the issue framing. Pragmatic
framing differs from issue framing in two aspects:

1) Locus: Issue framing is a content-level phe-
nomenon. It is typically defined as describing
what specific perspectives, values or facts of an
issue are presented (see, e.g., Entman, 1993; Nel-
son et al., 1997; Druckman, 2011; Boydstun et al.,
2014). However, pragmatic framing is a linguistics-
level phenomenon and describes what specific lin-
guistic devices are employed strategically in order
to reinforce a certain perspective, value or fact.
Pragmatic framing is rooted in the usage of fine-
grained pragmatic cues, and it contributes to the
conveyance of issue frames in a rhetorical sense.

2) Accessibility: Whereas issue framing are
mostly directly accessible from the surface form of
the text, pragmatic framing goes beyond the surface
form and can only be reached indirectly through
pragmatic procedures triggered by specific cues
(e.g., hearer’s accommodation of presuppositions
as mentioned in Section 1, or hearer’s pragmatic
enrichment of a certain utterance as described in
Grice, 1975). From the perspective of NLP, auto-
matically identifying pragmatic framing requires
close examination of particular pragmatic cues.

The notion of pragmatic framing also applies
to a wide range of other theoretical linguistic fea-
tures that trigger very specific types of discursive
inferencing, such as those mentioned in Section 2.
We believe that more attention on in-depth prag-
matic devices will be a valuable enrichment of the
research on framing, as the particular ways of pre-
senting information are the core of framing, and
the usage of subtle linguistic devices is in turn an
essential part of information presentation.

4 Experiment

Our study focuses on the usage of iterative adverbs
in political discourse as a case of pragmatic fram-
ing, and aims at examining whether iterative ad-
verbs give rise to different attitudinal subtexts via
presuppositions in different newspapers. The data
and experimental setup are described below.

4.1 Data

We used a dataset comprising of articles about the
“European Refugee Crisis” published between 2014

to 2018 by the three most circulated newspapers in
Germany (Statista, 2021): BILD, Frankfurter All-
gemeine Zeitung (FAZ), and Süddeutsche Zeitung
(SZ). All three are nation-wide daily newspapers,
and they build a balanced sample of differing styles
and political orientations.

From each newspaper, we first collected arti-
cles with at least one match of the following quasi-
synonyms of ‘refugee’: {Flüchtling, Geflüchtete,
Migrant, Asylant, Asylwerber, Asylbewerber}. We
then removed articles that were: 1) duplicated, 2)
from non-political sections such as Sport, and 3)
with a ratio of the ‘refugee’-synonyms lower than
0.01. Criterion 3) was experimentally defined, and
it allowed us to remove most articles that mention
the European Refugee Crisis only as a side-topic.

Following the observation from our exploratory
reading mentioned in Section 1, we then extracted
from the dataset all sentences that contain the it-
erative adverbs erneut, immer wieder, and schon
wieder. We refer to these extracted sentences as
iterAdv-S. Duplicated sentences in each newspaper
were removed. Table 1 summarizes the dataset.2

name type #articles #tokens #sentences #iterAdv-S

BILD C, T 12,109 3,059,123 180,555 1,138
FAZ C, B 6,700 3,342,609 168,725 558
SZ L, B 4,561 1,766,921 93,224 557

Table 1: Overview of the dataset. (C = conservative; L
= liberal; T = tabloid; B = broadsheet)

4.2 Experimental Setup
As the pragmatic framing evoked by iterative ad-
verbs is a sentence-level phenomenon and we thus
focus on iterAdv-S for our quantitative analysis de-
scribed below, topic modelling approaches such as
LDA would be inadequate due to their deficiency
in handling short documents (Tang et al., 2014).
Thus, we used a combination of clustering and
keyword-mining methods. The experimental setup
is described below stepwise. Additional details of
hyperparameters are provided in Appendix A.

Vectorizing iterAdv-S Vectorizing the iterAdv-S
is the basis of all following computational steps.

2The newspaper articles were purchased from their respec-
tive publishers. Unfortunately, due to their copyright regula-
tions, we cannot make the dataset publicly available. But the
code and model of our study are available in the following
repository. All results reported in this paper can also be found
in the Jupyter Notebook files there: https://github.c
om/qi-yu/framing-by-presuppositions
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Given the success of transformer-based language
models in issue framing classification (see the stud-
ies cited in Section 2), we decided to fine-tune the
bert-base-german-cased model3 (12 lay-
ers, 768 hidden units, 12 attention heads) to achieve
the vectorization. Considering that all articles in
our dataset are labeled with sources (i.e., BILD,
FAZ, & SZ), we decided to fine-tune the BERT
on a source classification task using all articles, so
that the model weights better represent the overall
linguistic characteristics of our very topic-specific
dataset. As BERT limits the input to be no longer
than 512 tokens (tokens here refer to WordPieces
generated by BERT-tokenizer, and the special to-
kens [CLS] and [SEP]), whereas numerous articles
exceed this limit, we divided each article into seg-
ments of maximally 200 words long as inspired by
Pappagari et al. (2019) to circumvent the limit. This
resulted in 45,402 segments in all (BILD: 18,131;
FAZ: 17,641; SZ: 9,630). We used these segments
as input to BERT and classified each with their
sources. The segments were split into training set
and validation set in an 80/20 fashion. The accu-
racy on the validation set reached 0.87, indicating
that the fine-tuned model was able to capture the
major linguistic characteristics of the dataset.

Next, we vectorized the iterAdv-S by inputting
each sentence to the fine-tuned BERT and extract-
ing the embedding of the [CLS]-token of the 11th
layer. The decision of using the [CLS] of the
11th layer was based on earlier studies which have
shown that: 1) the embedding of [CLS] performs
better as sentence representation than the average
embedding of all tokens (Kalouli et al., 2021), and
2) semantic features are mostly captured by higher
layers of BERT, whereas the last (12th) layer is
very close to the actual classification task and thus
less suitable as semantic representation (Kalouli
et al., 2021; Jawahar et al., 2019; Lin et al., 2019).

K-Means Clustering For each newspaper, we
then conducted a k-means clustering on the vector-
ized iterAdv-S using scikit-learn (Pedregosa et al.,
2011). The clustering allows us to divide these
sentences into latent subgroups and to investigate
them at a finer granularity.

As a validation of the clustering results, for
each newspaper we used the optimal cluster
amount found by applying silhouette coefficient
(Rousseeuw, 1987). Silhouette coefficient is a

3https://huggingface.co/bert-base-ger
man-cased

method for validating the consistency of clusters
generated by clustering algorithms. For each sam-
ple i which is assigned to cluster A by a certain
clustering algorithm, its silhouette coefficient s(i)
is defined as the equation below, where a(i) stands
for the average distance between i and all other
items in A (also known as intra-cluster distance),
and b(i) stands for the average distance between i
and all items in the second-nearest cluster besides
A (also known as inter-cluster distance):

s(i) =
b(i)− a(i)

max{a(i), b(i)}
The value of s(i) ranges between [-1, 1]. The closer
it is to 1, the better i matches the cluster A. A neg-
ative value occurs when the intra-cluster distance
a(i) is greater than the inter-cluster distance b(i),
indicating that assigning i to A is suboptimal.

We monitored the silhouette coefficient of each
item (i.e., each vectorized iterAdv-S) with respect
to cluster amounts k ∈ [2, 50]. For all newspapers,
the optimal amount found was 3. Additional details
are provided in Appendix B.

Mining Keywords of Each Cluster Though the
clustering divided the iterAdv-S into smaller sub-
groups, manually examining the sentences in each
cluster would still be challenging, as each cluster
still contains hundreds of sentences (see Section 5).
To ease the evaluation, we further used the keyword
mining approach PMI-freq (Jin et al., 2020) to find
the most representative keywords of each cluster in
each newspaper. PMI-freq builds upon the measure
of pointwise mutual information (PMI; Church and
Hanks, 1990) by incorporating the document fre-
quency of each word into the calculation, and thus
overcomes PMI’s shortage of preferring rare words.
Given a word w and a cluster C, the PMI-freq of
w with respect to C is defined as follows, where
df(w) stands for the document frequency of w:

PMI-freq(w;C) ≡ log(df(w)) · log P (w|C)

P (w)

Prior to applying PMI-freq, all iterAdv-S were
tokenized and lemmatized using NLTK (Bird et al.,
2009), and stop words, numbers and punctuations
were removed.4

4These preprocessing steps were not applied at the sen-
tence vectorization stage, as they would cause a loss of contex-
tual information for BERT. However, here they are relevant, as
the keyword mining step aims at examining the lexical usage
of each cluster to find out their semantic characteristics.
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5 Results and Discussion

Table 1 shows that the iterAdv-S are fairly scarce
in all newspapers. However, our approach is still
able to reveal stark contrasts between the pragmatic
framing styles arising from them. Table 2 shows the
top 15 words by PMI-freq in each cluster of each
newspaper (translated into English; See Appendix
C for the original German version together with the
PMI-freq score of each word).

BILD The largest cluster (#2) of BILD indi-
cates the salience of violence issues among the
iterAdv-S in BILD, as shown by keywords like
‘ISIS’, ‘aggressive’ (German: aggressiv), ‘violence’
(Gewalt) and ‘riot’ (randalieren). We also found
out that iterAdv-S which contain the keywords ‘ini-
tial reception center’ (Erstaufnahmeeinrichtung)
and ‘refugee camp’ (Flüchtlingsunterkunft) are of-
ten about violent incidents in refugee camps. This
salience of violence issues is furthermore reflected
by several keywords in Cluster #3 including ‘inci-
dent’ (Zwischenfall), ‘attack’ (Übergriff ) and ‘per-
petrate’ (verüben). Example (4) depicts the typical
effect of iterative adverbs in violence-related sen-
tences: They evoke a negative subtext that refugees
are a persistent threat of the domestic security.

(4) Im Bahnhof [...] randalierten immer
wieder Flüchtlinge.
‘Refugees rioted at the train station
again and again.’ (BILD, Sep. 1, 2018)

P = ‘Refugees have been rioting before.’
⇝ A = ‘Refugees continuously threaten
the public order.’

Moreover, the keywords ‘ship’ (Schiff ), ‘deadly’
(tödlich) and ‘port’ (Hafen) in Cluster #3 show a
slight focus of the iterAdv-S in BILD on security
issues at the Mediterranean route. As shown before
in Example (1), iterative adverbs in this context
evoke the subtext that the refugees need help.

FAZ Keywords in the largest cluster (#3) of FAZ
show a mixed focus on both the security situation at
the Mediterranean route, e.g., ‘Greece’ (Griechen-
land), ‘human trafficker’ (Schlepper) and ‘smug-
gler’ (Schmuggler), as well as on violence issues,
e.g., ‘foreigner’ (Ausländer, often used in reports
on attacks against foreigners), ‘police’ (Polizei),
and ‘violence’ (Gewalt). However, while two of
three clusters in BILD address violence and secu-
rity issues (#2 and #3), two of three clusters in FAZ

(#1 and #2) show a clear focus on asylum policies.
This is reflected by policy-specific words like ‘right
of asylum’ (Asylrecht, #1), names of political ac-
tors like ‘Prime Minister’ (Ministerpräsident, #2),
as well as words related to political negotiations
like ‘reproach’ (vorwerfen, #1) and ‘conversation’
(Gespräch #2). Example (5) depicts the typical
effect of iterative adverbs in sentences containing
these keywords: A closer check indicates that it-
erative adverbs there often evoke the subtext that
the execution of refugee policies is hard (and some-
times rendered as inefficient) because of repeating
conflicts of interest between parties or countries.

(5) Italien wird immer wieder vorgeworfen, es
setze die EU-Vorschrift nicht durch.
‘Italy is again and again accused of not exe-
cuting EU-regulation.’ (FAZ, Sep. 7, 2015)

P = ‘Italy has been criticized at least once.’
⇝ A = ‘Italy is a stumbling block in exe-
cuting the EU immigration policy’.

SZ The largest cluster (#2) in SZ shows the
salience of security issues at the Mediterranean
route among the iterAdv-S, as indicated by key-
words like ‘Mediterranean Sea’ (Mittelmeer),
‘refugee boat’ (Flüchtlingsboot), ‘coast’ (Küste),
‘Libyan’ (libysch) and ‘Greece’ (Griechenland). In
the sentences containing these keywords, iterative
adverbs evoke the same humanitarian leaning sub-
text as illustrated in Example (1). Moreover, the
top 2 keywords ‘man’ (Mann) and ‘young’ (jung)
of Cluster #3 indicate an interesting emphasis on
the demographic characteristics of the refugees. In
a closer check, we found out that these keywords,
besides being used in narrative texts about indi-
vidual experiences of the refugees, often occur in
context concerning the social integration of young
male refugees. Sentence (6) shows an example: In
such context, the iterative adverbs evoke a subtext
that appeals to immediate action to facilitate the
integration. Overall, the focus on security and inte-
gration issues indicates SZ’s tendency of framing
the Refugee Crisis from a humanitarian aspect.

(6) Wenn diese jungen [...] zu lange
ohne Beschäftigung herumsitzen, kommt
es immer wieder zu Streit und Massen-
prügeleien.
‘When these young people are idle for
too long, quarrels and brawls happen
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BILD

Cluster #2: 428 Samples Cluster #3: 381 Samples Cluster #1: 329 Samples

today, yesterday, o’clock, direction, ex-
plain, speaker, ISIS, Syrian, aggres-
sive, Asylum, around, planned, person,
Athens, start (v.), initial reception center,
thousand, violence, riot (v.), flame, grand
coalition, Hannover, standing, flare up,
press conference, evening, commit (a
crime)/beat, refugee camp, advertise

attempt (v.), give, incident, name (n.),
bring, big, get, situation, hear, ship,
deadly, know, story/history, government,
port, think, calm (down), help (v.), arise,
manage (to do), find, attack (n.), speak,
perpetrate, politics, past (n.), past (adj.)

Angela, Friday, Merkel, reject (v.),
refugee policy, controversial, CSU, Mon-
day, upper limit, attack (v.), Greece, res-
cue, end (n.), Seehofer, chancellor

FAZ

Cluster #3: 223 Samples Cluster #1: 204 Samples Cluster # 2: 131 Samples

give, attract attention, money, aid agency,
see, foreigner, help (n.), police, Greece,
situation, lead, say, stand, policeman,
confirm, lacking (adj.), refugee accom-
modation, human trafficker, smuggler,
week, violence, The Greens, Austria, last
(adj.), together, Greek, prognosis, civil
servant, camp, security force, report (n.),
accommodation, because, new

far, stay, name (v.), right of asylum, be-
long, go, chancellor, speak, reproach
(v.), Turkey, let, number, manage (to do),
country, get, The Left, Bavarian, open-
ness, boat, yield, Munich, always, port,
game, appeal to, planned, municipality,
bring, show, do

city, day, Prime Minister, institution,
Frankfurt, old, state government, Mayor,
conversation, end (n.), population, year,
letter, located, Heidelberg, non-party,
inquiry, district, reason, accommodate,
tell, difficulty, wild, euro, refugee policy,
open (adj.), live (v.), Italian, possible, de-
velopment, search (v.), political, without,
demonstrate, homeland

SZ

Cluster #2: 217 Samples Cluster #3: 187 Samples Cluster #1: 153 Samples

person, Mediterranean Sea, refugee
boat, Calais, coast, weekend, Sunday,
asylum seeker, European Commission,
Libyan, thousand, Greek, Angela, pres-
sure, Greece, Merkel, get into, Fed-
eral Office, deportation, Italy, migration,
boat, before, attack (n.), number

man, young, month, past (adj.), report
(v.), stand (v.), new, year, just, prevent,
group, money, sentence, hear, lead, sel-
dom, call (v.), experience (n.), along, at-
titude, message, find, attempt (v.)

know, Federal Office for Migration and
Refugees, Bavaria, Horst, Seehofer, po-
litical, Thursday, Hungary, place (n.),
correct (adj.), Wednesday, name (v.), Fri-
day, solidarity, speak, time/once, decide,
let, human rights group, international,
if possible, mouth, EU state, complain,
own, CSU, demand

Table 2: The top 15 keywords by PMI-freq in each cluster of each newspaper. The clusters in each newspaper are
ordered by their size from left to right. The words are separated by a comma, and additional explanation is given in
parenthesis. Note that multiple words can have equal PMI-freq score.

again and again.’ (SZ, Feb. 19, 2016)

P = ‘Quarrels and brawls have happened
at least once.’
⇝ A = ‘To avoid such violence, the inte-
gration of refugees into the labor market
should be taken priority.’

6 Conclusion

Grounded in established pragmatics theory, we
argued for the importance of presuppositions in
framing, and put forward the notion of pragmatic
framing. This was validated by our computational
study on the case of iterative adverbs. Given the
sparsity of the iterative adverbs, such pragmatic
framing would be difficult to detect with many of
the (weakly-)supervised classification approaches
pursued in earlier studies, but we showed that it

can be uncovered via consciously combining deep
linguistic knowledge with NLP approaches. We
see our work as a step towards successfully incor-
porating theoretical linguistic insights into NLP
applications.
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A Hyperparameters

All hyperparameters used in our experiment de-
scribed in Section 4.2 are listed below:

Fine-Tuning BERT The BERT model was fine-
tuned for 4 epochs with a learning rate of 2e-5 and
a batch size of 16.

K-Means Clustering The k-means algorithm
was run 100 times with different centroid seeds.
The maximum iteration number was set to 2000,
and the random state was set to 42.

B Silhouette Coefficient for Optimal
Cluster Amount Searching

As described in Section 4.2, we applied silhou-
ette coefficient to find the optimal cluster amount
for clustering the iterAdv-S and experimented with
cluster amounts k ∈ [2, 50]. Figure 1 visualizes
the distribution of the silhouette coefficients under
k ∈ [2, 5] using the Python package Yellowbrick
(Bengfort et al., 2018), with each color standing
for one cluster. It can be observed that the average
silhouette coefficient decreases continuously when
k increases (This trend continues for all k ∈ [2, 50],
but in order to avoid redundancy, we only show the
visualization of k ∈ [2, 5] here). The best trade-
off between the average silhouette coefficient and
the amount of suboptimally clustered items (repre-
sented by the colored areas that stretch to left) is 3
for all three newspapers.

C Keywords of Each Cluster in German

Figure 2, 3 and 4 shows the original German key-
words that are ranked top 15 by PMI-freq in BILD,
FAZ and SZ, respectively. The plots in each figure
are ordered by the cluster size from left to right.
The bars stand for the PMI-freq score. The words
are separated by a comma. Multiple words as-
signed to one bar indicate that they have equal
PMI-freq score.
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(a) BILD

(b) FAZ

(c) SZ

Figure 1: Silhouette coefficients (represented by the horizontal axis) with respect to cluster amount k ∈ [2, 5]
(represented by the vertical axis). The red dash line represents the average silhouette coefficient.
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Abstract

Despite their outstanding performance, large
language models (LLMs) suffer notorious flaws
related to their preference for simple, surface-
level textual relations over full semantic com-
plexity of the problem. This proposal investi-
gates a common denominator of this problem
in their weak ability to generalise outside of the
training domain. We survey diverse research
directions providing estimations of model gen-
eralisation ability and find that incorporating
some of these measures in the training objec-
tives leads to enhanced distributional robust-
ness of neural models. Based on these findings,
we present future research directions towards
enhancing the robustness of LLMs.

1 Introduction

The advances in language processing that we ob-
serve in recent years, mostly led by the instances of
large language models (LLMs) based on the trans-
former architecture (Vaswani et al., 2017) raise a
deserved attention of the scientific community. We
find studies concluding that LLMs fine-tuned for
a specific task can align with, or even outperform
human accuracy on complex tasks such as ques-
tion answering (Rajpurkar et al., 2016), paraphrase
identification (Bowman et al., 2015), machine trans-
lation (Bahdanau et al., 2016) and others.

In contrast, critical studies demonstrate that
many of the models reaching a state-of-the-art on
a given task perform poorly on data sets drawn
from different distribution(s). This is due to var-
ious reasons, such as training data set biases in-
cluding spurious linguistic correlations (McCoy
et al., 2019), different text stylistics or typos (Be-
linkov and Bisk, 2018), where a broad preference
of LLMs towards fitting non-representative, yet
easy-to-learn surface-level relations cause them to
under-perform even shallow networks (Bojanowski
et al., 2016). A lack of generalisation can also
be caused by procedural reasons, such as training

process instability, causing a convergence to local
minima of distinct generalisation quality (McCoy
et al., 2020). Low robustness of the consequential
model towards out-of-distribution (OOD) samples
limits their practical usability to the samples drawn
from the training distribution, which is often im-
possible to ensure.

Despite that the complex language models strike
an impression of a black-box, an extensive branch
of research demonstrated that internal representa-
tions of LLMs correspond well to a human tax-
onomy in terms of morphological and syntactic
decomposition (Clark et al., 2019a), or that the
depth of the internal representation correlates well
with the complexity of the problem as perceived by
humans (Tenney et al., 2019).

The reported agility support the central presump-
tion of this proposal; that LLMs can avoid the prob-
lems mentioned above under additional regularisa-
tion. We argue that such regularisation could also
strenghten the implicit property of LLMs learning
compositional language features and thus enhance
an interpretability of their decision-making.

In this proposal, we survey literature from the
broader area of neural networks for the reasons
for better generalisation of the neural model. We
find that many measures reported to correlate well
with model’s OOD performance can also enhance
neural model generalisation when utilised within
the model’s training objective, as regularisers, or
additional components of the training cost function.
Inspired by this finding, this proposal outlines a
path towards identification and utilisation of gener-
alisation measures aimed to enhance robustness of
LLMs towards distribution shift.

RQ1: “Can we estimate the performance of LLMs
on data from OOD, without a collection of
annotated data or expert feedback?”

RQ2: “Can we adjust the process of training
LLMs to perform better on OOD samples?”
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In Section 2.1 we survey the studies aiming to
estimate robustness of neural models with no re-
strictions on a domain of application. Subsequently,
in Section 2.2, we survey the training techniques
reported to enhance the robustness of the trained
model. Based on these findings, in Section 3 we
identify promising directions and respective chal-
lenges specific for estimating (§3.1) and enhancing
(§3.2) the robustness of LLMs.

1.1 Applicability

This proposal grounds the notion of model gener-
alisation to its ability to perform well on samples
drawn from distributions different than the training
distribution (OOD). In this context, the term of a
distribution, used interchangeably with domain, is
commonly described by a specific shared property,
such as topic, style, genre, or linguistic register
(Ramponi and Plank, 2020).

This proposal focuses on distributional robust-
ness in two branches of applications of current
LLMs: generative tasks, where the problem is to
generate a sequence of tokens, and discriminative
tasks, where the task is to infer a discrete decision
for each token or a sequence of tokens. Generative
tasks include summarization, dialogue generation
or machine translation, while discriminative tasks
include classification, extractive question answer-
ing or named entity recognition.

In both cases, we propose to estimate the impact
of given adjustment on model generalisation by
measuring a difference in the model’s performance
on a set of distinct OOD domains. We note that
such estimation is still only a pointwise estimation
of model generalisation as some properties of the
domains drawn for evaluation remain uncontrolled.

2 Background

2.1 Estimating Model Robustness (RQ1)

Having a set of true labels for some set of OOD
samples Xt of target domain(s) Dt, the robustness
of the model M can be estimated using standard
qualitative measures, such as accuracy. This raises
questions about the representativeness of the draw
of Xt: do these cover all the domains of application
of M , and are these domains accurately weighted
in evaluation?

The problem is circumvented by generalisation
measures based on latent properties of M , that do
not require any labelled data of Dt. However, such
an approach might come at the price of accuracy:

according to Jiang et al. (2020), the Spearman’s
rank correlation of any unsupervised measure with
out-of-distribution accuracy does not exceed 0.5 on
average. The accuracy of the estimator improves
using supervised approaches (Stefanik et al., 2021),
but these already require some labelled data.

The situation presents a common dilemma in ro-
bustness evaluation: Ground-truth evaluation must
involve a representative selection of test data. This
problem can be avoided with unsupervised esti-
mations based on the model properties, but such
proxies are burdened by a certain level of inac-
curacy. In the following sections, we review the
measures introduced directly for evaluating model
generalisation (§2.1.1) and for estimating model’s
expected output quality (§2.1.2), more commonly
used in NLP.

2.1.1 Generalisation Measures
Traditionally, the ability of neural networks to gen-
eralise was related to the measures of their capac-
ity, where the lower capacity might imply the lower
generalisation gap (Jiang et al., 2020), i.e. a drop of
performance under distribution shift. The capacity
can be quantified in terms of complexity given by a
number of model parameters, expressive power or
others. A standard example of such a measure is a
degree of a polynomial; the higher the degree, the
better is the fit, but it comes at the price of generali-
sation loss. This group of measures is referred to as
Vapnik–Chervonenkis dimension (VC-dimension),
introduced by Vapnik (1999).

A large body of work aims to find such VC-
dimensions that correspond well with OOD per-
formance even with modern, over-parametrised
networks. For instance, norm-based approaches
(Neyshabur et al., 2015b) propose to use the p-
norms used in regularisation of the training as the
anchor value of generalisation and support this in
theory by connecting such measure with a limi-
tation of network capacity. Bartlett et al. (2017)
conclude that a spectral complexity measure, that
is inferred from eigenvalues of a matrix of the net-
work weights, can be used as one of such complex-
ity measures.

A collateral line of work, starting with Shawe-
Taylor et al. (1998) show that generalisation
bounds, denoting a range of expected performance
of the given model on an arbitrary test set, can be
provably associated with VC-bounds. Harvey et al.
(2017) show that the tightness of such bounds for a
linear subset of networks can be theoretically found.
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Furthermore, Dziugaite and Roy (2017) propose a
method to optimize PAC-Bayesian bounds, optimis-
ing the model for as tight bounds as possible.

Despite these proofs, error bounds based on VC-
dimensions remain vacuous in practice (Dziugaite
and Roy, 2017; Jiang et al., 2020): such estimates
of OOD performance are too wide to be used in
practice. Additionally, it is now widely observed
(Novak et al., 2018; Neyshabur et al., 2015a), that
in practice, an effect of over-parametrisation is in
contrast with traditional VC-dimension theory and
in multiple cases, over-parametrisation leads to bet-
ter reported generalisation (Neyshabur et al., 2019).

Existing work attempts to ground error bounds
in the underlying causal model that describes the
target domains of interest. Meinshausen (2018)
introduces a term of Structural equation model
(SEM) defining the causal interventions consistent
with a given world and relates domain general-
isation to the model’s robustness to the interven-
tions defined by such SEM. Additionally, given that
SEM produces a class of distributions Q, a model
M robust on Q is a causal inference model for
Q, connecting distributional robustness to a weak
form of causal inference (Dziugaite et al., 2021).
Similarly, Bühlmann (2018) ascribes the ability of
causal inference on Q to any model whose repre-
sentation is invariant to any domain D ∈ Q and
proposes a method of selecting a subset of invariant
features that picks such subset of attributes from a
given set.

Practical observations of errors suggest that em-
pirical error bounds are in fact significantly tighter
than what can be proven in theory. Dziugaite et al.
(2021) locate all bounds between the two extremes:
theoretically-supported, yet vacuous bounds of
methods based solely on the model property (VC-
bounds) or behaviour (PAC-Bayesian bounds) and
empirical, yet strictly data- and model-dependent
evaluation on sample set(s) Xt ∈ Dt.

2.1.2 Quality Estimation
Quality estimation (QE) measure predicts model
output quality in the absence of ground-truth refer-
ence (Fomicheva et al., 2020). Although not com-
monly used in this manner, QE measures also re-
flect on model robustness, making this branch of
research applicable for OOD performance estima-
tion (RQ1).

A significant line of work grounds quality es-
timation in model confidence, which can be esti-
mated using Bayesian networks (Mackay, 1992)

where standard scalar weights of the network are
replaced with random variables, modelling the out-
put distribution. This approach is accurate but
not computationally feasible for larger networks.
A branch of work approximates parametric distri-
butions (Graves, 2011; Tran et al., 2019) making
such uncertainty estimation practically feasible.

Model uncertainty can also be computed by en-
sembling variations of a given model in multiple
trials, commonly referred to as Monte Carlo (MC)
methods. Monte Carlo dropout (Gal and Ghahra-
mani, 2016) applies dropout on inference randomly
among multiple inference trials yielding an estima-
tion of the distribution of network output, based on
which the uncertainty is approximated. Lee et al.
(2015) build such ensembles of estimators using
bagging, i.e. training the ensembled models on
different train sub-sets.

Model-variational methods fit well into the cen-
tral PAC-Bayesian theory (Valiant, 1984), stating
that if the error of the classifier can be bound, then
also a performance of an ensemble of such clas-
sifiers can be upper-bound with arbitrarily-small
bound ϵ (Guedj, 2019).

Confidence estimation can be utilised in en-
hanced model robustness, where prediction confi-
dence is used as a regularizer of the main objective;
in augmentation (Szegedy et al., 2014), confidence
calibration (Gong et al., 2021), or in a training for
consistency (Xie et al., 2019).

Jiang et al. (2020) propose to measure a regu-
larisation decay of the weights, together with a
measure of sharpness, reflecting on a volume of
change in the model evaluation when the limited
surrounding of the learnt parameter space min-
ima is permuted (Keskar et al., 2017). Another
introduced measure reflects a variance of gradi-
ents measured on a train set after a first training
iteration. This work is the first large-scale study
evaluating correlation of selected generalisation
measures with true OOD performance and con-
cludes that the mentioned sharpness and gradient-
based measures correlate highest with the measured
OOD performance. Consecutively, Dziugaite et al.
(2021) support these findings on sharpness-based
and PAC-Bayesian measures as the best-correlated
in the similar methodology.

An important application of QE techniques lays
in neural machine translation, where avoiding criti-
cal errors in translation remains an open problem.
Such errors deviate the meaning of the translation
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in a way that may carry health, safety, legal or other
implications (Specia et al., 2021). Kim et al. (2017)
train a token-level estimator of machine translation
output quality concurrently with the neural trans-
lation model. Fomicheva et al. (2020) additionally
propose to predict output quality from entropy of
attention activations of transformer model, but they
find this approach not more accurate than the one
based on simple output entropy (Kim et al., 2017),
or than the MC dropout method.

2.2 Training Robust Models (RQ2)

A problem of training a model that performs
well on out-of-distribution (OOD) samples can be
found in the literature under the terms of out-of-
distribution generalisation (Yi et al., 2021), do-
main generalisation (Gong et al., 2021), distribu-
tional robustness (Meinshausen, 2018), or simply
generalisation (Foret et al., 2021). The variety of
terminology points to the fact that the standards in
this branch of research are not yet clearly set.

Despite imperfect correlations of generalisa-
tion measures with measured OOD performance,
we find these measures already incorporated in
novel training objectives reaching attractive en-
hancements of model robustness; Neyshabur et al.
(2015b) investigate the impact of incorporating
norm-based measures into the loss, obtaining gener-
alisation guarantees of ℓ2-norm. Foret et al. (2021)
enrich the cross-entropy loss with a complementary
component reflecting a sharpness of local optimum,
based on a difference to local ϵ. Keskar et al. (2017)
also demonstrate that the sharpness of the objec-
tive’s optima corresponds to the model’s robustness,
and flatter optima can also be reached by noising
the update steps by smaller training batch size.

Objective adjustments creatively utilising PAC-
-Bayesian measures also confirm reported corre-
spondence of these measures to generalisation. Hin-
ton (2002) proposes a Product of Experts (PoE)
framework where an ensemble of identical shallow
estimators eliminate model-specific biases in a dot
product of ensembled outputs, resulting in superior
OOD performance. Sanh et al. (2021) show an ap-
plication of PoE eliminating the systematic biases
on adversarial NLI data sets. Dagaev et al. (2021)
adopt similar approach in debiasing image clas-
sification from heuristical shortcuts. Utama et al.
(2020) eliminate model reliance on domain-specific
attributes in a two-step process: by identifying the

biased samples by model over-confidence, and their
subsequent down-weighting.

Rather than encouraging specific model fea-
tures, others have investigated the impact of spe-
cific training strategies, which becomes particu-
larly relevant in multi-step training strategies of
LLMs. Wang and Sennrich (2020) enhance robust-
ness of the translation by fine-tuning for sentence-
level Minimum Risk Training objective instead of
the common token-level cross-entropy. Tu et al.
(2020) show on adversarial data sets that: a) longer
fine-tuning eliminates model fragility on under-
represented samples, and b) multitask learning
has a positive impact on transformer generalisa-
tion to adversarial data sets. Compliant results are
reported by Xie et al. (2019) with multitask learn-
ing for both classification and output consistency
to augmented samples, or by Raffel et al. (2020) on
generative language multitask learning, or in cross-
lingual settings by Clark et al. (2019b); Conneau
et al. (2019); Lewis et al. (2020).

Similar results are reported in work address-
ing dataset biases. Utama et al. (2020); Nie et al.
(2019); Teney et al. (2020) report that addressing
only one bias in domain adaptation hurts the model
generalisation on other domains. On the other hand,
Wu et al. (2020) find that addressing multiple biases
at once can enhance OOD generalisation, although
they draw this conclusion from a single domain.

A different branch of work attempts to enhance
the robustness by training strategies that work with
knowledge of domain distinction. Gong et al.
(2021) propose to approximately cover the class
of all possible target domains Dt by source do-
mains Ds and to learn the calibration of output
probabilities from Ds that will allow to associate
samples of a new target domain Dt to some known
Ds. Yi et al. (2021) propose to use the adversarial
framework, learning indistinguishable final-layer
representation for different domains.

3 Research Proposal

Following the referenced studies on evaluation and
enhancement of the generalisation of neural mod-
els, this section outlines directions in measuring
and improving robustness of LLMs, respectively.

3.1 Estimating Model Robustness (RQ1)

Recently, the measures of generalisation of neural
networks struck increasing attention (Jiang et al.,
2020; Dziugaite et al., 2021). However, none of the
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referenced studies evaluates the measures on the
case of LLMs. Especially within a standard pre-
training + fine-tuning framework of modern NLP
applications, quality of the measures might differ
compared to the experiments on relatively small
convolutional networks trained for image classifi-
cation from scratch.

Hence, we first focus on evaluating the estab-
lished generalisation measures, such as the ones
based on spectral complexity, variance of gradi-
ents or sharpness in the case of pre-trained LLMs.
A major challenge is to scale such experiments
to a representative evaluation framework covering
a broad set of tasks, domains, and model types. For
instance, other training parameters will likely im-
pact the metrics’ quality; such covariates will have
to be identified and controlled. However, even ex-
tensive evaluation will likely fail to identify some
of such covariates; Due to this reason, we will de-
limit the scope of our results to the estimation and
enhancement of robustness with respect to the enu-
merated covariates, even though it contrasts with
the methodology of previous work.

We will give preference to the generalisation
measures that correspond to linguistic and seman-
tic language properties, as the practical deployment
of such measures in evaluation also addresses a de-
sire for enhancing interpretability of the LLMs’
behaviour. Instances of linguistically-motivated
measures can be a largest common ancestor be-
tween the parse trees of reference and hypothesis
of generative model, or a coherence of output of
discriminative model when a negation is introduced
in the input.

In the evaluation of robustness of generative
LLMs, we will prioritise token-level measures over
conventional segment-level ones such as BLEU,
as incorporating accurate token-level measures
in training objectives could complement the clas-
sic token-level cross-entropy loss in sequence-to-
sequence objective with its specific flaws, such as
exposure bias (Wang and Sennrich, 2020).

The evaluation methodology will closely follow
the one of Dziugaite et al. (2021), which reflects
on a correlation of the measure with the measured
OOD performance. If these measures reach high
correlations, they might be applied directly in train-
ing regularisation or model selection. Even in cases
of measures not reaching a high correlation, these
can still bear the potential to improve model robust-
ness (Foret et al., 2021).

3.2 Training Robust Models (RQ2)

Following the referenced examples adjusting train-
ing objectives with accurate generalisation mea-
sures (§2.2), e.g. norm-based measures (Neyshabur
et al., 2015b), PAC-Bayesian measures (Sanh et al.,
2021; Dagaev et al., 2021; Utama et al., 2020),
or sharpness measure (Foret et al., 2021), we will
use the accurate generalisation measures of LLMs
(§3.1) as regularizers and complementary objec-
tives of the training.

Locatello et al. (2019) theoretically prove that
full distributional robustness is not possible with-
out an explicit exposition of both the data and the
model biases. Recently, Bengio et al. (2020) the-
oretically and empirically demonstrated that the
model could utilise data biases to expose the under-
lying causal structure of the data in an experiment
where such a structure is preliminarily known.

We will introduce training objectives that expose
domain-specific data biases to the model in more
explicit ways. The most direct approach is to com-
plement the task-specific objective with another
objective of distinguishing the domain(s) of ori-
gin. The domain-distinctive objective can shape a
form of a binary classifier or a similarity loss of se-
lected model representations (e.g. KL-divergence
(Kullback and Leibler, 1951)).

We will investigate the impact of the pre-
training, and fine-tuning objectives on the model’s
eventual robustness over multiple application tasks,
domains and architectures, in a methodology sim-
ilar to the generalisation measures evaluation of
(Dziugaite et al., 2021).

Additionally, we will replace or complement the
objectives of generative LLMs with token-level
measures well-correlated with the OOD perfor-
mance and compare the resulting models with
computationally-expensive sentence-level objec-
tives optimising the measures such as BLEU as
their objectives.

In the case of discriminative models, we will
evaluate robustness to surface-level heuristics us-
ing adversarial datasets like HANS (McCoy et al.,
2019), or PAWS (Zhang et al., 2019) designed to
expose the commonly-learnt biases of LLMs. For
generative LLMs, we will evaluate a performance
of the model on domain(s) different from the train-
ing domain; for instance, we will train a translation
model on subtitles parallel corpus and evaluate on
a domain of news articles. We will also evaluate
the trained model(s) for its inclination to critical
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errors as a probability of generating a translation
containing a severe error (Specia et al., 2021) in
enforced generation.

4 Conclusion

Our work outlines potential directions in enhanc-
ing distributional robustness of LLMs to mitigate
a performance drop under distribution shift. We sur-
vey and identify accurate generalisation measures
(§2.1) and find multiple studies demonstrating that
utilisation of these measures in the training objec-
tives positively impacts model robustness (§2.2).

Following this observation, we propose to iden-
tify generalisation measures best-suitable for LLMs
(§3.1) and outline ways how to utilise these mea-
sures in the training process. Additionally, we iden-
tify a set of other methods reported to enhance
OOD performance of LLMs that we propose to
compare to in the outlined methodology for evalu-
ating generalisation measures.

Similarly, we propose methodologies for robust-
ness estimation of both generative and discrimina-
tive LLMs (§3.2); These methodologies are based
on a quality assessment on the domains covered
by the enclosed set of variables, and on the robust-
ness towards the data set(s) constructed to expose
enclosed set of models’ biases.
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Abstract
Retrieval-augmented generation (RAG) meth-
ods have been receiving increasing attention
from the NLP community and achieved state-
of-the-art performance on many NLP down-
stream tasks. Compared with conventional pre-
trained generation models, RAG methods have
remarkable advantages such as easy knowledge
acquisition, strong scalability, and low train-
ing cost. Although existing RAG models have
been applied to various knowledge-intensive
NLP tasks, such as open-domain QA and dia-
logue systems, most of the work has focused
on retrieving unstructured text documents from
Wikipedia. In this paper, I first elaborate on the
current obstacles to retrieving knowledge from
a single-source homogeneous corpus. Then, I
demonstrate evidence from both existing liter-
ature and my experiments, and provide multi-
ple solutions on retrieval-augmented generation
methods across heterogeneous knowledge.

1 Introduction

In recent years, large pre-trained language models
(PLMs), such as T5 (Raffel et al., 2020) and GPT-
3 (Brown et al., 2020), have revolutionized the field
of natural language processing (NLP), achieving
remarkable performance on various downstream
tasks (Qiu et al., 2020). These PLMs have learned a
substantial amount of in-depth knowledge from the
pre-training corpus (Petroni et al., 2019), so they
can predict the outputs on downstream tasks with-
out access to any external memory or raw text, as
a parameterized implicit knowledge base (Roberts
et al., 2020). The way of fine-tuning PLMs using
only input-output pairs of target data is often re-
ferred to as close-book setting (Petroni et al., 2019).

While this development is exhilarating, such
large-scale PLMs still suffer from the following

* This is a thesis proposal paper presented at the student
research workshop (SRW) at NAACL 2022 in Seattle, USA.
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Figure 1: The RAG methods significantly outperform
large-scale PLMs on three open-domain QA tasks while
trained with much fewer parameters than PLMs.

drawbacks: (i) They are usually trained offline,
making the model agnostic to the latest informa-
tion, e.g., asking a chat-bot trained from 2011-2018
about COVID-19 (Yu et al., 2022b). (ii) They
make predictions by only “looking up information”
stored in its parameters, leading to inferior inter-
pretability (Shuster et al., 2021). (iii) They are
mostly trained on general domain corpora, mak-
ing them less effective on domain-specific tasks
(Gururangan et al., 2020). (iv) Their pre-training
phase can be prohibitively expensive for academic
research groups, limiting the model pre-training to
only a few industry labs (Izsak et al., 2021).

The solution that seems obvious at first glance is
to allow language models free access to open-world
resources, such as encyclopedias and books. The
way of augmenting the input of PLMs with external
information is often referred to as open-book set-
ting (Mihaylov et al., 2018). A prominent method
in the open-book setting is retrieval-augmented
generation (RAG) (Lewis et al., 2020b; Yu et al.,
2022c), a new learning paradigm that fuses PLMs
and traditional IR techniques, which has achieved
state-of-the-art performance in many knowledge-
intensive NLP tasks (Petroni et al., 2021). Com-
pared with large-scale PLMs counterparts, e.g.,
GPT-3, the RAG model has some remarkable ad-
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vantages: (i) The knowledge is not implicitly stored
in model parameters, but is explicitly acquired in a
plug-and-play manner, leading to great scalability;
(ii) Instead of generating from scratch, the model
generates outputs based on some retrieved refer-
ences, which eases the difficulty of text generation.

Although the RAG models have been widely
used in the existing literature, most of the work
has focused on retrieving unstructured text from
general domain corpus, e.g., Wikipedia. However,
the performance is often limited by the coverage
of only one certain knowledge. For example, only
a finite portion of questions could be answered
from Wikipedia passages in many open-domain
QA datasets, while the remaining could only rely
on the input question because no supportive doc-
uments could be retrieved (Oguz et al., 2022). In
this paper, I first elaborate on the current obstacles
to retrieving knowledge from a single-source ho-
mogeneous corpus. Then, I demonstrate several
pieces of evidence from both existing literature and
my own experiments, and provide multiple poten-
tial solutions on retrieval-augmented generation
methods across heterogeneous knowledge.

2 Background

I will first provide a formal definition of the RAG
framework and list necessary notations. RAG aims
to predict the output y based on the source input
x (x, y are from a corpus D), while a document
reference set Z is accessible (e.g., Wikipedia). Be-
sides, the association between a document z ∈ Z
and the tuple (x, y) ∈ D is not necessarily known,
though it could be provided by human annota-
tions (Dinan et al., 2019) or weakly supervised
signals (Karpukhin et al., 2020).

Overall, a general RAG framework has two ma-
jor components: (i) a document retriever and (ii)
a text generator, as shown in Figure 2. The objec-
tive of the RAG is to train a model to maximize
the likelihood of y given x and Z , In practice, Z
often contains millions of documents, rendering
enumeration over z impossible. Therefore, the
first step of RAG is to leverage a document re-
triever, e.g., DPR (Karpukhin et al., 2020), to nar-
row down the search to a handful of relevant doc-
uments. The retriever takes x and Z as input and
yields relevance scores {s1, · · · , sK} of the top-K
documents Z = {z(1), · · · , z(K)}. Then, the sec-
ond step of RAG is to use a text generator, e.g.,
BART (Lewis et al., 2020a) and T5 (Raffel et al.,

The Beatles

John

LM Encoder

Q: Who was the drummer for the Beatles? A: Ringo Starr

Ringo Starr

Paul

LM Decoder
Retriever Close-Book (PLMs)

Open-Book 
(RAG)

Figure 2: Compared with PLMs, RAG models directly
seeks knowledge (e.g., texts, tables and KGs) from ex-
ternal information sources to help answer questions.

2019), to produce desired output y by taking both
input x and retrieved document set Z as conditions.

Document Retriever. A neural document retriever
typically employs two independent encoders like
BERT (Devlin et al., 2019) to encode the query
and the document separately, and estimates their
relevance by computing a single similarity score
between two encoded representations. For exam-
ple, in DPR (Karpukhin et al., 2020), the docu-
ments Z and context queries x are mapped into the
same dense embedding space. The relevance score
s(x, z) for each document z is computed as the vec-
tor inner product between document embedding hz
and query embedding hx, i.e., s(x, z) = hTx × hz .

Text Generator. It can use any encoder-decoder
framework, such as BART (Lewis et al., 2020a)
and T5 (Raffel et al., 2019). The model takes in-
put sequence, as well as the support documents to
generate the desired output. A naive method for
combining the input sequence with the support doc-
uments is to concatenate them sequentially (Lewis
et al., 2020a). However, this method suffers from
the input sequence length limitation and high com-
putation cost. FiD (Izacard and Grave, 2021) pro-
cessed passages independently in the encoder, per-
formed attention over all the retrieved passages,
which demonstrated state-of-the-art performance
on many knowledge-intensive NLP tasks.

3 Proposed Work

3.1 Background and Motivation

Despite achieving remarkable performance, pre-
vious efforts of retrieval-augmented generation
(RAG) works mainly exploit only a single-source
homogeneous knowledge retrieval space, i.e.,
Wikipedia passages (Karpukhin et al., 2020; Lewis
et al., 2020b; Petroni et al., 2021; Izacard and
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Grave, 2021; Yu et al., 2022a). However, their
model performance might be limited by the cover-
age of only one certain knowledge. For example,
only a finite portion of questions can be answered
from the Wikipedia passages in many open-domain
QA datasets, while the remaining can only rely
on the input query because no supportive docu-
ments can be retrieved (Oguz et al., 2022). Since
much useful information cannot be fulfilled based
on Wikipedia alone, a natural solution is to ex-
pand the retrieval corpus from Wikipedia to the en-
tire World Wide Web (WWW). However, suffering
from the long-tail issue and the cost of a massive
workforce, it is not wise to improve the coverage
by expanding the number of entries in a single-
source knowledge (Piktus et al., 2021; Lazaridou
et al., 2022). For example, as shown in Table 1,
increasing the retrieval space from Wikipedia (22M
documents) to the web-scale corpus CCNet (906M
documents) even hurts model performance on NQ
and HotpotQA datasets. This is most likely due to
the lower quality (where quality could mean truth-
fulness, objectivity, lack of harmful content, source
reliability, etc) of the web corpus, compared with
the Wikipedia corpus (Piktus et al., 2021).

Instead of expanding the number of entries in
a single-source knowledge, an alternative solution
is resorting to heterogeneous knowledge sources.
This is also in line with our human behavior of
answering questions that often seek a variety of
knowledge learned from different sources. There-
fore, grounding generation across heterogeneous
knowledge sources is a natural solution to improve
knowledge coverage and have more room to se-
lect appropriate knowledge. It is worth mentioning
that no knowledge type can always perform the
best. The most suitable knowledge depends on the
case, in which multiple knowledge might need to
be combined for answering one question.

3.2 Evidence from Existing Literature

There are several studies in the existing litera-
ture that combine multiple knowledge to enhance
language models, such as augmenting common-
sense reasoning with knowledge graphs (Yu et al.,
2022d), and introducing multi-modal visual fea-
tures to enhance emotional dialogue (Liang et al.,
2022). However, most of them use aligned knowl-
edge from different sources (e.g., graph-text pairs,
image-text pairs), without retrieving knowledge
from a large-scale heterogeneous corpus.

Table 1: With a larger corpus of unstructured text re-
trieval – CCNet, the model performs even worse than re-
trieving from Wikipedia alone on the NQ and HotpotQA
datasets. The model used in the table is DPR+FiD.

No. Source # docs NQ TQA HotpotQA

1 Wikipedia 22M 51.4 71.0 36.9
2 CCNet 906M 48.6 73.1 31.6

‘

Table 2: Exact match (EM-score) of retrieving hetero-
geneous knowledge for three open-domain QA bench-
marks. The model used in the table is DPR+FiD.

No.
Knowledge type Dataset

Text Table KG NQ TQA WebQ

1
√

49.0 64.0 50.6
2

√
36.0 34.5 41.0

3
√

27.9 35.4 55.2

4
√ √

54.1 65.1 50.2
5

√ √ √
54.0 64.1 57.8

The most relevant works to this proposal are
UniK-QA (Oguz et al., 2022) and PLUG (Li et al.,
2021). In UniK-QA, Oguz et al. (2022) proposed
to retrieve information from a merged corpus of
structured (i.e., KG triples), semi-structured (i.e.,
tables) and unstructured data (i.e., text passages)
for open-domain QA (Oguz et al., 2022). Their
experiments were conducted on multiple open-
domain QA benchmark datasets, including Nat-
uralQuestions (NQ) (Kwiatkowski et al., 2019),
TriviaQA (TQA) (Joshi et al., 2017) and WebQues-
tions (WebQ) (Berant et al., 2013).

The results in the first three lines in Table 2 high-
light the limitation of current state-of-the-art open-
domain QA models which use only one informa-
tion source. Among the three types of knowledge
sources, text-only methods perform best on NQ
and TQA datasets, and KG-only methods perform
best on WebQ datasets. This is because most of
the questions in WebQ are collected from Freebase.
The results in the last two lines show that adding
semi-structured and structured information sources
significantly improves the performance over text-
only models on NQ and TQA datasets. This indi-
cates tables and knowledge graph triples contain
valuable knowledge which is either absent in the
unstructured texts or harder to extract from them.

It is worth mentioning that knowledge het-
erogeneity can be defined not only by the for-
mat of knowledge data (i.e., structured and un-
structured knowledge), but also by the scope of
knowledge data (i.e., encyclopedic and common-
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Table 3: Commonly used knowledge sources.
Unstructured (Semi-)structured

Encyclopedic Wikipedia, Wikidata,
knowledge AMiner Freebase

Commonsense ConceptNet, OMCS, ARC,
knowledge CSKG, Atomic Wiktionary

Table 4: Accuracy of retrieving heterogeneous knowl-
edge for commonsense reasoning over entity tasks.

No.
Knowledge source Dataset

Commonsense Encyclopedia CREAK CSQA2.0

1
√

86.55 59.28
2

√
82.28 58.23

3
√ √

87.57 60.49

sense knowledge). Table 3 shows common knowl-
edge sources under two categories. In addition
of combining structured and unstructured knowl-
edge, combining encyclopedic and commonsense
knowledge also brings benefits for many NLP
tasks, such as commonsense reasoning over entities.
Some preliminary experiments were conducted on
CREAK (Onoe et al., 2021) and CSQA2.0 (Tal-
mor et al., 2021) datasets. CREAK is a dataset
of human-authored English claims about entities
that are either true or false, such as “Harry Pot-
ter can teach classes on how to fly on a broom-
stick (True).” The model is supposed to bridge
fact-checking about entities with commonsense in-
ferences. An entity fact relevant to this statement,

“Harry Potter is a wizard and is skilled at riding a
broomstick”, can be retrieved from Wikipedia. A
commonsense knowledge, “if you are good at a
skill you can teach others how to do it”, can be
retrieved from the ATOMIC (Sap et al., 2019). By
leveraging both commonsense knowledge and en-
cyclopedic knowledge in the first-step retrieval, as
shown in Table 4, the RAG model can achieve su-
perior performance than only using either of them.

3.3 Proposed Solutions

As mentioned above, heterogeneous knowledge
is often required when solving open-domain QA
and many other knowledge-intensive NLP tasks.
One natural assumption is to expand knowledge
sources and add more data to increase the coverage
of relevant contexts, thereby improving the end-
to-end performance. In this section, I will present
three potential solutions for grounding generation
across heterogeneous knowledge.

3.3.1 Homogenize Different Knowledge to a
Unified Knowledge Representation

The first solution is to homogenize different knowl-
edge source data into a unified data format – un-
structured text. This transformation will then re-
quire only one retriever, enable relevance compari-
son across different types of data, and offer textual
knowledge to easily augment the input of genera-
tion models by concatenation. Table 3 shows some
commonly used knowledge sources. For example,
semi-structured tables and structured knowledge
graph triples can be converted into the unstructured
text by template-based methods (Bosselut et al.,
2019; Oguz et al., 2022) or neural data-to-text meth-
ods (Wang et al., 2021; Nan et al., 2021).

First, the template-based method is easy to im-
plement and requires no training process. For ex-
ample, a relation triplet in a knowledge graph con-
sists of subject, predicate, and object. It can be
serialized by concatenating the surface form of the
three elements to be a sequence of words. Be-
sides, a table can also be hierarchically converted
into text format: first, concatenate cell values of
each row separated by commas; then combine these
rows’ text forms delimited by semicolons. Al-
though the template-based method is simple but
may suffer from incorrect syntax and incomplete
semantics. On the contrary, the neural graph-to-
text and table-to-text generation methods rely on
pre-trained language models that may ensure syn-
tax correctness and semantic completeness. Once
either type of the methods converts the structured
and semi-structured data to unstructured text, a
dense retriever model such as DPR (Karpukhin
et al., 2020) can be used to index all of them and
retrieve relevant knowledge. The reader model will
concatenate the retrieved text with original input
and compute full attention over the entire represen-
tations through a T5 (Raffel et al., 2020) decoder.
This unified knowledge index allows the models
to learn knowledge of various formats and scopes
of data, and the model can simultaneously retrieve
information from a unified index of multiple knowl-
edge sources to improve the knowledge coverage.

3.3.2 Multi-virtual Hops Retrieval over
Heterogeneous Knowledge

Retrieved data are expected to bridge the gap be-
tween inputs and outputs of generation models. In
other words, retrievers are trained to provide in-
formation that is found with the inputs as queries
and related to the outputs. Ideally, they find the
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output-related information just once. However,
that may actually take multiple hops of retrieval
across knowledge sources. Thus, the second solu-
tion is to iteratively retrieve knowledge from dif-
ferent sources. Regarding an entity, encyclope-
dic knowledge usually contains its attribute infor-
mation (e.g., age, duration), while commonsense
knowledge includes universally recognized facts in
human’s daily life. For example, the entity “soup”
in Wikipedia is described as “a primarily liquid
food, generally served warm or hot, made by com-
bining ingredients of meat or vegetables with stock,
milk, or water”; and in the OMCS corpus (Singh
et al., 2002), it contains a well-known fact “soup
and salad can be a healthy lunch”. Therefore, to
answer the question “What are the common ingredi-
ents in a healthy lunch?”, the encyclopedic corpus
and commonsense corpus can provide complemen-
tary knowledge that should be both leveraged.

Besides, it also might be necessary to first read
a subset of the corpus to extract the useful infor-
mation, and then further retrieve information from
other knowledge sources. For example, given in-
put q, it may take k steps, each step retrieving
data di from source si ∈ S with an incremental
query qi = q ⊕ d1 ⊕ · · · ⊕ di−1 (i ≤ k) until
the final dk contains the information that can di-
rectly augment the generation of outputs o. Here
S includes various sources such as text corpora,
tables, and knowledge graphs. To achieve this,
however, the primary challenge for training such
a multi-hop retriever is that it cannot observe any
intermediate document for supervision but only the
final output. So, the multi-virtual hops retrieval
(MVHL) needs to perform multi-hop retrieval with-
out any intermediate signal. I will discuss two
promising designs as below. First, the MVHL ap-
proach will dynamically determine when the multi-
hops retrieval finishes. I denote the relevance score
between query qi and data di from source si by
r(di; qi, si). The search continues at the i-th step,
if r(di; qi, si) > r(di; qi−1, si−1 ∪ si); because di
brings new relevant information that was not able
to be retrieved at the (i − 1)-th step or any previ-
ous steps. Second, the MVHL can use sequential
models instead of heuristics to control the multi-
hops search. The search is expected to finish at
step i, when the relevance between the retrieved
data di and output o, which can be computed by
BERTScore (Zhang et al., 2020), achieves a local
maximum. In order to model the relationship be-

Query: What was the occupation of Lovely Rita in the Beatles song?
Wikiepdia: Lovely Rita is a song by the English rock band the Beatles
from their album Sgt. Pepper’s Lonely Hearts Club Band. It was writ-
en and sung by Paul McCartney and credited to Lennon-McCartney. 
It is about a female traffic warden and the narrator‘s affection for her.
Wikidata:

The Beatles Paul McCartney

Sgt. Pepper ..

performer of 

Lovely Rita

Traffic warden

is a member of 

occupation 

song of writte
n by

Figure 3: Reasoning over retrieved documents on struc-
tured knowledge provides explicit knowledge ground-
ing to help answer questions. For example, in WebQ,
46.9%/56.1% of the questions can be solved by one/two-
hop neighbors on the query-document subgraph.

tween this target relevance ro(di) and the retrieval
score r(di; qi, si), a straightforward solution is to
train a multi-hop retriever with only the output o us-
ing a fixed number of hops K (5 or 10) and use the
validation set to choose the best model. With that
model, I can observe the K-length series of r and
ro, and train an RNN model that predicts ro(dk)
based on the first k elements in the r series. The
search terminates when the predicted ro decreases.

3.3.3 Reasoning over Retrieved Documents
Based on Structured Knowledge

Traditional reader modules typically concatenate
the input query and retrieved documents sequen-
tially, and then feed them into a pre-trained genera-
tion model, such as T5. Although the token-level
attention can implicitly learning some relational pat-
terns between the input query and retrieved docu-
ments, it does not fully utilize the structured knowl-
edge that can provide more explicit grounding. As
shown in Figure 3, the relational information be-
tween important entities in the input query (i.e.,
Lovely Rita) and the retrieved documents (i.e., traf-
fic warden) may require reasoning over structured
knowledge that is not explicitly stated in the con-
text. So, the third solution is to perform multi-hop
reasoning on structured knowledge, e.g., Wikidata,
to learn relational patterns between the input query
and retrieved documents. In this way, the represen-
tation of retrieved documents is further enriched
by structured knowledge. To perform knowledge
reasoning over retrieved documents, the idea is
to first extract a query-document subgraph since
direct reasoning on the entire knowledge graph is
intractable. Entities on the subgraph can be mapped
by given hyperlinks in Wikipedia passages. Then,
a multi-relational graph encoder iteratively updates
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the representation of each entity node by aggre-
gating information from its neighboring nodes and
edges. Then, the embedded node and relation repre-
sentations, as well as the query and document rep-
resentations, are then fused into the reader model.
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Abstract

Information Retriever (IR) aims to find the rel-
evant documents (e.g. snippets, passages, and
articles) to a given query at large scale. IR
plays an important role in many tasks such
as open domain question answering and dia-
logue systems, where external knowledge is
needed. In the past, searching algorithms based
on term matching have been widely used. Re-
cently, neural-based algorithms (termed as neu-
ral retrievers) have gained more attention which
can mitigate the limitations of traditional meth-
ods. Regardless of the success achieved by neu-
ral retrievers, they still face many challenges,
e.g. suffering from a small amount of training
data and failing to answer simple entity-centric
questions. Furthermore, most of the existing
neural retrievers are developed for pure-text
query. This prevents them from handling multi-
modality queries (i.e. the query is composed of
textual description and images). This proposal
has two goals. First, we introduce methods
to address the abovementioned issues of neu-
ral retrievers from three angles, new model ar-
chitectures, IR-oriented pretraining tasks, and
generating large scale training data. Second,
we identify the future research direction and
propose potential corresponding solution1.

1 Introduction

The convenience and advance of internet not only
speed up the spread of information and knowl-
edge, but also the generation of new information.
Such phenomenon also boosts humans needs of
knowledge and frequency of acquiring informa-
tion, which makes Information retrieval (IR) an
important task in human life. IR aims to find rel-
evant information from a large corpus to satisfy
an information need. It also plays an important
role in other tasks such as open domain question

1Since previous work use context, documents or knowl-
edge to represent the retrieved information given a query, we
use these two terms interchangeably.

answering and open domain dialogue, where ex-
ternal knowledge are needed. Not only that, IR
can also assistant other systems to achieve a tough
goal. By providing external knowledge, IR can
help numerical reasoning systems to reach the cor-
rect answer (Mishra et al., 2022) , and IR can en-
rich or update the knowledge of large pretrained
language models (PrLMs) (Petroni et al., 2019;
Sung et al., 2021). By filtering and selecting exam-
ples (Liu et al., 2021; Lin et al., 2022), IR can assist
in-context learning (ICL), a process allows large
PrLMs do a new task instructed by prompts and few
examples with few-shot tuning (Gao et al., 2021)
or without any fine-tuning (Brown et al., 2020).

IR has a long history and the first automated in-
formation retrieval system can be traced back to the
1950s. In this work, we call information retrieval
methods or systems as retrievers. Traditional re-
trievers are mainly based on term-matching, i.e.
searching for information that has an overlap with
terms in the query. TF-IDF and BM25 (Robertson
and Zaragoza, 2009) are two strong and efficient
algorithms in this category. Although these algo-
rithms consider the importance and frequency of
terms in query and document, they suffer from
term-mismatch issues and lack of semantic under-
standing of the query and document (Chang et al.,
2020). Using neural models to represent the con-
catenation of query and passage is a promising way
to achieve semantic matching (Nogueira and Cho,
2019; Banerjee and Baral, 2020). These methods
are only applicable at small scale retrieval but not
at large scale. Recently, dual-encoder architecture
retrievers based on large pretrained language mod-
els (PrLMs), such as BERT (Devlin et al., 2019)
have shown capability to do semantic matching and
can be applicable at large scale (Karpukhin et al.,
2020; Guu et al., 2020; Lewis et al., 2020). Such
neural retrievers (NR) involve two PrLMs which
are used to compute the vector representation of
queries and documents respectively. Neural retriev-
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Figure 1: Architectures of three major types of retrievers. For simplicity, some lines in the figures are not drawn.
Blue blocks represent the encoding for question, and the green blocks represent context or documents.

ers are trained in such a way that the documents
which best answer a query maximize the dot prod-
uct between the two representations. Despite the
success of neural retrievers, they still face many
challenges. In the next Section, we will present a
brief overview of five types of retrievers and the
efforts made toward building stronger retrievers.
Section 3 describes four limitations of current NRs
and promising solutions. Section 4 discusses three
more research directions and potential solutions.
We conclude the proposal in Section 5.

2 Retrievers in General

In general, the modern retrievers can be catego-
rized in five classes (adapted from (Thakur et al.,
2021)). Lexical retrievers such as BM25 are based
on token-matching between two high-dimensional
sparse vectors. The sparse vectors are represented
based on the frequency of the terms in documents
and thus does not require any annotated training
data. Regardless of the simplicity of the algo-
rithms, such methods perform well on new do-
mains (Thakur et al., 2021). Dual-encoder dense
retrievers consists of two encoders where the
query encoder and context encoder generate a sin-
gle dense vector representation for query and con-
text respectively. Then the score can be computed
by inner-dot product or cosine-similarity between
the two representations (Karpukhin et al., 2020;
Xiong et al., 2020; Hofstätter et al., 2021). Lan-
guage models such as BERT (Devlin et al., 2019)
are preferred choices for encoders. Sparse re-
trievers use sparse representations instead of dense
representations for query and document (Dai and
Callan, 2020; Zhao et al., 2021; Nogueira et al.,
2019). Late-interaction retrievers different from

dense retrievers who use sequence-level representa-
tions of query and document, they use token-level
representations for the query and passage: a bag of
multiple contextualized token embeddings (Khat-
tab and Zaharia, 2020). The late-interactions are
aggregated with sum of the max-pooling query
term and a dot-product across all passage terms.
Re-ranking retrievers include two stages, coarse-
search by efficient methods (e.g. BM25) and fine-
search by cross-attentional re-ranking models. The
re-ranking model takes input as the concatenation
of the query and one candidate given by the first
stage and produce a score based on the cross repre-
sentation (e.g. the [CLS] token), and such process
is repeated for every candidate, and finally re-rank
candidates based on the generated scores.

Without changing the architectures, different ef-
forts have been made toward learning better rep-
resentation of dense vectors and improving the ef-
ficiency in terms of training resources as well as
short inference time. One way to improve the rep-
resentation of dense vectors is to construct proper
negative instances to train a neural retriever. In-
batch negative training is a frequently used strategy
to train dense retrievers, and the larger the batch
size is, the better performance a dense retriever can
achieve (Karpukhin et al., 2020; Qu et al., 2021).
Using hard negative candidates is better than us-
ing random or simple in-batch negative samples,
for example, Karpukhin et al. (2020) mine nega-
tive candidates by BM25 and (Xiong et al., 2020)
mine negative candidates from the entire corpus
using an optimized dense retriever. Hofstätter et al.
(2021) selects the negative candidates from the
same topic cluster, such a balanced topic aware
sampling method allows the training with small
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batch size and still achieves high quality dense rep-
resentation. ColBert (Khattab and Zaharia, 2020)
is proposed to improve the efficiency of the ranking
model. Since every token can be pre-indexed, it
prevents inference time from getting representation
of context. While Colbert is faster than single-
model, it is slower compared to dual-models, thus,
it is not suitable for retrieval at large scale. On
the other hand, Nogueira et al. (2019) shortens the
inference time by using sparse representation for
queries. Zhang et al. (2021) integrates dense pas-
sage retriever and cross-attention ranker and use
adversarial training to jointly both module.

Above methods are usually used to retrieve a
document (e.g. a paragraph in Wikipedia) which
can potentially contain the answer to a query. Some
other retrievers directly retrieve the answer phrase
(or entities) so that they can be directly used to
answer questions without a reader (Seo et al.,
2019; Lee et al., 2020; De Cao et al., 2020, 2021).
While such methods can reduce the latency, it also
increases the memory to store potential phrases
which will be much larger than the number of raw
documents. On the other hand, Lee et al. (2021a,b)
use generative model to generate the entities which
largely reduce the memory.

3 Research Gaps and Solutions

In this section, we will describe multiple research
gaps and the proposed methods introduced in (Luo
et al., 2021a,b, 2022b).

...M1 Attention Attention Mk

Context Encoder has K global feature to get the K
representations.

Score1 Score2 Scorek

Figure 2: Poly-DPR, the context encoder uses K repre-
sentations to capture the information in context.

3.1 Is One Dense Vector Enough to Capture
Information?

Most of the neural retrievers use one dense repre-
sentation for context (Karpukhin et al., 2020; Guu
et al., 2020; Lewis et al., 2020). Previous work
found that one dense vector is not enough to cap-
ture enough information in the context, especially
for a long context. One dense representation is

also hard to be applied to exact word matching
so that it fails on entities-centric questions (Sci-
avolino et al., 2021). To close the gap of existing
NRs, we propose a new model called Poly-DPR
which builds upon two recent developments: Poly-
Encoder (Humeau et al., 2020) and Dense Passage
Retriever (Karpukhin et al., 2020).

Method In Poly-DPR (see Figure 2), the context
encoder represents each context using K vectors
and produces query-specific vectors for each con-
text. In particular, the context encoder includes
K global features (m1,m2, · · · ,mk), which are
used to extract representation vic, ∀i ∈ {1 · · · k}
by attending over all context tokens vectors.

vic =
∑

n

wmi
n hn, where (1)

(wmi
1 . . . , wmi

n ) = softmax(mT
i · h1, . . . ,mT

i · hn).
(2)

After extracting K representations, a query-
specific context representation vc,q is computed
by using the attention mechanism:

vc,q =
∑

k

wkv
k
c , where (3)

(w1, . . . , wk) = softmax(vTq · v1c , . . . , vTq · vkc ).
(4)

To enable efficient search in inference (e.g. us-
ing MIPS (Shrivastava and Li, 2014) algorithms),
instead of computing query-specific context repre-
sentation, we simply use the inner-dot product of
each K representations with the query embeddings,
and apply max pooling function to get the score.

Result We evaluate Poly-DPR on
BioASQ8 (Nentidis et al., 2020) dataset to
see how effective the model is. Instead of using the
full corpus which has 19M PubMed articles, we
construct a small corpus with 133,084 articles for
efficient and comprehensive experiments purpose.
We also examine the impact of changing the value
of K on the performance. Furthermore, we design
two context length, one is two sentences no more
than 128 tokens (short) and the other one is up to
256 tokens (long). In Table 1, we have three values
for K, where value 0 is the same as the original
DPR. We see that in both settings, Poly-DPR is
better than the original DPR, and a larger value of
K leads to better performance.

61



ETM
Expanded Title Mapping

RSM
Reduced Sentence Mapping

NR
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Keyword
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Title (T):

Left Ventricular Hypertrophy in Patients
with Nephronic Arterial Hypertension

K: 
HLVH, ChGN, AH...

 Abstract  (A):

Incidence and geometric peculiarities of
hypertrophy of the left ventricle of the heart
(HLVH) were studied on the basis of
findings from the echocardiographic
investigation done in 86 patients with
chronic glomerulonephritis (ChGN) with
arterial hypertension (AH).....

S: Incidence and geometric peculiarities of
hypertrophy of the left ventricle of the ...

TF-IDF
Importance

Scoring

W: 
[0.017, 0.009, 0.024,
0.028, 0.002, 0.030, ..]

S': Incidence geometric peculiarities
hypertrophy

GT: A

Figure 3: Two IR-oriented pretraining tasks. ETM is suitable for corpus which have titles and passages. RSM is
suitable for any type of corpus.

CL K B1 B2 B3 B4 B5 Avg.

Short
0 62.06 61.81 61.85 66.69 61.30 62.74
6 62.92 58.79 62.94 70.30 63.39 63.67
12 65.22 60.86 62.59 70.50 66.21 65.08

Long
0 61.70 58.28 58.62 67.33 61.48 61.48
6 63.95 59.51 62.98 66.71 62.80 63.19
12 63.83 57.81 62.72 70.00 63.64 63.60

Table 1: Comparison among different values of K for
Poly-DPR in both short and long context settings of
BioASQ8 dataset using MRR metric. Bi stand for dif-
ferent testing batch.

3.2 Is IR-oriented Pretraining Important?

PrLMs are trained on general tasks, such as masked
language prediction, and next sentence predic-
tion (Devlin et al., 2019). While these pretraining
tasks help the model to learn the linguistic knowl-
edge, the model might still lack of specific skill
to perform down-stream tasks, e.g. match similar
words or characterize the relation between the ques-
tion and answer. Chang et al. (2020) has shown
that IR-oriented pretraining tasks can help model
to develop basic retrieval skill. However, their pro-
posed methods require specific document structure,
e.g. the document includes external hyperlinks.

Method We propose two new IR-oriented pre-
training strategies (Figure 3). Our pre-training
tasks are designed such that they can be used both
for long contexts as short contexts. In Expanded
Title Mapping (ETM), the model is trained to
retrieve an abstract, given an extended title T ′

as a query. T ′ is obtained by extracting top-
m keywords from the abstract based on the TF-
IDF score, denoted as K = {k1, k2, · · · , km},
and concatenating them with the title as: T ′ =
{T, k1, k2, · · · , km}. The intuition behind ETM
is to train the model to match the main topic of
a document (keywords and title) with the entire

CL PT B1 B2 B3 B4 B5 Avg.

Sh
or

t - 54.48 50.51 53.8 59.06 48.71 53.31
RSM 65.94 57.43 61.89 69.01 58.23 62.50

L
on

g

- 35.69 32.66 32.26 38.28 30.87 33.95
ICT 54.44 47.37 52.61 53.69 44.38 50.50

ETM 56.63 46.63 52.79 56.97 49.61 52.53

Table 2: Effect of pre-training tasks (PT) on the perfor-
mance of Poly-DPR with two context lengths (CL) on
the BioASQ dataset.

abstract. Reduced Sentence Mapping (RSM) is
designed to train the model to map a sentence from
an abstract with the extended title T ′. For a sen-
tence S from the abstract, we first get the weight of
each word W = {w1, w2, · · · , wn} by the normal-
ization of TF-IDF scores of each word. We then
reduce S to S′ by selecting the words with the top-
m corresponding weights. The intuition behind a
reduced sentence is to simulate a real query which
usually is shorter than a sentence in an abstract.

Result We test on BioASQ dataset and use the
similar experimental setting as in §3.1, where we
use both short and long context length settings.
From Table 2, we see that in both settings, using
our pretraining tasks are much better than without
any pretraining with large margins. Furthermore,
in the long context setting, we also compare our
method with ICT (Lee et al., 2019) pretraining task,
and we see that ETM beats than ICT on average
with better performance on 4 out of 5 batches.

3.3 How to Obtain Enough Training Data?

While the pretraining makes language models more
easily adapted to new tasks, a decent amount of
domain-specific data for fine-tuning is still cru-
cial to achieve good performance on downstream
tasks (Howard and Ruder, 2018; Clark et al., 2019).
Collecting annotated data is expensive and time
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Figure 4: Template-Based Question Generation.

consuming. Moreover, for some domains such
as biomedical, annotation usually requires ex-
pert knowledge which makes the data collection
harder (Tsatsaronis et al., 2012). To address this
problem, Ma et al. (2021) uses a question genera-
tion model trained on existing large scale data to
obtain synthetic question-answer pairs using do-
main articles. Still, the style of the generated ques-
tions are far away from the target-domain and limit
the models’ performance.

Method To address the domain adaptation issue,
we propose a semi-supervised pipeline to generate
questions using domain-templates (Figure 4). To
do so, we assume a small amount of domain anno-
tated question-answer data is given. We first extract
templates from the questions by using a name en-
tity recognition model to identify question-specific
entities and removing such entities. A template
selection model is trained to select the template
for a new passage. Finally a generative model (e.g.
T5) is trained to generate questions conditioned on
this template and a text passage. The questions
generated using domain templates are much better
than the previous question generation method.

Result Again, we use BioASQ8 as testbed with
similar settings as previous experiments. We com-
pare our method with an existing question genera-
tion method which extracts answer span first and
then generates questions (Chan and Fan, 2019).
In Table 3, we compare three models trained on
two generated questions as well as the training
dataset of BioASQ8, and our proposed method is
better than the other two especially with large gain
(10%+) in long context setting.

3.4 How to Retrieve Information for
Multi-modality Queries?

Previous discussion focuses on retrieving relevant
documents to text-only queries, while in current
society, lots of information is presented by multi-

CL PT FT B1 B2 B3 B4 B5 Avg.

Sh
or

t RSM B 65.94 57.43 61.89 69.01 58.23 62.50
RSM A 56.84 55.79 57.52 58.68 55.15 56.80
RSM T 64.71 64.92 64.28 73.11 66.29 66.66

L
on

g ETM B 56.63 46.63 52.79 56.97 49.61 52.53
ETM A 54.44 49.95 48.42 58.15 52.60 52.71
ETM T 64.57 58.51 64.02 68.44 62.60 63.62

Table 3: Comparison of fine-tuning on different down-
stream training data B: BioASQ A: AnsQG and T: Tem-
pQG) on the performance of Poly-DPR with two context
lengths (CL) on the BioASQ small corpus test set.

modalities such as text, image, speech, and video.
Therefore, retrieving relevant documents to multi-
modality queries can have wide application in hu-
man’s life. For instance an image of a milkshake
and a complementary textual description “restau-
rants near me” should return potential matches of
nearby restaurants serving milkshakes. In litera-
ture, OK-VQA (Marino et al., 2019) is a task that
requires external knowledge to answer visual ques-
tions (i.e. the query is composed of image and
text.). To find the relevant knowledge for such a
query, current neural retrieval can not be directly
applied since the text part in the query is not com-
pleted to understand the information needs and the
model is unable to look at the image information.
To address this issue, we propose three types of
retrievers to handle multi-modality queries.

Method Term-based retriever, we first extract
the image information by using a captions gen-
eration model (Li et al., 2020). Then we con-
catenate the question and the caption as a query
and obtain knowledge by BM25. The other two
multi-modality retrievers are adopted from the DPR
model. Image-DPR: we use LXMERT (Tan and
Bansal, 2019) as the question encoder, which takes
image and question as input and outputs a cross-
modal representation. Caption-DPR: similar to the
strategy we use in term-based retrievers, we con-
catenate the question with the caption of an image
as a query and use standard BERT as a query en-
coder to get the representation. In both Image-DPR
and Caption-DPR, we use standard BERT as con-
text encoder. Figure 5 shows a comparison between
these two retrievers. We find that the performance
of Caption-DPR is better than Image-DPR, and the
term-based retriever performs worst.

Result We evaluate three retrievers on OK-VQA
dataset and use the knowledge base (with 112,724
pieces of knowledge) created in (Luo et al., 2021b)
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Model
# of Retrieved Knowledge

1 5 10 20 50 80 100

P* R* P* R* P* R* P* R* P* R* P* R* P* R*

BM25 37.63 37.63 35.21 56.72 34.03 67.02 32.62 75.90 29.99 84.56 28.46 88.21 27.69 89.91
Image-DPR 33.04 33.04 31.80 62.52 31.09 73.96 30.25 83.04 28.55 90.84 27.40 93.80 26.75 94.67
Caption-DPR 41.62 41.62 39.42 71.52 37.94 81.51 36.10 88.57 32.94 94.13 31.05 96.20 30.01 96.95

Table 4: Evaluation of three proposed visual retrievers on Precision (P) and Recall (R): Caption-DPR achieves the
highest Precision and Recall on all number of retrieved knowledge.

Question, Image

LXMERT

Context

BERT

Score

Image-DPR
Question, Caption

BERT

Context

BERT

Score

Caption-DPR

Figure 5: Comparison of two multi-modality.

as the corpus. We retrieve 1/5/10/20/50/80/100
knowledge for each question. Table 4 shows that
the two neural retrievers are better than simple term-
based retriever, and the Caption-DPR is the best
model in all cases.

4 Future Work

Previous section describes multiple research prob-
lems for neural retrievers, while we provide some
solutions, each problem can be further investigated.
In the following, we identify more research direc-
tions and propose potential solutions.

Document Expansion Previous work (Nogueira
et al., 2019) has shown BM25 with expended doc-
uments using generated questions is an efficient
way to retrieve documents. Such a method also
showed good generalization across different do-
mains (Thakur et al., 2021). The template-based
question generation proposed in this work has bet-
ter domain adaptation than the previous question
generation method. It is interesting to see how
each module in the pipeline performs on new do-
main without further fine-tuning. For example, can
the template selection model select good templates
for passage from new domain; can the question
generation model generate good questions given a
new template? Evaluating how our template-based
question generation pipeline works when apply it to
document expansion is an interesting future work.

Distinguish Between Negative Samples Many
training data only provide positive candidates but

not the negative candidates. Section 2 summarizes
existing methods to construct negative candidates;
however, the negativeness of different candidates
are different. For instance, if some candidates have
the same topic as the queries while others do not,
then in such cases, the former candidates should be
less negative compared to the later. We propose to
label the negativeness of candidates by using the
similarity between the questions and the candidates
and use such labels to train neural retrievers.

Generalization of Neural IR Previous work has
shown that neural retrievers perform well on the
same domain of the training data (IID) but poorly
in out-of-domain (Thakur et al., 2021). In fact,
generalization is a common issue in many other
tasks such as image classification and question an-
swering (Gokhale et al., 2022; Luo et al., 2022a).
A range of methods including data augmentation,
data filtering, and data debiasing methods have
been proposed to improve the generalization ca-
pacity of models. Applying these methods to train
neural retrievers can potentially improve their gen-
eralization capacity. Prompting or instruction learn-
ing has shown good generalization performance on
many NLP tasks (Mishra et al., 2021) or in low-
resource domain (Parmar et al., 2022), yet applying
such method on retrieval task is less investigated,
and it will be an interesting direction to explore.

5 Conclusion

In this proposal, we focus on an important task: in-
formation retrieval. From word-matching retrievers
to neural retrievers, many efforts have been made
toward building stronger retrievers that can achieve
high recall and precision. We summarize five types
of modern retrievers and methods to address some
existing issues. While the development in this field
is exciting, retrievers still have a long journey to
go. We hope this proposal can shed some light on
building a more capable retriever in future.
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Abstract

Cognitive distortions are counterproductive pat-
terns of thinking that are one of the targets of
cognitive behavioral therapy (CBT). These can
be challenging for clinicians to detect, espe-
cially those without extensive CBT training or
supervision. Text classification methods can ap-
proximate expert clinician judgment in the de-
tection of frequently occurring cognitive distor-
tions in text-based therapy messages. However,
performance with infrequent distortions is rela-
tively poor. In this study, we address this spar-
sity problem with two approaches: Data Aug-
mentation and Domain-Specific Model. The
first approach includes Easy Data Augmenta-
tion, back translation, and mixup techniques.
The second approach utilizes a domain-specific
pretrained language model, MentalBERT. To
examine the viability of different data augmen-
tation methods, we utilized a real-world dataset
of texts between therapists and clients diag-
nosed with serious mental illness that was an-
notated for distorted thinking. We found that
with optimized parameter settings, mixup was
helpful for rare classes. Performance improve-
ments with an augmented model, MentalBERT,
exceed those obtained with data augmentation.

1 Introduction

Data augmentation first became a popular topic
in computer vision, where deep neural networks
have performed remarkably well. Complex archi-
tectures, such as AlexNet (Krizhevsky et al., 2012),
VGG-16 (Simonyan and Zisserman, 2014), ResNet
(He et al., 2016), DenseNet (Huang et al., 2017),
generally require sufficient training data for model
convergence, even with the help of dropout regu-
larization and batch normalization. This situation
also occurs in natural language processing (NLP)
with deep learning methods and can become more
problematic when limited to small datasets by data
collection or data annotation constraints. In imag-
ing, data augmentation, involving transformations

such as cropping and shearing, is a common strat-
egy to expand the amount of data available for
training. Analogously, several methods have been
proposed to perform data augmentation in NLP, in-
cluding Easy Data Augmentation (Wei and Zou,
2019), Back Translation (Sennrich et al., 2015),
GPT-2 Augmentation (Anaby-Tavor et al., 2020),
and mixup (Zhang et al., 2017). Kumar et al.
(2020) applied some of these methods to pretrained
transformer models and showed an average im-
provement in accuracy of 1-6%. However, the low-
resource scenario was simulated by simply con-
straining the training data from large corpuses. It
remains unclear how these methods might perform
when used in realistic applications, where certain
classes may be of very low frequency. One exem-
plary case concerns NLP analysis of online therapy
sessions, where large amounts of patient-generated
texts must be classified, but only well-trained spe-
cialists with relevant mental health domain knowl-
edge can perform annotation manually to ensure
clinical accuracy. In this study, we used a dataset
from text message conversations between clients
and therapists, previously used for detecting dis-
torted thoughts (Tauscher et al., 2022). Besides
the limitation in size, we found that some types of
distorted thinking are very rare, resulting in worse
classification performance. To address these issues,
we investigate the extent to which data augmen-
tation methods can improve performance of the
best-performing BERT model from these experi-
ments. We compare the utility of this augmentation
approach to the use of a domain-specific pretrained
language model, MentalBERT. In doing so, we
evaluate the utility of data augmentation techniques
and a domain-specific model to improve the identi-
fication of rare classes in the context of real-world
data.

Our main contributions are as follows:

• We compared different augmentation methods
in a low-resource dataset. We found improve-

68



ments with majority classes and that mixup
can improve performance for rare classes.

• We adapted a domain-specific pretrained lan-
guage model, MentalBERT, and showed the
highest performance for majority classes, and
better results for rare classes.

• We explored the hyperparameter α, control-
ling mixing proportions, for mixup and
showed that a low α setting is helpful for dom-
inant classes, and a high α for rare classes.

2 Low-resource Corpus

From our previous work (Tauscher et al., 2022),
we utilized data from a randomized controlled trial
of a community-based text-message intervention
for individuals with serious mental illness (Ben-
Zeev et al., 2020). Data were collected from 39
participants enrolled in the active intervention arm
of this trial between December 2017 and October
2019. As part of the study, clients participating
in standard care engaged with trained clinicians in
text-message conversations up to three times a day
for 12-weeks. In total, 14,312 messages were sent
between clinicians and clients with 7,354 coming
from clients. To build a predictive model for dis-
torted thoughts, five common distortions were se-
lected (Burns, 1999): Mental Filter (MF), Jumping
to Conclusions (JC), Catastrophizing (C), Should
Statements (SM), Overgeneralization (O). In ad-
dition, we added the label Any Distortion (AD),
generated in accordance with the other assigned
distortions. Two mental health specialists anno-
tated all messages from clients by assigning these
six categories, which are not mutually exclusive
(Tauscher et al., 2022). This provided ground truth
for labels. It is worth noting that any message could
be identified as having multiple distortions, or no
distortions at all, making this a multi-label multi-
class problem. Table 1 shows the label frequency
and inter-rater reliability.

AD C MF JC O SM
Frequency 24.4% 14.8% 8.6% 8.1% 3.6% 2.6%
kappa 0.51 0.44 0.33 0.53 0.46 0.39

Table 1: Label frequency and inter-rater reliability

3 Methods

Based on results by Tauscher et al. (2022), we used
BERT as a starting point for our study, since it
outperformed support vector machines and logistic

regression (with L2 regularization), which had been
used in prior work (Shickel et al., 2020; Shreevas-
tava and Foltz, 2021). All models in this study were
trained with the previously identified best hyper-
parameter settings for the dataset (Tauscher et al.,
2022) (Section 3.1). Given the observed frequen-
cies (Table 1), we combined results for six cate-
gories into three bins by frequency, to distinguish
between effects on frequent and infrequent classes.
The three bins are “high freq:AD,C”, “medium
freq:MF,JC”, and “low freq:O,SM”. For evalua-
tion, we chose area under the precision-recall curve
(AUPRC) over F1 scores, because F1 scores are
special cases of AUPRC for a predefined cutoff
and AUPRC is threshold-agnostic. For rare classes,
the receiver operating characteristic curve (ROC)
may lead to overly optimistic performance esti-
mates, especially when class frequency drops to
1%, which is not the case with the precision-recall
curve (Ozenne et al., 2015). Thus, we used AUPRC
over others as our main metric. Macro-averaged
AUPRC was calculated for each of the bins. This
metric was also used to evaluate overall model per-
formance.

We used two approaches to data augmentation,
differing in the point at which augmentation occurs.
The first involves directly augmenting the original
text and outputting augmented examples as plain
text, to be added to the original data (Section 3.2).
The second approach involves augmentation in the
hidden spaces of a deep neural network, and its
outputs are vectors in the hidden space, rather than
plain text (Section 3.3). For domain-specific model,
we utilized a domain-specific pretrained language
model with additional linguistic knowledge perti-
nent to the task at hand (Section 3.4).

3.1 BERT-based Classification

The baseline model we used is BERT (bert-base-
uncased 1) (Devlin et al., 2018). A classification
layer was added on top of BERT’s output and used
for classifying all five cognitive distortions (“MF”,
“JC”, “C”, “SM”, “O”) and “AD”. The maximum
sequence length was set to 120 (word pieces).

The main framework for evaluation is 5-fold
cross validation, and out-of-sample predictions
were collected for the whole dataset. Following
the original paper (Tauscher et al., 2022), we used
the best hyperparameter settings for each of the
iterations, as shown in Table 2. Also, losses were

1
https://huggingface.co/bert-base-uncased
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weighted inversely proportional to label frequen-
cies.

Iteration #1 #2 #3 #4 #5
number of epochs 14 14 10 14 8
dropout 0.2 0.3 0.1 0.2 0.2

Table 2: BERT hyperparameter settings

We repeated 5-fold cross validation five times
with fixed folds but different random instantiations
of the classification layer to assess the robustness
of the results. This is the base setting for our exper-
iments and was used across all other methods. This
baseline model is labeled as “BERT (no aug)”.

3.2 Augmentation of text data

3.2.1 EDA: Easy Data Augmentation
Wei and Zou (2019) proposed Easy Data Augmen-
tation (EDA), which comprises of four main opera-
tions on the original text: Synonym Replacement
(SR), Random Insertion (RI), Random Swap (RS),
and Random Deletion (RD). EDA was evaluated
on five different tasks and showed an increased
performance of 0.8% on average.

We adopted authors’ recommended setting for
the parameter α, 0.1, that controls the percentage of
words in a sentence changed by each augmentation
method. This is labeled as “BERT (EDA)”.

3.2.2 Back Translation
Sennrich et al. (2015) proposed Back Translation
for data augmentation, where sentences are first
translated into another language and then back to
the original language. This technique has been
explored for the task of neural machine transla-
tion (Sugiyama and Yoshinaga, 2019). To generate
new texts, we applied Back Translation with two
intermediate languages: German and Spanish. Dur-
ing the augmentation, each original message was
translated into German or Spanish and then back to
English to get a corresponding message. Class la-
bels of the original text were inherited. We did not
repeat these experiments because we found little to
no variation in generated texts upon repetition. The
two backtranslation models are labeled as “BERT
(BT:German)” and “BERT (BT:Spanish)”.

3.2.3 GPT-2
Anaby-Tavor et al. (2020) propose using GPT-2
for data augmentation, by fine-tuning the model to
generate text corresponding to a class of interest.
Following their proposed approach, and using a

publicly available GPT-2 model2, we implemented
two variations of GPT-2 for data augmentation.
Context-agnostic GPT-2: we first reconstructed
our text messages as follows:

yi[SEP ]xi[EOS]

for each of the messages i, where yi indicates the
label of a message, and xi the message content.
GPT-2 was then fine-tuned on this new structure of
data for 20 epochs. New messages were generated
by feeding in the prompt of “y[SEP ]”. This is
labeled as “BERT (GPT-2: no context)”.

Contextual GPT-2: Texts in our dataset are de-
rived from conversations. To utilizing this contex-
tual information, we reorganized inputs as follows:

yi[SEP ]xi−1[SEP ]xi[EOS]

where xi−1 is the previous message. The GPT-2
model was then fine-tuned on this structure. Given
the prompt of “yi[SEP ]xi−1[SEP ]”, new mes-
sages were generated according to the class label
yi and and the preceding message for a representa-
tive example as context. This is labeled as “BERT
(GPT-2: contextual)”.

For text generation, we followed same steps de-
scribed in Kumar et al. (2020). Due to computa-
tional time requirements, we did this once only.

3.3 Augmentation of Hidden Spaces: mixup
Zhang et al. (2017) proposed mixup for data aug-
mentation. The authors claim that this method ex-
tends the training distribution by incorporating the
prior knowledge that linear interpolations of fea-
ture vectors should lead to linear interpolations of
the associated targets, providing data are modeled
on vicinity relation across examples of different
classes. mixup operates as follows:

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj

where λ ∼ Beta(α, α) for α ∈ (0,+∞). This
paper did not examine the hyperparameter α across
different NLP applications, with results reported
only for Google speech commands, a dataset of
65,000 one-second utterances3. However, the
authors did report improved results when using

2
https://huggingface.co/gpt2

3
https://ai.googleblog.com/2017/08/

launching-speech-commands-dataset.html
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α = 0.3 for this task, and in general proposed a
small α ∈ [0.1, 0.4], based on results on ImageNet-
2012. They also acknowledge that model error is
less sensitive to large α when increasing model
capacity. Sun et al. (2020) applied mixup to the
transformer architecture and showed improvements
on eight GLUE benchmarks. Across all of their
experiments, α was fixed at 0.5, which is a reason-
able extension from the originally proposed range
(Zhang et al., 2017).

From the previous two studies (Zhang et al.,
2017; Sun et al., 2020), it is not clear what hyper-
parameter setting of α should be used with other
data sets. Given the probability density function
controlled by α (demonstrated in Supplementary
Figure 1), other settings when α is large may make
more sense for scenarios in which we want to make
two examples contribute more evenly. This leads
to augmented examples lying in the margin be-
tween two categories, which may be appropriate
for categories that are difficult to distinguish. In
our case, the cognitive distortion dataset is rela-
tively small compared with those evaluated previ-
ously, and some classes (O, SM) are quite rare. We
wished to assess whether the mixup method could
help with data augmentation in this context. We
did an extended search in the hyperparameter space
of α: 0.02, 0.2, 0.5, 1, 2, 4, and 8. The models are
labeled as “BERT (mixup: alpha = X)”.

3.4 Domain-Specific Model: MentalBERT

To investigate the utility of domain-specific mod-
els for transfer learning, we identified a domain-
specific pretrained language model. Ji et al. (2021)
describe MentalBERT and MentalRoBERTa, two
language models developed specifically for men-
tal health NLP. Starting with pretrained base mod-
els, and following standard BERT and RoBERTa
pretraining protocols, MentalBERT and Mental-
RoBERTa were further pretrained on subreddits in
the mental health domain, including “r/depression”,
“r/SuicideWatch”, “r/Anxiety”, “r/offmychest”,
“r/bipolar”, “r/mentalillness”, and “r/mentalhealth”.
These subreddits made up a pretraining corpus of
over 13 million sentences. Upon evaluation, this
additional pretraining improved performance in
classifying mental conditions, including depres-
sion, stress, and anorexia. However, the evaluation
sets used texts from online or SMS-like platforms,
which were not fully annotated by specialists. In
our work, we used MentalBERT, available from

HuggingFace 4. The same hyperparameters as the
BERT model were used for comparison purposes.
The baseline MentalBERT model is referred as
“MentalBERT (no aug)”. We also applied the best-
performing data augmentation methods to Mental-
BERT, including back translation (Spanish) and
explored some α settings for mixup.

4 Results

Performance for all models is shown in Table 3.
BERT: For the baseline BERT model, BERT

(no aug), we obtain an AUPRC of 0.5179 for the
most frequent classes (AD,C). When frequency de-
creases (classes MF,JC), the AUPRC also drops
to 0.3718, and it drops further to 0.2139 for the
rarest class of O,SM. This trend applies to all mod-
els. When data augmentation is applied to the
base BERT model, we see improved results with
different models. For the most frequent class of
AD,C, back translation using Spanish achieves the
highest AUPRC of 0.5208, followed by mixup:
α = 0.02. However, none of these results are sig-
nificant improvements over baseline BERT. For the
less frequent classes (MF,JC), back translation out-
performs baseline BERT by 1.5%. mixup does not
offer a performance boost here. When it comes to
the rarest classes (O,SM), improvement is clearer:
EDA, back translation (Spanish), and most settings
of mixup can offer a boost in AUPRC. Among
them, mixup (α = 4) shows the biggest improve-
ment in AUPRC by around 1.6%, which is statis-
tically significant (t(8) = 3.24, p-value = .012
from t test). It is also notable that both GPT-2
based data augmentation methods decrease the per-
formance of the base BERT model substantially
(0.47 vs 0.52 for AD,C and 0.14 vs 0.21 for O,SM).

MentalBERT: When comparing MentalBERT
results with BERT results, we can see improved per-
formance for all classes, with the highest change
for AD,C and MF,JC of 1.3%-1.8%. Similar to
BERT models, performance is highly related to
class frequencies, with highest being 0.5359 for the
most frequent class of AD,C, dropping to 0.3846
for MF,JC then 0.2171 for O,SM. This trend holds
for different augmentation settings. For augmenta-
tion effects, the base model performs best for both
AD,C and MF,JC, as compared with augmented
models. For rare class of O,SM, there is a small
improvement from back translation (Spanish) of

4
https://huggingface.co/mental/

mental-bert-base-uncased
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model
AUPRC

(high freq:AD,C)
AUPRC

(medium freq:MF,JC)
AUPRC

(low freq:O,SM) macro-AUPRC
BERT (no aug) 0.518 ± 0.0055 0.372 ± 0.0054 0.214 ± 0.0039 0.368 ± 0.0030
BERT (EDA) 0.517 ± 0.0062 0.378 ± 0.0071 0.228 ± 0.0091* 0.374± 0.0067
BERT (BT: German) 0.517 0.375 0.216 0.369
BERT (BT: Spanish) 0.521 0.386 0.222 0.376
BERT (GPT-2: contextual) 0.472 0.290 0.143 0.302
BERT (GPT-2: no context) 0.460 0.306 0.155 0.307
BERT (mixup: α = 0.02) 0.519 ± 0.0013 0.372 ± 0.0026 0.218 ± 0.0078 0.370 ± 0.0041
BERT (mixup: α = 0.2) 0.515 ± 0.0060 0.369 ± 0.0027 0.218 ± 0.0061 0.367 ± 0.0041
BERT (mixup: α = 0.5) 0.510 ± 0.0058 0.367 ± 0.0058 0.213 ± 0.0034 0.363 ± 0.0033
BERT (mixup: α = 1) 0.504 ± 0.0072 0.367 ± 0.0076 0.221 ± 0.0047 0.364 ± 0.0055
BERT (mixup: α = 2) 0.505 ± 0.0043 0.366 ± 0.0046 0.222 ± 0.0054* 0.364 ± 0.0021
BERT (mixup: α = 4) 0.505 ± 0.0048 0.367 ± 0.0027 0.229 ± 0.0081* 0.367 ± 0.0038
BERT (mixup: α = 8) 0.504 ± 0.0045 0.366 ± 0.0057 0.218 ± 0.0059 0.363 ± 0.0030
MentalBERT (no aug) 0.536 ± 0.0029* 0.385 ± 0.0059* 0.217 ± 0.0018 0.379 ± 0.0032*
MentalBERT (BT: Spanish) 0.520 0.380 0.222 0.374
MentalBERT (mixup: α = 0.02) 0.529 ± 0.0050* 0.379 ± 0.0031* 0.211 ± 0.0052 0.373 ± 0.0022*
MentalBERT (mixup: α = 0.2) 0.523 ± 0.0033 0.382 ± 0.0049* 0.216 ± 0.0030 0.374 ± 0.0030*
MentalBERT (mixup: α = 1) 0.520 ± 0.0064 0.381 ± 0.0056* 0.214 ± 0.0068 0.372 ± 0.0020*
MentalBERT (mixup: α = 4) 0.515 ± 0.0028 0.379 ± 0.0021* 0.215 ± 0.0063 0.370 ± 0.0028
MentalBERT (mixup: α = 8) 0.515 ± 0.0049 0.377 ± 0.0037 0.213 ± 0.0060 0.368 ± 0.0044

Table 3: AUPRC (mean ± std) for combined labels by frequency. *: significantly > BERT (no aug), unpaired t-test.

0.5%. None of the mixup configurations provide
a benefit over the base MentalBERT model.
mixup: We explored an extensive range of the

hyperparameter α with the BERT model. In Ta-
ble 3, the best results usually come with a small
α (0.02) for the dominant classes of AD,C and
MF,JC. This best setting shows an increase of 1-
2%. With an increasing α, the performance drops.
For the rare classes of O,SM, a small α is no longer
favored. The performance of AUPRC is not mono-
tonic: with an increasing α, it first increases then
drops, with its peak of 0.2285 at α = 4. A similar
trend is also observed for the MentalBERT model,
although mixup did not perform best in this case.

Overall model performances is consistent with
some of the preceding observations: (1) data aug-
mentation improves overall performance, but only
by a small margin; (2) in-domain pretraining of
the language model (MentalBERT) provides the
most improvement in performance; (3) for mixup,
a small α is favored (0.02 for BERT and 0.2 for
MentalBERT).

5 Discussion

We examined several data augmentation meth-
ods and explored their applications in BERT and
MentalBERT for detecting distorted thinking in
a modestly-sized set of text-based therapy mes-
sages. Grouping distortion classes by frequency,
we found that most of data augmentation methods
do not improve performance for frequent classes
(frequency: 8-25%). For rare classes (3%), mixup

significantly improved AUPRC results by 1.6%.
In comparison, the domain-specific pretrained lan-
guage model, MentalBERT, offered the highest ben-
efit for dominant classes. However, MentalBERT
also performs relatively poorly with rare classes.
This may be due to the limited number of train-
ing examples. Another reason might be the fact
that our text messages sometimes represent gen-
eral conversations related to case management (e.g.
appointment reminders) rather than the specific
mental health related concerns that predominate in
mental-health-related subreddits.

We also explored different settings for the hy-
perparameter α for the mixup method. For domi-
nant classes, mixup favors a small α, which cor-
responds with previous work (Zhang et al., 2017).
This indicates the model performs better with lim-
ited mixing of two random samples, generating
cases where only one example predominates. In
comparison, a larger α is favored for rare classes.
According to Supplementary Figure 1, this means
the model tends toward mixes in which the influ-
ence of individual texts is diluted, a possible way to
create more variation in this low-resource scenario
for the model to learn from. However, progress-
ing to more extreme values (α = 8) harms perfor-
mance, and this cutoff point may change in other
settings. Taken together, our results suggest that
mixup is helpful for rare classes, but may compro-
mise performance on frequent classes. Future work
with mixup should include increasing the number
of training epochs, since Zhang et al. (2017) sug-
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label Generated Text
JC Yes you understand that it’s incredibly frustrat-

ing and a lot of hard work but it’s not at all
stressful

C Okay, i will do that, eventually

Table 4: GPT-2 generated text

gest that errors may be further reduced with more
iterations of training.

Contrary to expectations, GPT-2-based data aug-
mentation harmed performance in this context. It
appears that GPT-2 generated texts (Table 4) do not
express cognitive distortions as intended. This is
likely because the data are not large enough to fully
train a “distorted” GPT-2 model. Another reason
may be that our prompts are not associated with
distorted text by GPT-2. Designing better prompts
may be a fruitful direction for future work.

6 Conclusions

We compared a range of data augmentation strate-
gies and a domain-specific pretrained language
model for their utility in improving identification of
infrequently observed cognitive distortions. Using
a domain-specific pretrained language model (Men-
talBERT) provided the greatest improvements, es-
pecially for dominant classes, whereas data aug-
mentation did not improve performance with this
model. In contrast, some data augmentation meth-
ods significantly improved performance with the
base BERT model, but we did not find a method to
improve performances for all classes universally,
nor did we find a consistent hyperparameter set-
ting to improve performance across these class fre-
quencies. mixup appears helpful for rare classes,
but a relatively large hyperparameter setting for α
should be used. However, this may compromise
the performance on frequent classes to some de-
gree. Taken together our results suggest that the
domain-specific model may be a better strategy for
frequent classes, and that the best data augmen-
tation strategy for infrequently observed classes
varies across frequency ranges. As future work,
two areas of interest include: (1) modified loss
functions, such as the Label-Distribution-Aware
Margin (LDAM) Loss (Cao et al., 2019) and Class-
Balanced (CB) Loss (Cui et al., 2019), which have
been proposed in the field of computer vision to
address class imbalance; (2) unsupervised learning
frameworks to address the inherent uncertainty of
labels for augmented data, such as Confident Learn-

ing (Northcutt et al., 2021) and Unsupervised Data
Augmentation (UDA) (Xie et al., 2020).

Acknowledgements

This work was supported by the UW Medicine Gar-
vey Institute for Brain Health Solutions; National
Institute of Mental Health grant (R56MH109554);
and in part by the National Institutes of Health, Na-
tional Library of Medicine (NLM) Biomedical and
Health Informatics Training Program at the Uni-
versity of Washington (Grant Nr. T15LM007442).
The content is solely the responsibility of the au-
thors and does not necessarily represent the official
views of the National Institutes of Health.

References
Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,

Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do not have
enough data? deep learning to the rescue! In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 7383–7390.

Dror Ben-Zeev, Benjamin Buck, Suzanne Meller,
William J Hudenko, and Kevin A Hallgren. 2020.
Augmenting evidence-based care with a texting mo-
bile interventionist: a pilot randomized controlled
trial. Psychiatric Services, 71(12):1218–1224.

David D Burns. 1999. Feeling Good: The New Mood
Therapy. Harper Collins, New York, NY.

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga,
and Tengyu Ma. 2019. Learning imbalanced datasets
with label-distribution-aware margin loss. Advances
in neural information processing systems, 32.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. 2019. Class-balanced loss based
on effective number of samples. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 9268–9277.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger. 2017. Densely connected con-
volutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 4700–4708.

73



Shaoxiong Ji, Tianlin Zhang, Luna Ansari, Jie Fu,
Prayag Tiwari, and Erik Cambria. 2021. Mentalbert:
Publicly available pretrained language models for
mental healthcare. arXiv preprint arXiv:2110.15621.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep convo-
lutional neural networks. Advances in neural infor-
mation processing systems, 25.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data augmentation using pre-trained trans-
former models. arXiv preprint arXiv:2003.02245.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. 2021.
Confident learning: Estimating uncertainty in dataset
labels. Journal of Artificial Intelligence Research,
70:1373–1411.

Brice Ozenne, Fabien Subtil, and Delphine Maucort-
Boulch. 2015. The precision–recall curve overcame
the optimism of the receiver operating characteristic
curve in rare diseases. Journal of clinical epidemiol-
ogy, 68(8):855–859.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Improving neural machine translation
models with monolingual data. arXiv preprint
arXiv:1511.06709.

Benjamin Shickel, Scott Siegel, Martin Heesacker,
Sherry Benton, and Parisa Rashidi. 2020. Automatic
detection and classification of cognitive distortions in
mental health text. In 2020 IEEE 20th International
Conference on Bioinformatics and Bioengineering
(BIBE), pages 275–280. IEEE.

Sagarika Shreevastava and Peter Foltz. 2021. Detecting
cognitive distortions from patient-therapist interac-
tions. In Proceedings of the Seventh Workshop on
Computational Linguistics and Clinical Psychology:
Improving Access, pages 151–158.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

Amane Sugiyama and Naoki Yoshinaga. 2019. Data
augmentation using back-translation for context-
aware neural machine translation. In Proceedings
of the Fourth Workshop on Discourse in Machine
Translation (DiscoMT 2019), pages 35–44.

Lichao Sun, Congying Xia, Wenpeng Yin, Tingting
Liang, Philip S Yu, and Lifang He. 2020. Mixup-
transformer: dynamic data augmentation for nlp
tasks. arXiv preprint arXiv:2010.02394.

Justin Tauscher, Kevin Lybarger, Xiruo Ding, Ayesha
Chander, William Hudenko, Trevor Cohen, and Dror
Ben-Zeev. 2022. Automated detection of cognitive
distortions in text exchanges between clinicians and
people with serious mental illness. Psychiatric Ser-
vices (in review).

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. Advances in Neural
Information Processing Systems, 33:6256–6268.

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. 2017. mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412.

74



A Appendix

Supplementary Figure 1

Figure 1: Probability Density Function of Beta(α, α)
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In the paper of mixup, a special form of
Beta(α, β) distribution was used where α = β.
The figure shows PDF of different α settings
and this could affect the distributions of how the
weights of two samples are assigned.
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Abstract

We aim to overcome the lack of diversity in
responses of current dialogue systems and to
develop a dialogue system that is engaging
as a conversational partner. We propose a
generator-evaluator model that evaluates multi-
ple responses generated by a response generator
and selects the best response by an evaluator.
By generating multiple responses, we obtain
diverse responses. We conduct human evalu-
ations to compare the output of the proposed
system with that of a baseline system. The re-
sults of the human evaluations showed that the
proposed system’s responses were often judged
to be better than the baseline system’s, and indi-
cated the effectiveness of the proposed method.

1 Introduction

Dialogue systems based on deep neural networks
(DNNs) have been widely studied. Although these
dialogue systems can generate fluent responses,
they often generate dull responses such as “yes,
that’s right” and lack engagingness as a conversa-
tion partner (Jiang and de Rijke, 2018). To develop
an engaging dialogue system, it is necessary to
generate a variety of responses not to bore users.

However, dialogue systems that are capable of
generating diverse responses are difficult to auto-
matically evaluate. A commonly used evaluation
metric is BLEU (Papineni et al., 2002) used in
machine translation, which measures the degree
of n-gram agreement with the reference response.
However, due to the diversity of responses, i.e.,
the one-to-many nature of dialogue (Zhao et al.,
2017), which means the existence of multiple ap-
propriate responses to an utterance, methods that
compare the response to reference responses are
not appropriate. Therefore, there is a need for eval-
uation methods that do not use reference responses,
and one of them is supervised evaluation. It trains
DNNs using human evaluations of responses gen-
erated by humans and models (Zhao et al., 2020;

Ghazarian et al., 2019). DNN-based evaluations
correlate to some extent with human evaluations.

We aim to develop a dialogue system that is more
engaging as a conversational partner by combining
independently studied response generation and re-
sponse evaluation models into a single dialogue sys-
tem. Specifically, we propose a generator-evaluator
model in which multiple responses are generated
by the generation model, evaluated by the eval-
uation model, and the response with the highest
evaluation score is selected. By generating mul-
tiple responses, we can obtain diverse responses.
This can be enabled by the response evaluator that
does not require reference responses.

Our methods of generating multiple responses
include a method with multiple decoding schemes
and a method that uses a model that can generate
responses with a specified Dialogue Act (DA). Gen-
erating responses by specifying various DAs leads
to a variety of responses.

To evaluate the proposed method, we conducted
human evaluation by crowdsourcing to compare
the outputs of the proposed system and a baseline
system. The evaluation results show that the pro-
posed system outputs better responses, and indicate
the effectiveness of the proposed method.

We target Japanese dialogue systems and con-
struct datasets of Japanese dialogues.

2 Related Work

Methods for evaluating responses by dialogue sys-
tems can be divided into human and automatic
evaluations. Automatic evaluation can be further
classified into evaluation with or without refer-
ence responses. As an automatic evaluation metric,
BLEU (Papineni et al., 2002) is mainly used. It
evaluates responses in terms of n-gram agreement
with the reference sentence. However, it has been
shown that there is no correlation at all between
BLEU and human evaluations (Liu et al., 2016).
One reason for this is the one-to-many nature of di-

76



Figure 1: The architecture of our proposed system, the generator-evaluator model. It generates multiple responses
from the generator, evaluates them with the evaluator, and selects the best response.

alogue (Zhao et al., 2017), which means that there
are multiple appropriate responses to an utterance.
Considering this nature, a method that measures
the degree of n-gram agreement with the reference
response is inappropriate for evaluating responses.
Therefore, automatic evaluation methods without
any reference responses have been studied (Zhao
et al., 2020; Ghazarian et al., 2019). They trained
BERT (Devlin et al., 2019) on a dataset of human
evaluations to perform response evaluation that cor-
relates with the human evaluations.

DA represents the role of an utterance in a
dialogue. There are some datasets annotated
with DAs such as SwDA (Stolcke et al., 2000)
and MRDA (Shriberg et al., 2004). However,
such datasets exist only for English, and we con-
struct a DA dataset in Japanese. Raheja and
Tetreault (2019); Ahmadvand et al. (2019) con-
structed a model that classifies a DA for an utter-
ance. Kawano et al. (2019) proposed a model to
generate responses with a specified DA. This was
achieved through adversarial learning. In this study,
we use a more straightforward method to control
responses.

3 A Generator-Evaluator Model for an
Engaging Dialogue System

3.1 Generator-Evaluator Model

We propose a generator-evaluator model that gener-
ates multiple responses, evaluates these responses,
and selects the response with the highest evaluation
score for output. The overview of the proposed
model is shown in Figure 1. Two methods are
used to generate multiple responses: multiple de-
coding schemes and a model that can generate DA
specified responses. For the evaluator, BERT is
fine-tuned with the Response-Evaluation dataset
described in Section 4.2.

3.2 Multiple Response Generators

We use T5 (Raffel et al., 2020) as a generator by
fine-tuning it with the method described below.

3.2.1 Multiple Decoding Schemes
The first method for obtaining multiple responses is
to use multiple decoding schemes. Three types of
decoding methods are used: greedy search, beam
search, and sampling. In particular, to repeat sam-
pling is thought to generate diverse responses. We
use the top-50 sampling (Fan et al., 2018).

3.2.2 DA-Specified Response Generation
The second method to obtain multiple responses
is to use a model that can generate responses with
specified DAs. We achieve such a model by train-
ing a response generation model based on utterance-
response pairs attached with prompts that specify
the DA of a response. The dataset format is as fol-
lows: (1a) represents the input and (1b) represents
the response. The italic span denotes the prompt
specifying a DA.

(1) a. Return a response of advice to tne inter-
locutor I haven’t done the assignment yet.

b. You should read this book before you do
it.

To train this model, we need a dialogue corpus
annotated with DA labels. We use the DA dataset
described in Section 4.3. A dialogue corpus with-
out DA labels is also used as responses with a gen-
eral DA. Its prompt is Return a response.

4 Dataset

Since there is not a sufficiently large corpus of
Japanese dialogues, we start from corpus construc-
tion.
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Viewpoint Response Amount
Relevance Twitter/decoding model 4,000/4,000
Interestingness Twitter 2,000
Engagingness Twitter/decoding model/DA model 4,000/4,000/4,000
Empathy Twitter 2,000

Table 1: Amount of data for each viewpoint in the Response-Evaluation dataset. "Response" indicates where the
response derives from. Due to the collection cost, more data were collected for the more important viewpoints.

Dialogue Act Description
Advice advice or instruction given to the partner
Emotion emotion experienced by speaker
Opinion opinion about a particular topic
Inform give information about oneself(speaker)
Schedule what the speaker plans to do or wants to do
Question questioning the partner
Agree agree about the partner’s opinion or feeling

Table 2: DA types and their descriptions. Crowdworkers are shown this description and asked to choose which DA
applies to each response.

Dialogue Act Amount
Advice 853
Emotion 1,433
Opinion 1,323
Inform 1,131
Schedule 718
Question 342
Agree 1,136

Table 3: Amount of data for each DA.

4.1 Twitter Dataset
Our dialogue dataset is collected from Twitter using
the Twitter API. Some of the conversations are col-
lected from single-turn conversations only (Twitter-
Single), while the others are collected from multi-
turn conversations (Twitter-Multi).

4.2 Response-Evaluation Dataset
Our Response-Evaluation dataset contains evalua-
tions of how well a response meets certain view-
points when looking at a single-turn utterance and
response. We use the following four evaluation
viewpoints: relevance, interestingness, engaging-
ness, and empathy.

We use two types of utterance-response pairs
to ensure corpus diversity: the first is the Twitter-
Single dataset described in Section 4.1, and the
second is the utterances from the Twitter-Single
dataset and the responses generated from generator
models. We use two types of generator models:
the model with the multiple decoding schemes and
the model that can generate responses with spec-
ified DAs. In the datasets using responses from
the generator models, the evaluations of multiple
responses to an utterance are collected. They rep-

resent how evaluations differ when different re-
sponses are generated to the same utterance. The
evaluations are collected through crowdsourcing.
We ask a five-grade question to five people, and
the average was taken as the evaluation value. The
statistics of the dataset is shown in Table 1.

4.3 DA Dataset

We assign DAs for each utterance in the Twitter-
Multi dataset described in Section 4.1. By using
the dataset of multi-turn conversations, we intended
to make a dataset to capture the transition of DAs
in a long conversation. We adopt seven DA types
shown in Table 2. The number of DA types was re-
duced to seven because the 42 types in the previous
study (Stolcke et al., 2000) were too fine-grained
to be annotated by crowdsourcing. Since there are
utterances that do not settle on a single DA, we
allow multiple DAs for each utterance. DAs are
collected through crowdsourcing. We ask a ques-
tion to five people and adopt the DA with at least
three votes. The amount of utterances for each DA
is shown in Table 3. Since the amount of data is
not sufficient to be used for training the generator
model described in Section 3.2.2, this dataset is
used to train DA classifiers that are applied to the
Twitter-Single dataset for data augmentation.

Augmentation with DA Classifiers

We build DA classifiers by fine-tuning BERT with
the DA dataset described above. These DA classi-
fiers are binary classifiers that determine whether a
response belongs to each of the DAs. The results of
DA classification by each DA classifier are shown
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Dialogue Act Precision Recall F1
Advice 0.52 0.57 0.54
Emotion 0.54 0.37 0.44
Opinion 0.60 0.51 0.55
Inform 0.44 0.55 0.49
Schedule 0.41 0.47 0.44
Question 0.88 0.51 0.65
Agree 0.69 0.53 0.60

Table 4: Results of DA classification by five-fold cross
validation.

Dialogue Act Amount
Advice 2,284
Emotion 4,195
Opinion 6,580
Inform 63,652
Schedule 89,990
Question 33,629
Agree 70,557

Table 5: Amount of data for each DA obtained by data
augmentation with the DA classifiers.

in Table 4. Metrics are precision, recall, and F1.
They are computed using five-fold cross validation.
From this table, the predicted DAs do not seem
sufficiently precise to be used for data augmenta-
tion. However, we manually examined a part of
predicted DAs and found that their precision was
around 70%, which made us decide to use them for
data augmentation.

We augment the DA dataset by applying the clas-
sifiers to an unlabeled dialogue corpus. We ap-
ply each binary classifier to 1.6M responses of the
Twitter-Single dataset, and assign DA labels to re-
sponses judged to be positive. The amount of data
obtained for each DA is shown in Table 5.

5 Experiments

We do the evaluation by crowdsourcing. Work-
ers are shown the outputs of the two systems and
asked which of the system they would prefer to con-
tinue the conversation with. We ask a question to
three workers and take a majority vote as the result.
The test corpus consists of 2,000 sentences from
the Twitter-Single dataset described in Section 4.1
which are not used for training.

5.1 Experimental Setup
The proposed systems use two types of genera-
tors: one by the multiple decoding schemes (DE)
and one by DA specified responses (DA). Also,
by combining DE and DA, the DA generator can
generate responses using the multiple decoding
schemes (DADE). We define DE Best, DA Best,

Comparison Win Lose Even
DE Best vs DE Greedy 44% 21% 35%
DE Best vs DE Random 50% 24% 26%
DA Best vs DA General 42% 25% 33%
DA Best vs DA Random 44% 21% 35%
DADE Best vs DE Greedy 44% 43% 12%
DADE Best vs DE Random 48% 41% 11%
DADE Best vs DA General 49% 33% 17%
DADE Best vs DA random 55% 28% 17%
DADE Best vs DADE Random 73% 14% 13%
DADE Best vs DE Best 38% 51% 11%
DADE Best vs DA Best 45% 32% 22%

Table 6: Result of one-to-one comparison between a
proposed system and a baseline system.

and DADE Best, which refer to the response
judged to be the best among multiple responses by
the evaluators in DE, DA, and DADE, respectively.
Here, in DE, seven responses were generated by
repeating sampling five times in addition to greedy
search and beam search. In DA, seven responses
were obtained by generating responses for the gen-
eral DA and excluding the emotion DA, whose
classifier did not perform accurately. Multiple DAs
were allowed for dataset construction, but only one
DA was specified for generation. In DADE, seven
responses are obtained for each of the seven DAs,
resulting in a total of 49 responses. We perform a
one-to-one comparison of each proposed system’s
response with the baseline system’s response fol-
lowing Roller et al. (2021). There are five types of
responses to be compared, which are shown below.

DE Greedy a response generated by greedy
search

DE Random a randomly selected response from
seven responses

DA General a response generated by specifying
the general DA

DA Random a randomly selected response from
seven DAs responses

DADE Random a randomly selected response
from 49 responses

5.2 Training

We use T5 (Raffel et al., 2020) pretrained with
a Japanese corpus1as a generator in DE. We fine-
tune it with 800,000 pairs from the Twitter-Single
dataset described in Section 4.1. The generator
model used in DA is further fine-tuned from the DE
generator model with the augmented DA dataset in
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System Utterance Scheme/DA Response Eval
DE 美味しいですよね。台湾茶。大好

き。 (It’s delicious. Taiwanese tea. I
love it.)

Beam ありがとうございます。台湾茶は美味し
いですよね。 (Thank you. Taiwanese tea is
delicious.)

3.6

Sampling1 美味しいですよね。味も飲みやすくて、
お値段の割にちょっぴり高級感があって
良いですね(^-^) (It’s delicious. It tastes easy
to drink and has a little bit of luxury for the
price (^-^) .)

3.9

Sampling2 台湾茶は美味しいですよねー。私も大好
きです〜。 (Taiwanese tea is delicious! I love
it too!)

3.8

DA 充電がすぐ切れるんだね。 (I see
that the charge runs out quickly.)

General 充電がすぐ切れるのね。 (You see the charge
runs out quickly, don’t you.)

3.4

Advice 充電が切れるなら、バッテリー交換した
方がいいよ。 (If it’s going to run out of
charge, you should replace the battery.)

3.3

Opinion 充電切れたので、今日はお休みにしま
す。 (I’m out of charge, so I’m taking the rest
of the day off.)

3.1

Table 7: Diverse responses from the proposed system. We think that the best responses for humans are the responses
of “Sampling1” for DE and “Advice” for DA. This best response gets the highest evaluation in DE. However, this is
not the case in DA. This may be one reason why the experimental results for DA are inferior to one for DE.

Section 4.3 and a part of the Twitter-Single dataset
as general DA responses. It has the same size as
the augmented DA dataset (270,000 pairs).

The evaluator is a fine-tuned BERT model and
constructed for each of DE and DA. The dataset
used for fine-tuning is the Engagingness data of the
Response-Evaluation dataset described in Section
4.2. It consists of 4,000 pairs derived from Twitter
and 4,000 pairs from either of the DE and DA gen-
erators. For DADE, we use the same evaluator as
DA.

5.3 Result
The evaluation results of our experiments are
shown in Table 6. It shows the effectiveness of gen-
erating multiple responses and selecting the best
response by the evaluator. However, the results of
DADE Best vs DE Greedy and DADE Best vs
DE Best show the responses of the DA generator
were not rated better than the responses of the DE
generator. This can be attributed to the fact that the
distribution of the dataset was skewed by data aug-
mentation, and further study is needed. Example
responses generated by the proposed system are
shown in Table 7.

6 Analysis

6.1 Out-of-Domain Evaluator
In the experiments in Section 5, each evaluator of
DE and DA was trained using the human evalu-

1https://huggingface.co/sonoisa/t5-base-japanese

Comparison Win Lose Even
DE Best’ vs DE Greedy 47% 24% 28%
DE Best’ vs DE Random 47% 27% 26%
DA Best’ vs DA General 36% 25% 40%
DA Best’ vs DA Random 45% 25% 30%

Table 8: One-to-one comparison between a proposed
system with an OOD evaluator and a baseline system.

Decoding Scheme Ratio
Greedy-Search 12%
Beam-Search 15%
Sampling (x5) 73%

Table 9: Analysis of which decoding scheme is selected.
Sampling was repeated five times, and the percentage
of any of the five responses chosen was 73%.

ations of the corresponding generator responses
for each of DE and DA. However, it is not prac-
tical to use human evaluations for each generator.
Therefore, we investigate the impact of using dif-
ferent generation methods and datasets used for
evaluators. The same comparisons are made as the
comparisons in Section 5. The results are shown in
Table 8. We see that the proposed systems defeat
the baseline in this case as well.

6.2 Which Response is Chosen?

We analyzed which decoding methods or DAs are
selected by the evaluator model. The more equally
the choices are divided, the more effective the pro-
posed method is. This is because the proposed
method cannot be surpassed by using any one spe-
cific decoding scheme or DA. The results of the
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DA Ratio
General 16%
Advice 8%
Schedule 16%
Question 11%
Inform 14%
Agree 9%
Opinion 25%

Table 10: Analysis of DA selection.

analysis are shown in Tables 9 and 10. The choices
are scattered, and thus the proposed method can
generate diverse responses.

7 Conclusion

We developed a dialogue system that can generate
engaging responses by incorporating a response
evaluator within the dialogue system. We proposed
a generator-evaluator model, which consists of mul-
tiple response generation through multiple decod-
ing schemes or specified DAs, responses evalu-
ations, and the best response selection. Human
evaluation showed that responses generated by the
generator-evaluator model are more engaging than
those by the baseline systems. However, it is still
necessary to improve the quality of responses gen-
erated with specified DAs in the future.
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Abstract

State of the art performances for entity extrac-
tion tasks are achieved by supervised learning,
specifically, by fine-tuning pretrained language
models such as BERT. As a result, annotating
application specific data is the first step in many
use cases. However, no practical guidelines
are available for annotation requirements. This
work supports practitioners by empirically an-
swering the frequently asked questions (1) how
many training samples to annotate? (2) which
examples to annotate? We found that BERT
achieves up to 80% F1 when fine-tuned on only
70 training examples, especially on biomedical
domain. The key features for guiding the selec-
tion of high performing training instances are
identified to be pseudo-perplexity and sentence-
length. The best training dataset constructed
using our proposed selection strategy shows F1
score that is equivalent to a random selection
with twice the sample size. The requirement
of only a small number of training data im-
plies cheaper implementations and opens door
to wider range of applications.

1 Introduction

Information extraction (IE) is the process of turning
unstructured texts into structured data (Jurafsky and
Martin, 2021), and is one of the most widely used
natural language processing (NLP) tasks in indus-
trial applications. Named entity recognition (NER)
is an IE task of tagging entities in text with their
corresponding types. Most existing NER methods
require either handcrafted features, and/or a large
number of annotated examples (Jurafsky and Mar-
tin, 2021), both of which are labor intensive.

Recent advances in transformers (Vaswani et al.,
2017) and BERT (Devlin et al., 2019) changed
the landscape for many NLP tasks. Significant
performance gain can be achieved by fine-tuning
language models on a small number of training ex-
amples due to transfer learning. As a result, the
pipeline of annotating – fine-tuning becomes com-

mon practice. Following this pipeline, the first step
for each use case is to annotate application spe-
cific data. It is therefore beneficial to estimate in
advance how many training samples need to be
annotated, as well as which samples to annotate.

This work answers these two frequently asked
questions through empirical studies on the NER
task. Specifically, we repeatedly down-sample
benchmark datasets and fine-tune BERT models for
the downstream task of token classification. Two
benchmark datasets (1) general domain Conll2003
(F. and De Meulder, 2003) and (2) biomedical do-
main BC5CDR (Li et al., 2016) are used in this
study.

In summary, our main contributions are:

• Empirically identified the relation between
sample size and model performance on the
entity extraction task for corpora of different
domains.

• Proposing key measures for selecting train-
ing examples that yield high performances in
our evaluation, which can serve as a promis-
ing starting point for many other application
scenarios.

2 Experimental Setting

The goal of the experiments is to answer before-
mentioned questions on how many and which train-
ing samples to annotate for the named entity extrac-
tion task.

We repeatedly down-sample benchmark NER
datasets and compared model performances fine-
tuned on different number of training examples
and different samples. Two datasets of different
domains, and two BERT models pretrained on dif-
ferent datasets are used in this study.

2.1 Fine-Tuning Language Models
As recommended in Devlin et al. (2019), the NER
task is formulated as a token-level classification
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CoNLL2003 (news)

n-sentence
n-token n-LOC n-MISC n-ORG n-PER

split mean mean mean mean mean
train 14042 14.50 0.51 0.24 0.45 0.47
validation 3251 15.80 0.57 0.28 0.41 0.57
test 3454 13.44 0.48 0.20 0.48 0.47

BC5CDR (PubMed, PMC)

n-sentence
n-token n-Disease n-Chemical

mean mean mean
4612 24.95 0.91 1.13
4607 24.81 0.92 1.16
4819 25.02 0.92 1.12

Table 1: Number of sentences, the mean of the number of tokens and entities for CoNLL2003 and BC5CDR datasets.
On average, sentences in BC5CDR are nearly twice as long as those in CoNLL2003.

task. Namely, a pretrained BERT model is stacked
with a linear layer on top of the hidden-states out-
put, before fine-tuned on training examples. The
transformers library from Hugging Face (Wolf
et al., 2020) is used for fine-tuning. Two BERT
models are compared: (1) BERT1 pretrained on
BooksCorpus (Zhu et al., 2015) and Wikipedia,
which represent general domain. (2) BioBERT2

(Lee et al., 2020) where also PubMed abstracts and
PMC articles are added to the pretraining data. As a
result, the pretraining data for BioBERT also covers
the biomedical domain. For both pretrained mod-
els, we choose the base setting with 12 transformer
layers and 768 hidden embedding sizes. Following
recommendations from both Devlin et al. (2019)
and Lee et al. (2020), the cased vocabulary is used
for the NER task.

2.2 Datasets

Two NER datasets with different domains were
used and statistics for both graphs are provided in
Table 1.

CoNLL2003 (English) dataset (F. and De Meulder,
2003)) is one of the most commonly used NER
datasets. The corpus consists of 1.4K news arti-
cles with four types of entities (LOCations, OR-
Ganizations, PERsons, and MISCellaneous) being
annotated.

BC5CDR dataset (Li et al., 2016) consists of 1.5K
PubMed articles, where two types of entities (chem-
ical and disease) are annotated.

2.3 Down-Sample

To study the relation between model performance
and training sample size, we uniformly draw N
(N ∈ {50, 150, 500, 1000, 2000}) sentences at ran-
dom from the training split, with the constraint
that at least one instance from each IOB (In-

1https://huggingface.co/
bert-base-cased

2https://huggingface.co/dmis-lab/
biobert-v1.1

side–Outside–Beginning) class is present in the
sample.

3 Results

We first establish a baseline using the full dataset,
which also serves as an upper bound. Next, we
compare the F1 scores for each dataset for different
random sample-sizes and for the training subset
selected using our proposed method. Finally, we
conclude the analysis with a recommended work-
flow for training instance selection.

3.1 Corpora Domain for Pretraining and
Fine-Tuning

We first select a pretrained BERT model for each
dataset. Table 2 shows the best F1 score on the test
data for CoNLL2003 and BC5CDR datasets, using
pretrained BioBERT and BERT.

CoNLL2003 BC5CDR
BERT 91.4 84.9

BioBERT 89.1 88.2

Table 2: F1 score on test data for CoNLL2003 and
BC5CDR datasets, using different pretrained models
BioBERT and BERT. Best performance is observed
when the domain for pretraining matches that of the
downstream task.

Similar to previous work (Lee et al., 2020; Guru-
rangan et al., 2020), best performance is observed
when the domain for language model pretraining
matches that of the downstream task. For further ex-
periments, we choose pretrained BERT model for
CoNLL2003 dataset and BioBERT for BC5CDR
dataset.

3.2 Effect of Sample Size

Next, we fine-tune a BERT language model on the
randomly down-sampled datasets of different size,
and the F1 performance in entity extraction on the
test split is summarized in Figure 1. For sample
size below 200 sentences, the model performance
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Figure 1: Top: performance (micro F1) in entity ex-
traction on the test split for random selection of the
training data subset of different sample sizes (number
of sentences). The shading represent 95% confidence
interval over 8 different runs using the same data and
same training parameter. To reach F1 score of 80%,
only 150 and 300 sentences are needed for BC5CDR
and CoNLL2003 dataset, respectively. Bottom: F1 per
NER class as a function of the number of tokens tagged
per class. We observe a difference in performance be-
tween the NER classes, which cannot be explained by
the number of respective tokens in the training set.

increases very fast . Above 200 sentences, the in-
crease in F1 score slows down when more training
examples become available.

Different fine-tuning runs show very low vari-
ance (shown as shaded band in Figure 1). The
variance, however, increases as the sample size
decreases, as expected.

Within each sample, the number of observations
for each entity class may be different from each
other. Would the same scaling hold for each entity
class? In other words, can the differences in F1
score per class be explained by the differences in
the number of observations? Figure 1 plots F1
score per class as a function of number of tokens
tagged with that class. We observe that although
NER classes with less observations show lower F1
score than those with a larger number of observa-
tions, the curves per class do not fall on the same
line. This suggests that the difference in the num-
ber of observations is not the only reason for the
differences in F1 per NER class.

Furthermore, for CoNLL2003, the F1 score for
MISC entities shows the lowest value for all sample

sizes. The MISC class has the lowest number of
observations (see also Table 1), which causes the
lower F1-MISC, which in turn reduces the overall
F1 score.

3.3 Effect of Sample Seed

In this experiment, we empirically investigate if
fine-tuning on different training samples results in
similar performance.

10 different random samples of size 50 are gen-
erated, following Section 2.3, and F1 performances
of the BERT models fine-tuned on the different
samples are reported in Table 3. 7 to 8 points differ-
ence in F1 score observed between best and worst
random samples, which is much higher than the
variations between different runs of the same sam-
ple. The difference is the highest for the lowest
sample size, suggesting the importance of sam-
pling optimization, especially when annotated data
is limited.

3.4 Training Instance Selection

The large difference in model performance between
different random training samples raises the pos-

BC5CDR
sample size 50 150
variation runs std 1.3 0.5
variation runs min-max 3.4 1.4
worst random 66.6 79.3
best random 74.4 81.3
best kernel density 78.5 83.4

CoNLL2003
sample size 50 150
variation runs std 2.0 1.3
variation runs min-max 5.3 3.5
worst random 61.6 73.5
best random 70.8 78.2
best kernel density 71.6 75.6

Table 3: F1 score on test split for CoNLL2003 and
BC5CDR datasets, finetuned on different training sam-
ples (random or selected via our proposed method) of
size 50 and 150. The best random sample shows up to 8
points higher F1 than the worst random sample, which
is much higher than the variations between 8 different
runs of the same sample. The sample guided by kernel
density (see section 3.4) improves further over the best
random sample.
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sibility to improve training instance selection. In
order to identify the key features that differentiate
a "good" random sample from a "bad" one, we first
investigate several potential features to characterise
the different random samples, before selecting the
two most differential features. Finally, we propose
a sampling strategy guided by the identified key
features.

Identifying Key Features
Since the goal is to select training instances be-
fore annotation, we only include features that can
be computed without labeled data. Three types
of features are investigated for characterising the
training examples. (1) Descriptive statistics includ-
ing sentence-length and coverage over different
documents. (2) "Fluency" measures include per-
plexity and pseudo-perplexity (Salazar et al., 2020)
for masked language model like BERT, which are
computed by masking tokens one by one. (3) Di-
versity measures as recommended in Mccarthy and
Jarvis (2010).

The most differentiating features turn out to be
sentence length (number of tokens) and pseudo-
perplexity, while all three diversity measures are
very similar across different samples. Thus we
omitted diversity measures in this study and leave
it to future research.

Figure 2 top row shows median sentence-length
per random sample vs median pseudo-perplexity,
where the coloring represents F1 score on the eval-
uation split when model is trained on this random
sample. Fine-tuning model on samples on the pe-
riphery tend to result in higher F1 score than those
in the center.

Training Instance Selection
2-dimensional kernel density estimation is used
to capture the observed relation between sentence
length, pseudo-perplexity and F1 score (Figure 2
bottom). We then proceed to generate training in-
stances based on the kernel density profile3. Dif-
ferent sampling ratios are tested, and the best per-
forming setting is to sample 85% of the training
instances from the 15% sentences at the lowest den-
sity. The results on the improved training sample
can be found in Table 3.

For the BC5CDR dataset, the best sampling
achieves F1 of 78.5 and 83.4 for sample size of
50 and 150, respectively. Using the relation in

3We release all code for future studies at
https://github.com/tugraz-isds/kd

Figure 2: Top: Median sentence-length per random
sample vs median pseudo-perplexity, where the coloring
represents F1 score on the evaluation split when model
is trained on this random sample. Fine-tuning model on
samples on the periphery result in higher F1 score than
those in the center. Bottom: Sentence-length vs pseudo-
perplexity for all training samples, colored by kernel-
density. The random samples with higher F1 scores have
median pseudo-perplexity and median sentence length
values that are located around the periphery, i.e. the
lower density area, especially for the BC5CDR dataset.

Figure 1, this level of F1 is equivalent to the perfor-
mance of a random sample with size 120 and 400,
respectively. In other words, a smart sampling is
worth more than twice as many training examples.

For the CoNLL2003 dataset, the F1 score of the
optimized sample does not consistently outperform
random sampling. Possibly because the Gaussian
kernel density estimator does not fit very well to
the map with pseudo-perplexity vs sentence length.
In addition, the CoNLL2003 dataset shows larger
variation over different finetuning runs, and con-
tains sentences that are not as "clean" as those in
the BC5CDR dataset. For instance, sentences like
"4-6 7-6 ( 7-4 )" or "—————–".

Compared to the full training set, our best sample
with sample size 150 is only 5 points lower in F1,
albeit with less than 4% of training data size.

The optimised sampling can also be intuitively
understood: (1) longer sentences have higher
chance to contain more NER tagged tokens; (2) in-
stances with higher perplexities offer more "learn-
ings" for the pretrained model; (3) samples that
weigh more on rare instances are apparently more
enabling for BERT language models.

We notice that although our best sampling leads

86



to 2 - 4 points improvement in F1 over the best
random samples, our empirical way for sample
selection is possibly only at a local maximum.

Training instance selection work flow
Based on this result, our recommended workflow
for training instance selection is summarized in
Figure 3.

Figure 3: Recommended workflow for annotating cus-
tomised dataset.

To select the best sample for annotation, first of
all, pseudo-perplexity and sentence length should
be calculated for all unlabelled text. A kernel den-
sity estimator can then be used to fit the relation.
Finally, the optimised samples can be drawn weigh-
ing on kernel density, before being annotated.

We notice that the proposed workflow differs
from typical active learning (Olsson, 2009) ap-
proaches, in the sense that no active feedback or
interaction with oracle is included. It is thereby a
complementary simpler approach for training in-
stance selection.

4 Conclusions

It can be shown that domain-specific pre-trained
BERT performs well even when fine-tuned only
on small amounts of training samples. Initial in-
crease in amount of data leads to large performance
gain before saturating at around 200 training exam-
ples. For small data sizes, the F1 scores of different
random samples vary greatly.

A sampling strategy is proposed in this work
which uses kernel density estimate to balance the
instance selection between pseudo-perplexity and
sentence length.

The F1 scores of BERT models fine-tuned on
training sets constructed using our method are

equivalent to the same model fine-tuned on a ran-
dom sample using twice as many training exam-
ples.

This work provides practical guidelines for an-
notation requirements, namely, data size and sam-
pling strategy. Given the reduced number of train-
ing instances needed due to sampling optimisation,
data annotation becomes less expensive and can be
achievable in more use cases.
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Abstract

Multimodal Neural Machine Translation is fo-
cusing on using visual information to translate
sentences in the source language into the target
language. The main idea is to utilise informa-
tion from visual modalities to promote the out-
put quality of the text-based translation model.
Although the recent multimodal strategies ex-
tract the most relevant visual information in
images, the effectiveness of using visual infor-
mation on translation quality changes based on
the text dataset. Due to this, this work stud-
ies the impact of leveraging visual information
in multimodal translation models of ambigu-
ous sentences. Our experiments analyse the
Multi30k evaluation dataset and calculate ambi-
guity scores of sentences based on the WordNet
hierarchical structure. To calculate the ambi-
guity of a sentence, we extract the ambiguity
scores for all nouns based on the number of
senses in WordNet. The main goal is to find
in which sentences, visual content can improve
the text-based translation model. We report the
correlation between the ambiguity scores and
translation quality extracted for all sentences in
the English-German dataset.

1 Introduction

In recent years, Neural Machine Translation (NMT)
model is widely used in translation tasks and repre-
sents remarkable performance in terms of fluency
and precision compared with the previous gener-
ations of machine translation. Recurrent Neural
Network (RNN)-based NMT with Attention mecha-
nism has found broad application in different fields
of NLP tasks such as machine translation. The
transformer model as a Self-attention based model
has been introduced by Google in 2017 as a new
architecture for NMT (Vaswani et al., 2017). The
self-attention mechanism uses cross-lingual atten-
tion that allows the input words to interact with
each other (self) and find out which one should
pay more attention to (attention). In addition to

the mechanism of cross-lingual attention, the trans-
former model uses a stacked self-attention layer
that follows with a point-wise feed-forward compo-
nent. Recently many studies in machine translation
have been increasingly focusing on using visual
content well as textual to improve the translation
quality. Therefore, Multimodal Neural Machine
Translation (MNMT) as a subarea of NMT has
been introduced to use visual information extracted
from other modalities such as speech, image or
video to translate a sentence in a source language
into the target language.

MNMT is an area of research that plays an im-
portant role in machine translation tasks since mul-
timodal resources have been increasingly used in
deep learning techniques. MNMT tries to extend
the ability of the NMT models by taking visual
context such as images as an additional input to
better translate the source text. The main idea be-
hind this is that the textual context does not pro-
vide sufficient information for the text-based NMT
model in some situations to translate ambiguous
sentences (ambiguous terms or grammatical gen-
der). Due to this, visual information can enrich
text-best NMT systems by adding extra informa-
tion to disambiguate the input words and provide
correct translations on the target side.

One of the main ideas of using multimodality in
Machine Translation is that visual information can
help the textual context to find the correct sense of
ambiguous words in the translation process of the
source sentence. For example, the word “track” in
the English sentence “A man is performing a trick
on a track” is an ambiguous word and could have
at least two different translations in German – (1)
“Ein Mann führt einen Trick auf einer Strecke aus”,
and (2) “Ein Mann führt einen Trick auf einem
Bahngleis aus”. Given the word “track”, the con-
text does not provide enough information to dis-
ambiguate and translate it correctly. Therefore,
multimodal resources such as images can guide the
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translation system to select the correct sense based
on the visual information. Word Sense Disambigua-
tion (WSD) is widely studied in different natural
language processing tasks. WSD analyses given
the context of an ambiguous word to assign the
correct sense based on a pre-defined sense net for
words. Visual Sense Disambiguation (VSD) as a
modified version of WSD use visual context instead
of textual to disambiguate words. Although disam-
biguation of word sense can be done directly by Ma-
chine Translation models, research on Multimodal
Machine Translation more focuses on analysing
of contributions of each modality to disambiguate
words in the translation process.

In this work, we focus on identifying ambiguous
sentences and leverage therefore the WordNet hier-
archical structure to calculate an ambiguity score
for each sentence. This is then used to study a
correlation between ambiguity and translation eval-
uation scores. Analysing the lexical ambiguity and
translation quality allowed us to identify sentences
that are more challenging in the translation process
and most likely visual content can help the text-
based NMT to translate sentences more accurate.

2 Related Work

Multimodal Machine Translation is a new trend in
machine translation tasks that aims to create mul-
timodal frameworks to use information from vi-
sual modality as well as text context (Specia et al.,
2016). Different practices were used for the vi-
sual part of the MMT framework. The common
approach is to extract visual information by using
Convolutional Neural Networks (CNN) and then in-
tegrate this information with textual features (Yao
and Wan, 2020). Many MMT models were de-
veloped based on the Transformer approach. The
transformer approach extracts the relationships be-
tween words in the source and target sentences
by using a multihead self-attention mechanism
(Vaswani et al., 2017)

In some studies, the global image features are
used in the encoder beside word sequences to use
both types of features in the decoding stage (Huang
et al., 2016) or used to initialise the hidden param-
eters of the encoder and decoder in RNN (Calixto
and Liu, 2017). (Caglayan et al., 2017) use ele-
mentwise multiplication to initialise hidden states
of encoder/decoder in the attention-based model.
(Zhou et al., 2018) links visual and correspond-
ing text semantically by using a visual attention

mechanism.
Despite successfully using multimodal informa-

tion in MMT, recent studies show that most of
the information in the image is not related to the
text while the translation process and when there
is limited textual information, visual content plays
more important for the translation model (Caglayan
et al., 2019). The studies use visual features by
focusing on relative importance among different
modalities. (Lala et al., 2018) introduced a mul-
timodal cross-lingual word sense disambiguation
model based on Multimodal Lexical Translation
Dataset (MLTD) (Lala and Specia, 2018) to gen-
erate contextually correct translations for the am-
biguous words. MLTD includes a list of words
of the source language with multiple translations
in the training set of Multi30k. (Ive et al., 2019)
introduced a translate-and-refine mechanism by us-
ing images in a second stage decoder to refine the
text-based NMT model in the ambiguous words
listed in MLT dataset. (Calixto et al., 2019) use
a latent variable model to extract the multimodal
relationships between modalities. Recent methods
try to reduce the noise of visual information and
select visual features related to the text. (Yao and
Wan, 2020) use a multimodal transformer-based
self-attention to encode relevant information in im-
ages. To capture various relationships, (Yin et al.,
2020) propose a graph-based multimodal fusion
encoder.

3 Experimental Setup

This section provides insights on the dataset used in
this work, neural architectures and the translation
evaluation metric BLEU.

3.1 Multi30K Dataset

Multi30K (Elliott et al., 2016) is an extended ver-
sion of the Flickr30K dataset that includes images
and paired descriptions expressed by one English
sentence and translated sentences in multiple lan-
guages. Firstly, the German translation was added
to the dataset (Young et al., 2014) and then it ex-
tended to French and Czech (Elliott et al., 2017)
(Barrault et al., 2018). Many recent models in
MNMT have focused on Multi30K as it provides an
image for each sentence in English and three trans-
lation directions, i.e. in German, French and Czech.
In this study, the evaluation dataset of Multi30k
contains 1,000 instances.
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3.2 Text-based NMT

OpenNMT (Klein et al., 2018) is used to train the
text-based NMT model on a general En-De dataset.
The model used a 6-layer transformer mechanism
for both the encoder and decoder stage. We trained
the model for 50,000 steps on a general dataset
and set the parameters of the model to the original
implementations of OpenNMT.

As the text-based NMT system cannot leverage
the visual information, and to ensure a broad lex-
ical and domain coverage of our text-based NMT
system, we merged existing parallel for the English-
German language pair from the OPUS web page1

into one parallel corpus, i.e., Europarl (Koehn,
2005), DGT (Steinberger et al., 2014), EMEA,
KDE4, OpenOffice (Tiedemann, 2009), OpenSub-
titles2012 (Tiedemann, 2012), and randomly se-
lected 10 million sentences for our training step.

3.3 Doubly-attentive MNMT

For the visual side, we used the model that pro-
posed in (Zhao et al., 2020) to apply semantic im-
age region features2 for MNMT. This model is
based on the Doubly-attentive mechanism (Cal-
ixto and Liu, 2017) to integrate visual and textual
features by applying 100 semantic image features
with a dimension of 2,048 at each time step. The
hidden state dimension of the visual model is 500
for both 2-layer GRU encoder and 2-layer GRU
decoder. The work also set the dimension of the
source word embedding to 500, batch size to 400,
beam size to 5, text dropout to 0.3, and image re-
gion dropout to 0.5. After training the model for
25 epochs using stochastic gradient descent with
ADADELTA (Zeiler, 2012) and a learning rate of
0.002, the model of epoch 16 has been selected
based on comparing BLEU scores of the final mod-
els.

3.4 Evaluation Metric

We report the automatic evaluation based on BLEU
for the automatic evaluation. BLEU (Papineni et al.,
2002) is calculated for individual translated seg-
ments (n-grams) by comparing them with a dataset
of reference translations. For this work we use the
sacrebleu3 library (Post, 2018).

1https://opus.nlpl.eu/
2https://github.com/Zhao-Yuting/

MNMT-with-semantic-regions
3https://github.com/mjpost/sacrebleu

3.5 Princeton WordNet
Princeton WordNet (Fellbaum, 1998) is a manu-
ally created resource that has been used in many
different tasks and applications across linguistics
and natural language processing. WordNet’s hier-
archical structure makes it a useful tool for many
semantic applications and it also plays a vital role
in various deep learning approaches (Rychalska
et al., 2016).

3.6 Correlation Coefficients
The correlation coefficient is a measure to deter-
mine the relationship between two variables (Janse
et al., 2021). In correlated data, the change in
the magnitude of one variable leads to a change
in the magnitude of another variable either in the
same or in the opposite directions. Pearson product-
moment correlation is a typical type of correlation
for a linear relationship between two continuous
variables. The range of the correlation coefficient is
between -1 and +1, where 0 shows that there is no
correlation between the two variables. The correla-
tion coefficient near +1 and -1 shows a strong, same
or opposite, correlation respectively. The equation
for the correlation coefficient is:

Correl(X,Y ) =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑
(y − ȳ)2

where x̄ and ȳ are the sample means of array X
and Y respectively.

4 Methodology

In this section, we explain our methodology to cal-
culate the ambiguity scores for each sentence based
on the hierarchical structure of WordNet. To find
a meaningful relationship between ambiguity and
translation quality, we analyse the correlation func-
tions between different ambiguity scores and the
translation evaluation metric BLEU. Our focus in
this work is on the inherited structure of English
nouns in WordNet. Each noun in WordNet can
be defined as a set W of pairs (w,s) where w is a
word in that language and a sense s is possible set
of meanings (synonyms or synsets) for the word
w. Table 1 shows all synset entries (11) for the
noun track in WordNet. The inherited structure in
WordNet is a hierarchical structure to organise the
semantic relations of synsets. Furthermore, synsets
in WordNet have different hierarchical structures
from each other including hyponymy and hyper-
nymy. Figure 1 shows the WordNet inherited struc-
ture of synset entries for the word track. Entity
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path, track, course a line or route along which something travels or moves
lead, track, trail evidence pointing to a possible solution
track a pair of parallel rails providing a runway for wheels
racetrack, racecourse, raceway, track a course over which races are run
cut, track a distinct selection of music from a recording or a compact disc
track, caterpillar track, caterpillar tread an endless metal belt on which tracked vehicles move over the ground
track, data track one of the circular magnetic paths on a magnetic disk that serve ... for writing and reading data
track a groove on a phonograph recording
track, rail, rails, runway a bar or pair of parallel bars of rolled steel making the railway along which railroad ... can roll
track, cart track, cartroad any road or path affording passage especially a rough one
track, running the act of participating in an athletic competition involving running on a track

Table 1: Synset entries (11) for the word track in the Princeton WordNet.

Entity

Abstraction Physical Entity

ObjectCommunicationPhysical Feature Attribute

WholeLocationWritten 
Communication ShapeCognition Event

Information

Evidence

Act

Activity

Diversion

Sport

Line

Track and Field

Artifact

Track

Track

Track Facility

Course

Track

Writing

Section

Passage

Excerpt

Track

Line

Curve

Closed Curve

Simple Closed Curve

Loop
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Track

Path

Track
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Figure 1: Hierarchical structure of the WordNet entry track.

(level 0), is the root node for all synset entries in
WordNet. Each path between the root node and
a synset entry has a different length that shows
the different abstraction level. For example of the
word track, min_length has a path length of
4, with six unique abstract concepts (Information,
Act, Writing, Line, Solid, Artifact). On the other
hand, min_length-1 at the path length of 3, has
six concepts as well, i.e. Cognition, Event, Writ-
ten Communication, Shape, Location, Whole. The
number of all synsets for track in WordNet is 11.
After extracting this information for each word,
we use the sum and multiply functions on all
nouns of a sentence to calculate the overall ambigu-
ity score (see example in Table 2 for the sentence
Dog runs at a track). We normalised these scores
by dividing them by the number of content words
(nouns with more than one synset in WordNet) of

the sentence to minimise the effect of sentence
length on our experiments.

5 Results

This section provides the results of our experi-
ments. After calculating ambiguity and BLEU
scores (NMT, MNMT) for each sentence in the
test set, we analysed the correlation coefficients
between ambiguity and translation quality scores
to find a meaningful relationship between them. To
better analyse the correlation between the sentence
ambiguity and translation quality, we grouped them
into sets of 50 sentences (resulting in 20 groups)
after ranking them by the ambiguity score. The
corpus BLEU scores for NMT and MNMT on the
evaluation dataset in En-De are 30.66 and 35.80
respectively.

Table 3 illustrates the correlation score (see Sec-
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Approach # of Concepts # Nouns Ambiguity

Sum(synsets) 7 + 11 2 9.0
Sum(min_length) 7 + 10 2 8.5

Sum(min_length-1) 6 + 6 2 6.0

Multiply(synsets) 7 * 11 2 38.5
Multiply(min_length) 7 * 10 2 35.0

Multiply(min_length-1) 6 * 6 2 18.0

Table 2: Examples of calculating the ambiguity score
based on the number of concepts of each word, i.e. dog
and track, at the certain hierarchical level, normalised
with the set of nouns in the sentence.

Approach NMT MNMT

Sum(Synsets) 0.3987 0.3841
Sum(min_length) 0.2226 0.0445

Sum(min_length-1) 0.1017 -0.0453

Multiply(Synsets) -0.5511 -0.6744
Multiply(min_length) -0.5846 -0.6020

Multiply(min_length-1) -0.5292 -0.6039

Table 3: Correlation between the calculated ambiguity
scores and BLEU metric for NMT and MNMT on 20
groups.

tion 3.6), ambiguity scores and the BLEU evalua-
tion metric for the approaches used to calculate the
ambiguity scores of the sentences. As seen in the
table, the best correlations for NMT and MNMT
are obtained by the Multiply(min_length)
and Multiply(Synsets) approaches respec-
tively. Due to this, we focused on the Multiply
approaches and provide graphs, which illustrate the
correlation between the ambiguity and translation
quality.

As seen in Figure 2 the ambiguity score cal-
culated by the WordNet hierarchy correlates with
the translation quality, i.e., if the ambiguity of a
sentence is high, the translation quality in terms
of BLEU is low. On the other hand, if the am-
biguity of a sentence is low, the translation qual-
ity in terms of the BLEU metric improves. This
can be seen for all methods used to calculate
the ambiguity, i.e. synsets, min_length,
min_length-1. In addition to that, the graphs
also illustrate the better performance of the MNMT
system (orange points) compared to the text-based
NMT system (blue points).

6 Conclusion

Recent studies in Multimodal Machine Translation
focused on using visual information to improve the
quality of translation tasks. One of the main chal-
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Figure 2: Correlation representation between the Multi-
ply approach’s ambiguity scores and the BLEU metric
for NMT and MNMT on 20 groups.

lenges for the translation systems is to find a correct
translation in terms of the context used. Despite the
progress of research in this area, the performance
of multimodal translation systems is more related
to the quality of visual content which is used along
with textual dataset. In this study, we analysed
different approaches to calculate the ambiguity of
the sentence to find a correlation between sentence
ambiguity and the translation quality in terms of
the BLEU metric. We tested different approaches
to calculate the ambiguity and observed that multi-
plying the number of entries at the minimum length
level of the WordNet hierarchy for each noun pro-
vided the best correlation to the evaluation metric
for each sentence. Within our future work, we plan
to consider the frequency and further linguistic fea-
tures of WordNet synsets. In addition to that, we
plan to leverage the Polylingual Wordnet (Arcan
et al., 2019), a large multilingual WordNet in more
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than 20 European languages, to calculate the lexical
ambiguity beyond English. Furthermore, we plan
the incorporation of ImageNet (Deng et al., 2009),
which has an image dataset organised according to
the WordNet hierarchy.
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Abstract

Dialogue systems without consistent responses
are not fascinating. In this study, we build a
dialogue system that can respond based on a
given character setting (persona) to bring con-
sistency. Considering the trend of the rapidly in-
creasing scale of language models, we propose
an approach that uses prompt-tuning, which
has low learning costs, on pre-trained large-
scale language models. The results of auto-
matic and manual evaluations in English and
Japanese show that it is possible to build a di-
alogue system with more natural and person-
alized responses using less computational re-
sources than fine-tuning.

1 Introduction

Large dialogue corpora used to train dialogue sys-
tems using neural network models contain utter-
ances from various speakers. This has the disad-
vantage that the trained system is often inconsistent
in the generated utterances (Li et al., 2016b). For
example, after the system says, “I am from Tokyo,”
it might say, “I am from Kyoto.”

We aim to build a dialogue system that can re-
spond based on a persona to avoid inconsistent
utterances. A simple method of giving a persona
to a model can be to concatenate the persona to
the model’s input in natural language (Zhang et al.,
2018). However, this method is not suitable be-
cause the more persona information is added, the
longer the input text becomes. Therefore, we pro-
pose to freeze all parameters of a pre-trained lan-
guage model and add a new fixed-length prompt
before the input token sequence to embed the per-
sona information. Specifically, only the embedding
vectors of the added prompt are optimized using
a dialogue corpus in which utterances are made
based on the persona.

We conduct experiments on two languages: En-
glish and Japanese. Automatic and manual evalu-
ations show that our method can build a dialogue

system capable of natural responses based on a
persona. Since our approach does not update the
parameters of the pre-trained model, it can reduce
the computational cost required for training. We
also show that it is possible to build a personalized
dialogue system with even a small dataset consist-
ing of hundreds to thousands of utterance-response
pairs.

2 Related Work

2.1 Prompt-Tuning

With the advent of pre-trained models such as
BERT (Devlin et al., 2019) and T5 (Raffel et al.,
2020), a method that adapts a pre-trained model to
a target task by fine-tuning has become mainstream.
However, as the scale of models grows and the cost
of fine-tuning increases, methods for adapting a
pre-trained model to a target task without updating
their parameters are gaining attention.

Brown et al. (2020) proposed a zero/few-shot
learning method based on language models with
manually created task descriptions and zero/a few
task examples (collectively called prompt). Al-
though there are some studies on improving this
method (Reynolds and McDonell, 2021; Zhao et al.,
2021), they are inferior to fine-tuning in terms of
accuracy.

Prompt-tuning is a method for automatically op-
timizing a prompt without creating it by manual
labor. There are two kinds of methods in prompt-
tuning: one is to select the best words from a dis-
crete vocabulary (Shin et al., 2020), and the other
is to optimize continuous embedding vectors (Qin
and Eisner, 2021; Li and Liang, 2021; Lester et al.,
2021; Liu et al., 2021; Vu et al., 2021). Prefix-
tuning (Lester et al., 2021; Li and Liang, 2021)
adds a sequence of tokens, called prefix tokens,
to the beginning of the input and optimizes only
their embedding vectors. There is also a study on
multimodal prompt-tuning for images and natural
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language (Tsimpoukelli et al., 2021).

2.2 Persona-Based Dialogue Systems
According to Roller et al. (2021), for dialogue sys-
tems to interact more naturally with humans, it
is essential to consider three perspectives: having
a consistent personality, having knowledge, and
having emotions and empathy for the interlocu-
tor. Among these three perspectives, we focus on
personality because we believe that it is the most
important to generate consistent responses.

The Persona-Chat dataset (Zhang et al., 2018) is
a dataset created with the goal of adding personality
to a dialogue system. It consists of multi-turn dia-
logues between two crowdworkers, each of whom
is given approximately five persona sentences,
which describe their character settings. There are
1,155 personas in the Persona-Chat dataset. There
are two types of persona sentences per persona:
original, which the worker used in the dialogue,
and revised, which is a paraphrased version of the
original. In the experiments conducted by Zhang
et al. (2018), models were trained using all the
data in the Persona-Chat dataset, which contains
utterances based on various personas. On the other
hand, our method uses dialogue data uttered based
on only one persona to train models. There is also a
Japanese version of the Persona-Chat dataset, JPer-
sonaChat (Sugiyama et al., 2021). Other dialogue
corpora that contain speaker persona information
include PersonalDialog (Zheng et al., 2019) and a
corpus of dialogue data from Reddit (Mazaré et al.,
2018). Zheng et al. (2019) proposed a method
to add encoded persona information to the input
before it is fed into a seq2seq model.

3 Method

This section describes our proposed method. The
detailed setup for our experiments is described in
Sections 4.1 and 4.2.

3.1 Proposed Model
We propose a Transformer-based model with an
additional embedding layer for tokens that embed
persona information. We refer to these tokens as
persona info tokens. The architecture and input-
output relation of the proposed model are shown in
Figure 1.

3.2 Datasets
Conversations in daily life are not always related to
personal information (Song et al., 2021). To allow

Figure 1: Architecture and input-output relation of the
proposed model. All parameters of the pre-trained lan-
guage model and its embedding layer are frozen. Only
the newly added embedding layer for persona info to-
kens is tuned.

the model to generate not only utterances that are
related to the persona but also utterances that are
not related to the persona, we make a dialogue
dataset that consists of two types of datasets. The
first is a dialogue dataset where each utterance is
based on the persona, and the second is a dialogue
dataset that is not related to the persona.

3.3 Training

The newly added embedding layer embeds persona
info tokens, and the embedding layer of the pre-
trained language model embeds each pair of ut-
terance and response (which consists of tokens al-
ready generated during training). These embedding
vectors are combined and then input into the model.
During training, the cross-entropy loss is calculated
for the output tokens of the response sentence, and
only the parameters of the embedding layer for the
persona info tokens are updated.

The embedding layer for the persona info tokens
is initialized with the persona sentences included
in the Persona-Chat dataset. These sentences are
embedded into vectors by the embedding layer of
the pre-trained language model and then used for
initialization. If the number of the tokens of the per-
sona sentences is less than the length of the persona
info tokens, the persona sentences are repeatedly
arranged until the number is satisfied.

4 Experiments

Based on the method in Section 3, we build a
personalized dialogue system. We used Hugging
Face’s Transformers to build the system and the
NVIDIA A100 SXM4 GPU with a GPU memory
size of 40 GB. The main experiments are conducted
in English, and the results of additional experi-
ments in Japanese are included at the end of this
section.
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4.1 Datasets Setup

We use the Persona-Chat dataset1 and DailyDia-
log (Li et al., 2017)2 for our experiments in En-
glish.

4.1.1 Training Datasets

First, the multi-turn dialogues in the Persona-Chat
dataset are divided into two utterances of one round
trip. We refer to this pair of two utterances as a
dialogue pair. The dialogue pairs are aggregated
according to the persona type given to the respon-
der. There are 1,155 personas in the Persona-Chat
dataset, but we use the three personas with the most
dialogue pairs in our experiments. The reason for
this is that we intend to experiment with a relatively
large number of dialogue pairs even in the small
dataset. The number of dialogue pairs based on
these three personas is 185, 167, and 166, respec-
tively. Three models corresponding to the three
personas are trained and evaluated for each exper-
imental setup. The aggregated dialogue pairs are
divided into training and evaluation pairs in a ratio
of 9:1.

The Persona-Chat dataset does not contain many
short utterances or utterances unrelated to persona.
To add utterances that are short and not related
to persona to the dataset, we also use dialogue
pairs contained in DailyDialog whose topic is Re-
lationship,3 which contains many such utterances.
Among them, dialogue pairs in which the lengths
of both the utterance and the response are less than
50 characters are mixed into the training datasets in
a certain ratio. Based on the results of preliminary
experiments, we determined the ratio of dialogue
pairs added from DailyDialog to the number of
those obtained from the Persona-Chat dataset as
1:1. We call this the ratio of the training datasets.

4.1.2 Evaluation Datasets

We made two datasets for evaluation: the persona
eval dataset and the general eval dataset. The per-
sona eval dataset is 10% of the 9:1 dataset described
in Section 4.1.1. The general eval dataset consists
of dialogue pairs obtained from DailyDialog under

1https://github.com/facebookresearch/
ParlAI/tree/main/parlai/tasks/
personachat

2https://aclanthology.org/I17-1099/
3Each dialogue is assigned a topic. There are ten topics:

Attitude & Emotion, Culture & Education, Finance, Health,
Ordinary Life, Politics, Relationship, School Life, Tourism,
and Work.

Training Method Model Dist-1 Dist-2
Fine-Tuning (added)

GPT2-XL
0.199 0.526

Fine-Tuning (none) 0.210 0.568

Prompt-Tuning 0.177 0.494
GPT-J-6B 0.213 0.595

Table 1: Results of automatic evaluation by distinct-1, 2.
The prompt-tuned GPT-J-6B model generates the most
diverse responses. “Added” and “none” mean whether
the persona sentences are added to the input sentence or
not.

the same conditions as in Section 4.1.1, but not
used for training.

4.2 Model Setup

To compare our prompt-tuning model with fine-
tuning, we use the datasets in Section 4.1 and tune
the pre-trained models of GPT series. We use two
model sizes: GPT2-XL (1.5B parameters) and GPT-
J-6B (Wang and Komatsuzaki, 2021). Fine-tuning
of the GPT-J-6B model is not tested due to the lack
of GPU memory.

The hyperparameters for prompt-tuning are
based on the settings of (Lester et al., 2021). The
length of the persona info tokens was set to 200
based on the results of preliminary experiments.
The strategy for generating the response sentences
is the greedy search. The number of epochs was
set to a value such that the loss during learning
converges. For fine-tuning, we experimented with
two methods: one is to input only dialogue pairs,
and the other is to add persona sentences before the
dialogue pair’s utterance and then input it into the
model. Other hyperparameter values are given in
Appendix B.

4.3 Results

We input the utterances of dialogue pairs from the
evaluation datasets into the trained models. We
automatically evaluate the diversity of the gener-
ated responses and manually assess whether the
responses are natural and based on the persona.

4.3.1 Automatic Evaluation
We evaluate the diversity of the generated responses
by distinct-N (Li et al., 2016a). The values of
distinct-1 and distinct-2 are shown in Table 1. The
evaluation values are the average of all the gener-
ation results of the persona, general eval datasets
from each model corresponding to the three types
of personas. The results show that the GPT-J-6B
model trained by prompt-tuning generates the most
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Eval Dataset Training Method Model Fluency Engagingness Relevance

Persona Eval
Fine-Tuning (none)

GPT2-XL
3.52 (1.26) 3.70 (1.22) 3.30 (1.27)

Prompt-Tuning
3.82 (1.06) 3.74 (1.17) 3.62 (1.02)

GPT-J-6B 3.90 (0.90) 3.98 (0.95) 3.82 (0.96)

General Eval
Fine-Tuning (none)

GPT2-XL
3.93 (1.19) 3.82 (1.20) 3.77 (1.16)

Prompt-Tuning
4.04 (1.01) 3.81 (1.19) 3.96 (1.13)

GPT-J-6B 3.98 (1.03) 3.80 (1.01) 3.89 (1.05)
Human 4.31 (1.07) 4.25 (1.06) 4.36 (0.92)

Table 2: We evaluated the generated responses on a 5-point scale for fluency, engagingness, and relevance. We asked
five workers to answer each question, and the averages of all answers and standard deviations (in parentheses) are
shown. The prompt-tuned GPT-J-6B model scored highest in all aspects in the persona eval dataset. No significant
differences were found in the general eval dataset.

Eval Dataset Training Method Model [1,2) [2,3) [3,4) [4,5]

Persona Eval
Fine-Tuning (none)

GPT2-XL
0 5 33 12

Prompt-Tuning
0 7 41 2

GPT-J-6B 0 2 29 19

General Eval
Fine-Tuning (none)

GPT2-XL
0 11 105 34

Prompt-Tuning
0 8 75 67

GPT-J-6B 0 1 91 58

Table 3: The generated responses were rated on a 5-point scale for persona consideration, and their distribution
is shown. 1 is inconsistent with the persona, 3 is irrelevant to the persona, and 5 is in line with the persona. [1, 2)
means the number of sentences scored between 1 and 2, including 1. In each setting, the number of samples from
the persona eval dataset is 50 and that from the general eval dataset is 150.

diverse responses. In fine-tuning, we also find that
the results are better when persona sentences are
not added to the input, similar to the experimental
results using the seq2seq model in the experiments
by Zhang et al. (2018).

4.3.2 Manual Evaluation

We use Amazon Mechanical Turk to manually
evaluate whether the generated responses are nat-
ural and persona-based. Following the method of
Zhang et al. (2018), the responses are rated on a
5-point scale on four aspects: fluency, engaging-
ness, relevance, and persona consideration. We ask
five workers to answer each question. In each set-
ting, the number of samples from the persona eval
dataset is 50 and that from the general eval dataset
is 150. An example of tasks given to workers is
shown in Appendix C.

The results of the first three aspects are shown
in Table 2. The human scores are taken from
the experiments by Zhang et al. (2018). In fine-
tuning, when persona sentences are added to the
input, the automatic evaluation results are worse
than when they are not, and thus we only evalu-
ate the models without persona sentences. From

Table 2, the manual evaluation results using the
persona eval dataset show that the prompt-tuned
GPT-J-6B model achieves the best scores in all as-
pects. This can be attributed to the fact that the
larger the model size was, the more knowledge
was stored in the model through pre-training, and
the more natural responses were generated by us-
ing this knowledge. Manual evaluation using the
general eval dataset did not produce a significant
difference. This is probably because most of the
utterances in the general eval dataset are short and
general, such as greetings, and the responses are
also short and simple sentences.

For persona consideration, the distribution of
the evaluation results is shown in Table 3, where 1
is inconsistent with the persona, 3 is irrelevant to
the persona, and 5 is in line with the persona. The
average score of persona consideration is calculated
for each generated response. Table 3 shows that
the majority of the generated responses are based
on personas.

Comparing fine-tuning and prompt-tuning with
the largest models that can be trained with a fixed
GPU memory size, we can say that prompt-tuning
can build a dialogue system with more natural re-
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Utterance Generated Response
are you tired ? i am a little tired.
cool , i am eating donuts . what do you do ? i am retired, i am a gym teacher. i used to teach gym.
how about the korean restaurant next to it ? i heard it’s very good.

i used to cook paella for a kitchen in spain . i love paella. that sounds great.
i bet it is a hard job to cook it right?

the tv news is reporting a bank robbery . i heard it on the radio. what a shock.

what do you like to do in your spare time ? i volunteer at a local soup kitchen,
helping people in need.

hi , i like to keep fit and work out 5 times a week i like to eat cheeseburgers
and watch war documentaries

stop producing cigarettes . i like the idea, but how can we do that?

Table 4: Response examples generated by the prompt-tuned GPT-J-6B model, which got the highest score in the
manual evaluation. We can see that both of responses based on the persona (e.g., the sixth response) and responses
unrelated to the persona (e.g., the first one) are generated.

Persona Sentence
i am a retired gym teacher.
i volunteer at a soup kitchen.
i was poor growing up.
cheeseburgers are my favorite food.
i like watching war documentaries.

Table 5: The persona used in the generated response
examples in Table 4.

Training Method Model Dist-1 Dist-2
Fine-Tuning (none) GPT2-XL 0.134 0.379

Prompt-Tuning 0.118 0.336
HyperCLOVA 0.106 0.322

Table 6: Results of automatic evaluation by distinct-1, 2
in experiments in Japanese.

sponses based on the persona.
Table 4 shows response examples generated by

the prompt-tuned GPT-J-6B model, which got the
highest score in the manual evaluation. These
responses are generated from the model trained
with the dialogue pairs based on persona sentences
shown in Table 5. We can see that training with
small training datasets of only a few hundred pairs
can produce a response with a natural and consis-
tent personality, as shown in Table 4.

4.4 Experiments in Japanese

For our Japanese experiments, we use two
datasets: JPersonaChat and JEmpatheticDia-
logues (Sugiyama et al., 2021).4 As in the En-
glish experiments, three personas are used, and the
number of dialogue pairs from JPersonaChat are
527, 525 and 525, respectively. To create training
datasets, the same process as in the English exper-
iments is used. Since most of the utterances in

4https://github.com/nttcslab/
japanese-dialog-transformers

JEmpatheticDialogues are shorter and more gen-
eral than those in JPersonaChat, we did not set any
conditions for adding the utterances from JEmpa-
theticDialogues to the training datasets. The ratio
of the training datasets is set to 1:10 based on the
results of preliminary experiments. For the models,
we use GPT2-XL5 with 1.3B parameters and Hy-
perCLOVA (Kim et al., 2021), a GPT3-like model
with 6.9B parameters.

In the automatic evaluation results shown in Ta-
ble 6, in contrast to the English experiments, Hyper-
CLOVA, which has a higher number of parameters,
tends to score lower. This can be attributed to the
fact that there were many instances in which Hyper-
CLOVA begins its response with back-channeling.

Table 7 shows the average scores for the three as-
pects within the manual evaluation results. For
both the persona eval dataset and general eval
dataset, the HyperCLOVA model with prompt-
tuning scored the highest. The distribution of per-
sona consideration is shown in Table 8. As in the
English experiments, many responses are based on
the persona and few are inconsistent with the per-
sona. Generated response examples are shown in
Appendix A.

5 Conclusion

We proposed a method for prompt-tuning a pre-
trained language model using dialogue data based
on a single persona. Automatic and manual evalua-
tions showed that we could construct a dialogue sys-
tem that can respond more naturally and persona-
based, with less computational resources than fine-
tuning. Compared to the generated responses in
English, those in Japanese look natural due to the

5https://huggingface.co/rinna/
japanese-gpt-1b
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Eval Dataset Training Method Model Fluency Engagingness Relevance

Persona Eval
Fine-Tuning (none)

GPT2-XL
3.81 (1.12) 3.63 (1.00) 3.81 (1.06)

Prompt-Tuning
3.68 (1.23) 3.67 (1.13) 3.71 (1.17)

HyperCLOVA 3.87 (1.11) 3.92 (0.98) 3.90 (1.08)

General Eval
Fine-Tuning (none)

GPT2-XL
4.01 (0.96) 3.82 (0.89) 3.82 (1.00)

Prompt-Tuning
3.99 (1.09) 3.68 (1.03) 3.92 (1.08)

HyperCLOVA 4.07 (1.01) 3.86 (0.95) 4.06 (0.99)
Human 4.31 (1.07) 4.25 (1.06) 4.36 (0.92)

Table 7: Results of manual evaluation of fluency, engagingness, and relevance for the generated responses in the
Japanese experiments. We asked five workers to answer each question, and the averages of all answers and standard
deviations (in parentheses) are shown. Prompt-tuned HyperCLOVA scored highest in all aspects on both datasets.

Eval Dataset Training Method Model [1,2) [2,3) [3,4) [4,5]

Persona Eval
Fine-Tuning (none)

GPT2-XL
0 5 105 40

Prompt-Tuning
1 14 84 51

HyperCLOVA 0 18 77 55

General Eval
Fine-Tuning (none)

GPT2-XL
0 8 122 20

Prompt-Tuning
0 14 115 21

HyperCLOVA 0 19 125 6

Table 8: Distribution of manually evaluated persona consideration in Japanese. In each setting, the number of
samples is 150 for both persona eval and general eval datasets.

larger persona dataset. In the future, this method
can be used not only to add personality to a dia-
logue system but also to build a dialogue system
to generate responses with emotions by making a
prompt for each emotion.

Acknowledgements

This work was supported by a joint research grant
from LINE Corporation.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Boseop Kim, HyoungSeok Kim, Sang-Woo Lee,
Gichang Lee, Donghyun Kwak, Jeon Dong Hyeon,
Sunghyun Park, Sungju Kim, Seonhoon Kim, Dong-
pil Seo, Heungsub Lee, Minyoung Jeong, Sungjae
Lee, Minsub Kim, Suk Hyun Ko, Seokhun Kim,
Taeyong Park, Jinuk Kim, Soyoung Kang, Na-Hyeon
Ryu, Kang Min Yoo, Minsuk Chang, Soobin Suh,
Sookyo In, Jinseong Park, Kyungduk Kim, Hiun
Kim, Jisu Jeong, Yong Goo Yeo, Donghoon Ham,
Dongju Park, Min Young Lee, Jaewook Kang, Inho
Kang, Jung-Woo Ha, Woomyoung Park, and Nako
Sung. 2021. What changes can large-scale language
models bring? intensive study on HyperCLOVA:
Billions-scale Korean generative pretrained trans-
formers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 3405–3424, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3045–3059, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,

101



and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 110–119, San Diego, California. Association
for Computational Linguistics.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 994–1003, Berlin, Germany. Associa-
tion for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. GPT
understands, too. CoRR, abs/2103.10385.

Pierre-Emmanuel Mazaré, Samuel Humeau, Martin Rai-
son, and Antoine Bordes. 2018. Training millions of
personalized dialogue agents. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 2775–2779, Brussels,
Belgium. Association for Computational Linguistics.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying LMs with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203–5212, Online. Association for Computa-
tional Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Laria Reynolds and Kyle McDonell. 2021. Prompt pro-
gramming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the
2021 CHI Conference on Human Factors in Comput-
ing Systems, pages 1–7.

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Eric Michael Smith, Y-Lan Boureau, and Jason We-
ston. 2021. Recipes for building an open-domain
chatbot. In Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, pages 300–325,
Online. Association for Computational Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 4222–4235,
Online. Association for Computational Linguistics.

Haoyu Song, Yan Wang, Kaiyan Zhang, Wei-Nan
Zhang, and Ting Liu. 2021. BoB: BERT over BERT
for training persona-based dialogue models from lim-
ited personalized data. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 167–177, Online. Association
for Computational Linguistics.

Hiroaki Sugiyama, Masahiro Mizukami, Tsunehiro Ari-
moto, Hiromi Narimatsu, Yuya Chiba, Hideharu
Nakajima, and Toyomi Meguro. 2021. Empirical
analysis of training strategies of transformer-based
japanese chit-chat systems.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi,
SM Eslami, Oriol Vinyals, and Felix Hill. 2021. Mul-
timodal few-shot learning with frozen language mod-
els. Advances in Neural Information Processing Sys-
tems, 34.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou,
and Daniel Cer. 2021. Spot: Better frozen model
adaptation through soft prompt transfer. CoRR,
abs/2110.07904.

Ben Wang and Aran Komatsuzaki. 2021. GPT-
J-6B: A 6 Billion Parameter Autoregressive
Language Model. https://github.com/
kingoflolz/mesh-transformer-jax.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Computational
Linguistics.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697–12706.
PMLR.

102



Yinhe Zheng, Guanyi Chen, Minlie Huang, Song Liu,
and Xuan Zhu. 2019. Personalized dialogue genera-
tion with diversified traits. CoRR, abs/1901.09672.

103



A Generated response examples in Japanese

Response examples that generated by prompt-tuned HyperCLOVA are shown in Table 9. These responses
are generated from the model trained with the dialogue pairs based on persona sentences shown in
Table 10.

Utterance Generated Response
こんにちは。最近パーマをかけて
イメチェンしたから今度みてほしいな。
(Hello. I recently got a perm and a makeover,
so I hope you’ll take a look at it sometime.)

いいよ。いつがいい?わたしは家政婦の仕事が
あるから、夕方以降なら大丈夫だよ。
(Okay. When is a good time? I have to work
as a housekeeper, so I can come after the evening.)

こんにちは!ウサギ飼ってるんですね、羨ましい。
(Hello! I see you have a rabbit, I’m jealous.)

はい、飼ってます。ペットショップで
一目惚れして、そのまま連れて帰りました。
(Yes, I have one. I fell in love with her
at first sight at a pet store and took her home with me.)

絵の勉強をヨーロッパでやるとしたら、
どの国がいいんですか?
(If you were to study painting in Europe,
which country would you prefer?)

ゴッホが好きなら、
オランダがいいんじゃないですか?
(If you like Van Gogh, why not Holland?)

大丈夫、ありがとう。短かったんだけど、
突然真っ暗になったから本当に怖い思いをした。
(No problem, thanks. It was short, but I was really
scared because all of a sudden it went dark.)

それは怖いね。無事でよかった。
それにしても、停電って本当に困るよね。
(That’s scary. I’m glad you’re safe.
Still, power outages are really annoying, aren’t they?)

パイン飴ってそんなに昔からあるの?
(Has candy pineapple been around that long?)

うん、子どもの頃から食べてたよ。
(Yeah, I’ve been eating it since I was a kid.)

Table 9: Response examples generated by prompt-tuned HyperCLOVA.

Persona Sentence
私は家政婦です。 (I am a housekeeper.)
私は姉と暮らしています。 (I live with my sister.)
私のペットはウサギです。 (My pet is a rabbit.)
私が尊敬する人は、画家のゴッホです。 (The person I admire is the painter Van Gogh.)
私は美術部に入っていました。 (I was in the art club.)

Table 10: The persona used in the generated response examples in Table 9.

B Hyperparameter

Table 11 shows hyperparameters during model training in our experiment.

Hyperparameter Fine-Tuning (En) Prompt-Tuning (En) Fine-Tuning (Ja) Prompt-Tuning (Ja)
Optimizer Adam Adam Adam Adam
Learning Rate 5e-5 1e-3 1e-5 1e-3

Table 11: Hyperparameters during model training in our experiment.
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C An example of tasks used in crowdsourcing

Figure 2 shows an example of tasks used in crowdsourcing.

Figure 2: An example of tasks given to workers on Amazon Mechanical Turk for the manual evaluation.

105



Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 106 - 112

July 10-15, 2022 ©2022 Association for Computational Linguistics

MM-GATBT: Enriching Multimodal Representation Using Graph
Attention Network

Seung Byum Seo, Hyoungwook Nam, Payam Delgosha
University of Illinois at Urbana-Champaign

{sbseo2, hn5, delgosha}@illinois.edu

Abstract
While there have been advances in Natural
Language Processing (NLP), their success is
mainly gained by applying a self-attention
mechanism into single or multi-modalities.
While this approach has brought significant
improvements in multiple downstream tasks,
it fails to capture the interaction between dif-
ferent entities. Therefore, we propose MM-
GATBT, a multimodal graph representation
learning model that captures not only the re-
lational semantics within one modality but also
the interactions between different modalities.
Specifically, the proposed method constructs
image-based node embedding which contains
relational semantics of entities. Our empirical
results show that MM-GATBT achieves state-
of-the-art results among all published papers
on the MM-IMDb dataset.

1 Introduction

Despite the huge success of learning algorithms
for applications involving unimodal data such as
text, less is known for applications involving mul-
timodal data, i.e. scenarios where each data entity
has data attributes from multiple modes, such as
text and image. While the previous works show
that models with multimodal representation outper-
forms unimodal representation in downstream tasks
such as classification, VQA, and disambiguation,
the benefit of multimodal representation mostly
comes from only one mode (such as text), while
the other mode only contribute a marginal improve-
ment. That is, the performance difference between
text-only representation and multimodal represen-
tation is smaller than that of the image-only repre-
sentation and multimodal representation (Arevalo
et al., 2017; Vielzeuf et al., 2018; Moon et al., 2018;
Kiela et al., 2020; Singh et al., 2020; Kiela et al.,
2021).

We suspect that improper usage of image-
modality presents a limitation in creating multi-
modal representation. Existing multimodal models

Figure 1: Given movie poster and text information, the
problem is to predict the multilabel genres of movies.
Our method narrows down this problem into a node
classification task by constructing a multimodal entity
graph where each node represents a movie entity and
edge represents a shared feature between the movie
entities.

have been applying a self-attention mechanism or
create a graph with a single modality’s attribute.
However, these approaches ignore the interaction
among entities, multi-modalities, or both. In other
words, one modality is tied within its space and can-
not see beyond its modality space. To overcome
this limitation, we propose a novel framework by
constructing a multimodal entity graph which si-
multaneously captures the interconnection between
different data entries and data modalities. Our idea
is motivated by homophily, in which similar nodes
tend to be connected and tend to share similar la-
bels (Hamilton, 2020).

We demonstrate our claim by considering a
multilabel classification task using the MM-IMDb
dataset (Arevalo et al., 2017) as in Figure 1. In the
MM-IMDb dataset, each movie entity is provided
with image and text, and our goal is to predict the
movie’s genre. Using this data, we construct a
graph where each node represents a movie, and is
given the movie image as an attribute. Furthermore,
we connect two nodes if the corresponding movies
share features, i.e. if they have the same producer,
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director, etc. By capturing dependency and inter-
action between the entities generated from Graph
Attention Network (GAT) (Veličković et al., 2018),
we expect to gain latent information that cannot be
extracted from the image encoder solely.

The contributions of this work are as follows: (1)
We propose a novel Multimodal Graph Attention
Network (MM-GATBT) which enables interaction
between data modalities. (2) To our best knowl-
edge, this is the first attempt to construct image-
based entity graph to enrich image representation
by capturing relational semantics between the en-
tities. (3) MM-GATBT achieves state-of-the-art
results on the multilabel classification task among
all published papers on MM-IMDb dataset.

2 Background

Multimodal Representation Joint representa-
tion is one of the most popular methods to combine
modality vectors. This method has a strong advan-
tage in implementation because it concatenates the
modalities into a single vector. (Guo et al., 2019)
explains that it is an intuitive approach to learn a
shared semantic subspace from different modalities
providing richer and complementary contexts.

(Bayoudh et al., 2021) also explains three differ-
ent fusion methods depending on the timing when
modalities are combined. Early fusion (Sun et al.,
2018) method fuses data before the feature extrac-
tor or classifier to preserve the richness of original
features. The late fusion method fuses data after ex-
tracting features from separate modalities. Hybrid
method uses both early fusion and late fusion at
some point in their architecture to take advantage
of both worlds.

Graph Neural Network Graph Neural Network
(GNN) is powered by neural message passing and
generates node embeddings. A graph G = (V,E)
is defined as a tuple such that V is a set of vertices
and E ⊆ V × V is a set of edges. We also employ
the node feature matrix X ∈ Rd×|V | where d is the
feature dimension. Vanilla GNN (Kipf and Welling,
2017) averages neighbor messages for each layer
using the mean aggregation function. Formally, it
is defined by the following Eq. (1) where l is the
layer index, hli is hidden representation of node i
at layer l, and U l is a learnable parameter.

hl+1
i = σ


∑

j∈Ni

1

Degi
U lhlj


 . (1)

Here, Degi and Ni denote the degree and the neigh-
bor set of node i, respectively, and σ(.) is a non-
linear activation function.

Graph Convolution Network (GCN) (Kipf and
Welling, 2017) improves vanilla GNN by employ-
ing symmetric normalization (Hamilton, 2020).
This model runs a spectral-based convolution oper-
ation. Because the spectral method assumes fixed
graph, it often leads to poor generalization ability
(Wu et al., 2021). Therefore, spatial-based mod-
els such as GraphSAGE (Hamilton et al., 2017) are
often considered to enable inductive generalization.

hl+1
i = σ(U l · [hl−1

i ;hl−1
j ]) (2)

In Eq. (2), [hl−1
i ;hl−1

j ] denotes a concatenated
representation between the node’s previous hidden
state hl−1

i and an aggregated representation of local
neighbor nodes hl−1

j where j ∈ Ni.

Attention Mechanism Attention mechanism
(Luong et al., 2015; Bahdanau et al., 2015)
computes a probability distribution α =
(αt1, αt2, ...αts) over the encoder’s hidden states
h(s) that depends on the decoder’s current hidden
state h(t). (Luong et al., 2015) computes global
attention by

αst =
exp(h(t) · h(s))

∑
s′ exp(h

(t) · h(s′ ))
(3)

where s refers to the index number of source
hidden state and t refers to the index number
of target hidden state. This method was intro-
duced to assign more importance to more rele-
vant h(s). This method has been developed into
self-attention (Vaswani et al., 2017) and GAT
(Veličković et al., 2018). Self-attention mechanism
computes weighted average of the input vectors.
Similarly, GAT performs attention on the neighbor
nodes.

3 Methods

3.1 Problem Statement

We address the multilabel classification task. We
assume that n data sample are given, where each
data sample corresponds to a movie entity that has
a text and an image attribute. The goal is to classify
the movie genre. Note that this is a multilabel
classification task, as each movie can belong to
more than one genre. Therefore, given text data
Xtxt = {T 1, T 2, . . . , Tn} and image data Ximg =
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Figure 2: Model architecture of MM-GATBT. The top side of the architecture encodes text descriptions. The
bottom side captures the interaction between entities by aggregating the neighbor images connected via text features.
Then, MM-GATBT concatenates text embedding and image-based node embedding to generate a joint multimodal
representation used for classifier. 1), 2), and 3) denotes token embedding, segment embedding, and positional
embedding respectively, following BERT-like tokenization method.

{I1, I2, . . . , In}, we train function f that predicts
binary label yij for all j where i is an index number
of an entity and j is an index number of classes.
Binary label yij is only accessible from training set.

Our approach towards this problem is to con-
struct a graph and use graph neural networks. The
details are discussed in Section 3.3 below.

3.2 Model Overview

MM-GATBT consists of three main components:
text encoder, image encoder, and GNN. We chose
BERT (Devlin et al., 2019) as text encoder, Ef-
ficientNet (Tan and Le, 2019) as image encoder,
and GAT (Veličković et al., 2018) as GNN. The
encoded images are used as node features in GAT
to learn the relational semantics of entities. Then
we fuse text embedding and image-based node em-
bedding using MMBT (Kiela et al., 2020). We
chose this architecture because unlike VilBERT
(Lu et al., 2019) and VisualBERT (Li et al., 2019),
encoders can be trained independently as opposed
to be trained jointly. That is, we can easily upgrade
any of these three main components in the future.
Thanks to this simple but powerful architecture,
MM-GATBT leaves considerable room to increase
its performance in the future.

3.3 Graph Construction

To represent relational semantics, we first construct
an undirected graph G = (V,E) where a vertex
represents an entity (i.e. a movie) and an edge de-
notes the presence of shared feature between the
corresponding entities (such as sharing a director).

More precisely, if A = (Ai,j : 1 ≤ i ≤ n)

denotes the adjacency matrix of G, we have

Aij =

{
1 if {T i

feat ∩ T j
feat} ≠ ∅.

0 otherwise
(4)

Here, T i
feat denotes the feature set corresponding to

entity i. Since there can be multiple combinations
to create these feature set, we carefully chose five
features that shows the best performance empiri-
cally: director, producer, writer, cinematographer,
and art director.

For implementation purposes, we add a self
loops to isolated vertices, i.e. those vertices with
degree zero. The constructed graph G is on the
whole train and test dataset. While train vertices
are accessible to labels, we mask the labels for
test vertices to prevent the model from seeing the
ground truth during training phase.

3.4 Image-based Node Embedding (GAT)
Graphs representing relations within a single image
is a well-studied problem as in (Guo et al., 2020;
Johnson et al., 2015). However, no attempts have
been made to represent image-objects as nodes
input to a GNN. We define this novel graph as
image-based entity graph as visualized in Figure 2.

Instead of using a complex image encoder, we
use EfficientNet b4 (Tan and Le, 2019) to maximize
efficiency. Then each encoded image is fed as
node feature of an entity. Note that entire images
represent nodes, not segments of images. Related
works such as MMBT-Region (Kiela et al., 2021),
VilBERT (Lu et al., 2019) and VisualBERT (Li
et al., 2019) employs pretrained ResNet (He et al.,
2015) based Faster-R-CNN, but they are overly
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expensive for GNN. That is because one single
channel image is sufficient to enable an effective
message passing.

While GraphSAGE (Hamilton, 2020) assigns the
equal importance to neighbor nodes, in our appli-
cation, depending on the context, different features
can have different importance. Therefore, instead
of using GraphSAGE, we employ GAT (Veličković
et al., 2018) where it assigns different importance
to different neighbor edges. This is done by

eij = a([U lhli;U
lhlj ]) (5)

αij =
exp(eij)∑

k∈Ni
exp(eik)

(6)

hl+1
i = σ(

∑

j∈Ni

αijU
lhlj) (7)

where a is a learnable weight vector for linear trans-
formation. For non-linear activation function σ(.),
we use LeakyReLU function.

3.5 Contextualized Text Embedding

BERT (Devlin et al., 2019) achieved remarkable
success in various downstream tasks with its unique
tokenizing method and its self-attention mecha-
nism. As visualized in Figure 2, we apply the same
BERT tokenizer to textual data by tokenizing into
1) token embedding, 2) segment embedding, and
3) positional embedding. Their aggregated result
is fed into a transformer and the final hidden state
of this classification token is used for classification
task. In figure 2, Wi denotes tokenized word given
text data where i is sequence index.

3.6 Multimodal Bitransformer

MMBT (Kiela et al., 2020) is used as an early fu-
sion method. This model originally extends BERT
(Devlin et al., 2019) by applying BERT style tok-
enizing method into image modality as in Figure
2. For MM-GATBT, because we use image-based
node embedding, we consider each node feature In

as a token.
After applying BERT-like tokenization method

in both Section 3.4 and Section 3.5, we concatenate
them. Note that the original MMBT (Kiela et al.,
2020) pools the image and uses multiple separate
image embeddings. However, we only use one sin-
gle output vector of image-based node embedding
per each image.

3.7 Training

To solve multi-label classification task, we optimize
binary cross-entropy loss defined as

Lbce = − 1

M

M∑

m=1

−ωm[ym log ŷm+

(1− ym) log(1− ŷm)]

(8)

where M is the number of classes, ωm is the frac-
tion of samples of class m, ym is true label, and ŷm
is predicted label. Because the MM-IMDb dataset
is an imbalanced dataset, we assign different ω for
different classes.

4 Experiment

System Configuration During the training
phase, we used a single Nvidia RTX 3090 with
a batch size of 12. We implemented our model us-
ing PyTorch (Paszke et al., 2019) and DGL (Wang
et al., 2020) on top of MMBT code available on
the public repository.1 For every encoder, we used
pre-trained models to reduce the computational
cost and maximize their performance. In the case
of the text encoder, we used the BERT uncased
base model available from Hugginface (Wolf et al.,
2020). For the image encoder, we used pre-trained
EfficientNet b4 (Tan and Le, 2019). For GNN, we
chose GAT (Veličković et al., 2018) available from
DGL. We pre-trained GAT before employing to
MM-GATBT. We used five features to construct
our graph, as was explained in Section 3.3 and
Eq. (4) therein. The average degree of the resulting
graph is 59 and it has 554 isolated nodes.

Experiment Setup We used Multimodal IMDb
(MM-IMDb) dataset from (Arevalo et al., 2017).
This dataset consists of 23351 movie entities. Each
movie in the dataset has a title, description, movie
poster, producer, and related genres. Note that each
movie can have multiple genres, making this task a
multi-label classification task.

Empirical results from previous works imply that
text modality carries more significant importance
than image modality (Jin et al., 2021). The dataset
is provided in a splitted format where the number
of training set and testing set are 15552 and 7799
respectively.

Data Preprocessing We followed the data pre-
processing scheme from (Kiela et al., 2020). The

1https://github.com/facebookresearch/mmbt
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Type Model Micro F1 Macro F1 Weighted F1 Samples F1

Unimodal
EfficientNet (Tan and Le, 2019) 0.395 0.314 0.457 0.394
BERT (Devlin et al., 2019) 0.645 0.587 0.645 0.647

Multimodal

GMU(Arevalo et al., 2017) 0.630 0.541 0.617 0.630
CentralNet (Vielzeuf et al., 2018) 0.639 0.561 0.631 0.639
MMBT (Kiela et al., 2020) 0.669 0.618 - -
MFM (Braz et al., 2021) 0.675 0.616 0.675 0.673
ReFNet (Sankaran et al., 2022) 0.680 0.587 - -

Graphical
GAT w/ EfficientNet 0.500 0.394 0.506 0.496
MM-GATBT (ours) 0.685 0.645 0.683 0.686

Table 1: Experimental result shows that the proposed model outperforms against its unimodal submodels and
popular multimodal models. For GMU (Arevalo et al., 2017), CentralNet (Vielzeuf et al., 2018), MMBT (Kiela
et al., 2020), MFM (Braz et al., 2021), and RefNet (Sankaran et al., 2022), we brought the best numbers from their
papers. Missing numbers mean that the results are not shared in their papers.

raw dataset (Arevalo et al., 2017) includes a total
of 27 distinct labels from the training and testing
set. However, the literature drops entities with
News and Adult labels, leaving the training and
the testing set with 15513 and 7779 entities respec-
tively. Additionally, while labels with Reality-TV
and Talk-Show are included in the training set, they
do not appear in the testing set. Therefore, we test
with 23 distinct labels as in the literature.

Baseline Models We compare MM-GATBT with
two different types of models: unimodal models
and multimodal models. For BERT (Devlin et al.,
2019) and EfficientNet (Tan and Le, 2019) we use
the same size of models used in the main model and
compare their performance. For graphical model,
we implement GAT w/ EfficientNet which outputs
image-based node embedding used for the main
model. Then we compare it with a single Effi-
cientNet to examine the information gain from this
structural difference. Our implementation is pub-
licly available on GitHub.2

5 Result

We validated our model using the following met-
rics: micro f1, macro f1, weighted f1, and samples
f1. The results are rounded to 3 decimal places.
We report our results as well as the state of the
art in Table 1. Table 1 shows that MM-GATBT
significantly outperforms baseline models in all
metrics. Specifically, MM-GATBT significantly
outperforms its unimodal submodels (i.e. consid-
ering text / image only) when ran separately. This

2https://github.com/sbseo/mm-gatbt

Figure 3: Example of constructed graph visualized using
Pyvis (Perrone et al., 2020). Only 1 movie feature is
used for visualization purposes.

performance increase can be explained from two
perspectives. First, (Singh et al., 2020) addressed
that the performance of pretraining models plays
a critical role before fusion. As we suspected in
Section 1, using image modality solely performs
the worst, as it does not leverage the benefits of
multimodal fusion. From this perspective, image-
only embedding is upgraded into image-based node
embedding as shown in GAT w/ EfficientNet. There-
fore, as we observe, the main model performs better
when its submodel performs better. This also indi-
cates that our approach successfully captures the
interaction between the entities through message
passing.

Secondly, MM-GATBT reflects the connectiv-
ity structure of the constructed graph. As visual-
ized in Figure 3, the constructed graph consists of
both connected and isolated nodes. Therefore, it is
crucial for the architecture to address the graph’s
density and sparsity. Indeed, the text encoder on
the top of Figure 2 generates the word embedding
neglecting the graph structure, which justifies its
high performance on isolated nodes. In contrast,
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the GAT on the bottom of Figure 2 takes into ac-
count the connectivity of nodes. This well justi-
fies why MM-GATBT also performs well on non-
isolated nodes. By fusing these two embeddings,
MM-GATBT leverages both connected and iso-
lated nodes effectively. Note that neither BERT
nor image-based node embedding could achieve
the accuracy of 0.685 before they were fused.

6 Conclusion

We proposed MM-GATBT, a novel graph-based
multimodal architecture, to address the multilabel
classification task on the MM-IMDb dataset. MM-
GATBT leverages image-based node embedding
and attention mechanism during the early fusion
phase. The results show that the proposed model
successfully captures the latent information gen-
erated from the interaction between the entities
and achieves state-of-the-art results among all pub-
lished works on the MM-IMDb dataset.
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Abstract

Feature structures have been several times con-
sidered to enrich categorial grammars in order
to build fine-grained grammars. Most attempts
to unify both frameworks either model catego-
rial types as feature structures or add feature
structures on top of categorial types. We pur-
sue a different approach: using feature structure
as categorial atomic types. In this article, we
present a procedure to create, from a simplified
HPSG grammar, an equivalent abstract catego-
rial grammar (ACG). We represent a feature
structure by the enumeration of its totally well-
typed upper bounds, so that unification can be
simulated as intersection. We implement this
idea as a meta-ACG preprocessor1.

1 Introduction

Feature structures (FSs) (Carpenter, 1992) have
been widely used to represent natural language syn-
tax, particularly by HPSGs (Head-driven Phrase
Structure Grammars, (Pollard and Sag, 1987,
1994)).

In the original ideas of categorial grammars (Aj-
dukiewicz, 1935; Bar-Hillel, 1953; Lambek, 1958),
only a few number of atomic categories are taken,
and complex categories are built on them as sim-
ple types. This approach makes it less flexible to
capture fine-grained morpho-syntactic phenomena
(e.g. agreement or case). Grammatical systems
combining categorial and feature approaches have
been developed, aiming at recovering these fine
structures and grammatical interactions, but also al-
lowing a better lexicon organization (e.g. hierarchy
inheritance) (Moortgat, 1997).

According to Moortgat (1997), first genera-
tion hybrid systems (Zeevat, 1988; Bouma, 1988;
Uszkoreit, 1986) encode categorial logic in feature
logic.

1Source code is available at https://doi.org/10.
12763/VWKNSA

By contrast, second generation hybrid systems
(Dörre et al., 1996; Dörre and Manandhar, 1995)
preserve the categorial inferential system by adding
a layer of feature structures to categorial type
atoms.2

While the general framework of feature logic
may suffer from Turing-completeness when re-
garding time complexity of parsing (Carpenter,
1991), second generation hybrids bypass this issue
by restricting feature structure power to subtyp-
ing (Buszkowski, 1988). However, this restriction
forbids the latter to exploit structure-sharing (i.e.
reentrancy).

More recent systems fall in either generation.
Unification-based General Categorial grammars
(Villavicencio, 2002; Baldridge, 2002) encode
Combinatory Categorial Grammars (Steedman,
1988) as feature structures using asymmetric de-
fault unification. Extensions of Abstract Categorial
Grammars (de Groote, 2001) to dependent prod-
uct, variant types and records model feature logic
inside type theory (de Groote and Maarek, 2007).
However, these extensions make it undecidable (de
Groote et al., 2007).

In this article, we advocate for a different, yet
intuitive combination of categorial logic and fea-
ture logic: representing feature structures as atomic
categorial types with no additional operation. Uni-
fication is not implemented, but simulated by set
intersection. This proposal is based on two ideas:

1. Restrictions on appropriateness allows us to
enumerate a representative set of any FS

2. The labor is divided into a preprocessor, han-
dling FS combinatorics, and the grammar en-
gine, performing categorial operations

This framework resembles second generation
systems, because it creates a layer between feature

2Steedman (1990) and Muskens (2001) could also be put
in the second generation. Moreover, we could mention Kraak
(1995), who models FSs via modalities (Moortgat, 1996).
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Figure 1: Division of labor between the preprocessor and the grammar engine

logic and categorial logic. However, there is no
need to resort to unification, and it can deal with
structure-sharing. Although it does not provide a
different grammatical system, this solution has the
advantage to be easier to implement.

We focus here on Abstract Categorial Grammars
(ACGs). We present a first implementation of the
preprocessor, called meta-ACG preprocessor. As
feature structure are not yet implemented in ACGtk
(Pogodalla, 2016), this program brings the possibil-
ity to work with ACGs and FSs. We also mention
how it reduces labor when defining a grammar.

The motivation of this work is thus twofold:

1. Formalize a way to work with features struc-
tures and categorial logic, in particular ACGs

2. Improve ACGtk to be able to define feature
structures and reduce some grammar design
labor

In section 2, we present our system and its formal
proof of work. We exemplify it by exhibiting a
transformation from simplified HPSG grammars
into ACG grammars. In section 3, we present the
meta-ACG preprocessor.

2 Simulating feature structures

2.1 Feature structures as atoms
The idea of adding refinements of categorial atomic
types goes back to Lambek (1958). He distin-
guishes third-person singular nouns n from third-
person plural nouns n∗, and the verb work has two
possible types: n\s and n∗\s.

In systems where unification is not taken as
granted, using FSs as atoms is a cheap solution:
e.g. PPto vs. PPabout in (Morrill et al., 2011),
NP_NUM=PL in (Maršík, 2013), and npe (exis-
tentially quantified np) vs. npu (universally quanti-
fied) in (Amblard et al., 2021).

This technique relies on the grammar engine to
select the right featured type when parsing. There-
fore, no unification system has to be added. How-
ever, the main drawback is the combinatorial explo-
sion due to the many possible values the attributes

can take. For example, writing a grammar includ-
ing all possible rules for NP-VP agreement would
not only be long, but it also increases the risks
of making typos. Maršík (2013) suggests to use
meta-variables to, at least, present these rules more
compactly.

We advocate for a more generic solution: autom-
atizing the process of generation of constants and
rules with FSs as atoms. For example, from a given
description

np[AGR = x] → vp[AGR = x] → s

we would like to generate

np[AGR = [1, sg]] → vp[AGR = [1, sg]] → s

np[AGR = [1, pl]] → vp[AGR = [1, pl]] → s

np[AGR = [2, sg]] → vp[AGR = [2, sg]] → s
...

(1)
where np[AGR=[1,sg]],... are taken as atomic
types.

The system we introduce works as depicted in
Fig. 1. Given a set of descriptions, the preprocessor
generates a set of representatives (like in (1)) out of
any (underspecified) input FS. Then, the grammar
engine can pick in this set when trying to parse a
sentence.

In part 2.2 we define the set selected represen-
tatives are based on. Part 2.3 introduces ranked
appropriateness, the hypothesis enabling this set
to be enumerable. Finally, we present the transfor-
mation of simplified HPSG grammars into ACG
grammars in part 2.4.

2.2 Set of representatives

We begin with some semi-formal reminders about
feature structures.

Set ⟨T,⊑⟩ an inheritance hierarchy3, and Att a
finite set of attributes. By τ ⊑ σ, we mean that
type τ is more general than type σ.

3Complementary formal definitions can be found in ap-
pendix B.
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Type Rank Specification Description
j-τ -list 0 list of at most j elements (j ≥ 0)
j-τ -ne-list r(τ) + 1 HEAD : τ list of length between
(j ≥ 1) TAIL : (j − 1)-τ -list 1 and j

Table 1: Data structure simulating lists of at most m elements of type τ . 0-τ -list is the empty list (aka. e-list) The
inheritance hierarchy is given in Fig. 2.

⊥

m-τ -list

(m− 1)-τ -list m-τ -ne-list

1-τ -list 2-τ -ne-list

1-τ -ne-list0-τ -list

...
...

...

Figure 2: Inheritance hierarchy of types simulating lists
of at most m elements of type τ . The appropriateness
specification and ranks are given in Tab. 1.

Let us illustrate this here with NP-VP agreement,
using Att = {P, N} and the following inheritance
hierarchy:

⊥

person

1st 2nd 3rd

number

sg pl

agr

More general types are placed here at the bottom,
e.g. person ⊑ 1st. The most general type (i.e. the
minimum) is ⊥.

A feature structure (FS) is a pair of a type and a
list of features. A feature is a pair of an attribute
and a feature structure. We usually represent FSs as
attribute-value matrices, like in (2). Subsumption
⊑ can be extended to FSs. The unification of two
FSs F and G is the most general FS F ⊔G which
is subsumed by F and G, if it exists. We only
consider well-typed feature structures, i.e. having
restrictions on the values a feature can take. These
restrictions are expressed via an appropriateness
specification.

By X ↛ Y we denote the set of partial functions
f from X to Y , and we write f(x)↓ if x ∈ dom f ,
i.e. if x belongs to the definition domain of f .

Definition 1 (Appropriateness specification (Car-
penter, 1992)). An appropriateness specification is
partial function Approp : Att× T ↛ T such that

Feature introduction: For every A ∈ Att, there
exists Intro(A) ∈ T s.t. Approp(A, Intro(A))↓

Monotonicity: If Approp(A, σ)↓ and
σ ⊑ τ , then Approp(A, τ)↓ and
Approp(A, σ) ⊑ Approp(A, τ)

Approp(A, τ) = σ means that a FS of type τ can
have attribute A valued by a FS of type σ or more
specific. The following notion of totally well-typed
FSs allows us to talk about completely specified
FSs.

Definition 2. A feature structure is totally well-
typed when all its appropriate attributes are valued.

The appropriateness specification of our exam-
ple is P : person, N : number for type agr (i.e.
Approp(P, agr) = person and Approp(N, agr) =
number, and undefined elsewhere). For instance,
both FSs below are well-typed, but only the one on
the right is totally well-typed.

[
agr
P 1st

] 


agr
P 1st
N number




(2)

First-order terms can be represented by their sets
of subsumed ground terms. Similarly we could
take, to represent a potentially underspecified FS
in ACGs, its maximal (resp. or grounded) upper
bounds. However, (Carpenter, 1992) points out that
this fails because some feature structures can have
the same set of maximal (resp. grounded) upper
bounds, but still be different.

To solve this issue, we use totally well-typed
(non-necessarily sort-resolved, grounded or max-
imal) upper bounds of a FS F to define the repre-
sentative set of F .

Definition 3 (Totally well-typed upper-set). We
call U(F ) the set of totally well-typed upper
bounds of F .
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This enables us to characterize unification as set
intersection.

Proposition 1. F ⊔ G exists iff
U(F ) ∩ U(G) ̸= ∅, and in this case
U(F ⊔G) = U(F ) ∩ U(G).

Proofs are given in appendix B.

2.3 Finite generation
We plan to model a feature structure F by adding
a kind of copy of U(F ) to an ACG grammar. The
set U(F ) has then to be finite. Therefore, we need
FSs to be acyclic. Moreover, there must be no
appropriateness (subsuming) loop, i.e. no type τ
and path W ∈ Att∗ such that Approp(W, τ) ⊑ τ .
To enforce this, we require types to be ranked.

Definition 4. Specification Approp is ranked if
there exists a function r : T → N such that, for all
τ ∈ T,

1. for all σ, if τ ⊑ σ then r(τ) ≤ r(σ)

2. for all A ∈ Att and σ, if Approp(A, τ) ⊑ σ,
then r(τ) > r(σ)

r(τ) is the rank of τ .

Ranked appropriateness specifications allow us
to proceed by induction on the set of well-typed
feature structures.

Proposition 2. If Approp is ranked, then the set of
well-typed FSs is finite.

A proof is given in appendix B.3.
Ranking restricts the expressive power of feature

structures. However, we can still create a data
structure resembling finite lists. Set τ a type and
m an positive integer. We define τ -lists of at most
m elements as in Tab. 1 and Fig. 2.

Ranking forbids potentially infinite elements,
like lists of arbitrary length. This limit is actually
not so restrictive because, supposing there is a rea-
sonable maximal number of words a sentence can
have, we could always resort to lists of a predefined
maximal length.

2.4 Simple HPSG into ACG
The goal of this part is to illustrate our approach
on a selected pair of language grammar formalisms
based on feature structures and categorial types
respectively.

We want to code a HPSG grammar G in an ACG
grammar ACG(G). We focus on simple HPSG char-
acteristics, following a context-free backbone. For

(∗) a
w ⊢ a : 0

u1 ⊢ 1′ : s1 ... un ⊢ n′ : sn (∗∗) bu1...un ⊢ c : 0

if there exists c = b ⊔
[

DTRS
〈

1′ , ..., n′
〉]

for all a , b in the grammar

Figure 3: Simplified HPSG deduction system

cF ∈ R( a )
(∗) a ,F

w ⊢ cF : 0

u1 ⊢ M1 : s1 ... un ⊢ Mn : sn (∗∗) b ,Fu1...un ⊢ cF M1 ... Mn : 0

if cF ∈ R( b ) and cF M1 ... Mn : tF0

is well-typed

for all a , b in the grammar and FS F

Figure 4: Image ACG deduction system. cF M1 ... Mn

is λ-application.

simplicity, we do not take headedness and lexical
rules into account. We also assume that the appro-
priateness specification of G is ranked (except for
DTRS and PHON).

We assume lexical items and phrases are of the
form (∗) and (∗∗).

a




word
PHON w
SYNSEM 0




(∗)

b




phrase
PHON u1...un

SYNSEM 0

DTRS

〈
1

[
PHON u1

]
, ..., n

[
PHON un

]〉




(∗∗)
Feature structures of type word (∗) are lexical

units. Attribute PHON specifies the phonological
realization (here the spelling), and SYSSEM the
syntactic and semantics properties.

Feature structures of type phrase (∗∗) represent
phrases with contiguous daughters (DTRS) 1 ,...,
n . The concatenation of the phonological realiza-
tions of the daughters make up the PHON of the
phrase. The syntactic and semantics properties of
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the phrase also depend on the ones of the daughters
via structure sharing (i.e. reentrancy).

See appendix A for instance examples.
The constraints on HPSG parsing can be

rephrased as the deduction system in Fig. 3 (us-
ing the notation of (∗) and (∗∗)).

We translate this system into the ACG deduction
system in Fig. 4, using the representative sets de-
fined in def. 5. Phrase FSs are represented by a set
of second-order typed constants.

Definition 5. Given a word a as in (∗) or a phrase
b as in (∗∗), its set of representatives is defined
by induction on its rank, as the set of ACG typed
constants:

R( a ) = {cF : tF | F ∈ U( a )}
R( b ) = {cF : tF1 → ... → tFn → tF0 |

F ∈ U( b ) consistent with
Fi ∈ U( i ) for all 0 ≤ i ≤ n}

(3)
using the same i ’s as in (∗∗).

Fig. 4 presents an ACG grammar in the style of
λ-grammars (Muskens, 2001). We give in appendix
C an alternative presentation of this grammar using
the format used by de Groote (de Groote, 2001).

Proposition 3. G and ACG(G) have the same
string language.

A proof is given in appendix B.4. A derivation
instance is displayed in appendix A.

A sample HPSG grammar modeling simple En-
glish questions in the meta-ACG language is pro-
vided in the example folder of the enclosed pro-
gram.

3 Implementation

3.1 Meta-ACG preprocessor
ACGtk (Pogodalla, 2016) is a toolkit offering an
environment to develop and test ACG grammars.
Feature structures have not been implemented yet
in this program.

We implement the preprocessor presented in part
2.1 as a python program called macg. Given an
input file written in a specially designed language,
called meta-ACG language, this program generates
an ACG grammar. This output consists in tree files:
deep syntax signature, surface syntax signature and
surface lexicon (see definition 11).

The syntax of the meta-ACG language is greatly
inspired by NLTK (Bird et al., 2009), except that
variables are declared with @. See Fig. 5 for an
example minimal code.

Type: person < 1st, 2nd, 3rd
Type: number < sg, pl
Type: tense < prst, past
Type: agr
P : person
N : number

Type: np
AGR : agr # agreement
PRO : bool # pronominal

Type: vp
AGR : agr
T : tense

Type: s
T : tense

Constant: Proper nouns
Ash : np[agr[3rd,sg],-PRO]

Constant: Intransitive verbs
sleeps : vp[agr[3rd,sg],prst]
slept : vp[past]

Rule: Clause
np[AGR=@a] -> vp[AGR=@a,T=@t] \
-> s[T=@t]

Figure 5: Sample code in the meta-ACG language, ex-
emplifying NP – VP agreement. Italics is put on com-
ments. Boldface identifies control keywords. bool is
the predefined type of booleans.

The meta-ACG preprocessor has two main goals:

1. Making it possible to develop and test ACG
grammars with feature structures

2. Reducing the redundancy of ACGtk grammar
design

Goal 1 is obtained through an iterator able to gen-
erate all unfolded totally well-typed upper bounds
of a feature structure description. These upper
bounds are written as distinct atomic types in the
output files. For example, constant slept of
Fig. 5 yields 4× 3 = 12 deep syntax constant:

SLEPT_person_number_past : vp_person_number_past
SLEPT_person_sg_past : vp_person_sg_past
SLEPT_person_pl_past : vp_person_pl_past
SLEPT_1st_number_past : vp_1st_number_past

...
SLEPT_3rd_pl_past : vp_3rd_pl_past

Similarly, rules are mapped to deep syntax con-
stants of empty surface realization for every possi-
ble variable assignment. For example, the clause
rule of Fig. 5 generates (4 × 3) × 3 × 3 = 108
constants (i.e. every person, number, time, and
pronominality type).
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The ranking condition is ensured by the order in
which the types and their appropriateness specifi-
cations are declared.

Goal 2 is obtained by two means. As a script
language, the meta-ACG language aims at being
light. The main contribution, however, revolves on
the way ACG conventions are coded in the prepro-
cessor. Even if ACGtk is able to handle a large
variety of ACG grammars, most actually written
test grammars follow the same pattern and code
norms:

• a deep syntax constant in uppercase is mapped
to its surface representation in lowercase

• the order in which the source types are de-
clared is the same as the surface order of the
respective arguments

This way, taking these conventions as default helps
gain some time at the grammar design phase.

3.2 Limitations and future prospects
The macg program is still under development. We
intend to add morphological rules and macros to
facilitate even more the lexicon organization. In-
equalities, default values and constraint equations
could also be added in the future.

Although Tab. 1 gives an implementation of lists
in our setting, the current meta-ACG language
lacks primitives, like concatenation, to work with
lists more easily. Technically, list concatenation
can be written down by enumerating all element-
wise operations as different rules. But this is not
convenient. This also holds for sets, which are
commonly used on LOCAL features in HPSG (e.g.
SLASH).

Because of FS enumeration, there is an in-
evitable combinatorial explosion. This affects pars-
ing time complexity exponentially in the number
of attributes and the highest rank. In practice, we
observe that our program actually runs slowly if
complex type structures (e.g. lists as presented
here) are involved. For instance, it took 1 hour
to run macg on the very short hpsg.macg in-
cluded example grammar, creating an intermediary
grammar of several gigabytes. Therefore, this pre-
processor approach might not be well suited for
large-scale grammars. However, it offers a valu-
able tool for a quick development of experimental
fragment grammars and prototypes.

Finally, we are planning to add the possibility to
define a lexicon to type-theoretic semantics.

4 Conclusion

We introduced and formalized a novel way to in-
clude feature structures in categorial grammars.
Our method consists in automatizing the idea of
taking feature structures as categorial atomic types.
The labor is divided into two separate modules: a
preprocessor and a grammar engine. For every type
with a feature structure, the preprocessor generates
a representative set of categorial types. This cre-
ates an intermediary grammar given to the grammar
engine. The latter works on these representative
categorial types and just have to select right ones
when parsing a sentence.

We proved that this approach of simulating fea-
ture structures by a set of representatives is sound
and complete by showing that unification amounts
to intersection of these representative sets. Hav-
ing such a preprocessor avoids adding a unification
module inside the grammar engine. It is modular
and also easier to implement.

We evaluated this proposal by implementing a
preprocessor for the grammar engine ACGtk work-
ing on abstract categorial grammars (ACG). This
provides the first implementation of feature struc-
tures in an ACG toolkit. Example grammars show
the well functioning of this method.

However, example grammars with a complex
system of type hierarchy outlines the limits of the
“enumeration-and-intersection” approach. Because
of combinatorial explosion, the intermediary gram-
mar can get really voluminous and take time to be
created. This may restrict uses of such a prepro-
cessor to toy ACG grammars only, waiting for a
more efficient implementation of feature structures
in ACGtk.
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A Further examples

We provide here an example to illustrate section
2.4. By lack of space, let us consider a very simpli-
fied toy HPSG grammar able to parse the sentence
“Ash slept”. It is based on the example code given
in Fig.5. This grammar includes the two word FSs
1′ and 2′ below, as well as the phrase FS b (Fig. 6)
used to create a basic sentence with NP-VP agree-
ment.

1′




word
PHON Ash

SYNSEM 01′




np

AGR

[
P 3
N sg

]

PRO -







2′




word
PHON slept

SYNSEM 02′




vp
AGR agr
T past







The derivation of “Ash slept” in the deduction
system of Fig. 3 is given in (4). FS c is like b but
with 1 and 2 unified with 1′ and 2′ respectively.

(*)
1′

Ash ⊢ 1′ : 01′
(*)

2′
slept ⊢ 2′ : 02′ (**) bAsh slept ⊢ c : 0c

(4)
Its transformation in the ACG system of Fig. 4

as described by the proof of proposition 3 is written
in (5).

(*)
1′ , 1′

Ash ⊢ c
1′ : 01′

(*)
2′ , 2′

slept ⊢ c
2′ : 02′

(**) b , cAsh slept ⊢ c b c
1′ c

2′ : 0c

(5)

B Formal definitions and proofs

We provide here complementary formal definitions
and proofs of the propositions stated in the main
part.

B.1 Definitions
The following definitions are retrieved from Car-
penter (1992).

Definition 6 (Inheritance hierarchy). An inheri-
tance hierarchy ⟨T,⊑⟩ is a finite bounded complete
partial order, i.e. a finite partial order such that

every subset S ⊆ T having an upper bound has a
least upper bound (aka. a join)

⊔
S ∈ T.

In particular, the empty set has a least upper
bound noted ⊥, which is then the minimum of T.

Definition 7 (Well-typed FS). A well-typed feature
structure is a tuple F = ⟨Q, q, θ, δ⟩ where

• Q is a finite non-empty tree of root q ∈ Q

• θ : Q → T is a total node typing function

• δ : Att×Q ↛ Q is a feature partial function

• for every q, A such that δ(A, q)↓, then
Approp(A, θ(q))↓ and

Approp(A, θ(q)) ⊑ θ(δ(A, q))

T F is the set of well-typed feature structures.

Here we only consider well-typed feature struc-
tures (FS), and up to alphabetic variance.

Subsumption ⊑ and unification ⊔ can be ex-
tended to well-typed feature structures.

Definition 8 (Subsumption of FS). F =
⟨Q, q, θ, δ⟩ subsumes F ′ = ⟨Q′, q′, θ′, δ′⟩, written
F ⊑ F ′, if there exists a function h : Q → Q′

called morphism meeting the following conditions

• h(q) = q′

• for every q ∈ Q, θ(q) ⊑ θ′(h(q))

• for every q, A, if δ(A, q)↓, then h(δ(A, q)) =
δ′(A, h(q))

Subsumption is a partial ordering on T F .

Definition 9 (Unification of FS). The unification
of two well-typed FSs F, F ′ is, if it exists, the least
upper bound of F and F ′ inside T F .

Here is the formal definition of totally well-typed
FSs.

Definition 10 (Totally well-typed FS). A well-
typed FS is totally well-typed if for all q ∈ Q and
A ∈ Att, if Approp(A, θ(q))↓, then δ(A, q)↓.

B.2 Proof of proposition 1

Proof. Set two feature structures F and G.
• Suppose F ⊔ G exists. As U is clearly anti-

tonic, and F,G ⊑ F ⊔ G, we have U(F ⊔ G) ⊆
U(F ),U(G), so

U(F ⊔G) ⊆ U(F ) ∩ U(G)
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b




phrase
PHON u1 u2

SYNSEM 0b

[
s
T t

]

DTRS

〈
1




PHON u1

SYNSEM

[
np
AGR x

]

, 2




PHON u1

SYNSEM




vp
AGR x

T t







〉




Figure 6: Feature structure for simple NP-VP phrase.

Moreover, by theorem 6.15 of Carpenter (1992),
as Approp has no loop because of ranking, there
exists at least one totally well-typed FS H such
that F ⊔G ⊑ H . Therefore, U(F ⊔G) ̸= ∅, and
so U(F ) ∩ U(G) ̸= ∅.

• Now suppose there exists H ∈ U(F ) ∩ U(G).
As H is an upper bound of F and G, by theorem
6.9 of Carpenter (1992) they have a well-typed
unification F ⊔G.

Moreover, we have F ⊔G ⊑ H by minimality
of the unification. As H is totally well-typed, H
belongs to U(F ⊔G) too. Therefore

U(F ) ∩ U(G) ⊆ U(F ⊔G)

In consequence, we proved that F ⊔G exists iff
U(F ) ∩ U(G) ̸= ∅, and that in this case

U(F ) ∩ U(G) = U(F ⊔G)

B.3 Proof of proposition 2
Proof. We write Tn = r−1(n), which is finite be-
cause T is so.

By induction on n ∈ N, let us prove that the set
T Fn of FSs F of type τ ∈ Tn is finite.

If n = 0, condition 2 of def. 4 implies that τ is
appropriate for no attribute. As T0 is finite, so is
T F0.

If n > 1, then for all A such that δ(A, q)↓,
Approp(A, τ) ⊑ θ(δ(A, q)). Therefore

n = r(τ) > r(θ(δ(A, q)))

by condition 2 again.
So we can apply the induction hypothesis on

r(θ(δ(A, q))). As Att is finite, so is the set of FSs
of type τ . Then, as Tn is finite, so is T Fn.

Since T is finite, there is a finite number of n
such that Tn ̸= ∅. Therefore T F =

⊎
n∈N T Fn is

finite.

B.4 Proof of proposition 3

Proof. Let us begin with showing that

L(G) ⊆ L(ACG(G))

⊆ Suppose string u is parsed by G. There ex-
ists a derivation π of Fig. 3. We propagate the
unification steps to the leaves and infer total type
(Carpenter, 1992, thm. 6.15). From that, we con-
struct a proof π′ of Fig. 4 of same precedent and
type, by induction on π:

If axiom π = (∗) a exposes FS F , F ∈ U( a ).
So we take π′ = (∗) a ,F . This axioms has the same
precedent w and type 0 as π.

Suppose π = (∗∗) b (π1, ..., πn) exposes FS
F . Construct derivations π′

1, ..., π
′
n from π1, ..., πn

respectively, by induction hypothesis. We have
F ∈ U( c ).

Moreover, from proposition 1 we deduce
U( c ) ⊆ U( b ), because c = b ⊔ d for some d .
Therefore F ∈ U( b ).

As unification has been propagated, we have

F
[

DTRS
〈
F1 , ..., Fn

〉]

where Fi is the FS exposed at πi, and π′
i has term

Mi.
We thus have cF : tF1 → ... → tFn → tF0 with

cF ∈ R( b ), therefore term cF M1 ... Mn : tF0

is well-typed. As a result, the derivation π′ =
(∗∗) b ,F (π′

1, ..., π
′
n) is well-formed and has the

same precedent u1...un and type 0 as π.
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As the root sequent of π is a finite sentence,
its type is S, and so is the type of π′. Therefore
u ∈ L(ACG(G)).

Now let us show that

L(G) ⊇ L(ACG(G))
⊆Suppose string u is parsed by ACG(G).

There exists a derivation π of Fig. 4 with precedent
u. We construct a proof π′ of Fig. 3 by induction
on π by replacing axioms (∗) a ,F by axioms (∗) a
and rules (∗∗) b ,F by rules (∗∗) b . Each sequent
v ⊢ M : s of π is mapped to v ⊢ b : s in π′

with the λ-head cF of M belonging to R( b ), so
F ∈ U( b ). Therefore, π′ is well-formed, has a
sentence type, and thus u ∈ L(G).

C Alternative presentation of image ACG
grammar

We give here an alternative presentation of the ACG
grammar defined in Fig. 4 using the format used by
de Groote (2001).
Definition 11. Set Σ1 the abstract signature where

• types are the SYNSEM 0 of the word FSs and
phrase FSs of G

• constants are the representatives cF of the
word FSs or phrase FSs F of G

• the type of cF is the SYNSEM of F

Set Σ2 the signature of strings (de Groote, 2001,
sec. 4), where constants are the phonological rep-
resentations w of word FSs.

Σ1

Σ2

Y

We define the ACG grammar ACG(G) =
⟨Σ1,Σ2,Y, S⟩ with Y : Σ1 → Σ2 the lexicon map-
ping

1. cF 7→ w if F ∈ U( a ) for some a as in (∗)

2. cF 7→ λx1, ..., xn. x1 ... xn if F ∈ U( b ) for
some b as in (∗∗)

and S is the feature structure of sentences4 (Pollard
and Sag, 1994):

4Actually, there may be several FSs S of finite sentence
(e.g. with different tenses). As the traditional definition of
ACGs only allows one distinguished type, we could add a sin-
gle extra abstract type sd and abstract constants TS : S → sd
mapped to λx. x for every S.


LOC | CAT


HEAD verb

[
VFORM fin

]

SUBCAT e-list







As the appropriateness specification of G is
ranked, ACG(G) is a well-defined ACG.
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Abstract

Character identification is a key element for
many narrative-related tasks. To implement
it, the baseform of the name of the character
(or lemma) needs to be identified, so differ-
ent appearances of the same character in the
narrative could be aligned. In this paper we
tackle this problem in translated texts (English–
Finnish translation direction), where the chal-
lenge regarding lemmatizing foreign names in
an agglutinative language appears. To solve
this problem, we present and compare several
methods. The results show that the method
based on a search for the shortest version of the
name proves to be the easiest, best performing
(83.4% F1), and most resource-independent.

1 Introduction

Character identification is both a complex and a
difficult task that can be solved using different
methods, from manual (Declerck et al., 2012) to
automatic (Goh et al., 2012). One of the necessary
steps for character identification is to detect which
exact character appears in the text (Labatut and
Bost, 2019). For such detection, lemmatization is
required.

Lemmatization is a process of assigning to a
wordform its lemma (Kanerva et al., 2019). It is
one of the important tasks in Natural Language Pro-
cessing (henceforth NLP), since many other NLP
methods require it during the preprocessing stage.
For agglutinative languages, such as Finnish, cor-
rect lemmatization can turn out to be a difficult task
because one word can have many wordforms (e.g.
a Finnish word may have more than 50 wordforms.
Consider an example for English name Lizzy in
Finnish translation: Lizzy, Lizzystä (from / about
Lizzy), Lizzylle (to Lizzy), Lizzyn (Lizzy’s)). Cur-
rent state-of-the-art models that use Neural Net-
works can help with solving this task. For example,
such a lemmatization model is implemented as part
of the Turku neural parser pipeline, which currently

yields the best results for Finnish lemmatization
(Kanerva et al., 2019). However, their accuracy,
though close to 100%1, is not perfect, so lemmati-
zation may require further refinement which would
help to enhance the end result for character identi-
fication.

In this paper we discuss enhancing foreign
characters’ identification for English characters in
Finnish texts, via improving lemmatization of char-
acters’ names. The structure of the paper is as
follows: first we provide an overview of the re-
lated work (Section 2), subsequently we describe
our data (Section 3), after which we discuss the
creation of the gold standard for our methods and a
definition of character in the context of our research
(Section 4). We continue the paper with describing
the methods (Section 5) that we introduced and
used. Finally, we present our results and analyze
them (Section 6). We conclude our paper in Sec-
tion 7. Code for the paper is available at https:
//github.com/AleksanKo/naacl2022.

2 Related work

Lemmatization for agglutinative languages, such
as the one targeted in our study (Finnish), has been
tackled from different perspectives. The first at-
tempts to solve the problem for Finnish were the
FINTWOL tool (Koskenniemi, 1983) and Morfo
(Jäppinen and Ylilammi, 1986). Around three
decades later one of the most known non-neural
methods, Omorfi (Pirinen, 2015) was developed.
Omorfi uses finite state transducers and can be
used further for enhancing lemmatization (Silfver-
berg et al., 2016). The current state-of-the-art is
represented by Turku neural parser pipeline (Kan-
erva et al., 2018), (Kanerva et al., 2019) that treats
lemmatization as a sequence-to-sequence problem
using the OpenNMT neural machine translation

1It ranges from 95.1% to 97.7%, depending on Finnish
morphological annotation it is applied to (Kanerva et al.,
2019).
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toolkit (Klein et al., 2017) and yields 95%-97%
accuracy.

In our research, we are focusing on retrieving
canonical forms of foreign names. This may be
challenging since foreign names are not typically
expected by the lemmatizer, so it may be prone to
errors. However, this step is necessary in case of
agglutinative languages: otherwise one character
may split into two or more characters (for exam-
ple, instead of Catherine, we would have three
entities: Catherine, Catherinea and Catherinen),
which affects further the results for building char-
acter networks or narrative.

3 Data

The data used in our experiments is a corpus of
Finnish translations made by Kersti Juva (a subcor-
pus of the Classics of English and American Litera-
ture in Finnish corpus, or CEAL2). The corpus con-
sists of the short novel Washingtonin Aukio, 2003
(“Washington Square”, 1880) by Henry James and
the novels Ylpeys ja ennakkoluulo, 2013 (“Pride
and Prejudice”, 1813) by Jane Austen and Kolea
talo, 2006 (“Bleak House”, 1853) by Charles Dick-
ens. The corpus is stored as text files, 3 files and
384,053 words in total.

4 Creation of gold standard

Before applying our methods (see Section 5), we
had to choose a gold standard character names’
list, so that we can evaluate our methods. To per-
form this task, we got the information from differ-
ent internet sources that contain information about
characters from the novels in our dataset (see Ap-
pendix A).

While creating a gold standard character names’
list, we also faced many questions about characters,
such as: what is a literary character? Who do we
consider a character from the point of the narrative?
Who do we consider a character from the point of
character extraction where we are forced to filter
the results of automatic Named Entity Recogni-
tion3? Do we take into consideration off-screen
characters (characters that are only mentioned in
the text and do not participate in the plot)? To an-
swer these questions, we need to define what / who
the character is.

2https://www.kielipankki.fi/corpora/ceal-2/
3This is part of the preprocessing used in our experiments,

see Section 5.

The literary character can be seen as a construct
whose definition and features depend on the study
area (Margolin, 1990). Jannidis (2013) considered
a character “a text- or media-based figure in a sto-
ryworld, usually human or human-like” or “an en-
tity in a storyworld”. Overall, characters are inter-
twined with narrative and storyworld, contributing
to their development from many aspects.

We considered a literary character every figure
that was relevant for the narrative development
(thus, e.g. names of famous persons that are men-
tioned but do not appear in the novel were not
included). So we decided to include both onscreen
(entities that are actively participating in the sto-
ryworld) and off-screen (entities that are passively
contributing to the construction of the storyworld)
characters (e.g. in case of Washington Square, it
was the mother of the main character that gets men-
tioned only twice). We also included all possible
names that can be used for naming a certain charac-
ter by splitting the full name (e.g. Elizabeth Bennet
would also get versions Elizabeth and Bennet) and
by analyzing possible versions (Lizzy for Elizabeth
Bennet) that were mentioned in the internet sources
(see Appendix A). So Elizabeth Bennet would get
the following names: Bennet, Eliza, Eliza Bennet,
Elizabeth, Elizabeth Bennet, Lizzy. The creating
of the gold standard was carried out only by one
annotator.

5 Methods

To apply our methods, we have to carry out the
preprocessing first. This includes the following
workflow:

1. Applying Named Entity Recognition on
Finnish translations of English texts;

2. Filtering the named entities identified by label,
removing all entities that are not persons;

3. Getting the lemmas for the remaining named
entities.

For Named Entity Recognition on Finnish texts
and further lemmatization, a Python library named
Stanza (Qi et al., 2020) was used, because it
provided a state-of-the-art level of Named Entity
Recognition for this language. Finnish language
models are represented in Stanza by Turku neural
parser pipeline (Kanerva et al., 2019), so we will be
using the Turku neural parser pipeline’s lemmatizer
(Kanerva et al., 2018) as a baseline.
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We have used and compared three methods of
finding correct names’ lemmas. These methods
were applied on the output of the preprocessing, i.e.
lists of names that were results of applying Named
Entity Recognition on Finnish translations, then
filtering only person-type entities, and finally lem-
matizing them. The methods were implemented
using Python and are as follows:

1. Method 1: Check for the shortest version of
the name. This method was based on two
assumptions: 1) that the language is agglutina-
tive, so the stem is modified a lot with the help
of affixes, and 2) that a character name will
appear many times, so not all its wordforms
contain morphemes from the target language
and there will be at least one occurrence of
the correct lemma. Consider the following ex-
ample: if we have the right lemma of the char-
acter name (Catherine) and wrong versions
that were however recognized as lemmas by
the lemmatizer (Catherinen, Catherinea), the
right version is the shortest, so searching in
the sorted list of names [Catherine, Cather-
inea, Catherinen] should yield the right result.

2. Method 2.1 and Method 2.2: Check whether
the name exists using Wikipedia4 or Wik-
tionary,5 respectively (in our case, the English
version of these resources). This method re-
quires that for most of the names there were
articles in Wikipedia and in Wiktionary, and
since we were using English versions of these
resources, wrong forms that contained Finnish
suffixes would be discarded. This assump-
tion relied heavily on the genre of texts of
the corpus, namely classic British and Amer-
ican literature, so the character’s name was
an actual name in the real world. If we con-
sider the example from Method 1, Catherine
would return an article from both Wikipedia
and Wiktionary, while Catherinen and Cather-
inea would return an error which means that
there was no such page, and, presumably, no
such name in the English language.

3. Method 3: Check if the word occurrence con-
tains suffixes (in our case, Finnish suffixes). In
this implementation only suffixes correspond-
ing to Finnish genitive and partitive cases

4https://en.wikipedia.org/
5https://en.wiktionary.org/

were checked, since the lemmatizer usually
made mistakes in such forms. For example, if
we check for the words that end on -a/ä and
-n, the wrongly lemmatized Catherinen and
Catherinea would not be included in the end
results.

6 Results

We evaluated the results of our methods and the
baseline according to the following criteria:

• Precision (fraction of true positive instances
among all extracted instances), recall (fraction
of true positive instances that were retrieved)
and F-score (harmonic mean of precision and
recall).

• Language independence (whether the method
depends on certain language features and / or
language resources, such as corpora, or not).

• Need for external non-linguistic resources
(whether the method requires external re-
sources to perform checking or not).

The overall count of results can be found in Ta-
ble 1. The Gold standard column contains the
number of character names (number of true posi-
tive instances, or all possible versions that can be
used for naming all the characters that appear in
the novel), Method 1 covers results for checking
for the shortest version of the name, Method 2.1
and Method 2.2 - for checking in Wikipedia / Wik-
tionary, and Method 3 - for checking for suffixes.

In Table 2 and Table 3 we present the results for
the precision and recall for each method and the
baseline, respectively. The results for F-score were
counted only on average level and can be seen in
Table 4.

It is quite noticeable from Table 1 that Method
2.2. (search for a correct wordform using Wik-
tionary) usually retrieves less names than any of the
other methods (it has the lowest count of names for
Bleak House, and the second lowest for Washington
Square). However, in terms of recall, which can
be seen in Table 3, the results varied significantly
for this method: from 46% to 92% (compared with
other methods where recall did not go lower than
55%).

Method 1 performed well on both a short text
(Washington Square) and a significantly longer
novel (Bleak House). It reached 100% recall for
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Work Gold standard Baseline Method 1 Method 2.1 Method 2.2 Method 3

Washington Square 20 22 18 21 17 12
Pride and Prejudice 48 80 76 65 60 65

Bleak House 126 184 128 88 68 109

Table 1: Names count for the three methods and the baseline

Work Baseline Method 1 Method 2.1 Method 2.2. Method 3

Washington Square 73% 89% 76% 88% 92%
Pride and Prejudice 59% 63% 69% 73% 65%

Bleak House 58% 84% 85% 85% 83%
Average precision 63.3% 78.7% 76.7% 82.0% 80.0%

Table 2: Precision of the three methods comparing to the baseline. Average precision is added for reference. Best
result in each row shown in bold.

Work Baseline Method 1 Method 2.1 Method 2.2. Method 3

Washington Square 80% 80% 80% 75% 55%
Pride and Prejudice 98% 100% 94% 92% 88%

Bleak House 85% 86% 60% 46% 72%
Average recall 87.7% 88.7% 78.0% 71.0% 71.7%

Table 3: Recall of the three methods comparing to the baseline. Average recall is added for reference. Best result in
each row shown in bold.

Pride and Prejudice, but precision for this text was
lower than for other two: 63%.

Both external sources that were used for Method
2 (Wikipedia and Wiktionary) showed the worst
recall results on Bleak House (46% and 60%) but
scored over 90% on Pride and Prejudice. In terms
of precision, checking in Wiktionary (Method 2.2)
performed better than using Wikipedia for both
Washington Square and Pride and Prejudice, while
the usage of both resources led to the same result
for Bleak House. We assume that this result can
be attributed to the difference between the names,
surnames and nicknames used in these novels.

Method 3 achieved the second best precision
overall (and the best precision for Washington
Square), but did not show good results in terms
of recall (worst for two texts out of three). While
applying this method, we also noticed that, without
applying additional checks, it seems to filter out
a certain amount of true positive cases, since the
suffixes in question (partitive and genitive) contain
one or two letters and can easily be just parts of
correct lemmas.

In Table 4 we present values for the aforemen-

tioned criteria of evaluation, i.e. language indepen-
dence and need for other resources, as well as the
average precision, recall and F-score.

Only one method can be considered language-
independent: search for the shortest version of
lemma (Method 1). It can also be considered the
only method that does not require a lot of external
sources of knowledge, since even searching for the
suffixes requires knowledge of Finnish grammar.
The only knowledge that is required for the first
method is knowledge about the type of language
(agglutinative / fusional), but since the problem
with wrongly lemmatized names is mostly the prob-
lem of agglutinative languages, this knowledge can
be considered basic.

It is worth noting that lemmatization and scrupu-
lous study of extracted names has also shown
changes in translation regarding the original text.
Thus, there is no Guster (the servant of Mr.
Snagsby and Mrs. Snagsby) in the Finnish ver-
sion of Bleak House but Molly, due to the word-
play. Such changes made the creation of the gold
standard more difficult since it was based on the
original namings of characters. We suggest that
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Criteria Baseline Method 1 Method 2.1 / Method 2.2 Method 3

Average precision 63.3% 78.7% 76.7% / 82.0% 80.0%
Average recall 87.7% 88.7% 78.0% / 71.0% 71.7%

Average F-score 73% 83.4% 77.3% / 76.1% 75.6%
Language independence - partly yes no no

External resources - no Yes, database Yes, linguistic knowledge

Table 4: Comparison of the methods (also regarding the baseline). Best result in each row shown in bold.

word alignment with original texts could help find
such cases automatically. However, word align-
ment would not solve the lemmatization in these
cases, since the name in the original (English) and
in the translation (Finnish) differ.

There were also some issues related to misprints
in the Finnish translations (e.g. in the translation
of Washington Square sometimes names Lavinia
and Catherine were misprinted as Lavina and Cath-
erna) which lead to additional wrong results. Such
errors were fixed, so the final version of results
contained only right versions of names.

7 Conclusion

Perhaps surprisingly, a rather simple method that
searches for the shortest version of the character’s
name (Method 1) yielded one of the best results
with average precision of 78.7%, the best overall re-
call (88.7%) as well as the best overall F1 (83.4%).

Searching for a name in Wikipedia (Method 2.1)
led to slightly lower precision (77.6%). Searching
for a name in Wiktionary (Method 2.2) was over-
all slightly worse than Method 2.1 (F1 76.1% vs
77.3%), but almost on the same level as checking
if the name contains suffixes (Method 3): average
precision for both was about 71%.

In addition, Method 1 did not require any ad-
ditional resources and it was relatively language-
independent which would allow it to be used with-
out any modifications for other agglutinative lan-
guages. We suggest that a combination of these
methods (for example, simple combination of
Method 1 and Method 3 should help e.g. in case
when the characters do not have common names in
genres like fantasy or sci-fi) will further improve
the search for the right lemmas for foreign names
in texts written in agglutinative languages and thus
enhance the character identification.
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Abstract

Word Sense Disambiguation (WSD) is a core
task in Natural Language Processing (NLP).
Ancient Chinese has rarely been used in WSD
tasks, however, as no public dataset for ancient
Chinese WSD tasks exists. Creation of an an-
cient Chinese dataset is considered a signifi-
cant challenge because determining the most
appropriate sense in a context is difficult and
time-consuming owing to the different usages
in ancient and modern Chinese. Actually, no
public dataset for ancient Chinese WSD tasks
exists. To solve the problem of ancient Chi-
nese WSD, we annotate part of Pre-Qin (221
BC) text Zuo Zhuan using a copyright-free dic-
tionary to create a public sense-tagged dataset.
Then, we apply a simple Nearest Neighbors
(k-NN) method using a pre-trained language
model to the dataset. Our code and dataset will
be available on GitHub1.

1 Introduction

Word sense disambiguation (WSD) is a crucial
aspect of NLP, which identifies the sense of pol-
ysemous words that best fit the current context.
Compared to some languages such as English, a
character in Chinese, especially in ancient Chinese,
usually has multiple and varying meanings, which
greatly increases the difficulty of word sense disam-
biguation. At the present time, Dang et al. (2002);
Li et al. (2005); Hou et al. (2020); Zheng et al.
(2021) have made certain advances on modern Chi-
nese WSD tasks. Nevertheless, unlike modern Chi-
nese, ancient Chinese has hardly been explored in
WSD tasks for lack of a dataset thus far. The main
reason is that the smaller number of Chinese char-
acters in the past led to even greater ambiguity in
meaning than in modern Chinese. There are also
fundamental differences in usage between ancient
and modern Chinese. Figure 1 shows a context

1https://github.com/pxm427/
Ancient-Chinese-WSD

医至，曰：疫不可为也。

context
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senses in ancient Chinese
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 为
  �

senses in 
modern Chinese

treat

to do purpose

为

�
 为
  � �

 为
  �

female monkey make let

auxiliary family name for military service

Figure 1: Illustration of choosing the right sense from
the given context which means: The doctor said that
the disease could not be treated. The senses of the
target character “为” have different usages in ancient
Chinese and modern Chinese. From the eight and two
possible senses of the target character “为” in ancient
and modern Chinese, the No. 2 sense in ancient Chinese,
which denotes “treat” best fits the current context.

from Zuo Zhuan, a Pre-Qin Chinese book published
late in the 4th century BC. The target character “为”
has eight senses in ancient Chinese, differing from
the two usual senses in modern Chinese. Without
WSD, those unfamiliar with ancient Chinese have
difficulty determining the correct senses. If WSD
can be applied to ancient Chinese, it may contribute
to the education of ancient Chinese and also many
other tasks such as machine translation for ancient
Chinese.

Previous researchers such as Yu et al. (2009);
Chang et al. (2013) used few target characters and
extracted the contexts to assemble an ancient Chi-
nese lexical sample dataset for their WSD tasks.
However, no public dataset for ancient Chinese
WSD has yet been established. Consequently, re-
searchers must create their own datasets to test their
models for ancient Chinese WSD. Therefore, we
choose to self-produce a public dataset for ancient
Chinese WSD tasks.

In this study, we selected excerpts from Zuo
Zhuan that includes approximately 200,000 char-
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acters (token). Then we annotated the texts with
word senses from an open dictionary Kangxi to
construct our dataset. In addition, we evaluated
a supervised k-NN approach using a pre-trained
model (Loureiro and Jorge, 2019) for ancient Chi-
nese WSD tasks.

The main contributions of this paper are as fol-
lows:

1. We created a large public ancient Chinese
WSD dataset for a lexical sampling task.

2. We applied a supervised k-NN approach using
a pre-trained ancient Chinese language model
to the ancient Chinese dataset.

2 Related Work

Word sense disambiguation is a task to predict the
correct sense using an input word and its context.
For example, “bank” has two meanings in English
which refers to “a financial institution” and “slop-
ing land”. The ambiguity of word can cause noises
in downstream tasks. Therefore, it is necessary to
uniquely determine the meaning of a word. In Chi-
nese, especially in ancient Chinese, one character
usually has multiple and varying meanings. Hence,
it adds more difficulties in distinguishing different
meanings. Although there is the aforementioned
educational aspect, WSD of ancient Chinese can
improve machine translation (to modern-Chinese)
and full-text search systems.

2.1 Chinese WSD Methods

Modern Chinese. Dang et al. (2002) adopted a
maximum entropy method to investigate contextual
features for Chinese. Li et al. (2005) used a naïve
Bayes model based on local collocation and topical
contextual features. Recently, Hou et al. (2020)
used an unsupervised method based on HowNet
(Dong et al., 2010) and made use of a pre-trained
language model. Zheng et al. (2021) proposed
FormBERT with word-formation for WSD and cre-
ated a Chinese lexical sample dataset. All these
approaches have performed effectively for Chinese
WSD, but their target was modern, not ancient,
Chinese.

Ancient Chinese. Yu et al. (2009) applied the
CRF (Lafferty et al., 2001) model to tackle an-
cient Chinese WSD by using contextual words and
linguistic features. They tested the model on six
target characters with the best average F-score of

83.04% and proved that linguistic features can im-
prove the WSD results for ancient Chinese. Chang
et al. (2013) built a knowledge repository of an-
cient Chinese polysemous words and proposed an
unsupervised method for ancient Chinese WSD
based on a vector space model. They tested it on
ten target characters and obtained an average ac-
curacy of 79.5%. However, both were tested on
limited numbers of characters and their datasets
were non-public. In our study, we create a public
ancient Chinese WSD dataset with 25 target char-
acters, and then apply a k-NN approach using a
pre-trained language model to our dataset.

2.2 Resources for Chinese WSD

HowNet is an online common-sense knowledge
base including relationships between concepts and
attributes with their English equivalents (Dong
et al., 2010). It has been used on modern Chinese
WSD task (Hou et al., 2020; Zhang et al., 2021),
but cannot be applied to ancient Chinese because
of the semantic diversity over 2000 years.

Zhang et al. (2012) used Great Chinese Dictio-
nary as the knowledge resource and performed
WSD of Zuo Zhuan by using a semi-supervised
machine learning method. Owing to the copyright
on the Great Chinese Dictionary, the authors have
not made the corpus public. Unlike their approach,
we used a public dictionary to annotate the word
senses and thus can make our corpus publicly avail-
able.

Recently, the Pre-Qin Ancient Chinese Word-
Net (PQAC-WN), which contains 45,498 Pre-Qin
basic words and 63,230 semantic classes was con-
structed by Xu et al. (2020). PQAC-WN organizes
information based on semantic relationships and
establishes lexical semantic mappings among Pre-
Qin ancient Chinese, modern Chinese, and English.
Nevertheless, it is not yet public. Therefore, we
created an ancient Chinese WSD dataset that can
be used freely for research purposes.

3 Construction of the Zuo Zhuan Ancient
Chinese WSD Dataset

Since there is no public dataset for ancient Chinese
WSD, we created the Zuo Zhuan Ancient Chinese
WSD Dataset for ancient Chinese WSD. In this
section, we describe the process of creating the
dataset.
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Figure 2: Data statistics. The figure shows the occur-
rences of 25 high-frequency characters. The vertical
axis is the frequency of character, and the horizontal
axis is the target characters of this study.

Problems Examples

No Corresponding Notes 王为中君 → 率领
The king leads his army.

Multiple Similar Notes 晋人许之 → 语助词/他
The Jin promised (him).

Cannot Read 晋人以公为贰于楚 → ？

Figure 3: The three main problems encountered when
annotating were termed: “No Corresponding Notes”,
“Multiple Similar Notes”, and “Cannot Read”.

3.1 Corpus

3.1.1 Data Selection

We used Zuo Zhuan following the previous study
(Zhang et al., 2012). As one of the most famous
ancient books, Zuo Zhuan is free from copyright re-
strictions, so that we can annotate and make it pub-
lic. As shown in Figure 2, we selected those with
a high-frequency as our target characters (approxi-
mately one hundred occurrences for each character)
and ranked them from 1 to 25. We selected a total
of 2,490 sentences containing the target characters
from Zuo Zhuan, accounting for 12%. For each
target character, we planned to select one hundred
sample sentences randomly for annotation. How-
ever, the same target character may have appeared
several times in the same context. Consequently,
there are fewer than one hundred unique sentences
for some characters. In such cases, we only chose
the first target character to annotate for the context.

3.1.2 Annotation

We discerned the correct meaning of the target char-
acter in each context. To be more specific, first, we
read every context including the target character
and determined all the possible senses. Second, we

婴梦天使谓己：祭余，余福女。

婴梦天使谓己：祭余，余福女。

�
 使
  �

�
 使
  �

Person 1

Person 2
discussion �

 使
  �

Figure 4: Two researchers annotated the same instance
and discussed their readings for accuracy and reliability.
Two senses are mentioned in the figure, No. 0 sense:

“make somebody do” and No. 2 sense: “Angel”. This
context means: Zhao Ying dreamed that an angel said
to him: Sacrifice me, and I will bless you.

selected the optimal meaning for the target charac-
ter in the current context.

However, problems may be encountered when
annotating. For example, the correct sense could
sometimes not be found in the dictionary. As
shown in Figure 3, the explanation of the first con-
text is: The king leads his army. Here, the correct
sense of character “为” is “lead” which can not
be found in the dictionary. The second context can
be translated into: “The Jin promised.” by choos-
ing the sense which refers to “auxiliary word”,
or “The Jin promised him.” by selecting the sense
that means “him”. It is difficult to determine the
most suitable one. In the third context, the correct
sense is hard to choose because we could not accu-
rately discern the meaning of the sentence. In such
cases, we assigned a special tag -1 to represent the
undetermined sense.

Furthermore, to improve the accuracy and reli-
ability of the annotation, two researchers, native
Chinese PhD and master students majoring in NLP,
annotated the same target characters separately and
discussed them for final confirmation. As shown
in Figure 4, occasionally situations arose where
different senses were chosen by two researchers for
the same instance. This may have been caused by
different interpretations of the dictionary and the
sentences.

We picked up one character for calculating the
inter-annotator agreement of the dataset. For the
character “使”, the same one hundred sentences
have been annotated separately by two researchers
with two tags: No.0 and No.1. One researcher
annotated 92 sentences with tag No.0 and 8 sen-
tences with tag No.1, and the other researcher anno-
tated 95 sentences with No.0 and 5 sentences with
No.1. Using this data, the Cohen’s kappa of two
independent annotations was 0.75, which indicates
moderate agreement (Carletta, 1996).

Fortunately, such consistency problems were
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又，治也。疫不可为也。为 2
explanationchar No.

（Treat. For example: The disease can not be treated.）

Figure 5: The structure of sense No. 2 for the “为”
character from the dictionary. It consists of three parts:
the target character, explanation, and sense number. The
translation of the explanation part is shown below.

able to resolve after discussion. The consistency of
annotation of the whole data (2,490 sentences) was
88% before discussion, but it finally increased to
100% after discussion and confirmation2.

3.2 Dictionary

We chose Kangxi dictionary3 compiled in 1716,
which contains explanations for almost all the char-
acters of the dynasties before the Qing Dynasty
and is free of copyright. As shown in Figure 5,
for the character “为”, the explanation consists of
three parts. The first part is the target character,
the second part is the explanation of the particular
sense, and the last part is the number of the sense.

4 k-Nearest Neighbors Method using a
pre-trained language model for WSD

For this study, we applied the k-Nearest Neighbour
classification (k-NN) using a pre-trained language
model by following the approach from Loureiro
and Jorge (2019). Specifically, we used GuwenBert,
a pre-trained language model for ancient Chinese,
to generate the embedding for WSD.

4.1 GuwenBert

GuwenBert-base is a RoBERTa (Liu et al., 2019)
model pre-trained on ancient Chinese, which con-
sists of 12 layers with 768 hidden units. The train-
ing data is from the daizhige dataset (殆知阁古代
文献) that consists of 15,694 books in Classical
Chinese, approximately 76% of which are punc-
tuated. The total number of characters is 1.7B
(1,743,337,673). All the traditional characters are
converted to simplified characters.

It has been proved that GuwenBert was more
effective than Chinese RoBERTa in Named Entity
Recognition (NER) task on ancient Chinese4, but

2As the size of the dataset grows in the future, we are dis-
cussing and making a manual together so that the consistency
will be as high as possible.

3https://www.kangxizidian.com
4https://github.com/ethan-yt/guwenbert

it has not been used in any WSD tasks on ancient
Chinese.

4.2 1-Nearest Neighbor
We applied 1-Nearest Neighbor classification by
following the method from Loureiro and Jorge
(2019). As shown in Figure 6, we combined sen-
tence embedding Es with gloss embedding Eg.

E = Combination(Es, Eg) (1)

Here, sense embedding E is the combination of
sentence embedding and gloss embedding using
concatenate or average. We compute the sentence
embedding as follows:

Es =
1

|D(t,s)|
∑

c∈D(t,s)

v(c,t) (2)

v(c,t) = Embed(c)t (3)

where v(c,t) represents the embedding of the tar-
get character in the context from the dataset, D(t,s)

is the set of contexts where target character t is
associated with the sense s in the training data, re-
spectively. Here, c and t are context from dataset
and target character. Embed(·)t returns the con-
textualized word embedding of the target character.
Likewise, we calculate the gloss embedding as fol-
lows:

Eg = v(g,t) = Embed(g)t (4)

where g means gloss, and v(g,t) represents the em-
bedding of the target character in the gloss.

Finally, the similarity between combined sense
embedding E and the target character embedding
v(c,t) from test data5 is calculated. We predicted the
sense s as the one with the highest cosine similarity.

ŝ = argmax
s

simcos(v
(c,t), E) (5)

5 Experiments

5.1 Experimental Settings
Dataset. We first acquired contexts with same
sense number for each sense. Then we split them
into training data and test data in an 8:2 ratio. The
statistics of the data are shown in Table 1.

5When using concatenation to obtain E, the dimension
of the combined embedding becomes twice as the sense em-
bedding. Therefore, if we want to calculate the similarity, we
need to concatenate the sense embedding v(c,t) itself from test
data as well, so that the dimensions of both embeddings are
identical.
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Figure 6: The process of obtaining the combined em-
bedding.

Split Characters Sentences

Train 34,971 1,970
Test 9,648 520

Table 1: Statistics of training data and test data.

Baseline. The most frequent sense (MFS) base-
line aims to find the sense which occurs most often
in the annotated corpus. We selected the sense
which appears most frequently in the training cor-
pus for each character and calculated the accuracy.

k-NN As mentioned in Subsection 4.1, we chose
GuwenBert-base as our model to obtain contextual-
ized character embeddings in 1-NN classification.
We only used it for obtaining the embeddings, so
that no fine-tuning was required.

5.2 Results & Analysis

Table 2 shows the accuracy of 25 target charac-
ters on Zuo Zhuan Ancient Chinese WSD Dataset
across MFS and 1-NN.

Dataset. As mentioned in 3.1.2, sometimes we
cannot assign a definite sense number for a target
character in certain contexts when annotating. Such
cases account for 12% of the dataset. The cases
for “No Corresponding Notes”, “Multiple Similar
Notes” and “Cannot Read” respectively account for
71%, 17%, 12% of these sentences. It is reasonable
to assume that these cases arise mainly from miss-
ing explanations in the dictionary, uncertainties of
the sentences themselves, and rare ancient usages.

We also find that the discussion improves the
reliability of the dataset. The consistency increases
from 84% to 100% after discussion and agreement
between two researchers. So it is presumed that
the dataset gains accuracy and credibility when
annotated by more people.

Char No. QTY MFS Concat Avg

之 3/8 11 0.32 0.23 0.27
子 -1 18 0.41 0.18 0.41
于 2 8 1.00 1.00 1.00
也 0 5 1.00 1.00 1.00
以 -1 6 0.62 0.24 0.29
不 0 12 1.00 1.00 1.00
公 3 17 0.81 0.00 0.10
而 6 10 0.67 0.14 0.24
人 0 8 0.77 0.00 0.90
其 0 9 0.68 1.00 1.00
晋 5 10 1.00 1.00 1.00
侯 0 11 0.95 1.00 1.00
君 0 18 0.73 0.00 0.77
为 1 8 0.52 0.52 0.57
郑 0 4 1.00 1.00 1.00
使 0 4 0.90 0.90 0.86
楚 6 14 0.95 0.00 0.95
齐 9 26 0.95 0.95 0.95
大 0 17 0.38 0.38 0.48
有 1 8 0.86 0.86 0.86
师 2 13 0.86 0.86 0.86
诸 6 22 0.62 0.62 0.62
王 0 16 0.86 0.86 0.82
无 0 15 1.00 0.90 0.90
伯 2 12 0.85 0.85 0.90

0.79 0.62 0.75

Table 2: Accuracy results based on our dataset. No.
means the sense number of the target character in the
dictionary. MFS is the frequency of most frequent sense
for each character from test data. QTY means the quan-
tity of senses for each character in the dictionary. concat
and avg mean the accuracy calculated by concatenate
approach and average approach. Best results and me-
dian are shown in bold and underline. The last row of
data is the average of the columns.

MFS baseline & 1-NN The MFS baseline as-
sumes a sense annotated corpus from which the
frequencies of individual senses are learned. Al-
though this is a fairly naïve baseline without ex-
ploiting any contextual information, it has proven
difficult to beat.

As shown in Table 2, the characters with low
MFS accuracy also tend to be low in 1-NN. This
may be related to the occurrence of the most fre-
quently annotated senses. For example, the most
frequently annotated sense of “于” appears in every
context with an accuracy of 1. Therefore, it is more
likely to have a higher 1-NN accuracy. In contrast,
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“之” with an MFS accuracy of 0.32 can also be in-
ferred to have a low 1-NN accuracy. Furthermore,
we also observe that the sense distribution of the
character with lower accuracy is more even. For ex-
ample, in Table 2, “之” has the two most frequent
senses with low accuracy.

The size and diversity of the dataset also affect
the study. Since our dataset is relatively small,
the distribution of senses is limited, and a larger
and more comprehensive dataset would consider-
ably improve the accuracy of the 1-NN model that
can take advantage of contextualized word embed-
dings.

Combination strategy. Compared with the con-
catenate approach, the accuracy of the average ap-
proach is generally increased by about 13 points.
The reason why the average method outperforms
the concatenate method is likely because when us-
ing the concatenate approach, it is biased toward
the training corpus since we copied the sense em-
bedding from the test data, resulting in a smaller
role for the dictionary. Conversely, the average
method is more capable of combining the role of
the training corpus and the dictionary. Table 2
shows that the accuracy is generally high when the
known senses of characters appear in the sentence.
In contrast, the appearance of unknown senses (a
special tag -1) that do not exist in the dictionary
cannot be predicted, consequently, resulting in a
low accuracy.

Hard characters. It can be observed that the
accuracy for the target characters which have un-
seen senses such as “以” is low in Table 2. The
performance for the target characters with diverse
senses such as “之” and “大” is also not high. Ad-
ditionally, characters such as “公” and “而” are
considered hard compared to the MFS. We leave
improving the performance of these characters for
future work.

6 Conclusion and Future Work

In this paper, we created the Zuo Zhuan Ancient
Chinese WSD Dataset, and then evaluated a 1-NN
approach using a pre-trained model GuwenBert on
our dataset.

In future, we plan to increase the coverage of our
dataset, explore whether this approach can detect
unknown senses and improve the performance by
adapting the pre-trained model to our dataset.

In addition, ancient Chinese and modern Chi-
nese have changed greatly in word meanings and
vocabulary. Among these, we would like to make a
comparison of the two models for ancient Chinese
and modern Chinese to address following ques-
tions: “How well do models optimized for modern
language model perform in our dataset?” and “How
well does the model for our ancient Chinese per-
form in the modern Chinese dataset?”
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Abstract
We present ViT5, a pretrained Transformer-
based encoder-decoder model for the Viet-
namese language. With T5-style self-
supervised pretraining, ViT5 is trained on
a large corpus of high-quality and diverse
Vietnamese texts. We benchmark ViT5 on
two downstream text generation tasks, Ab-
stractive Text Summarization and Named En-
tity Recognition. Although Abstractive Text
Summarization has been widely studied for
the English language thanks to its rich and
large source of data, there has been min-
imal research into the same task in Viet-
namese, a much lower resource language. In
this work, we perform exhaustive experiments
on both Vietnamese Abstractive Summariza-
tion and Named Entity Recognition, validat-
ing the performance of ViT5 against many
other pretrained Transformer-based encoder-
decoder models. Our experiments show that
ViT5 significantly outperforms existing mod-
els and achieves state-of-the-art results on
Vietnamese Text Summarization. On the task
of Named Entity Recognition, ViT5 is com-
petitive against previous best results from pre-
trained encoder-based Transformer models.
Further analysis shows the importance of con-
text length during the self-supervised pretrain-
ing on downstream performance across differ-
ent settings.

1 Introduction

In recent years, Transformer-based architecture
models and pretrained language models (LMs)
have played a crucial role in the development of
Natural Language Processing (NLP). Large pre-
trained models such as ELMo (Peters et al., 2018),
GPT (Brown et al., 2020), BERT (Devlin et al.,
2018) is trained on large corpora and have the
ability to derive contextual representation of the
language(s) in the training data. After pretrain-
ing is complete, these models achieved state-of-

the-art results on a broad range of downstream
tasks (Devlin et al., 2018). These self-supervised
learning methods make use of learning objectives
such as Masked Language Modeling (MLM) (De-
vlin et al., 2018) where random tokens in the
input sequence are masked and the model at-
tempts to predict the original tokens. The suc-
cesses of pretrained models in English have in-
spired new research efforts to develop pretrained
models in other languages such as Vietnamese
(i.e., PhoBERT (Nguyen and Nguyen, 2020) and
ViBERT (Bui et al., 2020)) and Italian (Sarti and
Nissim, 2022). There are also ongoing efforts
to develop multilingual pretrained models (mT5
(Xue et al., 2020), mBART (Liu et al., 2020)),
in order to improve performance across multiple
languages by learning both general and language-
specific representations.

A short time ago, BARTpho (Tran et al., 2021),
a large pretrained sequence-to-sequence model for
Vietnamese inheriting BART style (Lewis et al.,
2019), demonstrated the effectiveness of pre-
trained language models on Vietnamese abstrac-
tive summarization. Nevertheless, there are some
past works that have shown that T5 architecture
(Raffel et al., 2019) might outperform BART in
some aspects (i.e., (Phan et al., 2021a)). Inspired
by that, we propose ViT5, trained on the Viet-
namese monolingual subset of CC100, following
the architecture and training methodology in Raf-
fel et al. (2019). We perform exhaustive compar-
isons on downstream performance to many differ-
ent pretrained Transformer-based models (Nguyen
et al., 2021; Tran et al., 2021; To et al., 2021).
Specifically, we finetune the ViT5 on two sum-
marization datasets, Wikilingua (Ladhak et al.,
2020) and Vietnews (Nguyen et al., 2019), and
one Named Entity Recognition dataset (PhoNER
(Truong et al., 2021)).

Text summarization is an important downstream
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task whose input is a free-form text paragraph
or document(s), and the output sequence is ex-
pected to be a short summarization of the input.
ViT5 achieves state-of-the-art results on both two
of the single-document summarization tasks. We
also perform an analysis on the max-length hyper-
parameter for input and output sequences during
self-supervised learning and showed that longer
lengths that match the downstream document’s
length lead to better result.

For NER, we reformulated the per-token clas-
sification task into a generation task, where the
decoder reconstructs the original input sentence
with inserted Named Entity tags following each
token (Phan et al., 2021b). This simple and
straightforward formulation achieves competitive
results in comparison to direct per-token classifi-
cation done on encoder-only model (Nguyen and
Nguyen, 2020).

2 Related Work

There are lots of abstractive summarization stud-
ies in English. In an early example, (Gehrmann
et al., 2018) employed a bottom-up content se-
lector (BottomUp) to determine which phrases
in the source document should be part of the
summary, and then a copy mechanism was ap-
plied only to pre-select phrases during decoding.
Their experiments obtained significant improve-
ments on ROUGE for some canonical summariza-
tion datasets.

In recent years, pretrained language models
have been used to enhance performance on lan-
guage generation tasks. (Liu and Lapata, 2019)
developed a Transformer-based encoder-decoder
model so that pretrained language models like
BERT can be adopted for abstractive summa-
rization. Here, the authors proposed a novel
document-level BERT-based encoder (BERTSum)
and a general framework encompassing both
extractive and abstractive summarization tasks.
Based on BERTSum, Dou et al. (2021) introduced
GSum that effectively used different types of guid-
ance signals as input in order to generate more
suitable words and more accurate summaries. This
model accomplished state-of-the-art performance
on four popular English summarization datasets.

Meanwhile, there are a small number of stud-
ies on Vietnamese text summarization. Most of
these focus on inspecting extractive summariza-
tion. The researchers (Nguyen et al., 2018) com-

pared a wide range of extractive methods, includ-
ing unsupervised ranking methods (e.g., LexRank,
LSA, KL-divergence), supervised learning meth-
ods using TF-IDF and classifiers (e.g., Support
Vector Machine, AdaBoost, Learning-2-rank), and
deep learning methods (e.g., Convolutional Neural
Network, Long-Short Term Memory). Similarly,
the authors (Nguyen et al., 2019) also evaluated
the extractive methods on their own dataset, which
was released publicly as a benchmark for future
studies.

Recent work (Quoc et al., 2021) investigated the
combination of a pretrained BERT model and an
unsupervised K-means clustering algorithm on ex-
tractive text summarization. The authors utilized
multilingual and monolingual BERT models to
encode sentence-level contextual information and
then ranked this information using the K-means
algorithm. Their report showed that monolingual
models achieved better results compared when to
multilingual models performing the same extrac-
tive summarization tasks. However, due to the
lack of studies on Vietnamese abstractive summa-
rization, we compare both multilingual and mono-
lingual encoder-decoder models.

3 ViT5

In this section, we will explain our newly released
ViT5 models, the vocabulary generation steps, the
pretraining data, and the training setup.
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Figure 1: Loss curves for the masked span prediction
task were used to pretrain the ViT5 models. Larger
model with larger context optimizes much better, which
leads to better downstream performance.

3.1 Model

ViT5 follows the encoder-decoder architecture
proposed by Vaswani et al. (2017) and the T5
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ViT5

Encoder

ViT5

Decoder

wikilingua: Anh �y b�t xe t�i tham gia b�a ti�c t�i m�t nhà

hàng sang tr�ng. Nh	ng trong bu
i ti�c, anh �y ngã qu�

xu�ng và 	�c 	a t�i b�nh vi�n. 

(He took the car to attend a party at a luxury restaurant. But

at the party, he collapsed and was taken to the hospital.)

Anh �y ã nh�p vi�n sau khi tham gia b�a ti�c.

(He was hospitalized after attending the party.)

<task_name>: <input_text>

<output_text>

pho_ner: B�nh nhân 75 là n� , 40 tu
i , �a ch� �

Qu�n 2 , TP. HCM

(Patient No.75 is a female, 40 years old, and lives in

District 2, HCM city)

B�nh nhân PATIENT_ID* 75 PATIENT_ID* là GENDER* n� GENDER* ,

AGE* 40 AGE* tu
i , �a ch� � LOCATION* Qu�n 2 LOCATION* ,

LOCATION* TP. HCM LOCATION*

(Patient PATIENT_ID* No.75 PATIENT_ID* is a GENDER*

female GENDER* , AGE* 40 AGE* years old, and lives

in LOCATION* District 2 LOCATION* , LOCATION* HCM city LOCATION*)

Figure 2: An overview of ViT5 encoder-decoder architecture, with input-output examples of two downstream
tasks. For Named Entity Recognition, the decoder reconstructs the sentence with inserted Entity tags.

framework proposed by (Raffel et al., 2019). The
original works of T5 proposed five different con-
figs of model size: small, base, large, 3B, and 11B.
For the purpose of practical study, we adapt the
base (310M parameters) and large (866M param-
eters) models for ViT5 models and leave bigger
models for future works.

We train ViT5 models with two different in-
put and output lengths: 256 and 1024-length. We
thoroughly experimented with these two models to
have an insight into the importance of pretraining
data length for summarization tasks. For the self-
supervised training learning objectives, we use the
span-corruption objective with a corruption rate of
15%. Figure 1 shows the computed loss during the
self-supervised training stage for the three models.

3.2 Vocabulary
Different from some other current Vietnamese
Transformer-based language models, we find that
an effective vocabulary can contribute a significant
improvement to our model performance. There-
fore, we did pre-process on a 5GB subset of
our pretraining corpus with care like normalizing
punctuation and capitalization, splitting numbers.
We fixed the size of vocabulary to 36K sub-words
and trained SentencePiece (Kudo and Richardson,
2018) model on that dataset.

3.3 Pretraining Data
We use the CC100 Dataset (Monolingual Datasets
from Web Crawl Data) (Wenzek et al., 2020; Con-
neau et al., 2020). The corpus contains mono-
lingual data for over 100 languages. The corpus
was constructed using the pipeline provided by
(Wenzek et al., 2020) through processing January-
December 2018 Commoncrawl snapshots. The
total size for the Vietnamese Corpus is 138GB
of raw text. We process and filter out 69GB of
short paragraphs for 256-length model and 71GB
of long paragraphs for 1024-length model.

Table 1: Input and Output Length of Finetuned
Datasets

Wikilingua Vietnews
Train 13707 99134
Test 3916 22498

#avg body length 521 519
#avg abstract length 44 38

4 Abstractive Summarization

4.1 Wikilingua

Wikilingua (Ladhak et al., 2020) is a large-scale
multilingual corpus for abstractive summarization
tasks. The corpus consists of 18 languages, includ-
ing Vietnamese. These article and summary pairs
are extracted from WikiHow1. These articles have
been reviewed by human authors to ensure quality.
The Vietnamese articles are translated from the
original English articles and have been reviewed
by WikiHow’s international translation team.

4.2 Vietnews

Vietnews (Nguyen et al., 2019) is a single-
document abstractive summarization dataset in-
cluding news data from reputable Vietnamese
news website (tuoitre.vn, vnexpress.net, and
nguoiduatin.vn). The authors of this work re-
moved all articles related to questionnaires, ana-
lytical comments, and weather forecasts to ensure
the quality of document summarization. The fi-
nal released dataset only includes long document
news events. The data consists of 150704 word-
level news articles with a summary abstract and
body text pairs. We follow the filtering pipeline by
Tran et al. (2021) to deduplicate the train/dev/test
dataset. The statistics after filtering are shown in
Table 1.

1https://www.wikihow.com
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Table 2: Test result on Wikilingua and Vietnews Summarization

Models
WikiLingua Vietnews

ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L
Transformer
(RND2RND)

46.25 16.57 29.82 57.56 24.25 35.53

PhoBERT2PhoBERT 50.4 19.88 32.49 60.37 29.12 39.44
mBERT2mBERT 52.82 20.57 31.55 59.67 27.36 36.73
mBART 55.21 25.69 37.33 59.81 28.28 38.71
mT5 55.27 27.63 38.30 58.05 26.76 37.38
BARTpho 57.16 31.18 40.89 61.14 30.31 40.15
ViT5base 256-length 57.86 29.98 40.23 61.85 31.70 41.70
ViT5base 1024-length 58.61 31.46 41.45 62.77 33.16 42.75
ViT5large 1024-length 60.22 33.12 43.08 63.37 34.24 43.55

Notes: The best scores are in bold and second best scores are underlined. The scores in gray color are our experiments.
Code and models for reproducing our experiments: https://github.com/vietai/ViT5

4.3 Baselines

In order to verify the effectiveness of our pro-
posed methods, we compare ViT5 models with
the Transformer models based on (Vaswani et al.,
2017), the ViSum BERT2BERT models (Nguyen
et al., 2021), multilingual encoder-decoder model
(Xue et al., 2020; Liu et al., 2020), and Viet-
namese encoder-decoder BARTpho model (Tran
et al., 2021). The baseline transformer models (la-
beled RND) have a multi-head self-attention and a
feed-forward network. RND models are initialized
with random weights. For the BARTpho models,
we follow the models set up and results released
by (Tran et al., 2021). All finetuned ViT5 models
are conducted with a sequence length of 1024.

4.4 Results

We report the results of the ViT5 models on two
datasets: Wikilingua and Vietnews. We do experi-
ments with two versions of pretraining ViT5: 256-
length and 1024-length to have an insight into the
importance of pretraining data’s paragraph length
for summarization in Vietnamese. We also com-
pare the results of ViT5base and ViT5large models.

We use ROUGE (Recall-Oriented Understudy
for Gisting Evaluation) as our benchmark metrics
for both single document summarization datasets.
The metric measures the overlap of n-grams and
word sequences between two candidate and ref-
erence sequences. ROUGE-1, ROUGE-2, and
ROUGE-L mean the overlap between unigram,
bigram, and longest matching sequence, respec-
tively.

4.4.1 Wikilingua

The results of our models on Wikilingua summa-
rization dataset are shown in Table 2. ViT5 mod-
els outperform all of the experimented pretrained
models, achieving state-of-the-art on all ROUGE
metrics. There is also a significant increase in
ROUGE scores when the models are pretrained
on a longer input and output sequence (1024 com-
pared to 256).

Both versions of ViT51024-length achieve the
highest results on Wikilingua summarization tasks
across all ROUGE metrics with ViT5large 1024-length
achieving state-of-the-art. There is a signifi-
cant improvement in score between the base and
large ViT51024-length architectures (approximately
2% for ROUGE-1, ROUGE-2, and ROUGE-L).
This is predictable as the number of parameters of
ViT5large (866M) is approximately 2.8 times larger
than ViT5base (310M).

There are interesting results when comparing
the results of 256-length and 1024-length ver-
sions of ViT5base. Although the finetuning set-
tings are 1024-length for both ViT5base models,
ViT5base 1024-length performs slightly better with
1% higher score for ROUGE-1, ROUGE-2, and
ROUGE-L. These results are attributed to the
longer sequences during self-supervised training.
As reported in Table 1, the average words in an
input body of Wikilingua corpus are more than
256 tokens, which can be considered long docu-
ments. For this reason, pretraining ViT5 on a 1024
sequence length corpus achieves better results on
Wikilingua summarization task.

Two-out-of-three ViT5 models perform better
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than the published BARTpho model in summa-
rizing Wikilingua corpus. This can be the result
of the quality of pretraining data. While BART-
pho (and PhoBERT) was trained on 20GB of news
data, ViT5 models are trained using CC100, which
is a subset of Common Crawl data. CC100 cor-
pus contains more diverse and general representa-
tion of the Vietnamese language than news data.
Meanwhile, Wikilingua is more of an academic or
instruction representation than news-like text.

4.4.2 Vietnews

The size of Vietnews corpus is much larger than
Wikilingua corpus (with 7.7% for train and 5.8%
for test set). The result of Vietnews abstractive
summarization is in Table 2. Following the discus-
sion of the need for an effective large pretrained
encoder-decoder model in Section 1, we can see
that there is a minimum increase in performance
for the existing Vietnamese encoder-only model
compared to the Transformer baseline. Pretraining
on a large corpus of Vietnamese news, BARTpho
still showed its limitation in the Vietnews summa-
rization task with slightly better ROUGE scores
than multilingual models (mBART and mT5).

Our ViT5 models still achieve state-of-the-art
on Vietnews task for both 256 and 1024-length.
For a more specific news-domain corpus, ViT5
models achieve notable results on the news do-
main although being trained on a more general
Vietnamese natural language domain (CC100).
This supports the assumption that our ViT5 mod-
els learn a better representation of the Vietnamese
language even for more domain-specific summa-
rization problems.

Similar to the results discussed in Section 4.4,
ViT5base models when pretrained on a longer se-
quence corpus (1024-length) achieve better per-
formance in summarizing compared to a short
sequence corpus (256-length) across all ROUGE
metrics. The average input length for Vietnews
documents is approximately the same as in the
Wikilingua task (more than 500 words). There-
fore, the quality of long sequences during self-
supervised training data also leads to a better sum-
marizing in downstream Vietnews finetuned tasks.

5 Named Entity Recognition (NER)

Table 3: Test results on PhoNER COVID19

Models Micro-F1
XLM-Rlarge 93.8
PhoBERTbase 94.2
PhoBERTlarge 94.5
ViT5base 256-length 93.19
ViT5base 1024-length 94.5
ViT5large 1024-length 93.8

Notes: The best scores are in bold.

To verify the effectiveness of ViT5 on clas-
sification tasks, we test our models on
PhoNER COVID19 dataset (Truong et al.,
2021). PhoNER is a dataset for recognizing
named entities related to the COVID19 domain
in Vietnamese. The dataset consists of 35,000
entities in over 10,000 sentences. The goal is to
recognize 10 entity types related to the domain
of COVID19 and epidemics topics. The dataset
was released and benchmarked with PhoBERT
(Nguyen and Nguyen, 2020).

We treat the NER classifications tasks as text-
to-text generating tasks with tags of labels before
and after an entity token (Phan et al., 2021b). An
example of NER in text-to-text format is shown in
Figure 2. The results are shown in Table 3.

The ViT5large 1024-length model, although effec-
tive in generating Vietnamese abstractive sum-
marization, shows its limitation in classification
tasks with lower F1 scores on NER task. On the
other hand, our ViT5base 1024-length model still per-
forms slightly better than PhoBERTbase and com-
petitively the same as the current state-of-the-art
PhoBERTlarge on the PhoNER corpus.

6 Discussion

According to the results on both Wikilin-
gua and Vietnews summarization tasks (Ta-
ble 2 and Table 4.4.2), there is a steady in-
crease in ROUGE scores going from the base-
line Transformer, BERT2BERT related mod-
els (PhoBERT2PhoBERT and mBERT2mBERT),
multilingual encoder-decoder models (mBART,
mT5), to pretrained monolingual models (BART-
pho and ViT5). For Vietnamese summarization
tasks, monolingual encoder-decoder models no-
ticeably outperform multilingual models, most
likely thanks to their more focused and narrower
pretraining stage.
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Interestingly, a more general domain of pre-
training texts can lead to a better domain-specific
summarization performance. In Section 4.4.1, our
ViT5 models while being trained on a more gen-
eral corpus (CC100), outperform current models
that are trained on news-related corpus. More
technical domains such as laws, medicals, or en-
gineering are not tested as we leave these domain-
specific summarization tasks for future studies.

The slightly better performance of
ViT5base 1024-length compared to ViT5base 256-length
suggests that longer document summarization
(more than 512 tokens) need a comparatively
longer context length during the pretraining
stage.

7 Conclusion

We introduce ViT5, a pretrained sequence-to-
sequence Transformer model for the Vietnamese
language. Leveraging the T5 self-supervised pre-
training formulation on massive and high-quality
Vietnamese corpora, we showed that finetuned
ViT5 models are performant on both generation
and classification tasks. We exhaustively com-
pare ViT5 with other pretrained formulations on
both multilingual and monolingual corpora. Our
experiments show that ViT5 achieves state-of-the-
art results on summarization in both Wikilingua
and Vietnews corpus, and competitive results in
generating Named Entity Recognition (NER) on
the PhoNER COVID19 dataset. We also analyze
and discuss the importance of context length dur-
ing the self-supervised pretraining stage, which
strongly influences and positively leads to better
downstream performance.
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Abstract

We provide a study of how induced model spar-
sity can help achieve compositional generaliza-
tion and better sample efficiency in grounded
language learning problems. We consider sim-
ple language-conditioned navigation problems
in a grid world environment with disentangled
observations. We show that standard neural ar-
chitectures do not always yield compositional
generalization. To address this, we design an
agent that contains a goal identification mod-
ule that encourages sparse correlations between
words in the instruction and attributes of ob-
jects, composing them together to find the
goal.1 The output of the goal identification
module is the input to a value iteration network
planner. Our agent maintains a high level of
performance on goals containing novel combi-
nations of properties even when learning from
a handful of demonstrations. We examine the
internal representations of our agent and find
the correct correspondences between words in
its dictionary and attributes in the environment.

1 Introduction

Ideally, when training an agent that acts upon nat-
ural language instructions, we want the agent to
understand the meaning of the words, rather than
overfitting to the training instructions. We expect
that when an agent encounters an unfamiliar in-
struction made up of familiar terms, it should be
able to complete the task. In this sense, the agent
learns to leverage both groundedness of language;
for example in English, tokens in the language map
to observed attributes of objects or phenomena in
its environment, as well as its compositionality;
which enables the description of potentially infinite
numbers of new phenomena from known compo-
nents (Chomsky, 1965). Using language to express
goals is potentially a way to approach task distri-
bution shift and sample efficiency, key problems in

1github.com/aalto-ai/sparse-compgen

reinforcement learning (Sodhani et al., 2021; Jang
et al., 2021).

However, compositional generalization does not
come automatically with standard architectures
when using language combined with multi-modal
inputs, as indicated by the mixed results of gener-
alization performance in Goyal et al. (2021); Sod-
hani et al. (2021). Concurrently with Qiu et al.
(2021), we show that the Transformer architecture
can demonstrate generalization, but requires large
amounts of data for training. In this work, we tackle
sample inefficiency and retain generalization.

Our contributions are as follows. We propose a
model and a training method that utilizes the induc-
tive biases of sparse interactions and factor com-
positionality when finding relationships between
words and disentangled attributes. We hypothesize
that such sparsity in the interactions between object
attributes and words (as opposed to just their repre-
sentations) leads to a correct identification of what
attributes the words actually correspond to, instead
of what they are merely correlated with. We show
in both quantitative and qualitative experiments that
such sparsity and factor compositionality enable
compositional generalization. To improve sample
efficiency, we decouple the goal identification task
(which requires language understanding) from the
planning process (implemented with an extension
of Value Iteration Networks).

2 Related Work

Compositional Generalization and Language
Grounding There is a long line of work on learn-
ing to achieve language encoded instructions within
interactive environments. Vision-Language Navi-
gation environments typically require an agent to
navigate to a requested goal object (for example,
DeepMind Lab (Beattie et al., 2016), R2R (An-
derson et al., 2018) and ALFRED (Shridhar et al.,
2020)). Algorithmic and deep imitation learning
approaches for autonomous agents in these environ-
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ments have been proposed, but room for improve-
ment in both generalization performance and sam-
ple efficiency remains (Chen and Mooney, 2011;
Bisk et al., 2016; Shridhar et al., 2021).

The generalization issue arises because there are
many possible instructions or goals that could be
expressed with language and a learner may not
necessarily observe each one within its training dis-
tribution. Some are “out of distribution" and main-
taining performance on them is not guaranteed;
a problem well known the within reinforcement
learning community (Kirk et al., 2021). However,
a peculiar feature of language instructions is that
language is compositional in nature. This has led to
an interest in whether this aspect can be leveraged
to get better generalization on unseen goals made
up of familiar terms (Oh et al., 2017; Hermann
et al., 2017). However, even in simple environ-
ments such as BabyAI (Chevalier-Boisvert et al.,
2019), and gSCAN (Ruis et al., 2020) this can still
be difficult problem.

Various approaches to leveraging composition-
ality have been proposed, including gated word-
channel attention (Chaplot et al., 2018), hierarchi-
cal processing guided by parse-trees (Kuo et al.,
2021), graph neural networks (Gao et al., 2020),
neural module networks (Andreas et al., 2016), and
extending agents with a boolean task algebra solver
(Tasse et al., 2022). Closest to our approach are
Heinze-Deml and Bouchacourt (2020); Hanjie et al.
(2021) which use attention to identify goal states,
Narasimhan et al. (2018); Ruis and Lake (2022),
which decompose goal identification and planning
modules, Bahdanau et al. (2019) which uses a dis-
criminator to model reward for instructions and
Buch et al. (2021) which factorizes object classi-
fication over components. We contribute a new
approach of learning sparse attention over factored
observations, then attaching that attention module
to a learned planning module. This can be shown
to solve the compositional generalization problem
by learning the correct correspondences between
words and factors without spurious correlation.

Representation Sparsity We hypothesize that
sparsity is an important factor in the design of a
compositional system because it can bias the opti-
mization procedure towards solutions where rela-
tionships exist only between things that are actually
related and not just weakly correlated. Previous
work has shown that induced sparsity can improve
both generalization (Zhao et al., 2021) and model

interpretability (Wong et al., 2021). Induced spar-
sity has been applied both within the model weights
(Jayakumar et al., 2020) and also within the atten-
tion computation (Zhang et al., 2019). In our work,
we apply it in the space of all possible interactions
between words in the language and attributes of
objects in the environment.

Sample Efficiency In grounded language learn-
ing, improved sample efficiency may enable new
use-cases, for example, the training of intelligent
assistants by users who would not have the patience
to give many demonstrations of a desired behav-
ior (Tucker et al., 2020). Various tricks have been
proposed to improve sample efficiency in reinforce-
ment learning in general (Yu, 2018), including pri-
oritized replay (Hessel et al., 2018), data augmenta-
tion (Laskin et al., 2020) and model based learning
or replay buffers (van Hasselt et al., 2019; Kaiser
et al., 2020). Limited work exists on explicitly
addressing sample efficiency in the grounded lan-
guage learning context (Chevalier-Boisvert et al.,
2019; Hui et al., 2020; Qiu et al., 2021). In this
work, sample efficiency is one of our primary objec-
tives and we claim to achieve it using a functionally
decomposed architecture and offline learning.

3 Experimental Setup

We study the performance of our proposed ap-
proach on the GoToLocal task of the BabyAI
environment. A detailed description of the environ-
ment is given in Appendix A. The environment can
be seen as a Goal-Conditioned Markov Decision
Process, (formally defined in Kaelbling (1993)).
Each episode is generated by a seed i and has an ini-
tial state s(i)0 . To obtain a reward during an episode,
the agent must successfully complete the language-
encoded instruction (denoted g) that it is given. The
language is simple and generated by the use of a
templating system. GoToLocal consists only of
statements “go to (a|the) (color) (object)". Each
state is a fully observable 8-by-8 grid world and
each cell (denoted cij) may contain an object, the
agent, or nothing.

The information in each cell is disentangled;
the object’s color is in a separate channel to the
object’s type. We work with disentangled obser-
vations because they have been shown to improve
the performance and sample-efficiency of attention-
based models (see, e.g., Loynd et al., 2020). This
disentanglement is preserved by embedding each
component separately as factored embeddings qa.
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go to a blue box

go to a blue box

Figure 1: Attention over separate components of the input representation.
The model is a single layer of query-key attention applied to each component
individually, where queries are image attribute values for a given component,
the keys are the words and values are a one-tensor. Performing an AND relation
on the components means taking the product of each attention operation.

The environment also comes with an expert agent
which can produce an optimal trajectory for a given
initial state and goal τ (i)|s0, g.

The key performance metric is success rate. A
success happens if the agent completes the instruc-
tion within 64 steps. We study compositional gen-
eralization and sample efficiency.

By compositional generalization we mean main-
taining performance when navigating to objects
with attribute combinations not seen during train-
ing. To study this, we separate goals into GID and
GOOD following the principle of leaving one at-
tribute combination out (shown in Table 1 and sim-
ilar to the “visual" split in Ruis et al. (2020)). Then
we create corresponding training and validation
datasets, Dtrain, Dv_ID and Dv_OOD each contain-
ing the same number of trajectories (10,000) per
goal. Trajectories for each goal are generated in
the same way, so we expect that a different split
of GID and GOOD following the same principle will
cause similar behavior in both the baselines and our
models. Finer details about the dataset construction
are given in Appendix B.

blue red green yellow purple grey
box
ball
key

Table 1: Split between GID and GOOD. Blue cells are object attributes appearing
in the goals for GID and red cells correspond to those in GOOD.

By sample efficiency we mean achieving a high
level of performance given a smaller number of
samples than conventional methods might require.
We denote N as the number of trajectories per goal
that an agent has access to and study performance
at different levels of N . We train various models
using Dtrain and describe the training methodology
and results in Section 5.1.

go to greena key
Discriminator

Mask

Interaction

Figure 2: Discriminator training method. Limg is used to train the “mask"
module. Because true examples are those where the agent is situated next to
the same goal, an optimal mask module should select states the agent is facing.
This can help with learning S(s, g).

4 Designing a learning method

We now design a learning agent with Section 2 in
mind. To complete an instruction, the agent needs
to identify the goal and plan actions to reach it. The
learning problem is decomposed into separate mod-
ules with separate training processes. Subsections
4.1 and 4.2 describe a sparse vision-language ar-
chitecture and training process for identifying goal
cells (S(s, g) ∈ RH×W ). Subsection 4.3 shows
how to plan given that identification π(at|S(s, g)).

4.1 Sparse Factored Attention for Goal
Identification

We hypothesize that learning to to match objects to
descriptions by matching their factors to words indi-
vidually is a process that generalizes more strongly
than matching all at once. For example, the agent
should match “red ball" to red ball because
“red" matches factor red and “ball" matches ball.
If the agent only learns that “red ball" means red
ball, as a whole, then it may not learn what the
meaning of the parts are. Standard architectures,
which can mix information between all the words
or factors of the observation might fall into the trap
of doing the latter over the former. We propose two
inductive biases to learn the former. The first bias is
factor compositionality. As language is a descrip-
tive tool, words should operate at the level of object
properties and not entire objects. The second bias
is sparsity in word/attribute relationships. A partic-
ular word should only match as many attributes as
necessary.

From this intuition, we propose a “Sparse Fac-
tored Attention" architecture, pictured in Fig. 1.
The words are the keys and attributes are the
queries. However, a critical difference is that the at-
tribute embeddings for each cjk remain partitioned
into separate components qa corresponding to each
factor. The normalized dot product (ĉjkqa · ĝw) is
computed separately between the instruction and
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Figure 3: Success Rates on validation seeds. The x-axis is the log-scale number of samples per goal statement. Since there are 18 different goals in the training set,
the total number of samples is 18 × N . Peak performance on within-distribution goals for prior methods in the same environment is typically reached at 2500
samples per goal, or 45,000 total samples. However, in the compositional generalization case (Dv_OOD), both baselines fail to maintain the same level of performance,
although the Transformer baseline can provide a good amount of performance at a high number of samples. In comparison, Factored/MVProp (ours) reaches a
comparable level of performance to peak performance of the baselines at 50 samples per goal, or 900 total samples, and maintains a consistent level of performance
on the out-of-distribution validation set. Without a differentiable planner, Factored/CNN is still efficient but does not perform quite as well as Factored/MVProp.

the flattened observation cells for each factor, then
the elementwise product is taken over each qa:

S(st, g)jk =
∏

qa

σ(α(
∑

w

ĉjkqa · ĝw) + β) (1)

where α and β are a single weight and bias applied
to all dot product scores and σ is the sigmoid acti-
vation function. In practice, exp-sum-log is used
in place of

∏
qa

for training stability. To encourage
sparsity within the outer product, we add an L1
regularization penalty to the outer product of the
normalized embedding spaces (λ||Êc · Êw

T ||1) to
the loss. This goes beyond just penalizing S(s, g);
it ensures that the system’s entire knowledge base is
sparse, which in turn assumes that no relationship
exists between unseen pairs and is also not sensitive
to imbalances in the dataset regarding how often
different objects appear in the observations.

4.2 Training with a Discriminator
We found that performance of end-to-end learning
by differentiating through the planner to our model
was highly initialization sensitive. Instead we pro-
pose to learn goal-identification and planning sepa-
rately. However, D does not have labels of which
cells are goal cells, but only full observations of
the environment at each step. To learn to identify
the goals, we propose a self-supervised objective in
the form of a state-goal discriminator architecture
D̂(s, g) shown in Fig. 2, which is trained to match
end-states to their corresponding goals.

The discriminator is defined as:

D̂(s, g) =
∑

HW

M(s) · S(s, g) (2)

where S(s, g) is the trainable goal identification
module and M(s) → RH×W ,

∑
HW M(s) = 1 is

a “Mask Module". The “Mask Module" is a con-
volutional neural network with no downsampling
or pooling and returns a single-channel “spatial
softmax" with the same spatial dimensions as s.
Ideally the mask module should learn to identify
the cell that the agent is facing. When M(s) and
S(s, g) are correctly learned, then D̂(s, g) answers
whether the agent is at the goal state. The training
process for the discriminator uses a loss function
similar to a triplet loss between positive, negative,
and anchor samples. Positive and negative goals
are sampled from the set of goals, then correspond-
ing positive, anchor, and negative end-states. Finer
details of this process are given in Appendix D.

4.3 Planning Module

Q

VI Module ResNet

Figure 5: Using a Value Propagation Network (Nardelli et al., 2019) (VPN) to
estimate the Q function. VPN is an extension of the Value Iteration Network
(Tamar et al., 2017) which makes the convolutional filter propagating value from
one cell to its neighbors conditional on its inputs. The Q function is estimated by
concatenating the output of the VPN with the estimated rewards, visual features,
and agent state, then processing it with a ResNet.

Once S(s, g) is learned, with a knowledge of the
connectivity between cells, full observability of the
environment, and the assumption that each action
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(4b) IQM of Embedding Internal Correlations for our method, showing the effect
of applying L1 regularization to the embedding outer product. The horizontal
axes correspond to factors and the vertical axes correspond to words. Left: when
concatenating factor embeddings and applying sparse attention, unseen combina-
tions such as key/blue key and blue/blue key are given little weight.
Middle: without sparsity regularization, unrelated factors such as box/yellow
are confused and less weight is given to the true correspondences. Right: ours,
where the correspondences between words and factors are learned exactly and
others are zero.

moves the agent to a either the same cell or an adja-
cent, learning to plan to reach a goal state becomes
trivial. We extend Value Propagation Networks
(Nardelli et al., 2019) for this purpose. Details of
our implementation are given in Appendix E.

5 Experimental results

5.1 End-to-End performance on the
benchmark task

We first examine performance and sample effi-
ciency on both Dv_ID and Dv_OOD using the ex-
perimental setup described in Section 3. We train
our approach and several baseline models for the
same number (70,000) of training steps over many
values of N and 10 random intializations. The
models are briefly described as follows:

Factored/MVProp (blue circles, ours) Sparse
Factored Attention is pre-trained with the Discrimi-
nator in Section 4.2 and frozen, then we only learn
the planning and value networks in Section 4.3.

Factored/CNN (light orange plus marks) Ab-
lation of our model with a skipped planning step;
detected goals and observations are processed di-
rectly into a policy using a convolutional network.

Transformer (green squares) Standard encoder-
decoder transformer, encoder inputs are position-
encoded instruction word embeddings, decoder
inputs are position-encoded flattened cells and a
[CLS] token used to predict the policy.

GRU-Encoder ResNet/FiLM Decoder (red tri-
angles) Process visual observation into policy
with interleaved FiLM conditioning on the GRU-
encoded instruction, similar to Hui et al. (2020).

The training objective is behavioral cloning of
the expert policy. The model is evaluated is every

500 steps. Evaluation is performed in a running
copy of the environment seeded using each of the
stored seeds in the validation sets. To succeed the
agent must solve the task - it is not enough to copy
what the expert does on most steps. Further details
are given in Appendices C and H.

In contrast to both baselines, our method in
Fig. 3 attains a high level of performance on both
Dv_ID and Dv_OOD, even with a small number of
samples, significantly outperforming both base-
lines even when those models have a greater num-
ber of samples available to learn from.

5.2 Examination of Interaction Module
Architectures

We also examine what it is about our model archi-
tecture that explains its performance on the bench-
mark task. We perform an ablation study to ex-
amine the effectiveness of different architectures
for S(s, g). Performance is measured using a “soft
F1 score" against a ground truth on goal locations,
as this is essentially an imbalanced classification
problem. The metric is described in more detail in
Appendix G

Dv_ID Dv_OOD

FiLM (Perez et al., 2018) 0.983 ± 0.000 0.015 ± 0.004
Transformer (Vaswani et al., 2017) 1.000 ± 0.000 0.799 ± 0.028
Sparse Attention 0.974 ± 0.000 0.069 ± 0.001
Factored Attention 0.891 ± 0.015 0.739 ± 0.028
Sparse Factored Attention 0.951 ± 0.000 0.951 ± 0.000

Table 2: Inter-quartile mean (IQM) of soft F1 scores (predicted goal location
versus ground truth goal location) across seeds, dataset sizes, and checkpoints,
with added 95% confidence intervals. Sparse Factored Attention scores consis-
tently well on both datasets.

Each architecture for S(s, g) was trained using
Dtrain for 200,000 iterations with the parameters in
Appendix F. The IQM and 95% confidence interval
across seeds and top-10 checkpoints are reported
in Table 2 using the package and method provided
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by (Agarwal et al., 2021). While not perfect, our
Sparse Factored Attention model achieves high F1

scores both Dv_ID and Dv_OOD.
We also visualize mean model predictions and

their variance across initializations on sample dat-
apoints from both Dv_ID and Dv_OOD in Fig. 4a.
The average is over instances with F1 scores in the
upper 75% range for their class. FiLM and Sparse
Attention fail to identify the test-set goal, and the
Transformer and Factored Attention models exhibit
high variance on Dv_OOD between initializations.
Only our Sparse Factored Attention model reliably
identifies the goal on both datasets.

5.3 Qualitative Evaluation of Model Weights

Since the Factored Attention model is very sim-
ple and its only parameters are the embeddings
and single weight and bias, we can also visualize
“what the model has learned" by taking the mean
normalized outer product of both attribute Ec and
word Ew embeddings for models shown in Fig. 4b.
A perfect learner should learn a sparse correspon-
dence between each attribute and its corresponding
word; it should not confound attributes of differ-
ent types. The heatmaps show the importance of
sparsity regularization on the outer product of the
embeddings. Without sparsity regularization, the
mean correlation between a word and its correct
attribute is weaker and not consistent across all ini-
tializations. There are also other “unwanted" con-
founding correlations, for example, between “box"
and blue, which also appear more strongly in
some initialization and data limit combinations as
indicated by its high standard deviation. In contrast,
the Sparse Factored Attention model displays an
almost perfect correlation between each word and
the corresponding attribute and very little variance
between checkpoints (not pictured). In this sense,
we can be much more confident that the Sparse
Factored Attention model has actually learned the
symbol grounding and the meaning of the words as
they relate to cell attributes in the environment.

6 Conclusion

We studied the problem of compositional gener-
alization and sample efficient grounded language
learning for a vision-language navigation agent.
We showed that even under strong assumptions on
environment conditions such as full observability
and disentanglement of inputs, compositional gen-
eralization and sample efficiency do not arise auto-

matically with standard learning approaches. We
demonstrate how such conditions can be leveraged
by our Sparse Factored Attention model presented
in Section 4.1. We demonstrate a method to learn
goal identification without labels in Section 4.2
and planning Section 4.3 using a small number of
offline trajectories. We further showed superior
sample efficiency and generalization performance
in Section 5.1 and perform a model analysis and
ablation study in Section 5.2 to show how our pro-
posed approach works the way we intended.

7 Limitations of this Work

Goal identification and planning The goal iden-
tification and planning methods proposed in Sec-
tion 4.3 do not work over compound goals. The
discriminator training method in Section 4.2 re-
quires that Dtrain can be partitioned into subsets
corresponding to each goal and that there is at most
a many-to-one relationship between goal cell con-
figurations and language statements.

Measuring sample efficiency Testing sample ef-
ficiency of gradient-based methods learned from
off-policy datasets is not a well specified problem,
since each training step could be used to improve
the model performance by a small amount an arbi-
trary number of times. It was a qualitative judgment
of the researchers of when to stop training, and we
used the same upper bound on training steps for all
models to ensure a fair comparison.

Further limitations of this work are discussed in
Appendix I.

8 Responsible Research Statement

We also provide details regarding code and repro-
ducibility in Appendix J and computational re-
source usage in Appendix K. We do not anticipate
any special ethical issues to arise from this work as
it is foundational in nature and uses a synthetically
generated dataset. However, the methods presented
in this work may be more amenable to analytic
languages as opposed to synthetic ones.
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A Details of the BabyAI Environment

Figure 6: An illustration of the integer-encoded inputs provided by the BabyAI
environment. Color and shape information are encoded in separate channels
and are independent from each other.

BabyAI is a simple grid world-like environment
based on Minigrid (Chevalier-Boisvert et al., 2018).
chose to use this environment for this project due
to its simplicity, ease of generating expert trajecto-
ries, and input representation characteristics. In the
environment, the agent is given instructions to com-
plete in a sythetically generated language that is a
subset of English. The seed for the environment,
i, determines its initial state s0 and goal g, which
comes from the set G for a given level. Within
the environment, there are a few different object
types (ball, box, key) each of which may be
one of six different colors (red, blue, green,
grey, purple, yellow). The agent can face
one of four different directions. There are seven ac-
tions available to the agent: turn left, turn
right, go forward, open, pick up, put
down and signal done. The original imple-
mentation provides partial observations, however
we modify the environment to make the state space
fully observable due to the inherent difficulty plan-
ning over unobservable states.2 The observations
are subdivided into cells as explained in Section
3. Each cell is a disentangled vector of integers
of comprised of three components, the first corre-
sponding to the object type, the second correspond-
ing to the color and the third corresponding to the
object that the agent is holding.

The goals g come in the form of simple language
statements such as “go to a red box". BabyAI
comes in several “levels". Each level requires the
agent to demonstrate competency at a certain subset
of “skills", summarized in Table 1 of the original
by Chevalier-Boisvert et al. (2019).

2We also reproduce the relevant experiments in (Chevalier-
Boisvert et al., 2019) using this fully-observable state space
for fair comparison in Section 5.1 of this work.

In this work, we focus on the GoToLocal task,
where the agent must learn to reach the goal object
indicated in the language-encoded instruction by
navigating to the correct location in an 8× 8 grid
world and then performing the signal done ac-
tion within a fixed number of steps. Performing
signal done facing the wrong cell terminates
the episode with a reward of zero. Requiring the
signal done action precludes the trivial solu-
tion of ignoring g and visiting every object until
successful. Other objects may exist in the grid as
distractors; non-goal objects that the agent must
learn to ignore and navigate around depending on
the goal.

B Collecting Trajectories for the Dataset

In the GoToLocal task there are 36 possible goal
statements. Each statement begins with “go to",
followed by “the" or “a", then color and object
terms. To collect the seeds to generate each envi-
ronment and their corresponding solutions τi|s0, g,
we iterate consecutively through random seeds
starting from zero and reset the environment us-
ing each seed. The environment is “solved" us-
ing the provided BotAgent, which implements
an optimal policy. We do not want our measure-
ments or training to be biased by imbalances in
the dataset, so we want to ensure that each goal
has the same number of samples in D. 10,000
state-action trajectories with a length of at least 7
are stored for each goal g. A trajectory τ is a tu-
ple (x, (s0, ..., st), (a0, ..., at), (r0, ..., rt), g), con-
sisting of (respectively), the seed, state trajectory,
action trajectory, rewards and goal.

We split the data into training, “in-distribution"
and “combinatorial generalization" (out of distri-
bution) validation sets. To make these splits, we
first split the goals into “in-distribution" goals GID
and “combinatorial generalization" goals GOOD.
One color and object combination is omitted from
GID for each color and placed in GOOD, specifi-
cally, goals containing red ball, green box,
blue key, purple ball, grey box and
yellow key. The “in-distribution" validation
set Dv_ID consists of the last 20 trajectories in D
corresponding to each g ∈ GID. The “combinato-
rial generalization" set Dv_OOD is defined similarly
with the last 40 trajectories in GOOD.3 The training

3The reason for using the last 40 trajectories is to ensure
that both validation datasets have the same number trajectories
in total; since there are twice as many goals covered in Dv_ID
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set D consists of all trajectories corresponding to
g ∈ GID, excluding those in Dv_ID.

C Details of the Baselines

The first baseline is similar to the architecture used
in (Hui et al., 2020); featuring a GRU to encode g,
a ResNet to encode s and the use of FiLM layers
(Perez et al., 2018) to modulate feature maps ac-
cording to the encoded g, which in turn is flattened
and concatenated with an embedding correspond-
ing to the agent’s current direction to produce a
hidden representation z. The policy π is estimated
using an MLP from z. The only difference to (Hui
et al., 2020) is that the memory module used to
handle partial observability and exploration is re-
moved, since the environment is fully observable.

The second baseline is an encoder-decoder
Transformer model (Vaswani et al., 2017), where
the input sequence is the individual words in g
added with their 1D positional encodings, and the
output sequence is the 2D encoded observation s
added with their 2D positional encodings. A classi-
fication token is appended to the end of the output
sequence, which uses a linear prediction head to es-
timate π in the same way as above. 10000 steps of
learning rate warmup followed by subsequent log-
arithmic decay in the learning rate are used when
training the Transformer.

For all models, an embedding dimension of 32
is used for both the words in g and each attribute in
cjk, implying that the total embedding dimension
is 96 after each embedded attribute is concatenated
together. The batch size and learning rate for Adam
used during training are 32 and 10−4 respectively.

D Training the Discriminator

Two goals, g+, g− are sampled without replace-
ment uniformly from the set of all known goals
Gv_ID. Two trajectories are sampled without re-
placement from {Dtrain|g = g+}, τ g+1 , τ

g+
2 and one

trajectory is sampled from {Dtrain|g = g−}, τ g− .
sr is assumed to be the rewarding states for all three
trajectories and are denoted (s

g+
r )1, (s

g+
r )2, (s

g−
r )1.

With probability 1
|G| , (s

g−
r )1 is replaced with a ran-

dom state in τ
g−
0:T−1, so that the discriminator also

sees states that are not rewarding for any goal.
The discriminator’s inputs and labels are tuples
(s1, s2, g, y). In this tuple, s1 is an "anchor" state,
s2 is a comparison state, g is the goal and y is the
label. The tuple ((s

g+
r )1, (s

g+
r )2, g+, 1) is a “true"

example and the tuple ((s
g+
r )1, (s

g−
r )1, g+, 0) is a

“false" example. True and false examples are sam-
pled consecutively.

We define the loss for the discriminator as:

LD(s1, s2, g, y) = Lint(s2, g, y) + Limg(s1, s2, y) (3)

The “interaction loss" Lint is used to optimize
S(s, g). As S classifies whether a given s is a
rewarding state for g, the loss is a binary-cross-
entropy loss, where the outputs of S are logits:

Lint(s2, g, y) = y logD(s2, g) + (1− y) log(1−D(s2, g)) (4)

The image-matching loss Limg is used to resolve
the ambiguity of whether a high loss value in Lint
was caused by an incorrect parameterization of
M(s) or S(s, g). Define the mask-weighted image
as I(s) =

∑
HW M(s) ⊙ s and the normalized

mask-weighted image as Î(s) = I(s)
||I(s)||22

Then the

normalized image-matching loss Limg is given by:4

Limg(s1, s2, y) = ||(Î(s1) · Î(s2))− y||22 (5)

E Planning with Value Iteration

Value-based differentiable planning networks as-
sume the existence of a function r(s, g) :
RH×W×A which returns the cell-action combina-
tions in s that give a reward for being reached by an
agent. In this case, r is modelling a reward function
for goal g in terms of cjk. Knowing both this func-
tion and the dynamics p(st+1|s, at) with a discrete
state space enables using Value Iteration (Bellman,
1957) to solve for the optimal value function V ∗,
which induces an optimal policy:

π∗ = maxaQ(s, a) = maxa
∑

a∈|A r(s, a) + γp(st+1|s, at)V (st+1) (6)

In this case, we do not know the dynamics exactly,
but we have a prior that we can start from, which
is that all neighboring cells to a given cell are uni-
formly reachable from the current cell by any ac-
tion p(cj+l,k+m|at, cjk), l,m ∈ [−1, 1], a ∈ A. In
this problem, the agent’s occupancy of a cell cjk
corresponds to a state s given the initialization s0,
so a mapping exists from values of cells to values

4We use mean-squared error as opposed to binary cross
entropy loss for the the image-matching loss as we found
that in practice it was less sensitive to label noise, which
was present in this problem, since goals such as “go to a red
key" and “go to the red key" involve the same object color
combination but are nevertheless treated as separate goals by
the discriminator.
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of states up to the agent’s rotation given an initial-
ization V (cjk) → V (s|s0).

To refine our estimate of the the dynam-
ics p(st+1|s, at) and improve our estimate of
Q(s, at, g), we can use the above assumptions and
a differentiable planning method known as a Value
Iteration Network (VIN) (Tamar et al., 2017). Start-
ing with V0(cjk) = r(cjk, g), VIN re-expresses
value-iteration as a form of convolution performed
recursively K times:

Vk+1(cjk, g) = max




Vk(cjk, g),

max
a∈A

∑
l,m∈N (cjk)

Pa,l−j,m−kVk(clm, g) (7)

where N (cjk) are the neighbors of a cell and P is a
learnable linear estimate of the dynamics (the tran-
sition probabilities to neighboring cells for each
action). In reality, the dynamics are dependent on
what the neighboring cells actually contain. Max
Value Propagation Networks (MVProp) (Nardelli
et al., 2019) extend on VIN by replacing P with a
scalar propagation weight conditioned on the cur-
rent cell ϕ(cjk), where ϕ is any learnable function
with non-negative output. In that sense, we learn
to model how value propagates around the cells.
Using the dataset D we can generate traces of re-
turns from trajectories using an optimal planner
with discount factor γ. Then learning Q(s, at, g) is
done by minimizing the empirical risk with respect
to some loss function L:

argminQθ
Es,at∼DtrL(Q(s, at, g), R(s, at))) (8)

In the MVProp framework, it is the responsibility
of the consumer of VK(s, g) to map neighboring
values of a cell to Q values for actions. Both Tamar
et al. (2017) and Nardelli et al. (2019) resolve this
problem by including the cell that the agent is cur-
rently occupying as part of the state. However, this
information is not available to us in D as we have
only the state s and action observation at. In prac-
tice, this problem turns out not to be insurmount-
able and good performance can be achieved by sim-
ply concatenating as additional channels V0(s, g)
and Vk(s, g) to the initial encoding of s and using a
Convolutional Neural Network to encode the image
into a single vector of which represents the vector-
valued output Q(s, g) → R|A|, eg the action-value
function for all actions.

Finally, there is the question of which loss func-
tion to use to learn Q(s, at, g). We observed that
simply using mean-squared error loss between

R(s, at) and Q(s, at, g) led to over-optimistic esti-
mates of Q-values for non-chosen actions. To fix
this problem, we added an additional term penaliz-
ing any non-zero value for those actions: similar to
Conservative Q Learning (Kumar et al., 2020):

LVIN(s, at, g) = ||R(s, at, g)−Q(s, at, g)||22+
λ||Q(s, a−, g), a− ∈ {A \ at}||22

(9)

F Training Parameters of S(s, g)

S(s, g) is trained for 200,000 steps, using a learn-
ing rate of 10−5, a batch size of 1024 and 16-bit
mixed precision used for the model weights and
embeddings. During training, models were eval-
uated both Dv_ID and Dv_OOD every 20 training
steps. The top-10 performing model checkpoints
by F1 score on Dv_ID were stored, along with their
F1 score on Dv_OOD.

G Soft F1 Score

The problem in Section 4.2 is unbalanced; there are
a small number of goal states and a large number
of non-goal states. Therefore, we propose to use a
metric that is robust to the class imbalance, but also
takes into account the weight of the predictions as
this will be used as the reward model in the planner.
The metric is a “soft F1 score" is defined as the
harmonic mean of soft-precision and soft-recall,
for a single trajectory i (with indexes omitted for
brevity):

P =

∑jk
HW yjkS(s, g)jk∑jk

HW(yjkS(s, g)jk + (1− yjk)S(s, g)jk)

R =

jk∑

HW

yjkS(s, g)jk/

jk∑

HW

(yjk)

F1 = 2PR/(P +R)

(10)

A high value of soft-F1 indicates that both preci-
sion and recall are high.

H End-to-end usage our proposed model

The model is trained in two phases; first, the Sparse
Factored Attention model in Section 4.1 is trained
using the discriminator task in Section 4.2 for
200,000 steps with a learning rate of 10e−5 and
batch size of 1024. Then, the weights at the end of
training (for the corresponding initialization seed
and DN are frozen and used as the initialization
for the VIN model described in Section 4.3. The
training parameters and setup used otherwise is the
same as is described in Appendix C.

154



I Additional Limitations

Controlled Environment We used the
GoToLocal task on BabyAI as the sole reference
environment for this study. A fully observable state
space, knowledge of the state-space connectivity,
and disentangled factors on cell states are very
strong assumptions that are leveraged to achieve
the results that we present.

Computational resources Sample efficiency
does not imply computational efficiency. In particu-
lar, we found that training the discriminator in Sec-
tion 4.2 requires large batch sizes and a large num-
ber of samples generated from DN to converge.

J Reproducibility of this work

We kept the importance of reproducible research
in mind when designing our experimental method.
We provide the source code for our approach and
seeds used to generate each environment and tra-
jectory in D.

We are unable to provide pre-trained models or
log files due to space constraints.

K Computational Resource usage of this
work

The person responsible for developing the method
took about one year to do so and used a worksta-
tion with a single NVIDIA RTX2060 GPU with
6GB of GPU memory to test different approaches.
Because the methods that we present in this paper
may be sensitive to different weight initializations,
we believed it was necessary to show trained model
performance using different initialization random
initializations, using the methods in (Agarwal et al.,
2021) for a more reliable presentation of results. To
conduct the experiments using the final version of
our methods, we used our SLURM compute cluster
with an array of shared NVIDIA Tesla V100 GPUs.
We ran 6 different versions of the discriminator
experiment, over five different models, ten dataset
sizes, ten random initializations, each one taking
up to 8 hours to complete, making for 24,000 hours
of GPU time used. We ran 3 different versions of
the end-to-end experiments over 4 different models,
with the same number of dataset sizes and random
initializations each one taking up to 12 hours, mak-
ing for an additional 19,200 hours.
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Abstract
This paper explores how humans conduct con-
versations with images by investigating an
open-domain image conversation dataset, Im-
ageChat. We examined the conversations with
images from the perspectives of image rele-
vancy and image information.We found that ut-
terances/conversations are not always related
to the given image, and conversation topics di-
verge within three turns about half of the time.
Besides image objects, more comprehensive
non-object image information is also indis-
pensable. After inspecting the causes, we sug-
gested that understanding the overall scenario
of image and connecting objects based on their
high-level attributes might be very helpful to
generate more engaging open-domain conver-
sations when an image is presented. We pro-
posed enriching the image information with
image caption and object tags based on our
analysis. With our proposed image+ fea-
tures, we improved automatic metrics includ-
ing BLEU and Bert Score, and increased the
diversity and image-relevancy of generated re-
sponses to the strong SOTA baseline. The re-
sult verifies that our analysis provides valuable
insights and could facilitate future research on
open-domain conversations with images.

1 Introduction

A picture is worth a thousand words. Human
communication often involves both text and im-
ages. Understanding the image content and chat-
ting about it is crucial for a chatbot to interact with
people. Current multimodal dialogue systems of-
ten equip with an object detector, and adapt sim-
ilar architecture as text-based dialogue systems,
except fusing text and image modalities through
concatenation (Shuster et al., 2020b,c) or an atten-
tion mechanism (Ju et al., 2019).

To investigate whether an additional object de-
tector is enough, and to understand what factors di-
rect the conversation content when an image exists,
we conducted a deep analysis of the ImageChat

dataset (Shuster et al., 2020a). We aimed to answer
the following questions: (1) How is a conversation
with image different from an open-domain conver-
sation? Is the image necessary or supplemental?
How related is the image to the conversation topic?
(2) Does the topic of the three-turns conversation
always be on the image? How does the transfer
happen if the conversation topic transits from the
image to others? Can we predict the shift from the
image? (3) What types of image information are
used in the conversation? More specifically, we
want to know how helpful image objects are in the
conversation since baseline models usually use an
object detection model as the image encoder.

We addressed the questions by sampling and
analyzing ImageChat dataset from the aspects of
image relevancy and image information, which are
independent but intertwined. The former labels
whether the given image is relevant to the con-
versation theme, and the latter marks the type of
image information in utterances. The annotation
results show that about 31% of utterances are not
on the image-related theme, i.e., the utterances do
not describe or could be generated without the im-
age. In terms of the conversation, people transit
conversation topics 54% of the time within three
utterances, and surprisingly 7% of conversations
entirely consist of non-image-related utterances. In
these conversations where the image is optional,
the topic often derived from attributes of one of
image objects. We also discovered that 45% of
utterances contain image objects, 23.7% have non-
object image information such as the description
of events in the image, and 31.3% do not have any
image information at all. This result hints that in-
cluding comprehensive descriptions of the image
beyond image objects could benefit the generation
of utterances with image information.

Based on our analysis, we propose to enhance
the generation of image-dependent response by
augmenting image features from image caption
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Image Style Utterance Related

Cowardly: Never had this food before and not sure if I’m ready to try it
today.

4

Grateful: I am always up to trying new things. It looks like a lot of effort
went into this food and I plan to enjoy every bite.

4

Cowardly: I don’t know, it looks like it might be too much. 4

Extraordinary: What an unusual place! The colors of the train really bounce
off the grey backdrop of the city.

4

Narcissistic: Well, of course this is a fantastic picture, since it was MY
magnificent photographic skills that produced it!

4

Extraordinary: I had no idea you have such talent! 8

Spontaneous: That’s it, I going to Vegas tomorrow. Who’s coming with me? 8

Morbid: Someone died in that Vegas spot. 8

Spontaneous: Lets go on a vegas trip this weekend! 8

Table 1: Examples of conversation themes are related and unrelated to the given image.

and object tags, and using the text information ex-
plicitly rather than fusing image captioning and
object detection models to the text-based conver-
sation model. Our model with enhanced image
features outperforms the strong SOTA model Mul-
timodal BlenderBot (MMB) (Shuster et al., 2020c)
on BLEU and BertScore. In addition, we also
generate more image-related and more diverse re-
sponses than MMB.

2 Analysis of Conversations on Image

2.1 ImageChat Dataset
We analyzed the ImageChat dataset (Shuster et al.,
2020a), which is so far the only dialogue dataset
that focuses on open-domain conversations on im-
ages, to the best of our knowledge. Each con-
versation is paired with one image from YFCC
100M (Thomee et al., 2016) and consists of three
turn utterances from two speakers with assigned
speaking styles. There are total 215 style types,
such as sympathetic or optimistic. The images are
highly diverse ones across multiple domains. We
obtained the object tags by Scene Graph Bench-
mark (Han et al., 2021) implementation of Faster
R-CNN (Ren et al., 2016), which is also the im-
age encoder used in the baseline model MMB. We
also generated the caption of each image using the
SOTA language-vision pretrained model VinVL
(Zhang et al., 2021).

2.2 Annotation

We randomly sampled 300 utterances (100 conver-
sations) from the validation set and annotated each
utterance for its image relevancy and what image
information it contains.

2.2.1 Image Relevance to Dialogue Theme

We first asked whether the conversation theme is
always related to the image, and if not, how often
is each utterance directly related to the image. We
defined image relevancy as a binary classification
of whether the given image is necessary for gen-
erating each utterance. If one could generate the
utterance without the given image, the utterance is
labeled as unrelated. Examples of image-related
and unrelated utterances are shown in Table 1.

2.2.2 Image Information in the Dialogue

Based on our observation of the data, we catego-
rized each utterance into one of the 8 classes, in-
dicating the type of image information mentioned
in the utterance. Classes start with O mean image
objects are mentioned in the utterance; classes start
with R mean there are non-object image related
information mentioned in the utterance; and NI
class means there is no image information in the
utterance at all. See Table 2 for the details and
examples of each category.
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Class Explanation Utterance (U) | Object Tags (T)

O Words in utterance exactly match object tags U: I guess this is an interesting building.
T: [’cloud’, ’window’, ’sky’, ’building’]

OS Synonyms of object tags in the utterance, includ-
ing hyponym/hypernym pairs, e.g. "seagull" in U
and "bird" in T.

U: I’d like to party with that guy!
T:[’watch’, ’man’, ’phone’, ’guitar’, ...]

OP Pronoun is used to refer to image objects. U: Would she shut up already?
T: [’book’, ’jacket’, ’tree’, ’woman’, ...]

OF Words in the utterance refer to image objects but
have no overlap with object tags, probably due to
false object detection results.

U: The aluminum art was different.
T: [’rock’, ’ground’, ’foil’]

R Words in the utterance referring to non-object im-
age information, e.g., the scene of the image.

U: It’s obviously a festival.
T: [’sunglasses’, ’hat’, ’balloon’, ...]

RI The utterance is about the image itself, not the
content of the image.

U: A screenshot by definition does not die.
T: [’man’, ’hat’, ’photo’, ’glass’]

RP Pronoun is used to refer to image-related informa-
tion in the utterance.

U: It’s beautiful! I would love to visit.
T: [’leaf’, ’flower’, ’branch’, ’tree’]

NI No image-related information mentioned in the
utterance.

U: yeah sure does.
T: [’sunglasses’, ’hat’, ’man’, ’light’, ...]

Table 2: Classes of image information in the utterance.

Figure 1: Different combination of image-related
utterances in 3-turns dialogues. Y: image-related
utterance; N: non-related utterance. Green hue in-
dicates the dialogue is more image-dependent, and
the red family suggests the opposite.

Figure 2: Classes of image information in utter-
ances. Green hue refers to image objects, blue
hue refers to non-object image information, and red
means there is no image information at all.place
holder to keep same height

2.3 Analysis Result and Finding

2.3.1 Image Relevancy

We found that conversation themes of ImageChat
dialogues are not always about the image. In
fact, the conversation often goes back and forth
between image-related to non-related topics even
within only three conversation turns. Figure 1 il-
lustrates such a phenomenon with dialogues of dif-
ferent combinations of the image-relevance utter-
ances. While an image-related utterance is labeled
as ’Y’ and non-image-related utterance is labeled
as ’N’, ’YYY’ means all three turns in a dialogue
are image-related utterances and ’YYN’ means the
conversation diverse from image-related topics to
other domain not related to the given image.

Further investigating the combination of image-
related and non-related utterances in a dialogue,
we could roughly classify them into two schemas:
(1) One speaker responds to the other, and if one
extends out of the image-related topic, the follow-
ing conversation is diverse, and vice versa. ’YNN’,
’YYN’, ’NYY’ are in this category. The transition
between ’Y’ and ’N’ may result from the mention
of an object related to objects in the image but not
related to the image itself. In this case, the related
object often links to the image object with some
high-level attributes, such as the object’s category,
shape, or material. Alternatively, the ’N’ utterance
might be a general non-informative response or an
invented non-image-related scenario. (2) Some dia-
logues seem unnatural because one of the speakers
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continues their previous (self-)expression and does
not respond to the other’s utterance. ’YNY’ and
’NYN’ usually belong to this schema. Note that
there is no combination of ’NNY,’ showing that it
is less likely to talk about the image after chatting
on off-image topics.

We found that about 7% of dialogues are non-
image-related (’NNN’), although most utterances
are still image-related (Y: 69% vs. N:31%). In-
vestigating the reason, we noticed that many of
the non-image-related dialogues are stimulated by
attributes of one of objects in the image. For exam-
ple, a conversation about fighting in a ring is given
an image with a ring-shaped object. This obser-
vation suggests that capturing attributes of objects
and linking objects to much broader scenarios are
essential directions to generate natural utterances.

2.3.2 Image Information
Figure 2 shows the distribution of image informa-
tion classes. The green hue represents the utter-
ances with image objects (Ox, 45.0%). Among
them, a great portion of utterances have objects
referred by a pronoun (OP, 17.7%), 11.3% of utter-
ances have the exact match of image objects (O),
9.3% contain objects not in the tag set (OF), and
the rest of 6.7% have objects mentioned in syn-
onyms (OS). While many objects are indicated by
pronouns, linking the objects and their attributes to
mentions in the utterance becomes a vital task for
utterance generation.

On the other hand, the blue hue refers to the
utterances with non-object image information (Rx,
23.7%), which usually describes the event, action,
or scenario in the image. Thus, knowing the scene
beyond the given objects is also important.

The rest of 31.3% of utterances represents in
red are the class NI without any image informa-
tion. These utterances are usually on the off-image
theme and the only hint to reconstruct such utter-
ances is from their conversational context.

3 Augmenting Image Information

Our analysis suggests the importance of the non-
object image information, which is often the scene
in the image. Therefore, we augmented the image
feature by image caption to capture the scenario.
We also found that explicitly using texts of objects
tags and captions works better than fusing the latent
vectors from captioning and object detection mod-
els. Given object tags, we replace the single full-
image feature in the baseline model with several

image region features to facilitate the extraction of
image object information.

3.1 Experiments

3.1.1 Settings
We ran our experiments on the ImageChat dataset
(Shuster et al., 2020a) which is described in Sec 2.1.
All our experiments are conducted using the Par-
lAI (Miller et al., 2017) framework. We compared
with the SOTA multimodal dialogue system: Mul-
timodal Blenderbot (MMB) (Shuster et al., 2020c).

We obtain image tags from Scene Graph Bench-
mark (Han et al., 2021) and the image caption from
pretrained VinVL model (Zhang et al., 2021). The
image feature dimension is set to 2054, with addi-
tional 6-dim image information such as weight and
height to the 2048-dim FasterRCNN feature in the
original model. Each image is paired with 1 to 10
unique tags, an image caption with maximum 12
tokens, and at most 32 image object features. All
models are finetuned from the Reddit pretrained
model, following the instruction from MMB1.

Following previous works, we reported the num-
ber of perplexity (PPL), Rouge-L, BLEU-4, and
F1 score. As existing research has reported that
these numbers are not highly correlated with hu-
man evaluation (Liu et al., 2016; Li et al., 2016),
we also reported Bert Score (rescale) (Zhang* et al.,
2020), which reflects the semantics similarity in-
stead of the token-wised matching. To show how
relevant the generated response is to the image,
we ran the image-text retrieval task using VinVL
(Zhang et al., 2021). We also reported the num-
ber of average length, unique vocabularies, and
Distinct-1 (Li et al., 2015) to show the diversity of
utterances.

3.2 Results and Analysis

Table 3 demonstrates that our enhanced image fea-
tures improve the strong baseline without train-
ing on many additional datasets. This result im-
plies that image+ provides much more useful infor-
mation that neither additional text-only dialogue
datasets (BST+) nor image captioning pretraining
is needed. Besides, the result also suggests that a
pipeline approach of explicitly adding image cap-
tion to the input is better than end-to-end training
on the additional image captioning task.

1https://github.com/facebookresearch/
ParlAI/blob/main/parlai/zoo/multimodal_
blenderbot/README.md
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Model Datasets PPL Rouge BLEU F1
Bert Score

P R F1

MMB R,I,C,B 13.60 12.40 0.386 12.94 33.81 25.21 29.49
MMB R,I,C 15.00 11.35 0.278 11.81 31.73 23.52 27.61
MMB R,I 12.89 13.04 0.419 13.52 32.58 24.23 28.39

MMB + image+ R,I,C,B 12.63 13.36 0.447 13.75 34.76 26.36 30.54
MMB + image+ R,I 12.76 13.29 0.461 13.82 35.36 26.38 30.85

Table 3: We compare models pretrained on Reddit (R) (Baumgartner et al., 2020) and finetuned on different
datasets such as COCO Captioning (C) (Chen et al., 2015), text-only dialogue datasets BST+(B) (Smith et al.,
2020; Dinan et al., 2019a,b; Rashkin et al., 2019), and ImageChat (I). image+ refers to our proposed enhanced
image features (image caption and object tags).

Model
Image-to-Text Text-to-Image

Length Vocabs Distinct-1
R@1 R@10 R@1 R@10

Gold 0.02 0.14 0.03 0.32 9.90 9,431 0.064

MMB 0.04 0.16 0.03 0.29 7.87 3,436 0.029
MMB + image+ 0.04 0.26 0.04 0.35 8.04 3,865 0.032

Table 4: We evaluate how much the utterance is related to the image by image-text retrieval task. We also show
the average length, vocabulary size, and diversity of utterances in the validation set. Gold refers to the reference
utterances by human.

Feature PPL R B BS

Tags 13.9 12.26 0.325 30.29
Caption 13.8 12.33 0.373 30.20

Both 12.8 13.29 0.461 30.85

Table 5: Ablation results of MMB + image+ trained
on Reddit and ImageChat datasets. PPL: perplexity, R:
Rouge, B: BLEU, BS: Bert Score

We also found that the Reddit pretraining is es-
sential for dialogue generation. Without pretrain-
ing, the perplexity would boost to about 34, and all
other metrics get much worse based on our empiri-
cal results. In fact, the perplexity is already around
26 at the very beginning of the training when fine-
tuning on the Reddit pretrained model.

Our ablation experiment (Table 5) shows that the
model with the caption feature has better Rouge
and BLEU scores compared with the model only
with tags, but the Bert Score is about the same. The
result suggests that both tags and the caption can
generate semantically equivalent utterances.

As shown in Table 4, we demonstrated our
model’s superiority in generating more diverse and
image-relevant responses. We got the best retrieval
result in both image-to-text and text-to-image re-
trieval, which even outperforms the human refer-

ence, showing that our generated responses are
the most relevant to the given image. We also
generated longer sentences with more diverse vo-
cabularies than the MMB baseline. We provided
some example outputs from MMB and our MMB
+ image+ in the Appendix.

4 Conclusions
In this paper, we analyzed the factors that influence
open-domain conversations with images, from as-
pects of (a) image relevancy to the conversation
theme and (b) image information in the conversa-
tion. According to our observations, open-domain
conversations with images often branch off from
one topic to another even within only three turns.
The relation between the attributes of objects is
the key to linking utterances with different themes.
From the dynamics of image-relevancy, it is also in-
teresting to notice that some conversation is a solo
play where people just express themselves with-
out responding. Moreover, a comprehensive view
of the whole image and the understanding of the
image scene are also critical image information in
utterances, besides image objects. Therefore, we
proposed incorporating image captions that could
capture the overall image semantics beyond objects
and may provide some hints to the links to other
objects. We also found empirically that explicitly
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using texts of caption and object tags work better
than incorporating captioning and object detection
models in latent space. With our enhanced im-
age features image+, we outperformed MMB on
BLEU, F1, and Bert Score, and generated more
image-related and diverse conversation responses,
confirming the effectiveness of our findings. We
believe that our in-depth analysis and proposed
findings would benefit the future research on the
open-domain conversations with images.
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A Example Outputs

[1st Turn]

Curious: What did they have to do to help sup-
port cancer? Fundraisers always in-
trigue me.

Irrational: Is she doing a backflip twist?

MMB: What is that kid doing? MMB: I don’t think she’s going to catch the ball
Ours: I wonder what they are doing. Ours: I bet they are going to fall and hurt

themselves.

[2nd Turn]

Patriotic: Maybe they donated. All Americans
should donate to show that we are a
proud and caring country.

Obnoxious: I don’t think so. I think she is passing
gas.

MMB: They are fighting for our country. MMB: She is doing a back flip.
Ours: They are supporting their coun-

try by raising money for cancer re-
search.

Ours: I hope she falls and breaks her
neck.

[3rd Turn]

Curious: They don’t look american, I wonder
if this is somewhere else?

Irrational: She needs to find a restroom quick!

MMB: I wonder what they did to help. MMB: She is definitely not passing gas.
Ours: I wonder what they did to help. Ours: I think she is trying to fly.

Table 6: Example conversations. The 1st row in each turn is the ground truth speaking style and utterance, 2nd and
3rd rows are utterances generated by MMB (underlined) and our MMB + image+ (bold), given the speaking style,
image, and ground truth utterance(s) in previous turn(s).
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Abstract
It is well known that textual data on the inter-
net and other digital platforms contain signifi-
cant levels of bias and stereotypes. Various re-
search findings have concluded that biased texts
have significant effects on target demographic
groups. For instance, masculine-worded job
advertisements tend to be less appealing to fe-
male applicants. In this paper, we present a
text-style transfer model that can be trained on
non-parallel data and be used to automatically
mitigate bias in textual data. Our style transfer
model improves on the limitations of many ex-
isting text style transfer techniques such as the
loss of content information. Our model solves
such issues by combining latent content encod-
ing with explicit keyword replacement. We will
show that this technique produces better con-
tent preservation whilst maintaining good style
transfer accuracy.

1 Introduction

Authors such as Bolukbasi et al. (2016) and May
et al. (2019) have drawn attention to some fair-
ness problems in the NLP domain. In a post on
Buzz-Feed (Subbaraman, 2017) with the title, “Sci-
entists Taught A Robot Language. It Immediately
Turned Racist", the author reports how various au-
tomated language systems are disturbingly learn-
ing discriminatory patterns from data. Another
prominent example of bias in NLP is Amazon’s
AI recruitment tool which turned out to be biased
against female applicants (Dastin, 2018). Mitigat-
ing bias in textual data before training can be an
important preprocessing step in training fair lan-
guage systems like chatbots, language translation
systems, and search engines, but a more direct need
for mitigating bias in textual data has been pointed
out by various researchers (Gaucher et al., 2011;
Tang et al., 2017; Hodel et al., 2017) who have
uncovered the worrying issue of bias in job adver-
tisements. This can have significant implications
on the job recruitment process. As a matter of fact,

Gaucher et al. (Gaucher et al., 2011) explored the
effect of biased job advertisements on participants
of a survey. They found that changing the wording
of a job advertisement to favor a particular gender
group considerably reduced the appeal of the job to
applicants not belonging to that gender, regardless
of the gender stereotype traditionally associated
with the job. Consequent to such findings, a few
tools and models have been developed to detect
and mitigate biases in job advertisements. Some of
these tools include text editors like Textio which
has been successfully used by companies such as
Atlassian to increase diversity in their workforce
(Daugherty et al., 2019).

Another area of impact, regarding biased texts,
is in news publications; Kiesel et al. (2019) ex-
plore the issue of hyperpartisan news from an ex-
treme left or right-wing perspective. Again, with
the prevalence of hate speech and microaggres-
sion perpetuated on various social media platforms,
there have been growing concerns about fairness in
such areas.

A machine learning technique that can be em-
ployed to mitigate bias in text documents is style
transfer. Style transfer is a technique that involves
converting text or image instances from one do-
main to another, such that the content and mean-
ing of the instance largely remain the same but
the style changes. However, a problem that has
challenged research in text style transfer is the rela-
tive unavailability of parallel data that would ide-
ally be required to train such models (Rao and
Tetreault, 2018; Fu et al., 2018; Shen et al., 2017).
Training with parallel data makes it possible to di-
rectly map training instances from one domain to
the other, hence, facilitating the learning process.
Due to this, most style transfer systems mainly
employ training techniques that fall under two cat-
egories: keyword replacement and auto-encoder
sequence-to-sequence techniques. In the case of
keyword replacement, biased words are deleted
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and replaced with alternative words. In the case of
the auto-encoder sequence-to-sequence generative
approach, the input text is directly encoded by an
encoder to get a latent representation of the text,
which is subsequently decoded by a decoder.

The main contributions of this work include:

1. The development of an end-to-end text bias
mitigation model that can convert a piece of bi-
ased text to a neutral version 1 whilst maintain-
ing significant content information. For exam-
ple, given the female-biased text, “The event
was kid-friendly for all the mothers working
in the company", our task is to transform this
text into a gender-neutral version like “The
event was kid-friendly for all the parents work-
ing in the company". Our model is trained
exclusively on nonparallel data. Since parallel
corpora are relatively hard to obtain, training
with only non-parallel data is of great impor-
tance.

2. A novel way of improving content preserva-
tion and fluency in text style transfer by com-
bining keyword replacement and latent con-
tent information. Some other key novelties in
our work include our approach to generating
latent content representation and our approach
to identifying attribute tokens.

We make the code and data used in this work
available 2.

2 Style transfer

Style transfer has been widely explored in com-
puter vision to convert images from one style to
another (Gatys et al., 2016; Huang and Belongie,
2017; Johnson et al., 2016). However, directly
applying image style transfer techniques for text
is problematic because of the unique characteris-
tics of both domains. For instance, in text, style
and content are more tightly coupled and harder
to separate (Hu et al., 2020). In addition to that,
the non-differentiability of discrete words causes
optimization problems (Yang et al., 2018; Lample
et al., 2018).

In NLP, style transfer has mostly been explored
in areas such as sentiment analysis (Li et al., 2018;
Fu et al., 2018; Zhang et al., 2018) and machine
translation (Lample et al., 2017). A few style trans-
fer learning techniques use parallel data for training.

1See Section 7 for discussion on how we define bias.
2https://github.com/EwoeT/MLM-style-transfer

Hu et al. (2020) give an elaborate survey on such
models. In this paper, we will only focus on models
that are trained on non-parallel data, some of which
we will review in the following subsection.

2.1 Auto-encoder sequence-to-sequence
models

Auto-encoder sequence-to-sequence models basi-
cally consist of an encoder that encodes the given
text into a latent representation which is then de-
coded by a decoder. Many of these models adopt an
adversarial approach to learn to remove any style
attribute from the latent representation. The result-
ing disentangled latent representation is decoded
by the decoder in a sequential generative manner.

Shen et al. (2017) propose two models for text
style transfer based on the auto-encoder sequence-
to-sequence technique: an aligned auto-encoder
model and a variant of that, called the cross-aligned
auto-encoder model. Prabhumoye et al. (2018) pro-
pose a style transfer model using back-translation.
This is based on prior research that suggests that
language translation retains the meaning of a text
but not the stylistic features (Rabinovich et al.,
2017).

An issue with Auto-encoder sequence-to-
sequence models, in general, is the loss of infor-
mation due to compression when encoding. Fur-
thermore, Wu et al. (2019) note that sequence-to-
sequence models for style transfer often have lim-
ited abilities to produce high-quality hidden repre-
sentations and are unable to generate long meaning-
ful sentences. Nonetheless, sequence-to-sequence
generative models can prove more effective in ap-
plications where the text needs to be considerably
rephrased (eg. from informal style to a formal
style).

2.2 Explicit Style Keyword Replacement

These methods follow the general approach of
identifying attribute markers, deleting these mark-
ers, and predicting appropriate replacements for
these markers which conform to the target style.
Li et al. (2018) propose the DeleteOnly and the
Delete&Retrieve, which use a three-step Delete,
Retrieve, and Generate approach. Sudhakar et al.
(2019) introduce Blind Generative Style Trans-
former (B-GST) and Guided Generative Style
Transformer (G-GST) as improvements on Dele-
teOnly and the Delete&Retrieve from (Li et al.,
2018).
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Since Explicit Style Keyword Replacement
methods only delete a small portion of the input
text, they preserve much more information. These
systems on the other hand are unable to properly
capture information of the deleted tokens (Sud-
hakar et al., 2019), leading to examples such as

“The event was kid-friendly for all the mothers work-
ing in the company" → “The event was kid-friendly
for all the children working in the company".

3 Methodology

The goal of our model is to transform any piece of
biased text into a neutral version. If we take the two
style attributes sa and sb to represent neutral style
and biased style respectively, given a text sample
xb that belongs to sb, our goal is to convert xb to xa,
such that xa belongs to style sa but has the same
semantic content as xb except for style information.

Our model is composed of four main compo-
nents, as illustrated in Fig 1. We also illustrate the
process with an example in Fig. 2.

3.1 Attribute Masker

The Attribute Masker identifies the attribute words
(words responsible for bias in a text) and masks
these words with a special [MASK] symbol. The
resultant text is fed as input to the Token Embedder.

We use LIME (Ribeiro et al., 2016), a model ag-
nostic explainer that can be used on textual data, to
identify attribute tokens. Although very effective,
using LIME can increase computational time, espe-
cially for long text sequences. Some Explicit Style
Keyword Replacement models use relatively sim-
ple techniques to identify attribute words. Li et al.
(2018) use the relative frequency of words in the
source style. Others like Sudhakar et al. (2019) em-
ploy more advanced methods like using attention
weights. However, using techniques like attention
weights to identify attribute tokens has been proven
to not be very effective (Jain and Wallace, 2019).

To use LIME to detect attribute words, we first
need to train a text classifier f that predicts whether
a given text is biased. We fine-tune BERT (Devlin
et al., 2019), a pretrained language model, as a text
classifier by training it on a labeled corpus contain-
ing both biased and neutral texts. Lime linearly
approximates the local decision boundary of f and
assigns weights to tokens based on their influence
on the classification outcome. With these weights
(scores), we set a threshold value µ to select words
to be masked. These words are replaced by a spe-

cial [MASK] token.

3.2 Token Embedder

The Token Embedder is responsible for generating
token embeddings for the masked tokens. To do
this, we train a BERT model for masked language
modeling on a corpus of unbiased texts. The Token
Embedder outputs a set of all token embeddings
W = {w1, ..., wn} ∈ Rn×d. Following the con-
vention used by Devlin et al. (2019), we take the
size of every embedding to be d = 768 throughout
this paper.

3.3 Latent-content Encoder

The Latent-content Encoder takes the original (un-
masked) text as input and encodes it into a latent
content representation. An important part of this
stage is our approach to disentangle the resulting
latent content representation from the biased style.

The Latent-content Encoder is responsible for
generating a latent content representation of the
input sentence. For this, we train a BERT embed-
ding model that takes as input the original text
(unmasked) xb and generates a target latent repre-
sentation ẑ.

When xb is given as an input, the Latent-content
Encoder first generates token embeddings vi ∈ Rd

for each token ti ∈ xb. The set of token embed-
dings V = {v1, ..., vn} ∈ Rn×d is mean-pooled
to generate ẑ ∈ Rd. Since we want ẑ to have the
same content as xb but not the bias that exists in xb,
we use a dual objective training to debias ẑ.

Both the Latent-content Encoder and the Source
Content Encoder take xb as input. The Latent-
content Encoder generates output ẑ whereas the
Source Content Encoder generates z. Firstly, the
goal is to make ẑ and z have the same content,
hence, we want them to be as similar as possi-
ble. We use the cosine-similarity to quantify this
similarity. The similarity loss is minimized using
mean-squared error; defined as:

Lsim =
1

N

N∑

j=1

(cosine_similarity(ẑj , zj)− 1)2

Secondly, a bias detector takes ẑ as input and re-
turns the class probabilities of ẑ. Because we want
ẑ to belong to the neutral class, the Latent-content
Encoder has to learn to generate ẑ that is always
classified as neutral. This is achieved by minimiz-
ing the cross-entropy loss:
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Figure 1: The architecture of our proposed model. The model consists of four main components. The arrows show
the flow of information within the model, and how the various components interact with each other.

Figure 2: An example to illustrate the end-to-end bias mitigation process. This demonstrates the operation of each
component of the model. In the case of multiple attribute words, these attribute words are all masked and replaced
simultaneously. The Latent-content Encoder aims to remove traces of gender information from sentence-level
semantic content before being added to the token embeddings.

Laccẑj
= −

N∑
j=1

logP (sa|ẑj)

P (sa|ẑj) is the classifier’s prediction of the prob-
ability of ẑ being neutral.

Combining both losses we get the dual objective:
LCE_loss = (1− λ)Lsim + λLaccẑj

3.4 Token Decoder

The Token Decoder computes the average of each
token embedding and the latent content representa-
tion to generate new token embeddings. The Token
Decoder uses these embeddings to predict the cor-
rect tokens.

The Token Decoder first adds latent content in-
formation to word embeddings. To do this, the To-
ken Decoder takes as inputs both W from the Token
Embedder and ẑ from the Latent-content Encoder.
For each wi ∈ W , a new token embedding ŵi ∈
Rd is generated by computing the weighted average
of wi ∈ Rd and ẑ ∈ Rd. After generating ŵi, the
Token Decoder uses it to predict the right token by
computing the probability distribution over all the
tokens in the vocabulary. We compute the decoding

loss as: Ldec = −
n∑

i=1;tπi∈TΠ

logP (tπi |ŵiΠ)

To augment this process, we use a pretrained
classifier to ensure that the output sentence xa is
always neutral. A dual objective is again used in
this process: TD_loss = (1− γ)Ldec + γLaccxa .
Where Laccxa is the loss from the classifier. Be-
cause xa is made up of discrete tokens (one-hot en-
codings) which are non-differentiable during back-
propagation, we use a soft sampling approach as

was done in (Wu et al., 2019; Prabhumoye et al.,
2018): tπi ∼ softmax(ot/τ)

4 Experiments

For our experiments, we focus on gender bias (we
limit our work to a binary definition of gender) 3.
The use of gender is motivated by the relative avail-
ability of resources such as datasets. Nonetheless,
we believe that our work is adaptable to other forms
of biases such as racial bias since the technique is
not dependent on the domain (only neutral and bias
examples are needed). To show our technique’s
applicability in different domains, we experiment
on gender obfuscation, where instead of mitigating
the bias, we try to convert female-authored texts
to "look like" male-authored texts. We arbitrar-
ily chose to convert from female to male just for
the sake of experiment; the same technique can be
applied for male to female as well.

All experiments are conducted using English lan-
guage corpus. In the future, we hope to extend our
work to cover other languages as well. We dis-
cuss the details of our experiments in the following
subsections.

4.1 Dataset

We run our experiments 4 on two datasets discussed
below. Some statistics of the datasets are given in
A Table 3

3See Section 7
4All experiments are run on a Tesla V100-SXM3 GPU

with 32Gb memory.
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4.1.1 Jigsaw dataset:
The Jigsaw datasets5 consists of comments that are
labeled by humans with regard to bias towards or
against particular demographics. Using the value
0.5 as a threshold, we extract all texts with gender
(male or female) label ≥ 0.5 as the gender-biased
class of texts and extract a complementary set with
gender labels < 0.5 as the neutral class.

4.1.2 Yelp dataset:
We extract this dataset from the preprocessed Yelp
dataset used by (Prabhumoye et al., 2018; Reddy
and Knight, 2016a). This dataset contains short
single sentences which we use for author gender
obfuscation.

4.2 Evaluation models and metrics

To evaluate the performance of our model, we com-
pare it to six other models; Delete-only, Delete-
and-retrieve (Li et al., 2018), B-GST, G-GST (Sud-
hakar et al., 2019), CAE (Shen et al., 2017) and
BST (Prabhumoye et al., 2018).

The evaluation is based on three automated eval-
uation metrics for style transfer discussed by Hu
et al. (2020); style transfer accuracy (Transfer
strength), content preservation, and fluency.

Style transfer accuracy: This gives the percent-
age of texts that were successfully flipped from
the source style (bias style) to the target style (neu-
tral style) by our model. To predict whether a text
was successfully flipped, we use a trained BERT
classifier different from the one used to train the
respective models.

Content preservation: We measure content
preservation by computing the similarity between
the generated text and the original text. Similar
to Fu et al. (2018), we use the cosine similar-
ity between the original text embedding and the
transferred text embedding to measure the content
preservation. To make this more effective, we gen-
erate text embeddings with SBERT (Reimers and
Gurevych, 2019), a modified version of pre-trained
BERT that generates semantically meaningful sen-
tence embeddings for sentences so that similar sen-
tences have similar sentence embeddings, that can
be compared using cosine-similarity.

Fluency: Similar to (Subramanian et al., 2018),
we measure the fluency of the generated text using
the perplexity produced by a Kneser–Ney smooth-

5https://www.kaggle.com/c/Jigsaw-unintended-bias-in-
toxicity-classification/data

Table 1: Jigsaw dataset- Transfer strength and Content
preservation scores for the models on all three datasets.
C.P.: Content preservation, PPL: Fluency (Perplexity),
Accuracy: Style transfer accuracy, Original*: refers to
the original input text. For A.C., C.P.and Agg, higher
values are better. For PPL, lower values are better

C.P. PPL AC%
Original* 100.00 12.51 0.08
Del 97.47 363.64 92.30
Del&ret 97.50 242.33 71.70
B-GST 96.73 1166.4 10.10
G-GST 99.11 621.50 38.80
CAE 95.60 795.58 83.70
Our model 99.71 76.75 88.10

Table 2: Yelp dataset- Transfer strength and Content
preservation scores for the models for the . C.P.: Con-
tent preservation, PPL: Fluency (Perplexity), Accuracy:
Style transfer accuracy, Original*: refers to the original
input text. . For A.C., C.P.and Agg, higher values are
better. For PPL, lower values are better

C.P. PPL AC%
Original* 100.00 11.39 17.80
Del 98.70 41.03 33.79
Del&ret 98.25 57.73 30.90
B-GST 95.94 141.81 23.90
G-GST 97.28 70.24 21.00
CAE 98.48 43.78 32.09
BST 95.49 63.33 68.80
Our model 99.05 45.17 43.20

ing 5-gram language model, KenLM (Heafield,
2011) trained on the respective datasets.

4.3 Results and discussion
From Table 1, as we expected from the compared
models, the models that perform considerably well
in one metric suffer significantly in other metrics.
For instance, Delete-Only (Del) produces the best
transfer accuracy but lags behind other models
in content preservation and fluency. For content
preservation and fluency, our model produces im-
proved results over all the other models. This result
is consistent with our expectation of improving con-
tent preservation with our techniques. Again, the
accuracy score (second highest) produced by our
model confirms the claim that our model preserves
content information without a significant drop in
transfer accuracy.

From Table 2, the same observation is made
for gender obfuscation; models that perform very

167



well in one metric fall short in other metrics. BST
produces the best style transfer accuracy but at the
same time has the worst content preservation score.

From the results from both datasets, one key ob-
servation is that models that perform very well in
one metric tend to fall short in other metrics. This
goes to show the difficulty for style transfer models
to preserve content information whilst maintain-
ing a strong transfer accuracy. This observation
is confirmed by previous works (Li et al., 2018;
Wu et al., 2019; Hu et al., 2020) which mention
the general trade-off between style transfer accu-
racy and content preservation. Our model shows
good results in maintaining a good balance across
all metrics. Some text samples from our experi-
ments are shown in Appendix A Table 4. Also,
in Appendix A, Table 5 and Table 6 show the re-
sults from an ablation analysis on the Yelp dataset,
where we strip off components of our model to
analyze the effect. Text samples from the ablation
study are also provided in Appendix A, Table 7 and
Table 8.

5 Related work

He et al. (2021) propose DePen, a Detect and Per-
turb approach to neutralize biased texts, using grad-
uate school admissions as a case study. Sun et al.
(2021) propose a method that aims to rewrite En-
glish texts with gender-neutral English (in partic-
ular, the use of singular they for gender pronouns)
using a combination of regular expressions, a de-
pendency parser, and GPT-2 (Radford et al., 2019)
model. Nogueira dos Santos et al. (2018) propose
an RNN-based auto-encoder model to neutralize
offensive language on social media, using a combi-
nation of classification loss and reconstruction loss
to ensure style transfer and to improve text gen-
eration. In a different but related context, Reddy
and Knight (2016b) propose a gender obfuscation
technique to disguise or change the gender of an
author of a text as a means of privacy protection
or for the prevention of inadvertent discrimination
against the author. Their method is a word substitu-
tion technique based on word2vec (Mikolov et al.,
2013).

6 Conclusion

In this work, we introduce a style transfer model
that can be used to mitigate bias in textual data.
We show that explicit keyword replacement can be
effectively combined with latent content represen-

tation to improve the content preservation of text
style transfer models.

As part of our future work, we intend to expand
this work to other languages, we plan to explore
possible improvements to the model such as adver-
sarial learning, and also to include human evalua-
tors for qualitative evaluation. Again, we intend to
investigate other forms of attributes beyond tokens,
such as sentence length, and how that affects bias
in textual data. We also plan to apply our model
as a preprocessing technique to train fair language
models. We believe this could significantly reduce
biases found in automated language systems.

7 Ethical considerations

Works like Dev et al. (2021) have drawn attention
to gender exclusivity and issues relating to non-
binary representation in NLP, particularly in the
English language. For practical constraints such as
the limited availability of non-binary gender data
and/or the significant under-representation of non-
binary gender identities in available datasets, we
limit this study to a binary definition of gender. For
the same reasons stated above, our definition of
gender is analogous to female and male definitions
of sex (Walker and Cook, 1998). Although this is
an obvious limitation to our work, we believe this
work opens the door to extensively explore similar
issues in non-binary gender settings, which need a
more expansive discussion.

Since the definition of a biased text is highly do-
main, context, and task dependent, especially when
it relates to the use of language (English in this
case), our approach identifies “biased” and “neu-
tral” texts as per how they are defined or annotated
in the training data for a specific task. Hence, the
labels (fair or biased) assigned to certain text ex-
amples may not be perceived accordingly in other
settings and tasks. We also note that, although the
use of explicit gender terms in certain domains may
be deemed to introduce biases (in some recruitment
scenarios for instance), this practice may be accept-
able or even encouraged in other domains such as
in text discussions about diversity and sexism.
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A Appendix

Table 3: Dataset statistics

Dataset Attributes Classifier Train Dev Test
Jigsaw Sexist 24K 32K 1K 1K

Neutral 24K 92K 3K 3K
Yelp Male 100K 100K 1K 1K

Female 100K 100K 1K 1K

Table 4: Sample text outputs from experiments

Gender bias mitigation (biased→ neutral): Jigsaw
input text i hope the man learned his

lesson to slow down and
buckle up .

our model i hope the driver learned
his lesson to slow down and
buckle up .

input text i married a wonderful ma-
ture , loyal and dedicated
foreign women while work-
ing abroad ...

our model i married a wonderful ma-
ture , loyal and dedicated
foreign person while work-
ing abroad ...

Gender obfuscation (female→ male): Yelp
input text overall , worth the extra

money to stay here .
our model overall , worth the damn

money to eat here .
input text i had prosecco and my

boyfriend ordered a beer .
our model i had prosecco and my wife

ordered a beer .

Table 5: Ablation study of our model on the Jigsaw gen-
der dataset. Without-LR: model with soft sampling
(class constraint) but no latent content representation,
Without-LR&SS: model with no class constraint and
no latent content representation

C.P PPL ACC%
Our model 99.71 76.75 88.10
Without-LR 99.69 98.87 93.44
Without-LR&SS 99.70 98.68 93.44

Table 6: Ablation study of our model on the Yelp
dataset. Without-LR: model with soft sampling
(class constraint) but no latent content representation,
Without-LR&SS: model with no class constraint and
no latent content representation. Although Without-LR
has a very high accuracy score, as can be seen from the
example in 8, many of the Without-LR texts are unable
to preserve content information

C.P PPL ACC%
Our model 99.05 45.17 43.20
Without-LR 96.62 45.72 84.20
Without-LR&SS 96.89 41.84 41.00

Table 7: Sample text outputs from ablation study from
Jigsaw dataset

Gender bias mitigation (biased→ neutral): Jigsaw
input text if there was an article dis-

paraging women as idiots
there would be a protest and
a parade .

our model if there was an article dis-
paraging them as idiots
there would be a protest and
a parade .

Without-LR if there was an article dis-
paraging muslims as idiots
there would be a protest and
a parade .

Without-LR&SS if there was an article dis-
paraging muslims as idiots
there would be a protest and
a parade .

Table 8: Sample text outputs from ablation study Yelp
dataset

Gender obfuscation (female→ male): Yelp
input text i did not buy extra insur-

ance !
our model i did not buy auto insurance

!
Without-LR i did not buy life insurance

!
Without-LR&SS i did not buy the pistol !
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Abstract

TextHide was proposed to protect the training
data via instance encoding in the natural lan-
guage domain. Due to the lack of theoretic pri-
vacy guarantee, such instance encoding scheme
has been shown to be vulnerable to privacy at-
tacks, e.g., reconstruction attacks. To address
such limitation, we integrate differential pri-
vacy into the instance encoding scheme, and
thus provide a provable guarantee against pri-
vacy attacks. The experimental results also
show that the proposed scheme can defend
against privacy attacks while ensuring learn-
ing utility (as a trade-off).

1 Introduction

Machine learning models have been widely de-
ployed in a wide range of applications/domains,
such as speech recognition (Zhang et al., 2018b),
computer vision (Guo et al., 2020) and natural lan-
guage processing (Chen et al., 2019; Radford et al.,
2019; Brown et al., 2020). Meanwhile, the pri-
vacy issues have also aroused more and more at-
tention as machine learning-based systems usually
aggressively collect large amounts of data for bet-
ter performance, which could contain user’s per-
sonal information and thus jeopardize user’s pri-
vacy. For instance, the hospital admission infor-
mation and diagnosis report can be processed by
language models to predict the readmission rate of
a patient (Lehman et al., 2021). Another example is
that the prediction of keyboard input would require
personal users’ daily input texts for better accuracy
(Chen et al., 2019). This may not only lose cus-
tomer trust, but also violate some data regulations
or laws, e.g., GDPR (Wachter et al., 2017).

The privacy-enhancing technologies (PETs)
(Gentry, 2009; Chaudhuri et al., 2011; Mohassel
and Zhang, 2017; Cabrero-Holgueras and Pastrana,
2021) have been widely studied to ensure the data
privacy in the machine learning, which mainly
include two foundations of theory as following.

First, the cryptographic protocols (Mohassel and
Zhang, 2017; Mohassel and Rindal, 2018) can help
to securely train the model with the private data
(in encrypted format), and the privacy of data de-
pends on the hard mathematical problems (Pail-
lier, 1999). Although the cryptographic protocol-
based schemes provide good data privacy, these
also arouse high computational overheads due to
the computation on encrypted data and other com-
plicated building blocks.

Second, differential privacy (DP) (Dwork et al.,
2006b, 2014) provides a lightweight way to pro-
tect the data against the adversaries with arbitrary
information during the training, which can obtain
quantifiable privacy guarantees. For example, the
widely used DP-SGD (Bassily et al., 2014; Abadi
et al., 2016) ensures the privacy of training data
sample by clipping the gradients and adding DP
noise (e.g., Gaussian mechanism) with the model
updates. The introduction of DP noise enables the
limited effect of one individual data on the trained
model (and thus achieving the privacy guarantee).
Additionally, another category of work is to add
DP noise into the dataset following the method of
DP synthetic data release and then train a model on
such private data (Vaidya et al., 2013; Mohammady
et al., 2020). Yet, the differential privacy-based
learning schemes could cause great accuracy loss.

Alternatively, a private learning scheme called
instance encoding (Huang et al., 2020a,b) has been
proposed to obtain both privacy and utility for
model training, which encodes the private data into
“encrypted” data via mixup (Zhang et al., 2018a).
While the privacy is claimed to be guaranteed by
the encoding scheme, the data utility can be main-
tained by mixup scheme, only causing minor ac-
curacy loss. However, it has been shown that such
instance encoding scheme cannot provide strong
privacy guarantee as cryptographic protocols (Mo-
hassel and Rindal, 2018) or differential privacy
(Dwork et al., 2014) against privacy attacks empiri-
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cally (Carlini et al., 2020a). That is, well-designed
privacy attacks (Carlini et al., 2020b; Xie and Hong,
2021) can break the instance encoding scheme to
reconstruct the original data from the encoded data
with high success rates. To address the privacy
issue, we improve the TextHide with differential
privacy and prove the improved scheme ensures
theoretical privacy guarantee under the differential
privacy framework. Besides, the experimental re-
sults validate the performance of proposed scheme.

2 Background & Related Work

2.1 TextHide

TextHide (Huang et al., 2020a) was proposed to
protect the privacy of an individual’s training data
in the distributed learning by mixing up multiple
raw training data. First, it utilizes a transformer
encoder model, e.g., BERT (Devlin et al., 2019)
as feature extractor to convert the raw training text
into feature vectors. Second, TextHide designs an
instance encoding method to mix up the original in-
put feature vector with some randomly selected fea-
ture vectors from the training set (the correspond-
ing data labels are also mixed up as well). Such
mixed feature vectors with labels will be further
utilized as training dataset for various down-stream
language tasks, e.g., sentence classification (Cohan
et al., 2019) and other natural language inference
tasks (e.g., sentence similarity (Cer et al., 2017)).

More formally, we denote the language feature
extractor as ϕ(·), and the raw text data/label as
xi/yi. Then we get the feature vector vi = ϕ(xi).
Given the number of mix-up data points K, one
private encoded vector ṽ and corresponding mix-up
label ỹ can be computed as following:

ṽ = σ ◦
K∑

i=1

λivi, ỹ =
K∑

i=1

λiyi (1)

where λi is chosen uniformly at random such
that

∑K
i λi = 1, the sign-flipping mask σ ∈

{−1, 1}d is also chosen uniformly at random, and
d denotes the dimension of the input vector. ◦ rep-
resents the Hardamard multiplication. For each
training batch, K data points will be randomly se-
lected to generate the private encoded vector per
Equation 1. Besides, TextHide also sets another
parameter m as the size of mask pool to improve
the security. This formalizes the (m,K)-TextHide
scheme (Algorithm 1 in (Huang et al., 2020a)). The
privacy notion of TextHide was based on a k-vector

subset sum (Abboud and Lewi, 2013) oracle with
mixup, which would require O(nk/2) efforts to
break as original claim in (Huang et al., 2020a).

2.2 Privacy Attacks in ML
Privacy attacks against machine learning mainly
consist of two categories: 1) membership infer-
ence attacks (MIA) (Shokri et al., 2017; Salem
et al., 2018; Song and Mittal, 2021); 2) data recon-
struction or extraction attacks. On the one hand,
membership inference attacks (MIA) (Shokri et al.,
2017; Song and Raghunathan, 2020; Hisamoto
et al., 2020) have worked as state-of-the-art attack
scheme due to its simpleness and effectiveness,
where an attacker can determine whether a data
point was used to train the ML model or not. Such
MIAs have been commonly used for auditing train-
ing dataset privacy (Carlini et al., 2021).

On the other hand, as a stronger attack primitive,
data reconstruction attacks (Fredrikson et al., 2015;
Wu et al., 2016; Zhu et al., 2019; Carlini et al.,
2020a) usually refer to the attacks that could uti-
lize auxiliary information (e.g., background knowl-
edge) and counter measures to reconstruct or ex-
tract the original private data. For example, model
inversion attacks (Song and Raghunathan, 2020)
or data extraction by memorization (Carlini et al.,
2020c) could extract private information of training
dataset by querying the target model without access
to dataset. Another example is that the attacker can
utilize gradients to recover data (Zhu et al., 2019;
Geiping et al., 2020).

2.3 Privacy-Enhancing Technologies (PETs)
As data privacy risks become an emerging is-
sue, there have been a number of research works,
namely, privacy-enhancing technologies (PETs) fo-
cusing on the data protection in the machine learn-
ing (Mohassel and Rindal, 2018; Chaudhuri et al.,
2011), including the two main directions as fol-
lowing: 1) designing secure computation protocols
with cryptographic building blocks to secure the
data-in-use (Bonawitz et al., 2016; Mohassel and
Zhang, 2017; Mohassel and Rindal, 2018), which
could achieve “perfect" secrecy but bring both ex-
tra computational and communication costs; 2) im-
proving the privacy of machine learning algorithm
with differential privacy (Vaidya et al., 2013; Abadi
et al., 2016). For example, a Naïve Bayes classifier
can be trained by applying Laplace noise on the
dataset by computing proper sensitivity (Vaidya
et al., 2013), which will be further utilized to add
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Laplace noise to satisfy DP notion. Another pop-
ular but different scheme, DP-SGD (Abadi et al.,
2016) applies the Gaussian noise into the gradients
of a single data sample during the model training,
which aims to bound the influence of such one
individual data sample under the paradigm of dif-
ferential privacy. It is worth noting that there have
been recent works in NLP (Kerrigan et al., 2020;
Yu et al., 2021; Li et al., 2021; Dupuy et al., 2022),
which aim to empirically train/fine-tune language
models to satisfy DP notion. We will further dis-
cuss such related literature in Section 2.4.

Both categories of privacy-enhancing schemes
above can provide provable privacy guarantee for
the training data. However, the instance encod-
ing scheme may not obtain such privacy guarantee.
As mentioned earlier in Section 2.1, the instance
encoding scheme (Huang et al., 2020a,b) was pro-
posed to protect the training data’s privacy by mix-
ing up input data (Zhang et al., 2018a). The pa-
per claims that such scheme can preserve data pri-
vacy while maintaining good data utility. However,
recent data reconstruction attacks (Carlini et al.,
2020a) have shown that instance encoding lacks
provable privacy guarantee. That is, the “indistin-
guishability” definition of privately encoded data
is rather spurious, which does not comply with the
concept of indistinguishability in either cryptogra-
phy or DP. For example, the security of asymmetric
encryption scheme could be theoretically proven
by a security game (defined as IND-CPA (Goldre-
ich, 2009)) where no adversary can win the game
with significantly greater probability than an adver-
sary with random guessing. Similarly, differential
privacy (Dwork et al., 2006b; Abadi et al., 2016)
also presents the individual data with deniability
that attacker cannot differentiate it with some prob-
ability bound. Considering that TextHide fails to
provide such privacy guarantee, it can be broken by
the carefully designed attacks and leak the private
data (Carlini et al., 2020a; Xie and Hong, 2021).

In this work, we focus on integrating the in-
stance encoding scheme with differential privacy
to address the privacy risks of the instance encod-
ing scheme presenting with privacy attacks, which
would obtain provable privacy under the paradigm
of differential privacy as shown in Section 4.

2.4 Differentially Private Learning in NLP

Differentially Private Stochastic Gradient Descent
(DP-SGD) (Abadi et al., 2016) has been a gold stan-

dard for preserving data privacy in machine learn-
ing. There have been various DP-related works
in the language domain (Hoory et al., 2021; Yu
et al., 2021; Li et al., 2021; Mireshghallah et al.,
2021; Anil et al., 2021; Dupuy et al., 2022). For
example, public pretraining has been shown to be
helpful for the downstream DP fine-tuning (Kerri-
gan et al., 2020). Hoory et al. (Hoory et al., 2021)
pretained a differentially private BERT model with
DP optimization and identified the existence of
memory issues with large batch size for high per-
formance. Dupuy et al. (Dupuy et al., 2022) have
also proposed an efficient DP-SGD training for
large transformer model with GPU architecture.
Mireshghallah et al. (Mireshghallah et al., 2021)
utilized the adversarial and privacy regularization
to ensure uniform treatment of under-represented
subgroups in language model training. However,
the previous works usually struggle with greatly de-
creased performance as the added DP noise needs
to be scaled with large model parameters (resulting
in high noise levels).

Recently, Li et al. (Li et al., 2021) and Yu et
al. (Yu et al., 2021) have both demonstrated that
the large pre-trained language models can be effec-
tively and efficiently fine-tuned for various down-
stream tasks with very few privacy leakage. For
example, Yu et al. proposed to use ghost clipping
to reduce the memory costs of gradient clipping
in DP-SGD. Besides, they also showed that there
is no explicit relationship between the dimension-
ality of gradient updates and private fine-tuning
performance (Yu et al., 2021).

It is worth noting that our work is orthogonal to
all the DP-SGD-based works above in language do-
main in two main folds. First, the threat models are
different. Specifically, DP-SGD considers a trusted
authority to train on the private dataset. It aims
to convert the learning algorithm with differential
privacy, and thus get the trained model to defend
against a “weak" adversary for “distinguishing"
data, e.g., membership inference attacks (Shokri
et al., 2017). In this work, we consider a stronger
attack based on the scenario of instance encoding,
i.e., the attacker could have access to the instance
encoded data and try to reconstruct the original data
by reconstruction attacks (Carlini et al., 2020b).

Second, the privacy protection methods are dif-
ferent. To address the risk of data reconstruction
attacks, we follow the notion of conventional data
publishing with differential privacy, i.e., adding
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noise on the training data directly (integrated in
the instance encoding scheme) while DP-SGD is
to add noise on the gradient updates during the
learning process (Abadi et al., 2016).

3 Preliminaries of Differential Privacy

As one main category of privacy-enhancing tech-
nologies, differential privacy (DP) (Dwork et al.,
2006b, 2014) has been widely used as a de facto
standard notion in protecting individual’s data pri-
vacy for data collection and analysis (Dwork and
Smith, 2010), especially in machine learning appli-
cations (Vaidya et al., 2013; Abadi et al., 2016).

The principle of the differential privacy (Dwork
et al., 2006b, 2014) is that an individual’s data
point x in one dataset D will not arouse significant
change to the outcome of a randomized mecha-
nism or algorithm applied to the D. Thus, the
attacker cannot make difference with such a spe-
cific data point x by observing the outputs of D by
the randomized mechanism, which thus provides
deniability for the existence of x (ensuring data
privacy).

Formally, to define individual’s privacy, we first
define the neighboring datasets, i.e., D, D′ ∈ D
are the neighbors if they only differs in one data
point, denoted as D ∼ D′. Then we define the DP
notation as following:
Definition 1 (Differential Privacy (Dwork et al.,
2006b, 2014)). For any two neighboring datasets,
D,D′ ∈ D, a randomized mechanism M is said
to be (ϵ, δ)-differentially private if it satisfies the
following equation:

Pr(M(D) ∈ O) ≤ eϵ Pr(M(D′) ∈ O) + δ (2)

where O denote all the events in the output space
of M. If δ = 0, M is ϵ-differentially private.

In this work, we will utilize the Laplace and
Gaussian mechanisms to guarantee (ϵ, δ)-DP.

The Laplace mechanism (Dwork et al., 2006b)
adds the noise from Laplace distribution with mean
zero and scale parameter b, denoted as Lap(b) with

density function 1
2b exp

−|x|
b . Formally, we have the

following theorem:
Theorem 1 (Laplace Mechanism (Dwork et al.,
2006b, 2014)). Given any function f : D →
Rd, the Laplace mechanism is defined as
ML(D, f, ϵ) = f(D)+N , where N is the random
noise drawn from Laplace distribution Lap(∆f

ϵ ),
and ∆f is ℓ1 sensitivity. Laplace mechanism satis-
fies (ϵ, 0)-DP.

Theorem 2 (Gaussian Mechanism (Dwork et al.,
2006a, 2014)). Given any function f : D →
Rd, the Gaussian mechanism is defined as
MG(D, f, ϵ) = f(D) + N , where N is the
random noise drawn from Gaussian Distribution
N (0, σ2Id) with σ ≥ ∆f

√
2 ln (1.25/δ)/ϵ. ∆f

is the ℓ2 sensitivity of function f , i.e., ℓ2 =
supD∼D′ ||f(D)− f(D′||2. Guassian mechanism
satisfies (ϵ, δ)-DP.

4 DP Instance Encoding

Given a training batch of data samples of size M
B = {(x1, y1), (x2, y2), · · · , (xi, yi)}, i ∈ [1,M ],
which is randomly sampled from the training set.
TextHide will first encode every sample into a fea-
ture vector of dimension size d by a pretrained fea-
ture extractor ϕ(·), i.e., vi = ϕ(xi). Then we can
get the corresponding batch of encoded feature vec-
tors Be = {(v1, y1), (v2, y2), · · · , (vN , yN )}. For
original instance encoding, TextHide would mixup
such set of size k vectors to generate private en-
coded vectors as training data per Equation 1. To
address the privacy issue, we apply the differential
private mechanism to such mixup process. Algo-
rithm 1 demonstrates the details.

Algorithm 1: DP Instance Encoding
Input: Batch of encoded vectors Be,

Number of mixed data samples k,
clip bound for encoder vectors C
DP NoiseM: Laplace,Gaussian

Output: Differentially private encoded vector set
Bdp of size |Bdp|

1 Initialize DP mechanismM = {ML,MG}
2 Randomly sample K mixup coefficients:

ΣK
i λi = 1, λi ∈ N (0, I)

// Instance Encoding by mixup
3 Randomly sample K data samples from Be

4 for i→ 1 to |Be| do
// Clip Input Vector

5 vi ← vi ·min(1, C
||vi||2 )

6 ifMG then
7 N ←s N (0, σ2Id)
8 else
9 N ←s ϵ

4C
exp

−ϵ|x|
2C

10 for j → 1 to |Bdp| do
11 ṽj ←

∑K
i=1 λivi +N

12 ỹj ←
∑K

i=1 λiyi
13 return |Bdp| private encoded data vectors

Theorem 3. The DP Instance Encoding revised
with Laplace noise satisfies (ϵ, 0)-DP, where the
added noise NL is draw from Laplace distribution
as following:

NL =
ϵ

4C
exp

−ϵ|x|
2C (3)
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Proof. The proof complies with the original proof
of Laplace mechanism (Dwork et al., 2006b, 2014).
The instance encoding scheme with clipping works
as the function f . The ℓ1 sensitivity here is 2C
since the maximum ℓ1 norm difference of two vec-
tors are 2C (viewed as a hyper-sphere of radius
C). Then replacing ∆f with 2C in Laplace distri-
bution, we get the Equation 3. It has shown that
adding Laplace noise sampled from Eq. 3 satisfies
ϵ-DP (Dwork et al., 2006b), i.e., the DP instance
encoding with ML satisfies (ϵ, 0)-DP.

Theorem 4. The DP Instance Encoding revised
with Gaussian noise satisfies (ϵ, δ)-DP.

Proof. Similar to the previous proof for Laplace,
we choose the Gaussian distribution N (0, σ2)
with mean zero and standard deviation σ2 =

(
1+
√

2 log(1/δ)

ϵ )2C2, where the ℓ2 sensitivity is C.
Note that the input vectors are multi-dimensional,
and the noise added will be drawn independently
from MG. Then we can derive that DP instance
encoding with MG satisfies (ϵ, δ)-DP.

5 Experimental Evaluation

For experiments, we would like to evaluate both
utility and privacy of the proposed scheme as the
following: 1) utility of the private instance encod-
ing scheme, i.e., the performance (accuracy) of
model trained on the private dataset; 2) privacy
guarantee of the scheme against reconstruction at-
tacks, i.e., the attack success rate (the percentage
of reconstructed private vectors).

5.1 Experimental Setup

Dataset. We consider the sentence classifica-
tion task with two popular datasets: 1) Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019) (about 8500 training samples) for accept-
ability; 2) Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) (about 67000 samples) for
sentiment analysis.

Model Implementation. We use the pre-trained
BERT model (Devlin et al., 2019) as the language
feature extractor to generate the text representation
vectors (the dimensionality d is 768). Note that
TextHide will encode such representation vectors
into the training vectors for downstream tasks. For
downstream task training, we follow TextHide to
choose a multilayer perceptron of hidden-layer size
(768, 768, 768) since we take TextHide as baseline.

Utility Evaluation. We will apply our scheme
(including Gaussian and Laplace mechanism, de-
noted as “DP-IE Gaussian” and "DP-IE Laplace",
respectively) and TextHide to the two datasets dur-
ing training, and then report the model accuracy,
respectively. In addition, we will also demonstrate
the accuracy of the raw dataset (without any privacy
protection scheme) for better utility comparison.

Privacy Evaluation. To fully evaluate the pro-
posed DP instance encoding scheme, we also uti-
lize a privacy reconstruction attack (Xie and Hong,
2021) on instance encoding scheme. Specifically,
we first construct a set of private vectors generated
by our proposed scheme and TextHide (as baseline),
respectively. We report the final attack success rate
(the percentage of reconstructed data vectors out
of the original set) by implementing reconstruction
attack on the generated vectors above.

5.2 Utility Evaluation

For our proposed scheme, we set the privacy pa-
rameter ϵ = {0.1, 1, 2, 4, 8, 10, 15, 20}. For Gaus-
sian mechanism, we set δ to be 10−5. Then we
evaluate the model accuracy with varied ϵ for
both Laplace and Gaussian mechanism on the two
datasets as depicted above. For TextHide, we se-
lect (m = 16, k = 4) as its own privacy parame-
ters. We also evaluate the base case (without any
privacy-protection scheme). We report the final
model accuracy (the testing performance of trained
model on the private dataset).

Figure 1 demonstrates the results. From the fig-
ure, we can observe that the model accuracy in-
creases as the private parameter ϵ increases for both
Gaussian and Laplace. This is reasonable since the
privacy parameter ϵ of the DP schemes works as the
privacy budget to determine the privacy-protection
level for the dataset. That is, the larger the pri-
vacy budget, the smaller the noise added to the
original data vectors (the privacy-protection would
be weaker). As a result, the utility of the training
set would not be affected too much. In addition,
we can also observe that the model accuracy can
approach the base case as ϵ increases, which will
cause the compromise of privacy to some extent
(as shown in the privacy evaluation).

5.3 Privacy Attack Evaluation

We follow the attack model setting (Carlini et al.,
2020a; Xie and Hong, 2021) that the attacker could
obtain the background knowledge of the private
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Figure 1: Accuracy (learning utility) on the two datasets
with DP-IE schemes.

dataset but be unaware of the specific data for train-
ing, which would utilize any auxiliary information
to reconstruct the vectors (as a strong attack). We
reproduce the attack scheme following the attack
proposed in (Xie and Hong, 2021). More specifi-
cally, we randomly select 100 data points and gen-
erate 5000 encoded data by our DP schemes for
each dataset, respectively. We measure the attack
results with varying values of the privacy param-
eter ϵ = {0.1, 1, 2, 4, 8, 10, 15, 20} (referring to
different levels for privacy-protection). For exam-
ple, ϵ = 0.1 is the strong protection and 20 is a
weak protection. We repeat the same process for
TextHide using the same privacy parameter as the
previous utility evaluation.

Figure 2 demonstrates the final attack results.
First, we can observe that the TextHide cannot en-
sure data privacy against privacy attacks, i.e., the
privacy attack can recover around 85% of the origi-
nal data vectors for both CoLA and SST-2 dataset.
This also conforms to the previous works. Sec-
ond, the results show that our proposed DP scheme
can defend against such privacy attack from recon-
structing the data. Take Figure 2(a) as an example,
the overall attack success rate is lower than the base-
line’s. Besides, the attack success rate increases
as the privacy parameter ϵ increases, which indi-
cates that a higher privacy budget will lead weaker
protection by differential privacy. Such results
also validate the previous DP theorems. Again,
it should be noted that DP cannot prevent leakage
of the dataset completely. Instead, we would like to
achieve a proper utility-privacy trade-off while ap-
plying differential privacy to the machine learning
applications. For example, some privacy-sensitive
applications, e.g., on-device input prediction, could
require strong privacy guarantee while tolerating a
fair utility loss. We can also improve our instance
encoding scheme with other techniques, e.g., Fed-

erated Learning (Konečnỳ et al., 2016) or optimize
the privacy budget to get a better utility accord-
ingly.
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Figure 2: Attack success rate on the two datasets with
DP-IE schemes.

6 Conclusion & Future Work

In this paper, we facilitate the instance encoding
scheme with differential privacy. We have theoreti-
cally proven that the revised instance encoding with
DP mechanism could provide good privacy guar-
antee under differential privacy framework. Ex-
perimental results have shown that the proposed
differentially private scheme can obtain good utility
for downstream learning tasks, e.g., text classifica-
tion. Besides, we also evaluate the proposed DP
scheme against privacy attacks and the results show
that the scheme can ensure the privacy of dataset
while presenting with attacks.

For the future work, we would like to further
revise current DP instance encoding with another
differential privacy notion, i.e., Rényi differential
privacy (Mironov, 2017), which generalizes the
concept of differential privacy based on the Rényi
divergence. That is, revising the instance encod-
ing scheme with Rényi DP would derive a tighter
privacy bound and thus achieve better privacy-
protection. Besides, another potential direction is
to rescale the text vectors (generated by language
feature extractor model) to a lower dimension vec-
tor by an extra MLP model or auto-encoder (Liou
et al., 2014). We can utilize composition theorem
(Dwork et al., 2014) in DP to theoretically find a
better guarantee for various downstream tasks.
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Abstract
In the open book question answering (OBQA)001
task, selecting the relevant passages and sen-002
tences from distracting information is crucial003
to reason the answer to a question. HotpotQA004
dataset is designed to teach and evaluate sys-005
tems to do both passage ranking and sentence006
selection. Many existing frameworks use sep-007
arate models to select relevant passages and008
sentences respectively. Such systems not only009
have high complexity in terms of the param-010
eters of models but also fail to take the ad-011
vantage of training these two tasks together012
since one task can be beneficial for the other013
one. In this work, we present a simple yet014
effective framework to address these limita-015
tions by jointly ranking passages and select-016
ing sentences. Furthermore, we propose con-017
sistency and similarity constraints to promote018
the correlation and interaction between pas-019
sage ranking and sentence selection.The ex-020
periments demonstrate that our framework can021
achieve competitive results with previous sys-022
tems and outperform the baseline by 28% in023
terms of exact matching of relevant sentences024
on the HotpotQA dataset.025

1 Introduction026

Open book question answering (OBQA) requires a027

system to find the relevant documents to reason the028

answer to a question. It has wide and practical Nat-029

ural Language Processing (NLP) applications such030

as search engines (Kwiatkowski et al., 2019) and031

dialogue systems (Reddy et al., 2019; Choi et al.,032

2018). Among several OBQA datasets (Dhingra033

et al., 2017; Mihaylov et al., 2018; Khot et al.,034

2020), HotpotQA (Yang et al., 2018) is more chal-035

lenging because it requires a system not only to find036

the relevant passages from large corpus but also037

find the relevant sentences in the passage which038

eventually reach to the answer. Such a task also039

increases the interpretability of the systems.040

To address this challenge, most of the previ-041

ous work (Nie et al., 2019; Fang et al., 2020; Tu042

Figure 1: An example from the HotpotQA dataset,
where the question should be answered by combining
supporting facts(SP) from two passages. In the SP, the
first string refers to the title of passage, and the second
integer means the index of the sentence.

et al., 2019; Groeneveld et al., 2020) use two-step 043

pipeline: identify the most relevant passage by one 044

model and then match each question with a single 045

sentence in the corresponding passage by another 046

model. Such systems are heavy in terms of the 047

size of the models which requires long training and 048

inference time. Green AI has recently been advo- 049

cated to against the trend of building large models 050

which are both environmentally unfriendly and ex- 051

pensive, raising barriers to participation in NLP 052

research (Schwartz et al., 2020). Apparently, sys- 053

tems using multiple models to solve HotpotQA task 054

do not belong to the family of Green AI. Further- 055

more, the benefits of learning from passage ranking 056
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and selecting relevant sentences are not well uti-057

lized by these systems. Intuitively, if a passage is058

ranked high, then some sentences in the passage059

should be selected as relevant. On the other hand,060

if a passage is ranked low, then all sentences in the061

passage should be classified as irrelevant.062

To build a Green AI system and take advantage063

of multi-task learning, we introduce a Two-in-One064

model, a simple model trained on passage ranking065

and sentence selection jointly. More specifically,066

our model generates passage representations and067

sentence representations simultaneously, which are068

then fed to a passage ranker and sentence classifier069

respectively. Then we promote the interaction be-070

tween passage ranking and sentence classification071

using consistency and similarity constraints. The072

consistency constraint is to enforce that the rele-073

vant passage includes relevant sentences, while the074

similarity constraint ensures the model to generate075

the representation of relevant passages more closer076

to the representations for relevant sentences than077

irrelevant ones. The experiments conducted on the078

HotpotQA datasets demonstrate that our simple079

model achieves competitive results with previous080

systems and outperforms the baselines by 28%.081

2 Related Work082

HotpotQA Systems A straightforward way to083

solve the HotpotQA challenge is to build a hierar-084

chical system (Nie et al., 2019), meaning a system085

first ranks relevant passages and then identifies rel-086

evant sentences from the selected passages. Such a087

hierarchical system involves multiple models thus088

requires long inference time. More importantly,089

such a system only leverages the impact of passage090

ranking on sentence selection but ignores the in-091

fluence of the sentence selection on the passage092

ranking. Our framework achieves these two tasks093

by one model and facilitates the interaction by two094

constraints. Groeneveld et al. (2020) proposes a095

pipeline based on three BERT models (Devlin et al.,096

2019) to solve the HotpotQA challenge. The sys-097

tem first selects relevant sentences and then detects098

the answer span, finally, identifies the relevant sen-099

tences according to the answer span. Though the100

pipeline is strong, the way it solves the problem101

is opposite to human beings. We, humans, iden-102

tify the relevant sentences, and then give the an-103

swer span. Many existing works demonstrate the104

effectiveness of graph neural networks(GNN) on105

HotpotQA challenge (Fang et al., 2020; Tu et al.,106

2019). Since GNN is out of the scope of this work, 107

we do not compare it with these frameworks. 108

Joint Model for QA Joint learning has been 109

studied in Question Answering Tasks. Deng et al. 110

(2020) proposes a joint model to tackle commu- 111

nity question answering such that the model can 112

simultaneously select the set of correct answers 113

from candidates and generate an abstractive sum- 114

mary for each selected answer. Sun et al. (2019) 115

proposes a generative collaborative network to an- 116

swer questions and generate questions. The main 117

difference between our work and previous ones 118

are in two sense (1) our proposed model uses the 119

shared encoder to tackle two classification tasks 120

(2) besides the loss function to optimize individual 121

tasks, we also propose two constraints that utilize 122

the relation between these two tasks. 123

3 HotpotQA Dataset 124

HotpotQA dataset (Yang et al., 2018) is designed 125

for multi-hop reasoning question answering tasks, 126

i.e. to reason over multiple documents and an- 127

swer questions (see Figure 1). Particularly, Hot- 128

potQA challenge requires reasoning over two pas- 129

sages. Furthermore, to guide the system to perform 130

meaningful and explainable reasoning, the dataset 131

also provides supporting facts (SP) that reach the 132

answer to the question. HotpotQA provide two 133

challenging settings: in Fullwiki setting, a system 134

needs to rank passage from the entire wiki corpus; 135

in Distractor setting, 10 distracting passages (in- 136

cluding relevant ones) are given for each question. 137

In this work, we mainly focus on the latter setting. 138

From the training set, we find that 70.4% questions 139

have exactly two supporting facts (SP), and 60.0% 140

of SP are the first sentence of passages. 141

4 Method 142

We aim to jointly conduct two tasks, passage rank- 143

ing and supporting facts selection for HotpotQA. 144

Given a question Q, the goal is to simultaneously 145

rank the set of candidates A = {a1, ..., ai} and iden- 146

tify the supporting facts for the TopK1 passages. 147

4.1 Model: Two-in-One Framework 148

We introduce the proposed joint model for pas- 149

sage ranking and support fact selection, Two-in- 150

One, which uses state-of-the-art transformer-based 151

1The value of K depends on the task, and for HotpotQA,
K is 2.
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model (Vaswani et al., 2017) to encode questions152

and contexts. In this work, we use RoBERTa (Liu153

et al., 2019), however, any other variants like154

ELECTRA (Clark et al., 2020) can be applied in155

this framework. The model architecture is given in156

Figure 2. On top of the encoder, there are two MLP157

layers to score passages and sentences respectively.158

In details, given a question and a passage, we firstly159

create an input to feed through RoBERTa (Liu et al.,160

2019) by concatenating the question and the pas-161

sage as follows, 〈s〉Q〈/s〉S1〈/s〉S2...〈/s〉Sk〈/s〉162

where 〈s〉 and 〈/s〉 are special tokens in RoBERTa,163

Si is the ith sentence from a passage. We take 〈s〉164

as the contextual representation for passage ranking165

and the 〈/s〉 in front of each sentence for sentence166

selection. The passage ranker and the sentence clas-167

sifier have identical structure (two-layer Multiple-168

Layer Perceptron(MLP)) but different weights.169

Query

<s>Q</s>S1</s>S2...</s>Sk</s>

RoBERTa

<s> </s> </s> </s>

passage
ranker sentence classifier

Combine Selection: select the relevant sentences if
the passage is in top K 

Passages

Figure 2: The architecture of Two-in-One model for
passage ranking and relevant sentence selection. For
HotpotQA dataset, K is two.

The model is jointly trained by passage loss and170

sentence loss. In detail, during the training time,171

we assign the relevant passages and sentences with172

ground truth score 1 while irrelevant passages and173

sentences with ground truth score -1. Then, Mean174

Square Error(MSE) loss is applied to calculate the175

passage and sentence loss as follows,176

Lpass = (ŷ − y)2,

Lsent =
K∑

i=1

(x̂i − xi)
2,

Ljoint = Lpass + Lsent,

(1)177

where ŷ is the predicted passage score, y is the178

ground truth score of the passage, x̂i and xi are 179

the predicted sentence score and ground truth score 180

of Si, respectively, and K is the total number of 181

sentences in the passage. We simply sum up the 182

passage loss and sentence loss to jointly update 183

model parameters. 184

During the inference time, passages are ranked 185

based on the logits given by the passage ranker. 186

For the sentence classification, we take 02 as the 187

threshold to classify the relevance of each sentence: 188

if the score given by the sentence classifier is larger 189

than 0, then it is relevant; otherwise, irrelevant. 190

Next, we introduce two constraints to facilitate 191

the interaction between these two tasks. 192

4.2 Consistency Constraint 193

Intuitively, if a passage is relevant to the question, 194

then there are some sentences from the passages 195

that are relevant; on the other hand, if a passage is 196

not relevant to the answer, then there should not 197

be relevant sentences inside the passage. Thus, we 198

propose a consistency constraint over the passage 199

ranker and sentence classifier to minimize the gap 200

between the passage score and the maximum sen- 201

tence score. The loss function is as follows: 202

Lcon = (ŷ −max(x))2, (2) 203

where x = [x̂1 . . . x̂n] denotes a stack of predicted 204

sentence scores. 205

4.3 Similarity Constraint 206

As we have shown at the beginning of this section, 207

token 〈s〉 is used to get the passage score, and 208

each token 〈/s〉 is used to get the sentence score. 209

Intuitively, the similarity between token 〈s〉 of a 210

relevant passage is more close to token 〈/s〉 of 211

a relevant sentence than to 〈/s〉 of any irrelevant 212

sentence. To enforce this constraint, we use triplet 213

as follows: 214

Lsim =
1

N ·M
N∑

i=1

M∑

j=1

(max{d(vp, vri )

− d(vp, vnj ) +m, 0}),
(3)

215

where d(·, ·) is the Euclidian similarity, N is the 216

number of relevant sentences, M is the number of 217

irrelevant sentences, vp, vr, vn is the vector repre- 218

sentation of the relevant passage, relevant sentence, 219

2The reason for threshold “0” is that it is the middle value
of 1 and -1, which are labels for relevant and irrelevant sen-
tences in the training time.
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and irrelevant sentence respectively. Equation 3220

enforces that all the relevant sentences should have221

higher similarity with the passage than all the ir-222

relevant sentences by a margin m; otherwise, the223

model would be penalized. In practice, we set the224

margin m at 1 and find optimum results. We train225

our model in an end-to-end fashion by combining226

Ljoint, Lcon and Ldis.227

5 Experiment228

In this section, we first describe the training setup,229

and then introduce two baselines. We evaluate the230

two baselines and our proposed joint model on the231

HotpotQA dataset. Yang et al. (2018) provides232

two metrics for supporting facts evaluation, exact233

matching (EM) and F1 score. We also present the234

precision and recall of SP, and the exact match-235

ing of passages for detailed comparison. Mean-236

while, we compare our model with the QUARK237

system (Groeneveld et al., 2020). Lastly, we con-238

duct an ablation study to show the effectiveness of239

the proposed similarity loss and consistent loss.240

5.1 Experiment Setup241

We use Huggingface (Wolf et al., 2020) and Py-242

torch (Paszke et al., 2019) libraries to implement243

each model. We use 4 TX1080 and V100 NVIDIA244

to train models in 5 epochs with a learning rate of245

1e-5, batch size of 32. We set the maximum input246

length in training to be 512.247

5.2 Baseline248

To have comparable size of the model, two base-249

lines have similar structure as our Two-in-One250

model. Our model has two classification heads,251

whereas each of the baselines has one classification252

head. One baseline is to select relevant sentences,253

and the other one is to rank passages.254

Sentence Selection Baseline The first base-255

line is to select relevant sentence, and particu-256

larly, we use a RoBERTa-large with an additional257

MLP trained on question and a single sentence:258

〈s〉Q〈/s〉S〈/s〉, where Q is a question and S is a259

sentence. Although this model can not predict the260

relevant passage directly, based on the assumption261

that relevant passages include relevant sentences,262

we pick up two relevant passages based on the263

top2 sentence scores. When the top1 and the top2264

sentences are from the same passage, we continue265

searching based on the ranking sentence scores266

until the second document comes up. Then the sup- 267

porting facts are those sentences from the relevant 268

documents with a score larger than 0. 269

Passage Selection Baseline In the second base- 270

line, again, we use RoBERTa-large but with the 271

goal of passage selection. The input to the model is 272

a question and a passage: 〈s〉Q〈/s〉P 〈/s〉. Since 273

such a model can not predict sentence relevancy 274

score, based on the statistic of HotpotQA that ma- 275

jority of training set has two supporting facts and 276

the most of them are the first sentences in a para- 277

graph (see Section 3), we select supporting facts 278

by the first sentence of the top1 and top2 passages. 279

5.3 Result 280

As we see from Table 1, Two-in-One framework 281

outperforms two baselines with large-margin im- 282

provement in all metrics, especially we see a sig- 283

nificant improvement on the EM of SP. Our frame- 284

work outperforms the Sentence Selection Base- 285

line by 20% and 4.5% improvement on the pre- 286

cision and recall of SP, respectively, which demon- 287

strates that jointly learning is beneficial for sen- 288

tence classification. Also, jointly learning benefits 289

for the passage ranking by comparing Two-in-One 290

with Passage Selection Baseline on the EM of pas- 291

sage. Besides, we also compare Two-in-One with 292

QUARK (Groeneveld et al., 2020), a framework 293

involving three BERT models, (roughly three times 294

larger than ours). Two-in-One achieves comparable 295

results in terms of F1 and EM of SP regardless of 296

much less parameters in our system. Notice that 297

we do not have the other three values because they 298

are not presented in their original paper. 299

5.4 Ablation 300

To evaluate the impacts of the consistency con- 301

straint and the similarity constraint, we conduct 302

experiments with and without constraints. From 303

Table 2, we see that both consistency constraint 304

and similarity constraint improve F1 and EM of 305

SP and the similarity constraint also improves the 306

EM of passages. We found that without any con- 307

straint, though the model can rank the passages 308

well, it suffers from distinguishing between close 309

sentences. The similarity constraint addresses this 310

issue in some sense by maximizing the distance 311

between relevant and irrelevant sentences. 312

To better understand the impact of consistency 313

constraint, we analyze the consistency between the 314

passage score and the sentence score. The predic- 315
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Model # Parameters SP Precision SP Recall SP F1 SP EM Passage EM
Sentence Selection Baseline ∼330M 67.96 81.05 72.02 28.12 69.70
Passage Selection Baseline ∼330M 66.43 56.55 60.20 27.30 90.44
Two-in-One + sim (Ours) ∼330M 88.06 85.68 85.82 59.17 91.11

QUARK ∼1020M∗ N/A N/A 86.97 60.72 N/A
SAE(RoBERTa) ∼660M+∗ N/A N/A 87.38 63.30 N/A
HGN(RoBERTa) ∼330M+∗ N/A N/A 87.93 N/A N/A

Table 1: The Results for two baselines and Two-in-One model with similarity constraint on dev set of HotpotQA
distracting dataset. SP stands for supporting facts and EM for Exact Match. ∗ refers to estimation. The bottom
systems have much larger model size than our method, where QUARK (Groeneveld et al., 2020), is the result of a
framework with 3 BERT models, SAE (Tu et al., 2019) uses two large language models and an GNN model, and
HGN (Fang et al., 2020) uses a large language model, a GNN model and other reasoning layers.

Model SP F1 SP EM Passage EM
Two-in-One 85.52 58.67 90.93
Two-in-One + con 85.55 58.98 90.29
Two-in-One + sim 85.82 59.17 91.11
Two-in-One + con + sim 85.63 58.74 90.78

Table 2: The results for Two-in-One model with or
without consistency and similarity constraints.

tion of a model is consistent if the passage score316

agrees with the sentence scores and the agreement317

can be measured by the gap between the passage318

score and the maximum sentence score among all319

sentences in that passage. We observe that by320

adding the consistency constraint, the gap between321

the passage score and the sentence score is much322

smaller than without the consistency constraint, i.e.323

0.03 v.s. 0.11. It demonstrates that the constraint is324

beneficial for consistent prediction.325

6 Future Work326

While in this work, we show the initial and promis-327

ing results of the Two-in-One model on one single328

dataset, there are a couple of directions we can329

explore in the future such as those discussed below.330

Model Architecture It is easy to extend the Two-331

in-One model to Three-in-One model such that332

besides the passage ranking and sentence selection333

modules, a third module can predict the answer334

span. Like the simple extractive QA model based335

on RoBERTa, where a linear layer or an MLP can336

predict the start and end position of the answer span.337

A restricted inference procedure can be enforced338

that the answer span should be predicted from the339

selected sentence given by the previous model. One340

benefit is to reduce the difficulty for the answer341

selection model since less sentences will be seen by342

the model and the second benefit is to increase the343

interpretability of the model. On the other hand, if 344

the sentence selection model makes mistakes, then 345

such errors will carry to the answer span model 346

which yields the wrong answer eventually. 347

Passage and Sentence Representation We use 348

the contextual vector of a special token in front 349

of each sentence to represent the sentence; we can 350

also try to use the average pooling of every token in 351

the sentence to get the representation of a sentence. 352

Similar for the passage representation. 353

Evaluate on More Dataset To show that the gen- 354

eralization of the proposed model, it can also evalu- 355

ate on more datasets, such as NaturalQuestion (NQ) 356

dataset (Kwiatkowski et al., 2019). Although the 357

NQ dataset does not have annotated support sen- 358

tences, the sentence which contains the answer can 359

be taken as the support sentence to train the sen- 360

tence selection model. It is worth mentioning that 361

in the HotpotQA dataset, there are multiple support 362

sentences while the NQ only has one, thus, if the 363

Two-in-One model is trained on a single dataset, 364

then one model might not generalize well to other 365

dataset. A simple solution might be to train the 366

Two-in-One model on multi-datasets. 367

Zero-shot Testing It is also interesting to see if 368

Two-in-One model can generalize better to unseen 369

domains than simple baselines without any fine- 370

tuning. To verify this, we can compare the Two- 371

in-One model and baselines models trained on the 372

HotpotQA dataset to other datasets. 373

7 Conclusion 374

In this work, we present a simple model, Two-in- 375

One, to rank passage and classify sentence together. 376

By jointly training with passage ranking and sen- 377

tence selection, the model is capable of capturing 378

5
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the correlation between passages and sentences.379

We show the effectiveness of our proposed frame-380

work by evaluating the model performance on the381

HotpotQA datasets, concluding that jointly mod-382

eling passage ranking and sentence selection is383

beneficial for the task of OBQA. Compared to the384

existing QA systems, our model, with fewer param-385

eters and more green than previous models, can386

achieve competitive results. We also propose mul-387

tiple future directions to improve our model such388

as exploring the relationship among passages, sup-389

porting sentences, and answers in modeling and390

generalizing our method on more datasets.391
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Abstract
In order to build more human-like cognitive
agents, systems capable of detecting various
human emotions must be designed to respond
appropriately. Confusion, the combination of
an emotional and cognitive state, is under-
explored. In this paper, we build upon prior
work to develop models that detect confusion
from three modalities: video (facial features),
audio (prosodic features), and text (transcribed
speech features). Our research improves the
data collection process by allowing for continu-
ous (as opposed to discrete) annotation of con-
fusion levels. We also craft models based on
recurrent neural networks (RNNs) given their
ability to predict sequential data. In our exper-
iments, we find that text and video modalities
are the most important in predicting confusion
while the explored audio features are relatively
unimportant predictors of confusion in our data.

1 Introduction

Humans are adept at recognizing the emotions of
others. They can identify whether another person
has positive, negative, neutral, or more nuanced
emotions by considering their facial expressions,
voice, and words. To construct more human-like
cognitive systems, it is important that, just as hu-
mans do, computational systems can infer emo-
tions of the users that they interact with. Modeling
confusion is relatively under-explored and can be
difficult to detect computationally. Confusion can
occur when someone does not know how to pro-
ceed with a task or when reconciling old beliefs
with confounding information. The American Psy-
chological Association’s Dictionary of Psychology
defines confusion as “a mental disturbance charac-
terized by bewilderment, inability to think clearly
or act decisively, and disorientation for time, place,
and person” (Association, 2021). Potential applica-
tions of a confusion-detecting agent include task-
driven dialogue chat-bots and detecting a learner’s
confusion in online learning environments.

We present models that leverage data across sev-
eral modalities - facial expressions, speech signals
with prosody, and transcribed spoken language -
that not only can be used to predictively model
confusion but also to extract insights with respect
to which features of which modalities are clearer
indicators of confusion. In this work, we answer
the following research questions:

RQ1 How can we improve upon prior data collec-
tion methods to obtain a more precise multi-
modal dataset with confusion labels?

RQ2 How accurate of a model can we construct that
classifies the degree of confusion at different
points within a task?

RQ3 What facial, audio, and language features
serve as good predictors of confusion (or a
lack thereof)?

2 Related Work

Detecting confusion has mostly been explored in
educational settings to discern students’ confusion.
As MOOCs (Massively Open Online Courses) have
become more prevalent, researchers have focused
on building models that accurately detect students’
confusion. Defining a learner’s confusion as “an
individual state of bewilderment and uncertainty
as to how to move forward,” Atapattu et al. (2020)
found that linguistic-only features were highly ac-
curate predictors of confusion. Using a dataset of
nearly 30, 000 anonymous posts from Stanford’s
MOOC discussion forum, they used natural lan-
guage processing resources, e.g., sentiment anal-
ysis, and a MANOVA test to extract feature im-
portance. While Atapattu et al. (2020) focused on
linguistic-only features, Shi et al. (2019) analyzed
facial expressions to classify learners’ confusion.
They used statistical learning models that leveraged
a combination of histogram of oriented gradients
(HOG) features and local binary patterns (LBPs)
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in tandem with a prediction system, composed of
a support-vector machine (SVM) and a convolu-
tional neural network (CNN). The CNN-SVM had
the best performance, indicating that facial expres-
sions can be good predictors of confusion.

Our research differs from these past experiments
in that we aim to create a multimodal model. Fur-
thermore, we incorporate additional speech anal-
ysis to craft a more richly informed predictor of
confusion. The study most closely related with
our own is Kaushik et al. (2021), which experi-
mented with a random forest classification scheme
applied over discrete time intervals extracted from
two-person interactions. Notably, this work con-
sidered interpretable metrics such as disfluencies
(like um), questions, and pauses, although these
were less correlated with confusion than the best-
correlated facial expressions. We expand upon the
study by Kaushik et al. (2021), repeating the hu-
man subject set-up of two people collaboratively
solving a task over Zoom. While that study had
participants label their level of confusion across a
30-second interval, our research explores continu-
ous annotation instead of discrete spans. We expect
that continuous confusion labels will enable more
useful reference data for classification.

3 Methodology

3.1 Data Collection

In this IRB-approved study, subjects were recruited
through email to participate in a “conversational
behavior study.” We did not debrief participants
until after the study was complete that the true aim
was to analyze confusion. Participants were paired
by availability to work together through a series
of three confusion-evoking tasks. We had partici-
pants complete the tasks in pairs to elicit intuitive
and meaningful interactions. Our goal was to con-
struct a dataset of multimodal text, speech audio,
and video-based facial expression features with
confusion-inducing tasks. Additionally, we sought
to improve upon the prior research of Kaushik et al.
(2021) by supporting continuous annotation of con-
fusion levels by participants. The first and third
tasks were adapted from Kaushik et al. (2021); in
the first task, participants were given four minutes
to find a 30 minute meeting time given two calen-
dars which actually had no overlapping availability
(see Figure 1).

The second and third tasks were logic puzzles
(one was the widely known puzzle titled “Cheryl’s

Figure 1: In one task, participants were given two calen-
dars without overlapping availability. They were asked
to find a 30 minute meeting time at which they were
both available.

Figure 2: In our continuous confusion annotation, par-
ticipants were instructed to use the four radio buttons
to continuously annotate their confusion levels. They
were instructed to change the radio button whenever
they noticed a change in their own confusion level.

Birthday”). Given a list of potential birthdays and
clues about which of those dates could not have
been Cheryl’s birthday, participants were asked to
reason through hints, rule out dates, and determine
Cheryl’s true birthday.1 Participants were given
four to seven minutes to solve the riddles with pe-
riodic hints sent via Zoom chat. After participants
completed the three tasks, they were then told that
the true purpose of the experiment and asked to an-
notate their confusion levels throughout each task
utilizing our website: the Confuse-o-Meter. The
website displayed the playback of the participants
solving the task on top of a set of radio buttons
with the following labels: Not Confused, Slightly
Confused, Very Confused, and Extremely Confused.

1https://en.wikipedia.org/wiki/Cheryl%27s_Birthday
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Figure 3: Our method for continuous annotation allowed
for us to label each video frame with the participant’s
indicated confusion level. Above is the distribution
of labels for each video frame. Task 1 was the least
confusing task, as shown by the fact that the majority of
the labels appear in the Not Confused state.

As seen in Figure 2, participants were instructed
to click on the appropriate radio button whenever
they noticed a change in their confusion level.
From the website, we obtained data in the follow-
ing form: [(timestamp of change, new confusion
label), (timestamp of next change, new confusion
label),. . . ]. We used this encoding to produce con-
fusion labels for every time-step of data. This ap-
proach allowed us to generate a dataset in which
every time-step of data was accurately labeled with
the participant’s confusion level.

Some tasks were harder than others. We in-
tended for the tasks to progress in difficulty so that
we could collect ample Not Confused and Confused
data. The distribution of the participants’ confusion
ratings in the first and last task are shown in Figures
3 and 4, respectively. It is clear that the participants
found the first task to be less confusing, with the
majority of the labels being in the Not Confused
state. A higher proportion of the labels fall in the
Quite Confused and Very Confused categories for
tasks 2 and 3.

3.2 Feature Extraction

The OpenFace (Baltrušaitis et al., 2015, 2018) soft-
ware package was used to extract 17 different Ek-
man and Friesen (1976) facial action units (FACs)
defined by per video frame. Audeering’s openS-
MILE (Schuller et al., 2009; Eyben et al., 2010)
toolkit was used to extract 34 different audio fea-
tures, including pitch, intensity, speech rate, and
MFCCs per frame. Finally, Amazon Transcribe

Figure 4: Task 3 was the most confusing task. Although
the majority of the labels fall under A Little Confused,
there are a considerable number of video frames labeled
as Quite Confused and Very Confused.

Table 1: Text Encoding Feature Descriptions

Feature Type Description

is_question bool
token is part of
question

is_pause bool
token is ≥ 0.398s
pause within
utterance

curr_sentence_
length

int
number of words
in current sentence

speech_rate float
words/min.
of current sentence

is_edit_word
is_reparandum
is_interregnum
is_repair

bool
generated by Deep
Disfluency

was used to transcribe speech and deep-disfluency
Hough and Schlangen (April, 2017) was used to ex-
tract disfluent words in the form of transcribed text.
Similar to Kaushik et al. (2021), disfluencies like
edits, repair, reparandum, and interregnum word
tokens were further identified.

Using the output of Amazon Transcribe, each
participant’s text was divided into a sequential list
of tokens, where a token could be a spoken word
or a period of silence. For each token, we extracted
8 features, as shown in Table 1.

Since Amazon Transcribe’s output was tagged
with timestamps, we were able to align the text,
audio, and video features. With missing data elimi-
nated or smoothed out by inserting the averages of
data in nearby frames, the audio and visual feature
vectors for each word token were then taken to be
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the averages of all the frames within the token’s
given time-span. Participant confusion labels over
each time-span were finally collapsed to the most-
occurring label for each word/token. Participant
confusion labels were “smeared” (or duplicated)
over frames according to their time-step, such that
each frame was associated with the confusion label
that the participant had selected at that time marker.

Figure 5: Text Features: The y-axis is the proportion
of tokens that were: (a) a part of a spoken question, or
(b) a distinct pause in the participant’s speech. Observe
that a higher proportion of tokens are part of a question
or a pause when the participant is highly confused.

3.3 Exploration of Hidden Markov Models

We explored Hidden Markov Models (HMMs) be-
cause of their interpretability and applicability to
sequential data. The HMM relies on the Markov
assumption, which means that the state of the sys-
tem at time step i is only dependent on the state
of the system at time step i − 1. Experimenting
with different temporal increments based on video
frames or word tokens, our model was unable to
accurately predict confusion. This left us with a
trade-off: either use all our frame-by-frame data
and have the time increment be so small that the
HMM yields a diagonal-heavy transition matrix or
have longer increments but make our dataset pro-
hibitively small by averaging over longer intervals.

3.4 The Neural Modeling Approach

We designed recurrent neural networks (RNNs)
given their ability to extract temporal dependencies
inherent to sequences (Schäfer and Zimmermann,
2006; Ororbia II et al., 2017). In essence, RNNs
are stateful ANNs that “remember” information in
prior time-steps < t when processing data at t.

While taking a neural engineering approach of-
fers a great deal of flexibility in terms of the
type of architecture that one might design to
process streams of different modalities (meaning
there are many possible model designs we could

craft), in this work, we take a simple approach.
For each data modality, we crafted one RNN
modality-processing model that specifically imple-
ments p(yt|xm

0 ,xm
1 , ...,xm

t ; Θm) = fm(xm
t ; Θm)

where yt is the (integer) confusion label2 at time
t and xt ∈ RO×1 is the specific feature vector
(with O feature values) for modality m, where
m = {vis, aud, txt} (vis means visual, aud means
audio, and txt means text/symbols) and Θm con-
tains all of the learnable weight parameters. Con-
cretely, any modality-processing RNN with H hid-
den neurons is specified by the dynamics:

ht = ϕh(W
m · xm

t +Vm · ht−1 + bm) (1)

ŷt = ϕo(U
m · ht + cm) (2)

where ϕ(v) = max(0, v) is the linear rectifier used
for the hidden layer activation function, ϕ(o) =
exp(o)/

∑
j exp(o)[j] is the softmax used for the

output layer, · denotes matrix-vector multiplication,
and ⊙ denotes the Hadamard product.
Wm ∈ RH×O is the input-to-hidden weight ma-

trix, Vm ∈ RH×H is the recurrent weight matrix,
and Um ∈ RO×H is the output/feature emission
matrix while bm ∈ RH×1 and cm ∈ RO×1 are
bias vectors. The RNN weight parameters Θm =
{Wm,Vm,Um,bm, cm} are initialized using a
scaled, centered Gaussian distribution and param-
eters are fit data using backpropagation through
time to calculate the gradients of the cost function
L(ŷt,yt) =

∑T
t=1−

∑
j(yt ⊙ log(ŷt))[j]. The

resulting ∂L(ŷt,yt)
∂Θm (the partial derivatives) is used

to adjust Θ using stochastic gradient descent based
on the Adam update rule (Kingma and Ba, 2014).

Given the three modality-processing RNNs we
trained, i.e., fvis(xvis

t ,Θvis), faud(xaud
t ,Θaud),

f txt(xtxt
t ,Θtxt), final label predictions were made

using a late-fusion aggregation scheme (Snoek
et al., 2005). In other words, we computed
the final predicted label yt as follows: yt =
argmax(αvisy

vis
t +αaudy

aud
t +αtxty

txt
t ), which

returns the index of class within the average of the
three modal probability distributions. Importance
weights αvis, αaud, and αtxt were set to 1.0, which
means we assume equal weight per modality.

4 Results

4.1 Recurrent Neural Modeling Results
Our RNN modality-processing system was trained
only on single modalities, with the final predicted

2We further encode this as a one-of-C binary vector yt ∈
RC×1, where C is the number of confusion levels/classes.
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Figure 6: Training and validation loss (for the video
modality) of the RNN system. It is evident that after 5
epochs, the model begins to severely overfit the training
data, as the training loss continues to decrease while the
validation loss begins to increase.

label yt aggregated through the late-fusion scheme
described above. We had 20 participants and held
out one randomly selected female and male partic-
ipant to validate model performance. In Figure 6,
we present training and validation loss curves (total
loss value plotted against epoch of training) for the
model trained on video features only. This model
performed better than the unimodal text and audio
models, as well as the late-fusion trimodal model.

An RNN trained on only video features was able
to achieve the lowest loss and best accuracy perfor-
mance, suggesting video data conveyed the most
meaningful knowledge about the confusion state.
However, this model begins to overfit the training
data around epoch 5 (Figure 6), at which point the
training loss continues to decrease while the valida-
tion loss begins to increase. Changing parameters
like the number of hidden neurons did not reduce
the model overfitting though future work will in-
vestigate regularization schemes. Given our small
dataset, the model appears to struggle to generalize
to the two unseen participants. When we early-stop
the training after 5 epochs to combat overfitting,
we obtain the validation accuracy values for each
uni-modal model shown in Figure 7.

4.2 Modality-Based Data Analysis
To inspect which features were possible predictors
of confusion, we created box plots and bar charts
to examine the distribution of feature values from
participants while in the Not Confused state versus
the Very Confused State. The features examined in
this analysis were selected based on which had the
highest difference in median value between the Not

Figure 7: Unimodal and trimodal RNN model perfor-
mance: the video-only model performs the best, fol-
lowed by the trimodal late-fusion, text-only, and audio-
only models.

Figure 8: Box plots for select video features where
the y-axis is the facial action unit reading produced by
OpenFace: a 0-1 scale quantifies how heavily a facial
action unit is being produced by a participant.

AU01 Inner brow raiser
AU02 Outer brow raiser
AU05 Upper lid raiser
AU20 Lip stretcher
AU26 Jaw drop

Table 2: The facial action units displayed in Figure 8.

Confused and Very Confused states. In Figure 5,
observe that some results make sense: participants
are more likely to pause and ask questions when
they are very confused versus when they are not
confused at all. The facial action units are shown in
Figure 8 and in Table 2. Intuitively, it makes sense
that these facial action units are tied to confusion.

Some analysis results, in contrast, are more sur-
prising: we found nearly no difference between the
distributions of the audio features extracted in the
Not Confused versus the Very Confused states. This
suggests that prosodic features are potentially less
effective predictors of confusion in this study.
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5 Discussion

Given the results of the previous section, we dis-
cuss the contributions of our work driven by our
initially presented questions. Specifically, we make
the following contributions which we next state as
answers to our original research questions:

RQ 1: The annotation method used by Kaushik
et al. (2021) involved participants marking their
confusion level for every 30-second block. We im-
proved upon this approach by implementing the
Confuse-o-Meter website, which allowed partici-
pants to continuously annotate their confusion lev-
els. This method for annotation was found to pro-
vide a richer dataset in which we were able to ob-
tain confusion labels for every time-step of data.

RQ 2: The RNN results showed that we were
able to build a model that could relatively accu-
rately classify confusion in the test set participants.

RQ 3: There were inconclusive results on which
facial, audio, and language features were the best
predictors of confusion because different methods
yielded conflicting results. However, based on our
limited results, we reason that the following fea-
tures may be linked with confusion: text disfluen-
cies, pauses, questions, AU01 (inner brow raiser),
AU02 (outer brow raiser), AU05 (upper lid raiser),
AU17 (lid tighten), AU20 (lip stretcher), AU23 (lip
tighten), and AU26 (jaw drop).

The main limitation of our work is the size of
the collected dataset – with only 20 participants,
it makes sense that our models, particularly the
highly nonlinear RNN system, overfit to the train-
ing samples. For any choice of two participants,
it is unlikely that a model trained on 18 other par-
ticipants would generalize to the test participants
since confusion is a complicated emotion and not
all humans display it the same way. It would take a
larger dataset in order to generalize to the broader
population. Additionally, our models predicted the
Not Confused states more often than the Confused
states. The distribution of our confusion dataset is
similarly unbalanced, as seen in Figure 9.

6 Conclusions

In this study, our goal was to build a model that
was capable of accurately predicting confusion and
to understand which text, audio, and video features
were accurate predictors of confusion. Given that
the RNN has low interpretability, we utilized sta-
tistical methods to accomplish the latter half of
this goal. Furthermore, we improved upon previ-

Figure 9: The confusion label distribution indicates
that participants generally spent more time in the not
confused states as opposed to the confused states.

ous methods of data collection to allow for con-
tinuous annotation of confusion states. This de-
sign choice provided us with a more precise mul-
timodal dataset with rich confusion reference la-
bels across time. To computationally model the
predictive label distributions and perform confu-
sion classification, we constructed a computational
model based on recurrent neural networks (RNNs),
which lack interpretability but proved to be reason-
ably accurate even with our limited data. Future
work will include generalizing our RNN compu-
tational model further to better handle the differ-
ent modalities (in an intermediate modality fusion
scheme as in Ororbia et al. (2019)) found within
our dataset, as opposed to our current method of
taking the (late-fusion) weighted consensus of three
separately trained modality-processing RNNs. In
addition, another future next step would be to re-
peat our study to collect a larger dataset that better
represents the general population. This may also
reduce the overfitting observed in our predictive
confusion models. Additional research could in-
vestigate dimensionality reduction techniques and
alternative forms of statistical analysis to explore
measured features in our data.

Acknowledgements

This material is based upon work supported by
the National Science Foundation under Award No.
IIS-1851591 and DGE-2125362. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s)
and do not necessarily reflect the views of the Na-
tional Science Foundation.

193



References
American Psychology Association. 2021. Confusion.

https://dictionary.apa.org/confusion.

Thushari Atapattu, Katrina Falkner, Menasha Thi-
lakaratne, Lavendini Sivaneasharajah, and Rangana
Jayashanka. 2020. What do linguistic expressions tell
us about learners’ confusion? a domain-independent
analysis in moocs. IEEE Transactions on Learning
Technologies, 13(4):878–888.

Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robin-
son. 2015. Cross-dataset learning and person-specific
normalisation for automatic action unit detection. In
Facial Expression Recognition and Analysis Chal-
lenge, IEEE International Conference on Automatic
Face and Gesture Recognition.

Tadas Baltrušaitis, Amir Zadeh, Yao Chong Lim, , and
Louis-Philippe Morency. 2018. Openface 2.0: Facial
behavior analysis toolkit. In IEEE International Con-
ference on Automatic Face and Gesture Recognition.

Paul Ekman and Wallace V. Friesen. 1976. Measuring
facial movement. Environmental Psychology and
Nonverbal Behavior, 1(1):56–75.

Florian Eyben, Martin Wöllmer, and Björn Schuller.
2010. opensmile – the munich versatile and fast
open-source audio feature extractor. In MM’10 - Pro-
ceedings of the ACM Multimedia 2010 International
Conference, pages 1459–1462.

Julian Hough and David Schlangen. April, 2017. Joint,
incremental disfluency detection and utterance seg-
mentation from speech. In EACL 2017, Valencia,
Spain.

Nikhil Kaushik, Reynold J. Bailey, Alexander G. Oror-
bia, and Cecilia O. Alm. 2021. Elicitation of confu-
sion in online conversational tasks. In Interspeech
2021, 22nd Annual Conference of the International
Speech Communication Association, Brno, Czech
Republic.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Alexander Ororbia, Ankur Mali, Matthew Kelly, and
David Reitter. 2019. Like a baby: Visually situated
neural language acquisition. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5127–5136.

Alexander G Ororbia II, Tomas Mikolov, and David Re-
itter. 2017. Learning simpler language models with
the differential state framework. Neural computation,
29(12):3327–3352.

Anton Maximilian Schäfer and Hans Georg Zimmer-
mann. 2006. Recurrent neural networks are universal
approximators. In International Conference on Arti-
ficial Neural Networks, pages 632–640. Springer.

Björn Schuller, S. Steidl, and Anton Batliner. 2009. The
interspeech 2009 emotion challenge. In Interspeech
2009, 10th Annual Conference of the International
Speech Communication Association, Brighton, UK.

Zheng Shi, Ya Zhang, Cunling Bian, and Weigang Lu.
2019. Automatic academic confusion recognition in
online learning based on facial expressions. In 2019
14th International Conference on Computer Science
Education (ICCSE), pages 528–532.

Cees GM Snoek, Marcel Worring, and Arnold WM
Smeulders. 2005. Early versus late fusion in seman-
tic video analysis. In Proceedings of the 13th annual
ACM international conference on Multimedia, pages
399–402.

194



Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 195 - 201

July 10-15, 2022 ©2022 Association for Computational Linguistics

Probe-Less Probing of BERT’s Layer-Wise Linguistic Knowledge
with Masked Word Prediction

Tatsuya Aoyama
Georgetown University
ta571@georgetown.edu

Nathan Schneider
Georgetown University

nathan.schneider@georgetown.edu

Abstract

The current study quantitatively (and quali-
tatively for an illustrative purpose) analyzes
BERT’s layer-wise masked word prediction on
an English corpus, and finds that (1) the layer-
wise localization of linguistic knowledge pri-
marily shown in probing studies is replicated
in a behavior-based design and (2) that syn-
tactic and semantic information is encoded at
different layers for words of different syntac-
tic categories. Hypothesizing that the above
results are correlated with the number of likely
potential candidates of the masked word predic-
tion, we also investigate how the results differ
for tokens within multiword expressions.

1 Introduction

The attention mechanism of Transformers
(Vaswani et al., 2017) has enabled language
models (LMs) to effectively incorporate contextual
information into word representation. One such
model, BERT (Devlin et al., 2019), has been
shown particularly useful in a wide range of down-
stream tasks, outperforming the state-of-the-art
benchmarks in many cases. However, it is yet
to be clear what exactly such LMs learn, and
what information is encoded in their contextual
word representations (CWRs). For this reason,
much work has been devoted to answering these
questions, often referred to as BERTology (see
Rogers et al., 2020 for a comprehensive review).

Among such studies, of particular interest is the
localization of linguistic knowledge. As BERT con-
sists of multiple layers (12 layers for bert-base
and 24 layers for bert-large), it is crucial to un-
derstand what information is encoded in each layer,
and how it differs from one another. However,
the methodologies employed in such studies dif-
fer substantially from each other (§2): some di-
rectly utilize the internal structure of such models
by training probing classifiers, while others study
the behaviors of such models at inference time.

Structure-based probes have often been successful
at assigning particular domains of linguistic knowl-
edge to local regions, yet the reliance on probing
classifiers (and the introduction of extra parame-
ters) makes it unclear if such linguistic knowledge
is just an artifact of the classifier or is truly encoded
in the model. Behavior-based probes do not rely
on external classifiers, but tend to focus on quali-
tative analyses of the outputs from the final layer,
whereas quantitative analysis of layer-wise output
remains understudied in the behavioral paradigm.

In this study, we explore layer localization with
behavioral probing. Specifically, we mask out to-
kens one at a time and check whether BERT pre-
dicts the same word, another word with the same
part of speech, or neither (3). By using different
layers for the prediction, we can determine which
parts of the network correspond to higher or lower
rates of congruent predictions. Along with gener-
ally confirming some of the main observations of
the structure-based probing studies, we find consid-
erable variation by part of speech and some effect
of multiword expression status, and discuss possi-
ble interpretations of these findings (§4).

2 Previous Work

2.1 Structure-Based

Since the advent of BERT (Devlin et al., 2019),
much work has been devoted to revealing what
linguistic knowledge it has. Among such studies,
Tenney et al. (2019a) observed that one line of
work is behavior-based, while the other directly
investigates the structure of the CWRs. Whereas
the former focuses on the qualitative error analy-
ses of BERT’s predictions on certain controlled
tasks, the latter directly probes the internal struc-
ture of the model. Building on the latter line of
the work, Tenney et al. (2019a) apply a probing
method called edge probing (Tenney et al., 2019b),
which allow them to infer what sentence-level in-
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formation BERT encodes based on a given span
by restricting the input to the probing classifier.
They find that BERT’s layer-wise linguistic knowl-
edge resembles classical NLP pipelines; in other
words, lower layers are more responsible for syn-
tactic knowledge and higher layers for semantic
knowledge, although syntactic knowledge is more
localizable at lower layers whereas semantic knowl-
edge is rather spread across the layers.

Jawahar et al. (2019) make similar observations,
based on a suite of probing tasks developed by
Conneau et al. (2018). They find that the lowest
layer is most successful at phrase detection, and the
performance degrades until layer 8, beyond which
it reaches a plateau. In another set of experiments,
they find that lower, middle, and higher layers are
responsible for surface, syntactic, and semantic
information, respectively. Corroborating this result,
Hewitt and Manning (2019) employ a novel method
called a structural probe to retrieve a syntactic tree
from contextualized word embeddings, and find
that the representation from middle layers have
better performance in the tree retrieval task.

With an increasing number of studies employing
probing classifiers, in their comprehensive review
of BERTology, Rogers et al. (2020) raise a warn-
ing that such probing may not provide us with a
full picture of what BERT is: "If a more complex
probe recovers more information, to what extent
are we still relying on the original model?" Indeed,
while some studies use a linear classifier as a probe
to limit the number of newly introduced parame-
ters (e.g., part of Liu et al., 2019), others use more
complex models, such as multi-layer perceptron
(MLP), obscuring the source of success on probing
tasks. Hewitt and Liang (2019) suggested a metric
called selectivity to measure how well a probe re-
flects the actual linguistic knowledge encoded in
the CWRs in question, as opposed to learning the
task independently of such CWRs.

2.2 Behavior-Based
Complementing such limitation of probing studies,
more recent works have attempted to avoid intro-
ducing new parameters through creative probing
methodologies, such as contextual word embed-
ding (CWE) similarity ranking (Gessler and Schnei-
der, 2021), and direct probe (Zhou and Srikumar,
2021).

In fact, the other line of work, which Tenney et al.
(2019a) described as behavior-based, which usu-
ally relies on qualitative (error) analyses of BERT’s

predictions on controlled tasks, is parameter-free
and utilizes BERT’s behaviors at inference time,
and Rogers et al. (2020) also argue for the impor-
tance of this line of work. Such work includes in-
vestigation of semantic knowledge (Ettinger, 2020;
Marvin and Linzen, 2018) and syntactic knowledge
(Goldberg, 2019; Poliak et al., 2018).

For example, analyzing BERT’s masked word
prediction output on controlled tasks developed
in psycholinguistic studies, Ettinger (2020) finds
that BERT struggles with common sense and prag-
matics, role-based event prediction, and negation.
Goldberg (2019) also studies BERT’s masked word
prediction outputs on both naturally occurring sen-
tences and manually crafted stimuli, finding that
BERT is sensitive to subject-verb agreement.

While these studies have revealed a great deal
about BERT’s linguistic knowledge, they have pri-
marily focused on (1) content words, such as verbs
and nouns, and (2) the output from the final layer.
Although the data used in the current study are not
manually crafted or controlled in any way similar
to the above-mentioned studies, it attempts to add
to the existing body of literature by (1) extending
the analyses to all syntactic categories and (2) ana-
lyzing how BERT’s predictions differ across layers.
In light of all this, we ask the following questions:
1. Can the layer-wise linguistic knowledge found
in structure studies be replicated with a behavior-
based approach, namely, layer-wise masked word
prediction analyses (§4.1.1)?
2. Do the results vary by syntactic category
(§4.1.2)?

3 Experimental Setup

We used STREUSLE 4.4 (Schneider et al., 2018;
Schneider and Smith, 2015), a corpus of web re-
views written in English. This corpus contains 723
documents, 3,813 sentences, and 55,590 tokens in
total with rich annotation of various syntactic and
lexical-semantic information (e.g., annotation of
3,013 strong multiword expressions). The BERT’s
prediction data were prepared in the following way:
1. For each sentence, create n variants, where n is
the number of tokens in the sentence, by replacing
one token by [MASK] token.
2. For each variant (where one word is repalced
with [MASK] in step 1) of each sentence, run
vanilla BERT to generate a prediction from each
layer ℓ ∈ L.
3. For each of the n variants of each sentence,

196



where [MASK] is now replaced by a predicted
token in step 2, POS-tag the predicted token to
identify its syntactic category.

For the BERT model, we use bert-base-uncased

because bert-base and bert-large have similar
distributions of layers, which Rogers et al. (2020)
call "stretch effect", although they do sometimes
exhibit heterogeneous behaviors, such as responses
to perturbation in word prediction (Ettinger, 2020).
The model was retrieved from the PyTorch imple-
mentation of BERT by huggingface (Wolf et al.,
2020).

For POS, the tag set of 17 POSs from Universal
Dependencies (UD) v2 (Nivre et al., 2020) was
used, and Stanza (Qi et al., 2020) was used for the
automatic tagging of predicted tokens.

The above experiment resulted in the prediction
of, and the tagging of, L×S×N = 722,670 masked
tokens, where L, S, and N are the number of layers,
the number of sentences, and the (mean) length of
the sentences, respectively. In addition to analyzing
the descriptive statistics, in order to quantify the
relative contribution of each layer to POS match
and word match, differential scores at each task
(POS match or word match) for each layer ∆(ℓ)T
were obtained by computing the incremental gain
from the previous layer (Equation 3 of Tenney et al.,
2019a):

∆(ℓ)T = Score(ℓ)T −Score(ℓ−1)
T (1)

As a summary statistic of these scores, (pseudo)
expectation of differential scores (Equation 4 of
Tenney et al., 2019a) was also calculated:

Ē∆[ℓ] = ∑L
ℓ=1 l ⋅∆(ℓ)T∑L
ℓ=1 ∆(ℓ)T

(2)

This is an "expected layer", at which the gain scores
are centered around. If the differential scores were
uniformly distributed, the expected layer would
simply be the middle layer, which is layer 6. If the
contribution of lower layers were higher (i.e., dif-
ferential scores were higher at lower layers), then
the expected layer would be lower than 6, and vice
versa.
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Figure 1: Layer-wise Accuracy of POS Match, Word
Match, and POS Match without Word Match

4 Results

4.1 Quantitative Results
4.1.1 Overall
The top graph in Figure 1 illustrates the accuracy
score1 of POS match, word match, and POS match
without word match (i.e., the predicted word is
not the same as the original word, but is the same
POS). Notably, POS match tends to increase at
lower layers and approaches plateau towards the
middle to high layers, whereas word match tends
to increase linearly from lower to higher layers.
Consequently, the proportion of the tokens with
only POS match peaks at around layers 5 and 6 and
starts declining beyond that point.

The middle and bottom graphs in Figure 1 illus-
trate the differential scores of POS match and word
match, respectively. The vertical red dotted lines
represent the expected layer defined in §3. The dif-
ferential scores for POS match are clearly centered
around lower layers followed by a sharp decline be-
yond middle layer, with the expected layer of 3.68.
In contrast, the differential scores for word match
are relatively more uniformly distributed across
layers, and the expected layer is 5.22. This sup-
ports the findings from previous work that syntactic
knowledge is more localizable at lower to middle

1Accuracy was chosen here for direct comparability; the
proportion of the top predictions that are of the same POS as
the original token, the proportion of the top predictions that
are of the same word as the original token, and the proportion
of the top predictions that are of the same POS but different
word as the original token.
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N POS POSM word wordM
op

en
ADJ 3169 4.04 4.24 6.45 6.35
ADV 3080 3.42 3.76 5.74 5.30
INTJ 108 3.48 9.33 7.13 8.75
NOUN 7265 3.98 4.48 7.53 6.99
PROPN 1406 6.68 6.11 8.05 7.88
VERB 5328 3.96 3.68 6.73 6.38

cl
os

ed

ADP 3368 3.16 3.52 5.01 5.18
AUX 2950 3.10 4.43 5.14 5.08
CCONJ 1803 5.48 5.32 5.88 4.74
DET 3525 2.16 2.54 3.11 3.43
NUM 555 5.70 6.81 6.73 7.23
PART 1314 1.80 1.31 2.08 1.40
PRON 5264 3.91 4.61 6.76 5.96
SCONJ 808 5.05 4.45 5.71 5.45

Table 1: Expected Layer by UPOS. POSM and wordM
stand for POSMWE and wordMWE, respectively.

layers (Tenney et al., 2019a; Liu et al., 2019) and
that semantic knowledge is spread across layers
(Tenney et al., 2019a).

4.1.2 By Syntactic Category
Table 1 summarizes the expected layers for POS
match and word match for all tokens, as well as
for tokens that are part of multiword expressions
(MWEs), by UPOS.2 In this section, we will fo-
cus on the former. First, in general, the expected
layers for POS match and word match differ sub-
stantially by syntactic category. Whereas lower
layers contribute much more for POS match for
PART (Ē∆[ℓ] = 1.80), middle to higher layers con-
tribute more for POS match for PROPN (Ē∆[ℓ]
= 6.68). A similar observation is made for word
match: on the one hand, lower layers contribute
more for PART(Ē∆[ℓ] = 2.08), and higher layers
contribute more for PROPN (Ē∆[ℓ] = 8.05) on the
other hand.

Although no straightforward generalizations can
be made, for word match, we observe a tendency
that expected layers tend to be higher when the
original tokens are in open class, such as PROPN
(Ē∆[ℓ] = 8.05) and NOUN (Ē∆[ℓ] = 7.53), whereas
they tend to be lower when the original tokens are
in closed class, such as PART (Ē∆[ℓ] = 2.08) and
DET (Ē∆[ℓ] = 3.11).3 This seems to suggest that
higher layers tend to contribute more to word match
for tokens in syntactic categories with more word
types (i.e., open class), and that lower layers tend to
contribute more for tokens in syntactic categories
with fewer word types (i.e., closed class).

2Miscellaneous tags, i.e. PUNCT, SYM, and X, are ex-
cluded from the analysis.

3Open and closed classes are based on the classifica-
tion by UD project’s (Nivre et al., 2020) website: https:
//universaldependencies.org/u/pos/index.html

However, notable exceptions from closed class
include NUM (Ē∆[ℓ] = 6.73) and PRON (Ē∆[ℓ] =
6.76). The former belongs to closed class because
its atomic elements are finite (i.e., 0-9); however,
with the infinite number of combinations of such
elements, this class may be behaving similarly to
open class. This is clearly not the case for the
latter—PRON has a finite number of word types,
which are fewer than the ones in open class. One
plausible explanation is that identifying a correct
pronoun requires a resolution of subject-verb agree-
ment, which is shown to be handled well by BERT
(Goldberg, 2019; van Schijndel et al., 2019) es-
pecially at layers 8 and 9 (Jawahar et al., 2019).
However, upon closer examination, expected lay-
ers for personal pronouns in accusative case (Ē∆[ℓ]
= 8.19) or those in (in)direct object positions (Ē∆[ℓ]
= 8.08) are found to be much higher than those in
nominative case (Ē∆[ℓ] = 6.34) or in subject po-
sitions (Ē∆[ℓ] = 6.29), although the latter should
benefit from the subject-verb agreement resolution
at higher layers. Given this observation, it may
be the case that personal pronouns in accusative
case or (in)direct object positions are more likely to
necessitate long-distance coreference resolution in
English, and such long-distance dependencies are
shown to be handled better at higher layers (Jawa-
har et al., 2019). However, this hypothesis remains
inconclusive (see §4.2 for more discussion).

4.1.3 Multiword Expressions
As an additional analysis of the effect of the number
of potential candidates on expected layer, we calcu-
late the expected layer only for tokens that are part
of MWEs, based on the annotation of strong MWE
in STREUSLE (Schneider et al., 2018; Schneider
and Smith, 2015). Although the strong MWEs in
STREUSLE consist of heterogeneous sets of ex-
pressions, such as idioms, light verb constructions,
and noun compounds, we assume that, overall, this
linguistic environment is more constrained and has
fewer potential candidates for masked word predic-
tion.

The POSM and wordM columns in Table 1 rep-
resent the expected layers of POS match and word
match only for the tokens that are part of MWEs,
respectively. The expected layers are colored in
red if they are higher for MWEs than for all tokens,
and in blue if they are lower for MWEs than for
all tokens. In general, on the one hand, for word
match, they are lower for MWEs than for all to-
kens, which is congruent with the hypothesis from
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ℓ prediction
3 to, a, him, me, them, her, the, us, one, people
6 him, me, her, them, us, to, people, everyone, it,

you
12 us, her, me, we, them, everyone, our, him, it,

stephanie
Context: Stephanie’s knowledge of the market and prop-
erties in our price range, made [MASK] (original: us)
feel secure in our decision to buy when we did. (reviews-
341397-0002)

Table 2: Selected Example 1 from STREUSLE

§4.1.2 that lower layers contribute more when the
number of potential candidates is relatively small.
On the other hand, however, the expected layers
for POS match tend to be higher for MWEs than
for all tokens. The precise reason why this was the
case is left for future work; however, we provide a
potential account for these observations below.

One possible explanation for the higher expected
layers of POS match is that semantic information
plays an important role in predicting certain se-
quences of POSs observed in MWEs. For exam-
ple, the common occurrences of noun compounds
could be a contributing factor to the higher ex-
pected layer for POS match only for NOUNs that
are part of MWE (Ē∆[ℓ] = 4.48) compared to that
of all NOUNs (Ē∆[ℓ] = 3.98). Given that the mean-
ing of the second token (the head of the compound)
is crucial in detecting its (dis)preference on form-
ing a compound, it may require more semantic
information for BERT to correctly identify that the
first token is NOUN rather than ADJ, resulting in a
higher expected layer. Indeed, for all NOUNs that
are part of MWE, the most common incorrect pre-
diction was ADJ at all layers from layer 2 through
12, which was not the case for NOUNs that are not
part of MWE (see §4.2 for an example).

4.2 Qualitative Results

In this section, we present a set of selected exam-
ples from the STREUSLE corpus to illustrate the
observations made in §4.1.

Table 2 illustrates the identification of a personal
pronoun at each layer of BERT (only showing lay-
ers 3, 6, and 9). From lower to higher layers, it
is clear that the ranking of the correct pronoun us
is steadily promoted. In fact, it is not until layer
11 that the correct pronoun us receives the highest
prediction probability. In §4.1.2, one hypothesis
that can potentially account for the higher expected
layer of PRON (personal pronouns in object posi-
tions or in accusative case in particular) was the

ℓ prediction
3 own, new, prison, personal, old, back, hospital,

private, usual, current
6 own, private, bedroom, parking, damn, front,

hotel, hospital, office, kitchen
12 car, garage, front, apartment, bedroom, office,

cell, back, truck, elevator
Context: they fixed my [MASK] (original: garage) doors
in literally less than an hour. (reviews-341397-0002)

Table 3: Selected Example 2 from STREUSLE

long-distance dependency. In Table 2, pronouns
our and we are readily available in relatively close
proximity, but the correct pronoun us is not iden-
tified until layer 11. This seems to suggest that
pronouns that are ACC-marked or in object posi-
tions pose unique challenges not explicable only
by the distance of the dependency.

Table 3 illustrates BERT’s predictions of the first
token of a noun compound garage doors. As dis-
cussed in §4.1.3, at layer 3, many of the predic-
tions are generic adjectives (e.g., own, new, old,
private, usual, current), although the meaning of
the word door seems to be captured to some extent,
as we can see from some of the predictions (e.g.,
prison, back, hospital). At layer 6, such prediction
of nouns that are specific to the meaning of the
word door becomes more dominant. This is even
more so at layer 12, where such nouns occupy most
of the predictions despite the presence of a cue, my,
which strongly collocates with own. This supports
our observation that, for some syntactic categories
including NOUN, MWE’s production of certain
sequences of POSs necessitates more semantic in-
formation to restore the POS of the original word,
resulting in a higher expected layer.

5 Conclusion

In this study, we set out to investigate if (1) the
layer-wise linguistic knowledge found in structure
studies can be replicated with a behavior-based de-
sign and if (2) the results vary by syntactic category.
By analyzing BERT’s layer-wise masked word pre-
diction, we have shown that the localization of lin-
guistic knowledge found in various probing studies
was indeed replicated; more specifically, syntactic
knowledge was encoded primarily in lower layers,
whereas semantic knowledge was spread across the
12 layers.

We also observed that the contribution of partic-
ular layers on syntactic and semantic information
varied substantially, depending on the syntactic
category (i.e., UPOS) and on the syntactic class
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(i.e., open vs. closed class) more generally, of the
original token. Hypothesizing that the number of
potential candidates is one of the contributing fac-
tors to this difference, we showed that, in general,
the expected layers were higher for POS match and
lower for word match for the tokens that are part
of MWEs (a supposedly more constrained environ-
ment).

Our contribution is twofold. First, by leverag-
ing BERT’s layer-wise outputs, we confirmed the
previous studies without relying on external prob-
ing classifiers or introducing extra parameters that
can potentially obfuscate the locus of the observed
linguistic knowledge (i.e., language model vs. prob-
ing classifier). Second, by extending the analyses
to all open and closed class categories rather than
limiting the scope to popular content-words, such
as verb, noun, and adjective, we show that the en-
coding of syntactic and semantic knowledge about
words of different UPOS varies substantially.

Lastly, we acknowledge that this study has a
few limitations. First, the layer-wise masked word
prediction essentially feeds intermediate layers di-
rectly to the classification layer, thereby inferring
the linguistic information encoded in the interme-
diate layers. However, this is not what BERT is
trained for; that is to say, arguably, only the final
layer is optimized for the masked word prediction
task, and other layers are not. Hence, the interme-
diate layers’ lower POS and word match accuracy
may not be due to the "absence" of syntactic or se-
mantic knowledge encoded in those layers; rather,
they may simply suggest that those intermediate
layers are not trained for such tasks.

Second, although we provided a possible expla-
nation for our observations and showed a few exam-
ples that seem to support our hypotheses, these are
highly speculative and not meant to prove anything.
We consider this a limitation of our approach, and
a more controlled experiment is needed to make
stronger claims or to test our hypotheses, and this
is left for future work.
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Abstract

This PhD project leverages advancements in
multimodal large language models to build an
inclusive collaboration feedback loop, in order
to facilitate the automated detection, modeling,
and feedback for participants developing gen-
eral collaboration skills. This topic is important
given the role of collaboration as an essential
21st century skill, the potential to ground large
language models within learning theory and
real-world practice, and the expressive poten-
tial of transformer models to support equity and
inclusion. We address some concerns of inte-
grating advances in natural language process-
ing into downstream tasks such as the learning
analytics feedback loop.

1 Introduction

Collaboration, a coordinated process involving two
or more individuals participating in a task in an
interdependent way, is an important topic of study
given its importance as a major 21st century skill
(Lai et al., 2017; Council, 2011; Rios et al., 2020).
Though collaboration as a general term is viewed
as a learnable competency, notable distinctions
emerge when examining how collaboration sur-
faces within relevant research. One semantic dis-
tinction is that the term collaboration is not ex-
plicitly defined, or is used interchangeably with
concepts such as group collaboration, teamwork,
collective problem solving, cooperation, and more
(OECD, 2015). These inconsistencies in meaning
make it challenging to connect various research
agendas that purport the advantages of collabo-
ration. Another distinction to note is modality-
related. Some research does not make any modal-
ity distinctions when reporting the impacts of re-
sults, though much has viewed collaboration via
online/computer-mediated interactions, both syn-
chronous and asynchronous, while other research
has examined co-located collaborative acts that
happen face-to-face. Despite semantic, modality,

and other distinctions, various fields have advanced
what we know about collaboration, specifically col-
laboration as a language-mediated process.

Scholars within the fields of NLP, cognitive sci-
ence, and educational research have focused sepa-
rately on verbal and written aspects of collabora-
tive exchanges - speech, text-based outputs, and
audio such as non-linguistic pauses - to better un-
derstand aspects of collaboration. Recent NLP re-
search, for example, has explored neural models
equipped with dynamic knowledge graph embed-
dings, the use of large language models to model
real world speech, and the development of collab-
oration datasets (Ekstedt and Skantze, 2020; He
et al., 2017; Lee et al., 2022), while cognitive sci-
ence has explored general modeling approaches for
collaborative behavior and large language models
as knowledge sources for intelligent agents (Gold-
stone and Gureckis, 2009; Huang et al., 2022; Wray
et al., 2021). Learning analytics, a subset of edu-
cational research that extracts diverse datastreams
from the learning process to improve learning, has
developed automated multimodal approaches to de-
tect, model and provide feedback about collabora-
tive learning exchanges (Dowell et al., 2019; Pugh
et al., 2022; Worsley and Ochoa, 2020). Though
these studies differ in their disciplinary perspec-
tives, they view language as essential to individu-
als’ application of collaborative behavior and re-
searchers’ understanding of said behavior.

2 Purpose of Research Project

Because language is grounded in experience (Bisk
et al., 2020), and collaboration is mediated through
language, collaboration is an appropriate skill to be
learned, practiced, and analyzed through language-
mediated experiences and techniques. This disser-
tation project, situated at the intersection of NLP,
cognitive science, and learning analytics, focuses
on how we may support people in their develop-
ment of complex, dynamic collaborative language
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skills. The project extends prior research, but
also introduces unexplored areas such as multi-
modal language modeling and inclusive collabora-
tion. Therefore, the aim is to contribute to several
open research questions related to how we may
foster collaborative language, a proxy for overall
collaboration skills, in people as an explicit act of
learning. This project examines these critical gaps
in current research to explore the ultimate question
of: How can we use multimodal large language
models to detect, model, and provide feedback on
inclusive collaboration behavior? Sub-questions
include:

• How may a multimodal framework offer im-
proved collaborative language detection over
and above unimodal language modeling?;

• What are possibilities for detecting and mod-
eling inclusive collaboration language among
a group of diverse participants?, and

• How may we leverage multimodal large lan-
guage modeling in the service of learning to
collaborate through automated and feedback
mechanisms?

This study explores the potentials of adopting
multimodal NLP techniques within a learning ana-
lytics lens. Multimodal NLP is an emerging area
within NLP that stems from the development of
the large language model, a massive-parameter pre-
trained model. Large language models are an active
area of development within NLP, and one set of re-
searchers have demonstrated impressive semantic
and generative capabilities (Kaplan et al., 2020; Tay
et al., 2021), while others pose ethical, environmen-
tal, and interpretability concerns about unbounded
scaling of model size (Bender et al., 2021; Strubell
et al., 2020; Weidinger et al., 2021). We focus on
the potential of multimodal NLP, large language
models that integrate multimodal (acoustic, image,
tactile, and/or video) data beyond text-based lan-
guage, and explore potentials of multimodal NLP
for automated, fine-grained detection of collabora-
tive processes that will support learners within and
across experiences, an important downstream appli-
cation of the technology (Bommasani et al., 2021;
Brown et al., 2020; Islam and Iqbal, 2021; Rahman
et al., 2020). We also contribute to current cri-
tiques of performance-first modeling that may over-
look important opportunities to create real world
NLP models that reduce bias. This project opera-
tionalizes an inclusive collaboration index with the

goal of general equity and inclusion over identity-
specific bias mitigation.

3 Integrating Inclusion into Downstream
NLP Collaboration Tasks

Within learning analytics (Holstein and Doroudi,
2021), NLP (Blodgett et al., 2020; Tsvetkov et al.,
2018), and general machine learning/AI applica-
tions (Doshi-Velez and Kim, 2017; Dwork et al.,
2012), researchers have made arguments for more
equitable, fair, and inclusive practices. This in-
cludes verifying that the research approach is in-
formed by ethical and human-centered principles,
developing research methods that detect/mitigate
unethical outcomes, and/or our aim of proposing
that research methods should translate ethically
when used in real-world contexts.

With the recent focus on equity and inclusion
across our fields of interest, formal inclusion the-
ories are stated as important to integrate as a fu-
ture idealized goal, though we lack blueprints for
what forms these integrations may take. Within
research across learning analytics, NLP, and ma-
chine learning, formal experiments provide em-
pirical support for those methods with the most
promise for identifying and reducing unwanted so-
cietal bias, ambiguity, and exclusion in datasets and
models (Caliskan et al., 2017; Dinan et al., 2020;
Hutchinson et al., 2020; Sap et al., 2020), though
there is less support for what works as an embedded
practice within downstream tasks that utilize these
algorithms, datasets, and platforms. This study con-
siders ethical research approaches and outcomes,
but primarily focuses on the stated areas of poten-
tial development - the ethical deployment of our
NLP and learning analytics research methods in
downstream tasks situated within actual learning
settings by detecting lack of inclusion and inter-
vening. Our focus is not yet to identify any causal
relationship between one or more social identities
and collaboration quality, but rather to detect inclu-
sive collaboration of individuals and groups, and in
the process identify any disparities in collaboration
quality among individuals and within the group as
a whole.

In this sense, our work advances the concept of
inclusion (Mor-Barak and Cherin, 1998; Young,
1995), defined as the degree to which diverse indi-
viduals demonstrate that they are part of the collab-
orative process. We recognize that this study falls
short of addressing equity since equity examines
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outcomes at the societal rather than individual or
group level, though we highlight that inclusion is
an integral step on the way to equity and ethical
treatment within collaborative experiences (Bern-
stein et al., 2020).

4 Methodology

We have sub-divided the planned methodology into
multiple tasks as: Due to the multidisciplinary na-
ture of collaboration, this study will incorporate
methods that stem from four distinct fields - learn-
ing analytics, cognitive science, natural language
processing, and inclusion theory - to create an inclu-
sive view of learning to collaborate. From learning
analytics, we get a roadmap for developing an au-
tomated feedback loop necessary for learning to
collaborate, and a variety of methods for detecting
collaborative behaviors and operationalizing them
into signals for model building. From cognitive sci-
ence, we have an example for linking psychological
theory, model, and real world behaviors, as well
as ongoing research on intelligent agents as used
for understanding learning and adaptation through
feedback. From natural language processing, we
have access to the ability of large language models
to parse and generate human language, as well as
approaches for addressing inclusion in language
model building. Lastly, we operationalize tenets
of inclusion theory in order to build a learning to
collaborate model that detects linguistic bias, thus
working towards a more inclusive collaboration
environment.

All aspects involving human subjects, including
Phase 1 data collected via Amazon Mechanical
Turk, Phase 2 large language modeling, and Phase
3 interventions will receive full approval of the
University’s Institutional Review Board (IRB) prior
to launching the study. Datasets are either open for
research use and cited, or collected and stored as
part of the IRB approval process and regulations.

4.1 Phase 1: Multimodal collaboration
detection and dataset creation

As part of Phase 1 (multimodal collaboration de-
tection and dataset creation), we will (a) develop a
rubric for inclusive collaboration; (b) finalize the
process of capturing and preprocessing multimodal
data (video and transcribed audio) from collabora-
tive exchanges, and (c) create an evaluation dataset.
The inclusive collaboration rubric pulls from exist-
ing research on collaboration quality that identifies

four collaboration indicators (information sharing,
reciprocal interaction, shared understanding, and
inclusion) from participants’ audio, text, and video
data (Cukurova et al., 2018; Praharaj et al., 2021),
and the technical feat of capturing and preprocess-
ing collaborative exchanges is informed by previ-
ous scholarship in Multimodal Learning Analytics
research (Ochoa et al., 2013; Worsley and Blik-
stein, 2015). Automatic distillation of raw data
into collaboration features would include: auto-
matic speech recognition, computational linguistic
methods to clean, parse, and analyze transcribed di-
alogue (eg. word counts, duration, general content
analysis, inclusive content analysis), detection of
non-linguistic audio (speech prosody), and video
signal filtering to detect person placement and basic
gestures.

Following the general dataset collection proce-
dures described in He et al. (2017), we will gather
human annotations according to our collaboration
rubric of transcribed audio at the sentence-level and
video portions at the frame-level that is captured for
collaborative exchanges. We will use representa-
tive samples of open source collaboration datasets
and datasets collected as part of an approved IRB
protocol that contain text-based dialogue, spoken
dialogue, and/or video of multi-person collabora-
tive exchanges, including the AMI Meeting Corpus
(Carletta et al., 2006), D64 Multimodal Conver-
sation Corpus (Oertel et al., 2013) How2 Dataset
for Multimodal Language Understanding (Sanabria
et al., 2018), Pragmatic Framework for Collabo-
ration (Boothe et al., 2022), and MutualFriends
Corpus (He et al., 2017). In addition to annota-
tion of the four dimensions of interest, we also
have annotators evaluate along the modality (text,
image, and video). We integrate recent NLP crowd-
sourcing research findings (Nangia et al., 2021) by
collecting expert annotations that will then inform
guidance for generally skilled Amazon Mechanical
Turk (MTurk) workers, and and will use the pro-
cess outlined in Bowman et al. (2015), and the Fair
Work tool (Whiting et al., 2019) to ensure a fair
payment structure.

The contributions of Phase 1 are multiple: to
expand beyond research that analyzes collabora-
tive language at the surface level, such as looking
at word counts or temporal durations, and support
deeper content-level analysis (Praharaj et al., 2021);
to map current trends in large language modeling to
theoretically-sound learning and inclusion frame-
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works that extend past pure performance measures
and support responsible downstream usage of such
models.

4.2 Phase 2: Multimodal large language
models for measuring collaboration
quality

Phase 2 focuses on formalizing the task speci-
fication for inclusive collaboration, a process in
which we operationalize human-supplied descrip-
tions into an inclusive collaboration quality classi-
fication model. Specifically, we will conduct fine-
tuning experiments with large transformer models
to detect collaborative language and behaviors of
individual members of a 3-person group.

We will utilize several pretrained large language
models accessible through HuggingFace ((Wolf
et al., 2020)), including BERT-base (Sanh et al.,
2020), GPT-2 (Radford and Narasimhan, 2018),
GPT-J, the open source version of GPT-3 (Brown
et al., 2020), and FLAVA (Singh et al., 2022), a
recent multimodal language model pretrained on
visual and linguistic data. We will also integrate
lessons learned from education-specific research
utilizing large language models (Clavié and Gal,
2019; Shen et al., 2021; Suresh et al., 2021). These
pretrained models will be finetuned on a random
sample of the multimodal collaboration data (au-
dio, text, and/or video frames) that has been held
out of the evaluation dataset step. We will gen-
erate finetuned models with unimodal and multi-
modal collaborative data, and learning rates and
batch sizes will be determined according to stan-
dard task settings, and we follow the training-test
splits and standards articulated by Guo et al. (2020)
and Minaee et al. (2021). For this study, we will
limit our datasets and modeling experiments to
English-language text and dialogue datasets to sup-
plement those pre-trained models primarily trained
on English-language data.

We compare the performance of our finetuned
models in terms of classification accuracy of our ex-
pert and general crowdworker classification scores
on the 4 collaboration dimensions. The area un-
der the receiver operating characteristic curve (AU-
ROC) metric is used for each dimension. Following
Pugh et al. (2022), we report the chance baseline
as a random shuffling of labels within each col-
laborative session and thus computing accuracy.
Comparing different unimodal and multimodal fine-
tuned model performance will serve as an ablation

approach to examine the role of additional data
modalities in terms of overall model performance,
as well as a comparison between unimodal and
multimodal models (Singh et al., 2022). Addition-
ally, we conduct an analysis of random examples to
determine points of synergy with, divergence from,
and bias markers that differ from human classifica-
tion. This will serve as essential future directions to
frame the use of automated collaboration detection
using large language models.

Following the design-based protocol outlined in
(Praharaj et al., 2018), we will complete a pilot
study within a real classroom. Small groups (of 3
people) conduct a general collaborative task and
we use the detection setup established in Phase 1 to
detect multimodal signals (eg. speaking duration,
pauses, large language model features) correlated
to collaboration quality and use our multimodal
models to assess quality. We will conduct an ad-
ditional automated and human evaluation on this
real-life scenario.

There are two novel aspects of this modeling of
collaborative quality. One involves using the large
language model to provide a nuanced view of col-
laborative linguistic exchanges at the content level.
According to Praharaj et al. (2021) note that very
few studies integrate an analysis of “verbal audio
indicators or the content of the audio for the analy-
sis of [in-person] collaboration quality” (pg. 2). We
leverage the large language model to explore im-
provements in supervised dialogue detection tasks,
and also unsupervised training strategies to explore
emergent and content-specific cases of collabora-
tion so that the model can learn without direct su-
pervision. Additionally, we propose a measure on
inclusive collaboration and evaluate its association
on overall collaboration quality.

4.3 Phase 3: Language generation to support
collaboration learning

Since we are ultimately concerned with learning
to collaborate, we build a learning analytics cycle
with the development of a robust feedback loop.
The feedback system will take the form of an intel-
ligent agent that can monitor and detect aspects of
the collaboration process, focusing on the measure-
ment of collaboration quality. The key behavior is
for our model to detect differences in collaboration,
in order to pinpoint disparities in inclusion. The
inclusive collaboration models created by genera-
tive language models will drive generative behavior
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of the intelligent agent, which will produce select
audio-based feedback during the collaboration ex-
change based on detected features.

The study will take on an experimental setup for
higher education course recitations that engage in
collaborative problem solving. The three groups
- the no feedback control group (i.e. those ran-
domly assigned as the control group with no inter-
vention), the manual feedback experimental group
(i.e. those randomly assigned as the manual feed-
back group which entails an instructor offering
general, preparatory guidance on quality collab-
oration), and the automated feedback experimental
group (i.e. those randomly assigned as the auto-
mated feedback group) - will engage in a series
of four collaborative sessions. During session 1,
we will record collaboration exchanges between
the randomly assigned groups in order to capture
multimodal baseline collaboration data. During
sessions 2 and 3, the control group will collabo-
rate in the absence of any explicit feedback, the
manual feedback group will collaborate with initial
collaboration guidance by the instructor, and the
automated feedback group will collaborate while
the intelligent agent interjects in real time. Ses-
sion 4 will record collaboration exchanges between
the three groups in the absence of any intervention.
The goal is to assess how well all groups perform
on inclusive collaboration quality.

This study hypothesizes that feedback loops built
on top of multimodal large language models will
capture the most relevant information associated
with collaboration due to their scaled representa-
tional qualities. We will extend progress - fine-
tuning; masked language model prompting; contex-
tual prompting; and case-based prompting - made
in extracting relevant information from language
models to serve as knowledge sources for cogni-
tive agents, and identify the method that maps to
encouraging collaboration quality (Huang et al.,
2022; Wray et al., 2021; Yousfi-Monod and Prince,
2007). The development of the agent will use lan-
guage and simple feedback to offer corrective and
encouraging input to students.

5 Initial Results

An initial pilot focused on the language model-
ing portion, and uses IRB-approved data that takes
place within recitations of a large, STEM class.
Groups of 3 students participated in small group
work for the duration of the 75 minute period, and

were tasked with solving problems related to the
lecture and readings. Audio and video record-
ings were captured, cleaned, and processed. Tran-
scripts were generated by an Automated Speech
Recognition (ASR) software and corrected by hand,
and were then paired with video frames. A ran-
dom sampling of the text-based dialogue and video
frames were generated and then mapped to the in-
clusive collaboration framework by 2 expert anno-
tators and an additional 5 general skill annotators.
These data will serve as the evaluation set. BERT-
base and GPT-2 were finetuned on a randomized
sample (80%) of the AMI collaboration dataset,
as well as dialogue (text-based) portions of the
Multi-party Collaboration corpus. Results indicate
some marginal improvement between the finetuned
models, and between BERT and the larger GPT-2
model, but additional analysis and more thorough
data preparation and testing are needed. The fine-
tuned GPT-2 model performed better than chance
on all except for the inclusion dimension. We antic-
ipate that more thorough finetuning and integration
of multimodal finetuning data should improve per-
formance on multimodal classification tasks.

6 Conclusion

As an essential 21st century skill, our aim is to
utilize the potentials of multimodal large language
models to advance our ability to detect and model
collaborative behaviors, with the ultimate goal be-
ing to offer feedback to learners as they develop
these important skills. Importantly, we focus on
the tenets of inclusive collaboration, so that col-
laborators are encouraged to have equitable and
inclusive exchanges as they work with each other.
This doctoral research project builds an automated
end-to-end inclusive collaboration feedback loop,
relying on advancements in large language model-
ing as it is used in downstream tasks, and ground-
ing machine learning methods within theory and
real-world practice.

References

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? &#x1f99c;. In Proceedings of the
2021 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’21, pages 610–623, Vir-
tual Event, Canada. Association for Computing Ma-
chinery.

206



Dimension BERT BERT* GPT-2 GPT-2* Shuffled
Info sharing .43 .51 .52 .59 .56
Reciprocity .41 .49 .55 .61 .54
Understanding .47 .49 .59 .64 .52
Inclusion .37 .43 .45 .50 .53

Table 1: Mean AUROC score across 5 iterations on 4 collaboration dimensions. Asterisk indicates models finetuned
on dialogue data only.

Ruth Sessler Bernstein, Morgan Bulger, Paul Salipante,
and Judith Y. Weisinger. 2020. From Diversity to
Inclusion to Equity: A Theory of Generative Interac-
tions. Journal of Business Ethics, 167(3):395–410.

Yonatan Bisk, Ari Holtzman, Jesse Thomason, Jacob
Andreas, Yoshua Bengio, Joyce Chai, Mirella Lap-
ata, Angeliki Lazaridou, Jonathan May, Aleksandr
Nisnevich, Nicolas Pinto, and Joseph Turian. 2020.
Experience Grounds Language. arXiv:2004.10151
[cs]. ArXiv: 2004.10151.

Su Lin Blodgett, Solon Barocas, Hal Daumé III, and
Hanna Wallach. 2020. Language (Technology)
is Power: A Critical Survey of "Bias" in NLP.
arXiv:2005.14050 [cs]. ArXiv: 2005.14050.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas
Card, Rodrigo Castellon, Niladri Chatterji, Annie
Chen, Kathleen Creel, Jared Quincy Davis, Dora
Demszky, Chris Donahue, Moussa Doumbouya,
Esin Durmus, Stefano Ermon, John Etchemendy,
Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah Goodman,
Shelby Grossman, Neel Guha, Tatsunori Hashimoto,
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny
Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Kohd, Mark Krass, Ranjay Kr-
ishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle
Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,
Ali Malik, Christopher D. Manning, Suvir Mirchan-
dani, Eric Mitchell, Zanele Munyikwa, Suraj Nair,
Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,
Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Pa-
padimitriou, Joon Sung Park, Chris Piech, Eva Porte-
lance, Christopher Potts, Aditi Raghunathan, Rob
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani,
Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy
Shih, Krishnan Srinivasan, Alex Tamkin, Rohan
Taori, Armin W. Thomas, Florian Tramèr, Rose E.
Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan
You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn
Zhou, and Percy Liang. 2021. On the Opportunities

and Risks of Foundation Models. arXiv:2108.07258
[cs]. ArXiv: 2108.07258.

Maurice Boothe, Collin Yu, Armanda Lewis, and Xavier
Ochoa. 2022. Towards a Pragmatic and Theory-
Driven Framework for Multimodal Collaboration
Feedback. In LAK22: 12th International Learning
Analytics and Knowledge Conference, LAK22, pages
507–513, New York, NY, USA. Association for Com-
puting Machinery.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv:1508.05326 [cs]. ArXiv: 1508.05326.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs]. ArXiv: 2005.14165.

Aylin Caliskan, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora contain human-like biases.
Science, 356(6334):183–186.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, Guillaume Lathoud, Mike Lincoln,
Agnes Lisowska, Iain McCowan, Wilfried Post, Den-
nis Reidsma, and Pierre Wellner. 2006. The AMI
Meeting Corpus: A Pre-announcement. In Steve Re-
nals and Samy Bengio, editors, Machine Learning for
Multimodal Interaction, volume 3869, pages 28–39.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Benjamin Clavié and Kobi Gal. 2019. EduBERT: Pre-
trained Deep Language Models for Learning Analyt-
ics. arXiv:1912.00690 [cs]. ArXiv: 1912.00690.

National Research Council. 2011. Assessing 21st Cen-
tury Skills: Summary of a Workshop. National
Academies Press, Washington, D.C.

207



Mutlu Cukurova, Rose Luckin, Eva Millán, and Manolis
Mavrikis. 2018. The NISPI framework: Analysing
collaborative problem-solving from students’ phys-
ical interactions. Computers & Education, 116:93–
109.

Emily Dinan, Angela Fan, Ledell Wu, Jason Weston,
Douwe Kiela, and Adina Williams. 2020. Multi-
Dimensional Gender Bias Classification. pages 314–
331.

Finale Doshi-Velez and Been Kim. 2017. Towards A
Rigorous Science of Interpretable Machine Learning.
arXiv:1702.08608 [cs, stat]. ArXiv: 1702.08608.

Nia Dowell, Yiwen Lin, Andrew Godfrey, and Christo-
pher Brooks. 2019. Promoting Inclusivity Through
Time-Dynamic Discourse Analysis in Digitally-
Mediated Collaborative Learning. In Artificial In-
telligence in Education, Lecture Notes in Computer
Science, pages 207–219, Cham. Springer Interna-
tional Publishing.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer
Reingold, and Rich Zemel. 2012. Fairness through
Awareness. In Proceedings of the 3rd innovations
in theoretical computer science conference, pages
214–226. ACM.

Erik Ekstedt and Gabriel Skantze. 2020. TurnGPT: a
Transformer-based Language Model for Predicting
Turn-taking in Spoken Dialog. Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 2981–2990. ArXiv: 2010.10874.

Robert L. Goldstone and Todd M. Gureckis. 2009.
Collective Behavior. Topics in Cognitive Science,
1(3):412–438.

Mandy Guo, Yinfei Yang, Daniel Cer, Qinlan Shen, and
Noah Constant. 2020. MultiReQA: A Cross-Domain
Evaluation for Retrieval Question Answering Models.
arXiv:2005.02507 [cs]. ArXiv: 2005.02507.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning Symmetric Collaborative
Dialogue Agents with Dynamic Knowledge Graph
Embeddings. arXiv:1704.07130 [cs]. ArXiv:
1704.07130.

Kenneth Holstein and Shayan Doroudi. 2021. Eq-
uity and Artificial Intelligence in Education: Will
"AIEd" Amplify or Alleviate Inequities in Educa-
tion? arXiv:2104.12920 [cs]. ArXiv: 2104.12920.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language Models as Zero-
Shot Planners: Extracting Actionable Knowledge for
Embodied Agents. arXiv:2201.07207 [cs]. ArXiv:
2201.07207.

Ben Hutchinson, Vinodkumar Prabhakaran, Emily Den-
ton, Kellie Webster, Yu Zhong, and Stephen Denuyl.
2020. Social Biases in NLP Models as Barriers for
Persons with Disabilities. arXiv:2005.00813 [cs].
ArXiv: 2005.00813.

Md Mofijul Islam and Tariq Iqbal. 2021. Multi-GAT: A
Graphical Attention-Based Hierarchical Multimodal
Representation Learning Approach for Human Ac-
tivity Recognition. IEEE Robotics and Automation
Letters, 6(2):1729–1736.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling Laws for Neural Language Models.
arXiv:2001.08361 [cs, stat]. ArXiv: 2001.08361.

Emily Lai, Kristen DiCerbo, and Peter Foltz. 2017.
Skills for Today: What We Know about Teaching
and Assessing Collaboration. Pearson.

Mina Lee, Percy Liang, and Qian Yang. 2022. CoAu-
thor: Designing a Human-AI Collaborative Writing
Dataset for Exploring Language Model Capabilities.
arXiv:2201.06796 [cs]. ArXiv: 2201.06796.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep Learning Based Text Classification: A
Comprehensive Review. arXiv:2004.03705 [cs, stat].
ArXiv: 2004.03705.

Michal E. Mor-Barak and David A. Cherin. 1998. A
Tool to Expand Organizational Understanding of
Workforce Diversity. Administration in Social Work,
22(1):47–64.

Nikita Nangia, Saku Sugawara, Harsh Trivedi, Alex
Warstadt, Clara Vania, and Samuel R. Bowman. 2021.
What Ingredients Make for an Effective Crowd-
sourcing Protocol for Difficult NLU Data Collection
Tasks? In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1221–1235, Online. Association for Computa-
tional Linguistics.

Xavier Ochoa, Katherine Chiluiza, Gonzalo Mén-
dez, Gonzalo Luzardo, Bruno Guamán, and James
Castells. 2013. Expertise estimation based on simple
multimodal features. In Proceedings of the 15th ACM
on International conference on multimodal interac-
tion, ICMI ’13, pages 583–590, Sydney, Australia.
Association for Computing Machinery.

OECD. 2015. PISA 2015 Assessment and Analytical
Framework: Science, Reading, Mathematic, Finan-
cial Literacy and Collaborative Problem Solving.

Catharine Oertel, Fred Cummins, Jens Edlund, Petra
Wagner, and Nick Campbell. 2013. D64: a corpus of
richly recorded conversational interaction. Journal
on Multimodal User Interfaces, 7(1-2):19–28.

Sambit Praharaj, Maren Scheffel, Hendrik Drachsler,
and Marcus Specht. 2018. MULTIFOCUS - MULTI-
modal Learning Analytics FOr Co-located Collabora-
tion Understanding and Support. Proceedings of the
13th EC-TEL Doctoral Consortium co-located with
13th European Conference on Technology Enhanced

208



Learning (EC-TEL 2018), Leeds, UK, September 3rd,
2018.

Sambit Praharaj, Maren Scheffel, Marcel Schmitz, Mar-
cus Specht, and Hendrik Drachsler. 2021. Towards
Automatic Collaboration Analytics for Group Speech
Data Using Learning Analytics. Sensors, 21(9):3156.

Samuel L. Pugh, Arjun Rao, Angela E.B. Stewart, and
Sidney K. D’Mello. 2022. Do Speech-Based Collab-
oration Analytics Generalize Across Task Contexts?
In LAK22: 12th International Learning Analytics
and Knowledge Conference, pages 208–218, Online
USA. ACM.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving Language Understanding by Generative Pre-
Training. undefined.

Wasifur Rahman, Md Kamrul Hasan, Sangwu Lee,
Amir Zadeh, Chengfeng Mao, Louis-Philippe
Morency, and Ehsan Hoque. 2020. Integrating Multi-
modal Information in Large Pretrained Transformers.
arXiv:1908.05787 [cs, stat]. ArXiv: 1908.05787.

Joseph A. Rios, Guangming Ling, Robert Pugh, Dovid
Becker, and Adam Bacall. 2020. Identifying Critical
21st-Century Skills for Workplace Success: A Con-
tent Analysis of Job Advertisements. Educational
Researcher, 49(2):80–89.

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar,
Desmond Elliott, Loïc Barrault, Lucia Specia, and
Florian Metze. 2018. How2: A Large-scale
Dataset for Multimodal Language Understanding.
arXiv:1811.00347 [cs]. ArXiv: 1811.00347.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2020. DistilBERT, a distilled ver-
sion of BERT: smaller, faster, cheaper and lighter.
arXiv:1910.01108 [cs]. ArXiv: 1910.01108.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
Bias Frames: Reasoning about Social and Power Im-
plications of Language. pages 5477–5490.

Jia Tracy Shen, Michiharu Yamashita, Ethan Prihar, Neil
Heffernan, Xintao Wu, Ben Graff, and Dongwon Lee.
2021. MathBERT: A Pre-trained Language Model
for General NLP Tasks in Mathematics Education.
arXiv:2106.07340 [cs]. ArXiv: 2106.07340.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2022. FLAVA: A Foun-
dational Language And Vision Alignment Model.
arXiv:2112.04482 [cs]. ArXiv: 2112.04482.

Emma Strubell, Ananya Ganesh, and Andrew Mc-
Callum. 2020. Energy and Policy Considerations
for Modern Deep Learning Research. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(09):13693–13696.

Abhijit Suresh, Jennifer Jacobs, Vivian Lai, Chen-
hao Tan, Wayne Ward, James H. Martin, and
Tamara Sumner. 2021. Using Transformers to Pro-
vide Teachers with Personalized Feedback on their
Classroom Discourse: The TalkMoves Application.
arXiv:2105.07949 [cs]. ArXiv: 2105.07949.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William
Fedus, Samira Abnar, Hyung Won Chung, Sha-
ran Narang, Dani Yogatama, Ashish Vaswani, and
Donald Metzler. 2021. Scale Efficiently: Insights
from Pre-training and Fine-tuning Transformers.
arXiv:2109.10686 [cs]. ArXiv: 2109.10686.

Yulia Tsvetkov, Vinodkumar Prabhakaran, and Rob
Voigt. 2018. Socially Responsible NLP. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Tutorial Abstracts, pages 24–26, New
Orleans, Louisiana. Association for Computational
Linguistics.

Laura Weidinger, John Mellor, Maribeth Rauth, Conor
Griffin, Jonathan Uesato, Po-Sen Huang, Myra
Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh,
Zac Kenton, Sarah Brown, Will Hawkins, Tom
Stepleton, Courtney Biles, Abeba Birhane, Julia
Haas, Laura Rimell, Lisa Anne Hendricks, William
Isaac, Sean Legassick, Geoffrey Irving, and Iason
Gabriel. 2021. Ethical and social risks of harm from
Language Models. Technical report, DeepMind.

Mark E. Whiting, Grant Hugh, and Michael S. Bernstein.
2019. Fair Work: Crowd Work Minimum Wage with
One Line of Code. Proceedings of the AAAI Con-
ference on Human Computation and Crowdsourcing,
7:197–206.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Hugging-
Face’s Transformers: State-of-the-art Natural Lan-
guage Processing. arXiv:1910.03771 [cs]. ArXiv:
1910.03771.

Marcelo Worsley and Paulo Blikstein. 2015. Leveraging
multimodal learning analytics to differentiate student
learning strategies. In Proceedings of the Fifth In-
ternational Conference on Learning Analytics And
Knowledge, LAK ’15, pages 360–367, Poughkeepsie,
New York. Association for Computing Machinery.

Marcelo Worsley and Xavier Ochoa. 2020. Towards col-
laboration literacy development through multimodal
learning analytics. In Companion Proceedings 10th
International Conference on Learning Analytics &
Knowledge (LAK20), volume 2610, pages 53–63.

I. I. I. Wray, James R. Kirk, and John E. Laird. 2021.
Language Models as a Knowledge Source for Cog-
nitive Agents. arXiv:2109.08270 [cs]. ArXiv:
2109.08270.

209



H. Peyton Young. 1995. Equity: in theory and practice,
1. princeton paperback printing edition. A Russell
Sage Foundation book. Princeton Univ. Press, Prince-
ton, NJ.

Mehdi Yousfi-Monod and Violaine Prince. 2007.
Knowledge Acquisition Modeling through Dialog Be-
tween Cognitive Agents. International Journal of In-
telligent Information Technologies (IJIIT), 3(1):060.

210



Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: Student Research Workshop, pages 211 - 221

July 10-15, 2022 ©2022 Association for Computational Linguistics

Neural Networks in a Product of Hyperbolic Spaces

Jun Takeuchi1, Noriki Nishida2, and Hideki Nakayama1

1,3The University of Tokyo
2RIKEN

{takeuchi, nakayama}@nlab.ci.i.u-tokyo.ac.jp
noriki.nishida@riken.jp

Abstract

Machine learning in hyperbolic spaces has at-
tracted much attention in natural language pro-
cessing and many other fields. In particular,
Hyperbolic Neural Networks (HNNs) have im-
proved a wide variety of tasks, from machine
translation to knowledge graph embedding. Al-
though some studies have reported the effective-
ness of embedding into the product of multiple
hyperbolic spaces, HNNs have mainly been
constructed in a single hyperbolic space, and
their extension to product spaces has not been
sufficiently studied. Therefore, we propose a
novel method to extend a given HNN in a sin-
gle space to a product of hyperbolic spaces. We
apply our method to Hyperbolic Graph Convo-
lutional Networks (HGCNs), extending several
HNNs. Our model improved the graph node
classification accuracy especially on datasets
with tree-like structures. The results suggest
that neural networks in a product of hyperbolic
spaces can be more effective than in a single
space in representing structural data.

1 Introduction

Machine learning that utilizes the properties of non-
euclidean spaces has attracted much attention in
recent years (Bronstein et al., 2017). In representa-
tion learning on natural language and graphs, where
hierarchical data appear, hyperbolic spaces have
recently been shown to be effective. In natural lan-
guage processing (NLP), hyperbolic spaces have
been applied to a variety of tasks such as word
embedding (Nickel and Kiela, 2017; Tifrea et al.,
2018), document embedding (Zhu et al., 2020b),
natural language inference (Ganea et al., 2018), and
machine translation (Gulcehre et al., 2018; Shimizu
et al., 2021). Hyperbolic spaces have also been
shown to be effective in graph embedding (Cham-
berlain et al., 2017; Sala et al., 2018; Chami et al.,
2019), which is helpful for NLP models to utilize
external knowledge graphs (Chami et al., 2020).

Recent progress in the use of hyperbolic space
is supported by the development of hyperbolic neu-
ral networks (HNNs) (Tifrea et al., 2018), which
consist of components such as linear and atten-
tion layers that are appropriately extended to hy-
perbolic spaces. How to define linear operations
in hyperbolic space is non-trivial, and several dif-
ferent methods have been proposed (Shimizu et al.,
2021; Chen et al., 2021).

Unlike Euclidean spaces, a product space of non-
Euclidean spaces is geometrically different from a
single space of the same dimension, and some stud-
ies have reported that using the product of small hy-
perbolic spaces improves the performance in graph
and word embedding (Tifrea et al., 2018; Gu et al.,
2019). In addition, Shimizu et al. observed that
the superiority of their hyperbolic machine transla-
tion model over the Euclidean counterpart is lost as
the dimensionality of word features increases, and
they proposed using a product of multiple small
hyperbolic spaces as a possible solution. However,
existing HNN frameworks are defined in a single
hyperbolic space, and how to extend HNNs to prod-
uct spaces is still an open question.

Therefore, this paper proposes a novel method
to extend a given HNN in a single space to a prod-
uct of hyperbolic spaces. More specifically, we
construct a general method to extend a hyperbolic
matrix-vector multiplication, a major factor that
distinguishes HNN variants, to a product space.

We apply our method to Hyperbolic Graph Con-
volutional Networks (HGCNs) (Chami et al., 2019)
and show that our method outperforms the base-
lines especially on datasets with tree-like structures,
suggesting that neural networks in a product of hy-
perbolic spaces are more effective for representing
structural data than neural networks in a single hy-
perbolic space.
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Contribution to NLP community

Single-space HNNs have already been applied to
a variety of NLP tasks, and our method is applica-
ble to most of them, with the potential to improve
performance. As a start, we extended HNN++
(Shimizu et al., 2021), a recently proposed HNN
variant, and applied it to machine translation tasks.
The preliminary experimental results show that our
method performs better, at least on small datasets.
We plan to conduct experiments on large datasets
soon.

2 Preliminaries

2.1 Riemannian Geometry

An n-dimensional manifold M = Mn is an n-
dimensional space locally approximated to an n-
dimensional Euclidean tangent space TxM at each
point x ∈ Mn. A Riemannian manifold is a dif-
ferentiable manifold with a metric tensor g. The
exponential map expx : TxM → M and its in-
verse function logx are bijections defined locally
around 0 ∈ TxM. For more details, please refer
to Petersen et al. (2006).

2.2 Hyperbolic Space

A hyperbolic space H = Hn
c is an n-dimensional

Riemannian manifold with a constant negative cur-
vature −c (c > 0). There are several equivalent
models to represent a hyperbolic space. In the
Poincaré Ball model B, a hyperbolic space is repre-
sented as a ball of radius 1√

c
. Other models like the

hyperboloid model and the equivalence between all
models are detailed in Cannon et al. (1997).

2.3 Hyperbolic Neural Networks

Hyperbolic spaces have a structure similar to that
of linear spaces called Gyrovector spaces (Ungar,
2008). The hyperbolic versions of addition and
scalar multiplication are called Möbius Addition ⊕
1 and Möbius Scalar Multiplication ⊗.

The matrix multiplication in hyperbolic space
was proposed by Ganea et al. (2018). First, they
showed that exp0 and log0 correspondence be-
tween hyperbolic space and its tangent space at

1For x,y ∈ B, Möbius Addition is defined as:

x⊕c y :=

(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y
1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 .

See Appendix A for explicit representation of other operations.

origin are globally extended. Then Möbius Ma-
trix Multiplication ⊗ between a matrix M and x is
defined through tangent space approximation:

M ⊗c x := exp0(M · log0(x)). (1)

Hyperbolic version σ⊗c of any activation function
σ in Euclidean space is defined in the same way:

σ⊗c(x) := exp0(σ(log0(x))). (2)

Shimizu et al. (2021) pointed out that the ap-
proximation using the tangent space at the origin
(Eq. 1) produces distortions. They proposed a new
hyperbolic affine transformation layer (Poincaré
FC layer) and used it to construct a novel HNN
framework, HNN++ (Shimizu et al., 2021).

3 Proposed Method

Neural network layers can be considered to be com-
posed of basic operations: vector addition, scalar-
vector multiplication, matrix-vector multiplication,
and nonlinear activation functions. In this section,
we introduce how to extend the basic operations in
hyperbolic neural networks to the product space of
m hyperbolic spaces, P = Hn1 ×· · ·×Hnm . Here
we will treat the case where H is B (Poincaré Ball
model), and all the curvatures are the same.

3.1 Addition and Scalar Multiplication in a
Product of Hyperbolic Spaces

In Euclidean space, addition + and scalar multi-
plication × are element-wise operations, and there
is no need to consider the interaction across dif-
ferent elements. Therefore, we define alternatives
to these operations in P as element-wise Möbius
operations:

x⊕P y := (x1 ⊕ y1, . . . ,xm ⊕ ym), (3)

r ⊗P y := (r ⊗ y1, . . . , r ⊗ ym), (4)

where x = (x1, . . . ,xm) and y = (y1, . . . ,ym)
are tuples of points in the product space P, and
r ∈ R is a scalar value. Each point xi (or yi)
is a vector in an ni-dimensional hyperbolic space.
⊕ and ⊗ on the right-hand side are the Möbius
operations in a single hyperbolic space.

3.2 Matrix Multiplication in a Product of
Hyperbolic spaces

Matrix multiplication involves interactions be-
tween different elements. Therefore, the extension
of Möbius matrix multiplication to product spaces
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should take into account the interaction between
any two hyperbolic spaces.

Let P′ = Hn′
1×· · ·×Hn′

m′ be the target product
space of m′ hyperbolic spaces of a total dimension-
ality n′ = n′

1 + · · · + n′
m′ . Inspired by the block

matrix multiplication in Euclidean space, we define
Möbius matrix multiplication in P as follows:

M ⊗P x =




M11 · · · M1m
...

. . .
...

Mm′1 · · · Mm′m


⊗P




x1
...

xm




:=




M11 ⊗ x1 ⊕ · · · ⊕M1m ⊗ xm
...

Mm′1 ⊗ x1 ⊕ · · · ⊕Mm′m ⊗ xm


 , (5)

where M ∈ Rn′×n is a matrix, and Mij ∈ Rn′
i×nj

is a submatrix block of M . The off-diagonal blocks
correspond to interactions between two different
hyperbolic component spaces.

It is worth noting that Eq. (5) can be used to ex-
tend an arbitrary hyperbolic linear layer to a prod-
uct space. For example, Shimizu et al. (2021) and
Chen et al. (2021) defined hyperbolic linear layers
F using a matrix parameter M , i.e., F = F(M).2

We can extend the hyperbolic linear layers F to the
product space as follows:

FP(M)(x) :=



F(M11)(x1)⊕ · · · ⊕ F(M1m)(xm)
...

F(Mm′1)(x1)⊕ · · · ⊕ F(Mm′m)(xm)


 .

3.3 Activation Function in a Product of
Hyperbolic spaces

In Euclidean space, activation functions are also
element-wise operations. Activation functions in
product of hyperbolic spaces can be defined as:

σ⊗P(y) := (σ⊗(y1), . . . , σ
⊗(ym)). (6)

3.4 HHGCN
HGCN (Chami et al., 2020) is a Hyperbolic version
of Graph Convolutional Network (GCN) (Kipf and
Welling, 2017), a widely used Graph Neural Net-
work (GNN) architecture. First, in HGCN, each
node’s representation in the (l − 1)-th layer, xl−1

i ,
is linearly transformed, i.e.,

hl
i = (W l ⊗ xl−1

i )⊕ b. (7)

2We omit the bias parameters b for simplicity.

Then, attention-based neighborhood aggregation is
performed for each node through tangent space:

yl
i = Agg(hl)i

:= exphl
i


 ∑

j∈N(i)

(wl
ij loghl

i
(hl

j))


 . (8)

N(i) denotes the set of neighboring nodes of the i-
th node, and hl = {hl

j}j represents all the feature
vectors at the l-th layer. wl

ij is an attention weight
calculated in tangent space:

wl
ij = Softmaxj∈N(i)(MLP(log0(h

l
i), log0(h

l
j))).

Finally, a non-linear activation function is applied
to each node:

xl
i = σ⊗(yl

i). (9)

Now, we describe how to extend the HGCN ar-
chitecture to a product space using the operations
defined above: ⊕P, ⊗P, and σ⊗P . Here, we fo-
cus on the simplest case where the product space
consists of two Hyperbolic spaces of the same di-
mension in each layer. We denote the extended
model in H×H as HHGCN.

In HHGCN, each node’s feature vector repre-
sents a tuple of points in the product space P =
H × H. Let xl,P

i = (xl,1
i ,xl,2

i ) (xl,k
i ∈ H, k =

1, 2) be the feature vector of the i-th node in the
l-th layer. The product-space version of Eq. (7) is
defined as follows:

hl,P
i = (W l ⊗P xl−1,P

i )⊕P b. (10)

Then, we perform neighborhood aggregation for
each single hyperbolic space H, i.e., for k ∈ {1, 2},

yl,k
i = Agg(hl,k)i. (11)

Finally, we apply a non-linear activation function:

xl,P
i = σ⊗P(yl,P

i ). (12)

Note that the above extension can be applied to
a product of any number of hyperbolic spaces.

3.5 Task-Specific Prediction Using HHGCN
As described in Section 3.4, HHGCN outputs em-
beddings xL,P

i ∈ P for each node i, where L de-
notes the last layer. In downstream tasks such as
node classification, we first project the node em-
beddings into a single hyperbolic space using the
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beta concatenation proposed in HNN++ (Shimizu
et al., 2021), and then apply an appropriate task-
specific decoder to the projected representation.
For example, in the link prediction task, we utilize
the Fermi-Dirac decoder (Krioukov et al., 2010;
Nickel and Kiela, 2017) to calculate the probability
score for each edge. In the node classification task,
we project the representations to tangent space by
log0, then perform Euclidean multinomial logistic
regression, following HGCN (Chami et al., 2019).

3.6 HEGCN

We also attempt a combination of Hyperbolic space
H and Euclidean space E, which is expected to
show high performance for less-hyperbolic datasets.
We can define the linear layer like Eq. (5):

M ⊗ x =

(
M11 M12

M21 M22

)
⊗
(
x1

x2

)

:=

(
M11 ⊗ x1 ⊕M12 ⊗ exp0(x2)

M21log0(x1) +M22x2

)
, (13)

where M denotes a matrix, and x = (x1,x2) is a
point of the product space H× E. We can extend
the GCN for this product space H× E in a similar
way to Section 3.4 and call this model HEGCN.

4 Experiments

4.1 Setup

Following the previous studies on Hyperbolic
GCNs (Chami et al., 2019; Chen et al., 2021), we
evaluate our method in two tasks: node classifica-
tion (NC) and link prediction (LP). We use four
network embedding datasets: Disease and Airport
(Chami et al., 2019), PubMed (Namata et al., 2012),
and Cora (Sen et al., 2008). For each dataset, we
show the Gromov’s δ-hyperbolicity (Adcock et al.,
2013; Narayan and Saniee, 2011; Jonckheere et al.,
2008) calculated by Chami et al. (2019) with the
results. Lower δ means higher tree-likeness, and
thus hyperbolic architectures are expected to show
higher performance.

To test the effectiveness of our method and
neural networks in a product space of hyperbolic
spaces, we adopt HGCN and the following Eu-
clidean GNNs as the baselines: GCN (Kipf and
Welling, 2017), GAT (Velickovic et al., 2018),
SAGE (Hamilton et al., 2017), and SGC (Wu et al.,
2019).

We also test the effectiveness of our method
using different hyperbolic space representations:

hyperboloid and Poincaré ball: HHGCNh and
HEGCNh use hyperboloid, while HHGCNp and
HEGCNp use Poincaré ball as the hyperbolic space.
The difference changes the explicit formula of the
Möbius operations used in HNN and may change
computational stability. Note that HGCN uses the
hyperboloid model.

We mainly follow the training setups of previous
studies (Chami et al., 2019; Chen et al., 2021). The
dimensions are all set to n = 16 = 8 + 8 for fair
comparison. We use Riemannian Adam (rAdam)
optimizer (Becigneul and Ganea, 2019) for hyper-
bolic parameters. Curvatures of hyperbolic space
are set to −1 for our product-space models. Please
refer to Appendix D for detailed information.

4.2 Results and Discussion

Table 1 shows the performance of the proposed and
baseline models.

HHGCN vs. HGCN, GCN
For the tree-like datasets with lower δ (Disease,
Airport), HHGCNs show higher performance than
the baselines especially in the node classification
task. Particularly, HHGCNh shows comparable
or better results than the baselines on every task
in these datasets and yields significant improve-
ment in Disease. In contrast, for the datasets with
higher δ (PubMed, Cora), HHGCNs consistently
underperform HGCN. These results suggest that
HHGCN is more effective than the single-space
counterparts especially in hyperbolic datasets.

HHGCN vs. HEGCN
Table 1 demonstrates that HHGCN outperforms
HEGCN on the datasets with lower δ and slightly
underperform with lower δ. These results suggest
that HEGCN is less specialized to tree-like datasets
than HHGCN due to the incorporation of Euclidean
space. On the other hand, unexpectedly, the perfor-
mance of HEGCN in Pubmed and Cora is worse
than those of HGCN, even though HGCN uses only
hyperbolic space. These results may suggest that
Eq. (13) for HEGCN is insufficient to represent the
interaction between spaces with different proper-
ties.

Hyperboloid vs. Poincaré ball
We can observe that HHGCNh and HEGCNh
show stable performance, while HHGCNp and
HEGCNp show performance degradation in the
Disease dataset in the LP task. These results may
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Dataset Disease Airport PubMed Cora
Hyperbolicity δ = 0 δ = 1 δ = 3.5 δ = 11

Method LP NC LP NC LP NC LP NC

GCN (2017) 64.7±0.5 69.7±0.4 89.3±0.4 81.4±0.6 91.1±0.5 78.1±0.2 90.4±0.2 81.3±0.3

GAT (2018) 69.8±0.3 70.4±0.4 90.5±0.3 81.5±0.3 91.2±0.1 79.0±0.3 93.7±0.1 83.0±0.7

SAGE (2017) 65.9±0.3 69.1±0.6 90.4±0.5 82.1±0.5 86.2±1.0 77.4±2.2 85.5±0.6 77.9±2.4

SGC (2019) 65.1±0.2 69.5±0.2 89.8±0.3 80.6±0.1 94.1±0.0 78.9±0.0 91.5±0.1 81.0±0.1

HGCN (2019) 90.8±0.3 74.5±0.9 96.4±0.1 90.6±0.2 96.3±0.0 80.3±0.3 92.9±0.1 79.9±0.2

HHGCNh 96.1±0.8 94.0±1.2 96.7±0.3 90.9±2.3 93.4±1.6 76.0±1.1 92.8±2.1 77.2±1.7

HHGCNp 89.9±5.6 94.7±1.3 94.9±1.3 93.8±0.8 93.2±1.9 75.9±0.4 91.8±3.0 78.4±1.3

HEGCNh 93.6±1.9 94.0±0.8 94.0±0.3 91.5±1.6 94.8±0.8 76.1±0.6 93.2±1.4 78.3±1.2

HEGCNp 86.4±2.0 94.1±1.1 95.7±1.0 92.9±1.1 95.0±1.7 76.2±0.5 93.2±1.2 78.±1.13

Table 1: ROC AUC (%) for the link prediction (LP) task and F1 scores (%) for the node classification (NC) task.
The best scores for each column are shown in bold. We underline the scores of HHGCN and HEGCN if the scores
are higher than the baselines’ scores.

be due to the learning instability of the Poincaré
ball model mentioned by Nickel and Kiela (2018).

HHGCN with HNNs Variants

Recently, Shimizu et al. (2021) proposed HNN++,
which introduced a novel linear transformation in
Poincaré ball with less distortion than the tangent
space approximation Eq. (5). However, to the best
of our knowledge, HNN++ has not been applied to
the HGCN even in a single space. Thus, we apply
the HNN++ to HGCN and HHGCN by replacing
the hyperbolic transformation in Eq. (7) and fur-
ther compare these models. We call the extensions
HGCN++ and HHGCN++ , respectively. We also
extend HyboNet (Chen et al., 2021), a novel HNN
architecture in the Lorentz model, to HHGCN. We
denote this extension as HHGCNHN .

Table 2 shows the results. HHGCN++ yields
higher or comparable performance than HGCN++
in the NC task. In contrast, in the LP task on the
Disease dataset, HHGCN++ shows performance
degradation. On the other hand, HHGCNHN under-
performs HyboNet in most cases except for the NC
task on the Airport dataset.

These results suggest that certain HNN vari-
ants are not effective in extending to the product
space. We leave more in-depth investigation to
future work.

5 Preliminary Experiments on Machine
Translation

5.1 Setup

We also tested the applicability of our method to
machine translation tasks.

In the paper proposing HNN++, Shimizu et al.
constructed a hyperbolic version of the con-
volutional sequence-to-sequence (ConvSeq2Seq)
model (Gehring et al., 2017) by replacing various
operations with the new hyperbolic operations they
proposed, and applied it to machine translation.
We extended their model to the product of two hy-
perbolic spaces using the operations proposed in
Section 3.

They used WMT’17 English-German (Bojar
et al., 2017) dataset containing 4M sentence pairs
as training data. We extract 40K sentence pairs as
a training dataset from it for the preliminary ex-
periments. We train several scaled-down models
with Riemannian Adam for 5K iterations. For more
implementation details, please refer to Appendix
E.

5.2 Results and Discussion

Table 3 shows that our model outperformed
HNN++, albeit with lower overall performance due
to the small size of the training data. All mod-
els show a significant performance drop at D=256.
This may be due to the models being too large for
the training data. Shimizu et al. suggested that the
reason why the Euclidean model performs better
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Dataset Disease Airport PubMed Cora

Method LP NC LP NC LP NC LP NC

HGCN++ 89.1±1.3 88.0±4.3 96.8±0.2 86.8±2.5 93.0±0.2 75.2±1.7 89.2±0.6 80.1±0.6

HHGCN++ 84.3±1.9 90.6±3.3 96.3±0.6 91.4±1.1 92.8±0.2 75.9±0.9 89.3±1.2 79±0.4

HyboNet (2021) 96.3±0.3 94.5±0.8 97.0±0.2 92.5±0.9 96.4±0.1 77.9±1.0 94.3±0.3 81.3±0.9

HHGCNHN 92.6±1.7 94.4±3.9 94.1±0.9 93.6±0.8 94.1±0.8 74.8±0.9 88.0±1.3 74.3±1.6

Table 2: Results of the extension of HNN variants to a product space. We underline the scores of HHGCN++ and
HHGCNHN if these models outperform the corresponding single-space counterparts.

than the Hyperbolic model as the dimensionality in-
creases is that sufficient computational complexity
can be obtained through optimization. The fact that
the Euclidean ConvSeq2Seq has the lowest results
for D=256 may be due to its complexity resulting
in overfitting. Comparative experiments with larger
data sets are still needed, which we plan to do in
the near future.

6 Related Work

GCN in a Product Space

κ-GCN with learnable curvature κ was proposed
by Bachmann et al. (2020). They also attempted
learning on the product of two constant curvature
spaces. Unlike our results, HGCN showed better
performance than their product space model in the
Airport node classification task. It suggests that our
proposed method is more suited to datasets with
tree-like structures.

Hyperbolic-Euclidean Hybrid Model

Graph embedding in H×E considering the interac-
tion between H and E has been done by GIL (Zhu
et al., 2020a). While GIL is specialized for graphs,
our method (Eq. 13) is applicable to general neural
networks in H× E not limited to GNNs.

7 Conclusion

We proposed a general method to extend existing
single-space HNN architectures to a product Space.
We applied our method to HGCN and conducted
experiments across several graph datasets and HNN
architectures. The results show that models using a
product of hyperbolic spaces perform better on tree-
like datasets than models using a single hyperbolic
space especially in the node classification task.

Future Work
We applied our method to the several HNN vari-
ants and found that our method was effective with
some HNN types but not with others. The theoreti-
cal explanation for this difference will be a future
issue.

We plan to conduct machine translation ex-
periments using the entire WMT’17 Endlish-
German training data and to apply our method to
Transformer-based machine translation models in
the near future. We are also going to investigate
the effectiveness and limitations of our method on
other NLP tasks such as natural language inference
and document classification.
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A Operations in hyperbolic space

Möbius Addition ⊕ and Möbius Scalar
Multiplication ⊗ in the Poincaré Ball model

The hyperbolic versions of addition(Möbius Addi-
tion ⊕) and scalar multiplication (Möbius Scalar
Multiplication ⊗) are defined as follows:

x⊕c y :=

(1 + 2c⟨x,y⟩+ c∥y∥2)x+ (1− c∥x∥2)y
1 + 2c⟨x,y⟩+ c2∥x∥2∥y∥2 ,

r ⊗c x :=

1√
c
tanh(r tanh−1(

√
c∥x∥)) x

∥x∥ ,

where x,y are points in a hyperbolic space B and
r ∈ R is scalar value.

These were first introduced in the context of
Einstein’s special theory of relativity in order to
successfully describe the composite law of veloc-
ities such that the absolute value does not exceed
the speed of light (Ungar, 2008).

Exp and Log Maps in the Poincaré Ball model

For v ∈ T0Bn
c \ {0} and y ∈ Bn

c \ {0},

expc0(v) = tanh(
√
c∥v∥) v√

c∥v∥ ,

logc0(y) = tanh−1(
√
c∥y∥) y√

c∥y∥ .

Attention Mechanism in Hyperbolic Space

In order to realize the attention mechanism, cen-
troid (weighted sum) in hyperbolic space had
several definitions depending on the model, but
Shimizu et al. (2021) showed that they are equiv-
alent to Möbius gyromidpoint. For the Poincaré
Ball model, the Möbius gyromidpoint m of hyper-
bolic vectors {bi ∈ Bn

c }Ni=1 with the scalar weights
{νi ∈ R}Ni=1 is defined as:

m = Centroid({νi ∈ R}Ni=1, {bi ∈ Bn
c }Ni=1)

:=
1

2
⊗c

( ∑N
i=1 νi λc

bi
bi∑N

i=1 |νi|(λc
bi
− 1)

)
. (14)

B Decoding Mechanism

B.1 Beta Concatenation

We utilized beta concatetenation proposed in
HNN++ (Shimizu et al., 2021) to project product-
space representations into a single hyperbolic

space:

xout
i = exp0(

βn
βn1

log0(x
L,1
i ),

βn
βn2

log0(x
L,2
i )).

(15)

Where n is the overall dimension, and ni is the
dimension of i-th space (here n1 = n2 = n

2 ). In-
side the exp0 parentheses, the usual concatenation
of two Euclidean vectors is performed. βN :=
B(N2 ,

1
2) (B : beta function) are the scaling factors

to preserve the expectation of the norm.

B.2 Fermi-Dirac Decoder
For link prediction task, we utilize the Fermi-Dirac
decoder (Krioukov et al., 2010; Nickel and Kiela,
2017), a generalization of sigmoid, to calculate the
probability score for edges:

p(i, j) = [e(dH(x
out
i ,xout

j )−r)/t]−1. (16)

where r, t > 0 are hyperparameters and dH is dis-
tance function of hyperbolic space H.

C Dataset Description

We use four network embedding datasets, Disease
(Chami et al., 2019), Airport (Chami et al., 2019),
PubMed (Namata et al., 2012), and Cora (Sen et al.,
2008) following Chami et al. (2019); Chen et al.
(2021). PubMed and Cora are standard bench-
marks, where nodes are scientific papers, edges
are citations between them, and node labels repre-
sent the academic domains of the papers. The first
two datasets are constructed by Chami et al. (2019).
Disease is a tree dataset built by simulating SIR
disease spread model (Anderson and May, 1991),
and Airport is a graph dataset consisting of airports
and air routes obtained from OpenFlights.org 3.

The four datasets are preprocessed by Chami
et al. (2019) and published in their code repository.4

We show statistics of the datasets in table 4. For
more information, please refer to the paper (Chami
et al., 2019).

D Details on Network Embedding
Experiments

We utilize Geoopt (Kochurov et al., 2020) and Rie-
mannian Adam (rAdam) optimizer (Becigneul and
Ganea, 2019) for hyperbolic parameters. For each
dataset and model, we conduct hyper-parameter

3https://openflights.org
4https://github.com/HazyResearch/hgcn
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Name Nodes Edges Classes Node features
Disease 1044 1043 2 1000
Airport 3188 18631 4 4

PubMed 19717 88651 3 500
Cora 2708 5429 7 1433

Table 4: Datasets’ statistics.

search over Dropout ∈ {0, 0.1, 0.3, 0.7, 0.9},
Weight-Decay ∈ {0, 0.01, 0.1, 0.2, 0.4}. The per-
formance is evaluated using five different random
seeds for each condition. We fixed curvatures of
hyperbolic spaces to −1. This is because learn-
able curvature sometimes showed instability. Some
hyper-parameters, such as the initial learning rate
and the number of layers, are fixed as shown in
table 5, with reference to the previous study (Chen
et al., 2021).

E Machine Translation Experiments

Following the setting of HNN++ (Shimizu et al.,
2021), each model is the encoder-decoder model,
both of which are composed of five convolutional
layers with a kernel size of three and a channel
size of D, five convolutional layers with a kernel
size of three and a channel size of 2D, and two
convolutional layers with a kernel size of one and
a channel size of 4D. In each layer of our model,
the hyperbolic affine transformation of HNN++ is
replaced by its extension to the product of two
hyperbolic spaces.

For training and optimization, we mainly fol-
low the setting of HNN++. The main differences
are the size of the dataset and iteration numbers.
We extract (40K, 10K, 1K) sentences from the en-
tire WMT’17 English-German dataset consisting of
(4M, 40K, 3K) sentences for (training, validation,
test). We trained models for 5K iterations instead
of 100K iterations.

We use the same parameter as HNN++ for the
Riemannian Adam optimizer; β1 = 0.9, β2 = 0.98
and ϵ = 10−9. The warm-up period was set as the
first 400 iteration instead of 4000 iteration.
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Dataset Disease Airport PubMed Cora

Task LP NC LP NC LP NC LP NC

Layers 2 4 2 6 2 3 2 3
Initial Learning Rate 0.005 0.005 0.01 0.02 0.008 0.02 0.02 0.02
Max Grad Norm None 0.5 0.5 1 0.5 0.5 0.5 1

Table 5: Hyper-parameters for each task.
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Abstract
The current chat dialogue systems implicitly
consider the topic given the context, but not
explicitly. As a result, these systems often gen-
erate inconsistent responses with the topic of
the moment. In this study, we propose a dia-
logue system that responds appropriately fol-
lowing the topic by selecting the entity with the
highest “topicality.” In topicality estimation,
the model is trained through self-supervised
learning that regards entities appearing in both
context and response as the topic entities. In
response generation, the model is trained to
generate topic-relevant responses based on the
estimated topicality. Experimental results show
that our proposed system can follow the topic
more than the existing dialogue system that
considers only the context.

1 Introduction

In recent years, end-to-end chat dialogue systems
have been developed remarkably, making it possi-
ble to generate rich and flexible responses. How-
ever, such current chat dialogue systems only im-
plicitly consider the topic given the context as it
is, but do not explicitly consider it (Adiwardana
et al., 2020; Roller et al., 2021). As a result, these
systems often generate inconsistent responses with
the topic (Sugiyama et al., 2021).

In this study, we propose a dialogue system that
selects the next dialogue topic and responds using
the selected topic explicitly. Our system selects
the next topic entity based on topicality (Givón,
1983). Here, we define the entity as a noun or
compound nouns, and topicality as the degree of
speaker awareness directed toward each entity in
the dialogue context. In addition, we call the en-
tity with the highest topicality in the context topic
entity. In the response generation part, our system
generates responses based on the estimated topic
entity as well as the context.

We propose the Two-Stage model, which learns
topicality estimation and response generation in

two stages, and the End-to-End model, which
learns in the end-to-end method.

Due to the lack of dialogue corpus with the
topic annotated, we use a self-supervised learning
method to train our proposed models. Specifically,
we extract triples of <context, response, labeled
topic entity candidates> from the unannotated dia-
logue corpus.

For labeling, we regard topic entity candidates
(= entities in the context) in the response as topic
entities and assign labels to them. This proce-
dure assumes that the entity in the response can
be considered the topic entity. Furthermore, zero
anaphora resolution is applied to restore those omit-
ted words when assigning labels because word
omission is pervasive in actual dialogue (especially
in Japanese).

The automatic and human evaluation results
show that our proposed system can follow the topic
more than the existing dialogue system that consid-
ers only the context.

2 Related Work

2.1 Dialogue Systems that Consider only
Context

Existing dialogue systems that consider only the di-
alogue context sometimes generate dull responses
for elevating a naturalness of response (Vinyals
and Le, 2015; Shang et al., 2015). To solve
this issue, dialogue systems based on the Trans-
former (Vaswani et al., 2017), such as Meena (Adi-
wardana et al., 2020) and BlenderBot (Roller et al.,
2021), have been proposed. These dialogue sys-
tems generate diverse and engaging responses with
large dialogue data and model parameters.

However, the above dialogue systems, which
only consider the context, do not consider the topic
explicitly and may generate inconsistent responses
with the topic (Sugiyama et al., 2021). In this study,
we construct dialogue systems that explicitly con-
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# of dialogues # of utterances # of triples w/o ZAR # of triples w/ ZAR
Twitter corpus 250M 670M - -
JPersonaChat 5,000 61,794 23,217 / 147,166 27,809 / 176,122
JEmpatheticDialogues 20,000 80,000 16,269 / 64,999 31,466 / 114,888
KUHCC 5,114 86,192 21,503 / 120,770 35,467 / 199,094

Table 1: Statistics for each dialogue corpus. ZAR stands for Zero Anaphora Resolution. The left sides of columns
“w/o ZAR” and “w/o ZAR” show the number of triples with the positive label, and the right side shows the number
of triples with the negative label.

sider topicality to generate responses following the
topic.

2.2 Dialogue Systems that Explicitly Consider
the Topic

There are two purposes for explicitly considering
the topic: generating informative responses and
generating responses following the topic.

To generate informative responses, Xing et al.
(2017) proposed a dialogue system considering the
topic explicitly. This system predicts topic words
that are highly relevant to words in the context by
a pretrained Twitter LDA model (Zhao et al., 2011)
and generates responses based on the predicted
topic words. Mou et al. (2016) proposed a system
that selects the noun with the highest PMI (Church
and Hanks, 1990) against words in the context and
generates responses that contains the noun.

To generate responses following the topic, Zhang
et al. (2020) attempts to generate topic-relevant re-
sponses by learning examples in which entities in
the dialogue context continue to appear in the re-
sponse as the topic. However, in actual dialogues,
the topic entity is omitted more frequently than
other words (Givón, 1983). The method of Zhang
et al. (2020) does not consider this omission prob-
lem, but we consider it by restoring the omitted
entities.

3 Dataset Construction

We construct the dataset for self-supervised train-
ing of the proposed model. The dataset is con-
structed based on the assumption that entities that
appear in both context and response are the topic
entities. Considering the pervasiveness of word
omission in actual dialogue, the omitted words are
restored by zero anaphora resolution.

3.1 Dialogue Corpora
All models used in this study are pre-trained by
the Twitter Corpus and then fine-tuned by JPer-
sonaChat (Sugiyama et al., 2021), JEmpatheticDi-

alogues (Sugiyama et al., 2021), and Kyoto Uni-
versity Hobby Chat Corpus (KUHCC). The size of
each corpus is shown in Table 1.

JPersonaChat (Sugiyama et al., 2021) is a dia-
logue corpus between two Japanese speakers with
specific personas based on PesonaChat (Zhang
et al., 2018). JEmpatheticDialogues (Sugiyama
et al., 2021) is a dialogue corpus between two
Japanese speakers talking about an event based
on diverse emotional expressions referring to Em-
patheticDialogues (Rashkin et al., 2019).

In addition to these two existing corpora, we col-
lect a chat dialogue corpus about hobbies, KUHCC,
which is collected by crowdsourcing1. For dia-
logue collection, we use existing dialogue collec-
tion framework 2. In this framework, when workers
access the specified URL for dialogue collection,
pair-matching is performed automatically, and a
chat room is created for the workers to interact in
real-time. It is challenging to get the workers to
chat completely freely, therefore, paired workers
are assigned different roles: one is the speaker, and
the other is the listener. The speaker talks about
their hobbies, and the listener listens while asking
questions about the speaker’s hobbies.

3.2 Method

We extract triples of <context, response, labeled
topic entity candidates> from dialogue corpora by
the self-supervised method.

For each context-response pair, up to 8 recently
used nouns are extracted from the context and used
as topic entity candidates. Personal pronouns and
interrogatives are removed, and consecutive nouns
in the same clause are extracted together as com-
pound nouns. If an entity appears multiple times
in a context, only the last entity is extracted. Ju-
man++ (Tolmachev et al., 2018) and BERTKNP3

1https://crowdsourcing.yahoo.co.jp/
2https://github.com/ku-nlp/

ChatCollectionFramework
3https://github.com/ku-nlp/bertknp

223



were used in this process.
In order to restore the word omissions in the re-

sponse, we applied zero anaphora resolution using
the Cohesion Analysis model (Ueda et al., 2020).
This model was trained with multiple Japanese se-
mantic relation analysis tasks: predicate-argument
structure analysis, bridging anaphora resolution,
and coreference resolution.

The topic entity candidates that appear in the
response, including the restored one, are then as-
signed the “positive” label, which indicates that the
entity is the topic entity. On the contrary, we assign
the “negative” label, which indicates that the entity
is not the topic entity, to the topic entity candidates
that do not appear in the response. If there is more
than one positive label in the context, only the last
entity in the context is assigned the positive label4.

3.3 Statistics

The models do not learn topicality estimation5

in pre-training, hence we only extract context-
response pairs from the Twitter Corpus. For fine-
tuning, we extract triples from each of the three cor-
pora, using the method described in Section 3.2. Ta-
ble 1 shows the statistics of the constructed dataset.
By restoring omitted words, we can obtain 33,548
more triples for JPersonaChat, 65,086 for JEmpa-
theticDialogues, and 92,288 for KUHCC.

4 Model

In this section, we describe the Two-Stage model,
in which topicality estimation and response gener-
ation are learned in two stages (Section 4.1), and
the End-to-End model, in which they are learned
in the end-to-end method (Section 4.2).

4.1 Two-Stage Model

The Two-Stage model generates responses in two
stages: Stage 1 and Stage 2 (Figure 1). In Stage
1 (topicality estimation), the model selects a topic
entity from topic entity candidates based on the
dialogue context. In Stage 2 (response generation),
the model generates the response based on the con-
text and the topic entity selected in Stage 1. Note
that the gold topic entity is used during the training
phase.

4In our preliminary experiments, the method, in which all
topic entity candidates in the response are considered to be
positive, did not get good results.

5The method for learning topicality estimation using Twit-
ter corpus did not yield good results in preliminary experi-
ments.

4.1.1 Model Architecture
We use BERT (Devlin et al., 2019) as the topicality
estimation model in Stage 1. The input to the model
is a topic entity candidate and the utterances in the
context in sequence across [SEP] tokens. All topic
entity candidates are input in the same way, and the
topic entity candidate with the highest output for
each [CLS] token is selected as the topic entity.

We use the encoder-decoder model with BERT
as the encoder and Transformer (Vaswani et al.,
2017) as the decoder in Stage 2. The encoders en-
code the context and the topic entity separately and
then concatenate them. The parameters of these
encoders are shared. In the decoder, we addition-
ally use the rewarding mechanism (Takebayashi
et al., 2018) to increase the generation probability
of topic entities and attempt to generate responses
that reflect topic entities.

4.1.2 Loss Function
In Stage 1, the topicality estimation model is
trained by minimizing the cross-entropy loss be-
tween the probability distribution of the prediction
and the gold label.

In Stage 2, the encoder-decoder model is trained
by minimizing the following loss function Lnll :

Lnll = −
T ′∑

t=1

log p(yt|y<t,x, e), (1)

where T ′ is the length of the target response, y<t

is previously generated sequence, x is the context,
and e is the topic entity.

4.2 End-to-End Model

The End-to-End model learns topicality estimation
and response generation simultaneously (Figure 1).
The topicality is estimated using the hidden states
of topic entity candidates extracted from the en-
coded context. The response is generated based on
the topic vector calculated based on topicality and
the context vector.

4.2.1 Model Architecture
We use BERT as the encoder. The input to the en-
coder is the contexts split by [SEP] token. We ad-
ditionally insert a special token [NO_ENTITY] at
the beginning of the contexts. The encoder outputs
the context vectors: x = [x1, ...,xM ]T ∈ RM×d

(M is the length of the context).
We then obtain the entity vectors: e =

[e1, ..., eN+1]
T ∈ R(N+1)×d (N is the number
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Figure 1: Overview of our proposed models. The Two-Stage model is trained in two stages, Stage 1 (topicality
estimation) and Stage 2 (response generation). The End-to-End model learns topicality estimation and response
generation simultaneously.

of topic entity candidates) by extracting and con-
catenating the corresponding vectors of each topic
entity candidate in the the context vectors. In the
case of a multi-token entity, we take the average of
context vectors of the corresponding tokens. Given
e as input, topicality is formulated as follows:

Ptopic(e) = softmax (eWtopic) ∈ R(N+1)×1,
(2)

where Wtopic ∈ Rd×1 is a learnable linear layer.
The topic vector is calculated using dot-product
attention between Ptopic(e) and e.

The input to the decoder is the concatenated vec-
tor of x and vtopic. Similar to the Two-Stage model,
the rewarding mechanism is incorporated in the de-
coder process.

4.2.2 Loss Function
We combine the negative log-likelihood loss for re-
sponse generation Lnll and the cross-entropy loss
for topicality estimation Ltopic modulated by a
weight by α, which is the hyperparameter. The
overall loss function L is:

L = (1− α)Lnll + αLtopic (3)

Note that Lnll is the same as in equation (1), and
in the loss function for the topicality estimation,
the parameters are not updated if the corresponding
label is negative (= the topic entity candidate is not
in the response.)

5 Experiment

5.1 Experimental Settings
We use the Japanese pre-trained BERT Large
model with whole word maskifng6 as the encoder.

6https://nlp.ist.i.kyoto-u.ac.jp/?ku_
bert_japanese

For the decoder, we use a 12-layer Transfomer de-
coder (Vaswani et al., 2017) in all models.

For the dataset construction method, we compare
the method without zero anaphora resolution (w/o
ZAR) and the one with zero anaphora resolution
(w/ ZAR). For the decoder type, we compare the
standard Transformer decoder and the one with a
rewarding mechanism (+ reward).

For comparison, we use the response generation
model that considers only the context as the Base-
line. The Baseline model selects the topic entity
using a heuristic method that regards the last entity
in the context as the topic entity.

In decoding, we use sample-and-rank decod-
ing (Adiwardana et al., 2020) for all models, includ-
ing the Baseline. Each parameter is set at tempera-
ture T=1.0 and the number of response candidates
N=50. For random sampling, top-k sampling and
top-p sampling are applied, with k=40 and p=0.9.
We also apply the bigram penalty (Paulus et al.,
2018; Klein et al., 2017).

5.2 Evaluation Method

5.2.1 Topicality Estimation

We create the evaluation data for assessing topi-
cality estimation using crowdsourcing.7 First, we
randomly select 57 dialogues from the test data of
KUHCC and then extract 4,702 topic entity can-
didates along with the context using the method
as in Section 3.2. Crowdworkers are shown the
context and the topic entity candidates, and asked
to select appropriate entities as the next topic from
provided topic entity candidates (multiple choice
is allowed).

7https://crowdsourcing.yahoo.co.jp/
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topicality estimation response generation
P@1 R@1 R@3 PPL BLEU-2/4 Natural Topic

Baseline 0.561 0.440 0.777 24.40 7.14/0.88 2.46 2.52
Two-Stage w/o ZAR 0.625 0.491 0.803 21.73 7.22/1.03 2.33 2.52
Two-Stage w/o ZAR + reward 0.625 0.491 0.803 21.86 7.35/0.94 2.51 2.65
Two-Stage w/ ZAR 0.658 0.523 0.838 23.14 7.29/1.01 2.75 2.79
Two-Stage w/ ZAR + reward 0.658 0.523 0.838 23.14 7.44/1.01 2.71 2.82
End-to-End w/o ZAR 0.477 0.363 0.747 21.82 6.84/0.91 2.42 2.40
End-to-End w/o ZAR + reward 0.446 0.310 0.691 21.73 7.08/0.85 2.45 2.56
End-to-End w/ ZAR 0.580 0.449 0.776 21.86 6.87/0.91 2.56 2.59
End-to-End w/ ZAR + reward 0.605 0.479 0.801 21.87 7.11/0.82 2.45 2.63

Table 2: Results of evaluation of topicality estimation and response generation

All the entities selected by five or more workers
are used as positive examples (= topic entities), and
the rest are used as negative ones. Note that we
remove the pairs of the context and the topic entity
candidates for which no positive examples exist
from the evaluation data. As a result, we obtained
741 positive examples and 3,219 negative examples
as evaluation data.

We evaluate the models using the created eval-
uation data. We use P@1 and R@k as evaluation
metrics. P@1 is the top-1 precision, and R@k is
the top-k recall (k=1,3 in this paper).

5.2.2 Response Generation
We evaluate the models using both automatic met-
rics and human evaluations. For automatic metrics,
we calculate perplexity (PPL) and BLEU-2/4 (Pa-
pineni et al., 2002) for test data of three corpora
for fine-tuning. Perplexity measures the fluency of
generated responses, and BLEU metrics measure
the accuracy of generated responses in terms of
lexical overlap with references.

In human evaluations, crowdworkers evaluate
responses by their degree of agreement to the fol-
lowing questions referring to the method of Zhang
et al. (2020), on a five-point Likert scale (1: com-
pletely disagree, 5: completely agree).

• Naturalness (Natural): “Do you think the
given response is natural as Japanese?”

• Topic-Following (Topic): “Do you think the
given responses follows the topic in the con-
text?”

The crowdworkers are shown pairs of a context
and a response. The input to the models for gener-
ating responses is 100 contexts randomly extracted
from the test data of KUHCC, Each pair of context
and response is rated by five crowdworkers.

5.3 Results and Analysis

5.3.1 Topicality Estimation
Table 2 shows the evaluation results of the topical-
ity estimation. Two-Stage w/ ZAR achieves the
best scores on both precision and recall.

For the dataset construction method, w/ ZAR is
better than w/o ZAR for both Two-Stage and End-
to-End models. These results suggest that restoring
the word omissions help improve the accuracy of
topicality estimation.

As for the decoder type, the Two-Stage model
outperforms the End-to-End model on the whole.
This may be because the Two-Stage model directly
optimizes the topicality estimation, whereas the
End-to-End model does both the topicality estima-
tion and response generation.

5.3.2 Response Generation
The results of the automatic evaluation for the re-
sponse generation are shown in Table 2. The Two-
Stage and End-to-End models we proposed in this
paper show lower perplexity than the Baseline. For
BLEU metrics, Two-Stage outperforms Baseline
for both BLEU-2/4, although End-to-End shows
no improvement. This result suggests that while
topicality estimation helps improve response gen-
eration, multi-task learning of topicality estimation
and response generation does not improve response
generation.

The results of the human evaluation for the re-
sponse generation are also shown in Table 2. In
terms of restoring omission of words, both Two-
Stage w/ ZAR and End-to-End w/ ZAR achieve
better Topic-Following score compared to the
Baseline. This improvement indicates that restor-
ing the omission of entities helps generate the
topic-following responses. In addition, the Topic-
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Following score further improves by adding a re-
warding mechanism, which is the method to in-
crease the generation probability of the topic entity.

As for the decoder type, the Two-Stage model
is better than the End-to-End model in both Natu-
ralness and Topic-Following. This difference may
be due to the fact that the End-to-End did not learn
well to reflect on the topic entity because only about
50％ of all context-response pairs are labeled with
some topic entities.

6 Conclusion

We proposed dialogue systems that explicitly con-
sider topicality to generate responses following the
topic. Both automatic and human evaluation re-
sults confirmed that the proposed Two-Stage model
could generate more topic-following responses
than the dialogue system that only considers con-
text. In addition, by restoring the word omission in
the response by zero anaphora resolution, topicality
estimation was further improved, and it was also
confirmed that the generated responses can better
capture the topic.

On the other hand, the Naturalness score of the
generated responses tends to be low overall in the
human evaluation, and there is still room for im-
provement. We will work to improve the quality
of the response generation part by using some pre-
training models as future work.
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Abstract

Automated metrics to evaluate dialogue sys-
tems like BLEU, METEOR, etc., weakly cor-
relate with human judgments. Thus, human
evaluation is often used to supplement these
metrics for system evaluation. However, hu-
man evaluation is time-consuming as well as
expensive. This paper provides an alternative
approach to human evaluation with respect to
three aspects: naturalness, informativeness, and
quality in dialogue systems. I propose an ap-
proach based on fine-tuning the BERT model
with three prediction heads, to predict whether
the system-generated output is natural, fluent
and informative. I observe that the proposed
model achieves an average accuracy of around
77% over these 3 labels. I also design a base-
line approach that uses three different BERT
models to make the predictions. Based on ex-
perimental analysis, I find that using a shared
model to compute the three labels performs
better than three separate models.

1 Introduction

The evaluation of Natural Language Generation
(NLG) systems has generally been carried out by
using automatic metrics such as BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004), etc. However, previous work
Novikova et al. (2017) demonstrated that these met-
rics only weakly reflect human judgments of these
NLG systems’ output, and some form of human
evaluation is required to better measure the qual-
ity of such NLG systems. Human annotators are
generally asked three questions to evaluate whether
a system-generated reference is acceptable or not
. These questions, along with the corresponding
aspects, are:

1. Naturalness- Could the utterance have been
produced by a native speaker?

2. Quality- Is the utterance grammatically cor-
rect and fluent?

3. Informativeness- Does the utterance provide
all the useful information from the meaning
representation?

Since human evaluations can be expensive and
time-consuming, an automated approach to flag
such instances could make it easier for system de-
signers to garner insights into the kind of instances
the system is failing to generate good text for. In
this paper, I propose a BERT-based model trained
to predict answers to questions pertaining to the
three aspects: naturalness, quality, and informative-
ness, with a "YES" (label=1) or a "NO" (label=0).
The proposed model automatically flags system-
generated references that are not up to a predefined
standard. To the best of my knowledge, this is the
first attempt to develop an automated model for
predicting scores pertaining to multiple aspects of
a system-generated reference.

The major contributions of this work can be sum-
marized as follows : First, I propose a binarization
scheme to binarize the human judgment scores in
the dataset as these scores tend to be very subjec-
tive. A threshold is set, and all scores above the
threshold are assigned a label and the scores below
the threshold are assigned another label. Second,
the BERT-based model is fine-tuned to predict three
labels, answering the questions corresponding to
the three aspects of the system-generated reference.
I also perform an ablation study where three sepa-
rate BERT-models are trained independently, each
of which predicts a label.

The remainder of this paper is structured as fol-
lows: Section 2 talks about the recent works in the
same domain. Section 3 discusses about the BERT-
model that is used for the experiments. In section
4, I discuss about the dataset, pre-processing re-
quired, hyper-parameters as well as the baseline
model’s design. In section 5, I discuss about the
performance of the proposed apporach in compar-
ison with the baseline model. Finally in 6, I draw
conclusions and outline future works.
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2 Related Work

Several works have been proposed in recent years
which focus on fine-tuning BERT (Devlin et al.,
2018) and its variants to evaluate the quality of
a system-generated text. These approaches tend
to correlate much better with human assessments.
BERTScore (Zhang et al., 2019) compares the sim-
ilarity of each token in the system generated refer-
ence with each token in the original reference using
contextual embeddings rather than exact matching.
This metric was observed to relate very closely to
human judgments for image captioning systems.
MoverScore (Zhao et al., 2019) is another met-
ric that combines contextualized representations
with distance measures. This metric was observed
to generalize well across various tasks like sum-
marization, machine translation, image caption-
ing, and data-to-text generation. BLEURT (Sellam
et al., 2020) is a BERT-based model that was pre-
trained on a large amount of synthetic data. This
model can then be fine-tuned on a relatively small
number of human judgments. It was observed to
be very effective when the training data is scarce
and imbalanced. COMET (Rei et al., 2020) is an-
other neural framework that is used for training
multi-lingual machine translation quality evalua-
tion models.

All these works evaluate only the quality of the
system-generated reference. While quality is cor-
related with the other aspects of the utterance, it
might not be sufficient to capture all insights about
an incorrectly generated text with just a single as-
pect. A grammatically correct text could lack some
vital information that was present in the original
reference (informativeness) or may not capture the
natural speech patterns of a native speaker (natural-
ness).

Liu et al. (2021) proposed an automatic method
for evaluating the naturalness of generated text
in dialogue systems by fine-tuning a BERT-based
model. The proposed model predicts a score be-
tween 1 and 6, indicating how natural the system-
generated utterance is. However, this work does
not consider that human judgments tend to be sub-
jective. The data being fed to the model is therefore
ambiguous in nature. In addition, the best model
proposed in this paper uses human judgments on
other related aspects like quality and informative-
ness by leveraging the positive correlation between
these three aspects. However, this paper proposes
a solution that eliminates human evaluation at in-

ference time. Human annotations are used only for
training the model. After training, the model can
mimic/replace human annotators. Given the suc-
cess of BERT-based models for system evaluation,
I also use pre-trained BERT in my approach.

3 Method

BERT stands for Bidirectional Encoder Represen-
tation Transformer. The architecture of BERT
was based on the encoder part of Transformers
(Vaswani et al., 2017). BERT uses attention mech-
anism (Bahdanau et al., 2014) to convert the input
representation into a better representation that takes
context into account (Devlin et al., 2018). BERT
makes use of fine-tuning to leverage the knowledge
gained from pre-training. This means that BERT is
pretrained on a relatively generic task, and the same
architecture is fine-tuned on similar downstream
tasks.

In this paper, I use the uncased BERT-Base
model. that consists of 12 layers, 768 hidden states,
and 12 attention heads. We will be leveraging
the pre-training knowledge gained from NSP more
than MLM. A [CLS] token is added to the system-
generated reference’s beginning. A [SEP] token
is then added to the system-generated reference,
followed by the original human-written reference.
This is again followed by a [SEP] token. The to-
kens fed as input are tokenized using WordPiece
embeddings. Sequence embeddings are also passed
as input which stores information about which sen-
tence the token belongs to. Positional embeddings
from the Transfomer model are added to the input
word embeddings along with sequence embeddings.
So the model takes in two sentences as the input
and predicts whether the second sentence follows
the first sentence or not. The encoded representa-
tion of the [CLS] token contains information about
the representation of the entire sequence. This is
called pooled output. The pooled output is passed
through a linear layer which is then followed by
the output layer with 3 nodes having sigmoid acti-
vation. The final output is three values indicating
the probability that the system reference is natural,
fluent, and informative, respectively (see Fig 1).

4 Experimental Setup

4.1 Dataset

I consider the "Human Ratings of Natural Lan-
guage Generation Outputs" (Novikova et al., 2017)
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Pre-trained uncased BERT-base model

System Reference Original Reference

pooled-output
Linear

Fluent? Informative?

CLS SEP CLS

Natural?

Figure 1: Fine-tuning BERT architecture

dataset in this paper. The dataset contains textual di-
alogue response from RNNLG1, TGen2 and LOLs3.
These are data-driven natural language generation
systems that were applied on 3 different but closely
related domains- SF hotel, SF restaurant (Wen
et al., 2015) and BAGEL (Mairesse et al., 2010) re-
spectively. SF hotel and SF restaurant are based on
information regarding hotels and restaurants in San
Francisco, while BAGEL has information about
restaurants in Cambridge. For every NLG system-
generated reference, there is also a human-written
reference in the dataset. The dataset also contains
scores from 3 different human annotators for the
system-generated reference’s naturalness, quality,
and informativeness. These scores were provided
on the 6-point Likert-Scale with the lowest score be-
ing one and the highest being six. Table 1 contains
an example of an instance from the dataset. Here
judge refers to the label of the human annotators.
Since there are three human annotators, the three
labels are 1,2, and 3. The table also presents the
BLEU , rouge-L and Meteor scores for the system
generated output. These metrics are on higher side,
which might indicate that the system-generated out-
put is good. However, the human judge allots low
scores for all three aspects for this instance.

Table 2 contains the distribution of the median
of the scores from the three annotators over 11,122
instances. For some instances, I observed that more
than one NLG system generated the same text. In
such cases, the median of all such scores obtained
from different NLG systems over the three human
judges was considered. If the median is not a whole

1https://github.com/shawnwun/RNNLG
2https://github.com/UFAL-DSG/tgen
3https://github.com/glampouras/JLOLS

number, I consider the ceiling of the median score.
The higher scores are due to the fact that the dataset
considers state-of-the-art NLG systems.

Scores naturalness quality informativeness
1 426 403 153
2 348 501 405
3 801 1071 320
4 1876 1930 1040
5 3383 3531 3427
6 4288 3686 5777

Table 2: Distribution of the median scores

Human annotations on naturalness, quality, and
informativeness tend to be subjective. In fact, all
three human annotators give the same naturalness
score for only 1351 instances, identical quality
scores for 1180 instances, and identical informa-
tiveness scores for 1772 instances.

Hence, to remove this ambiguity in the dataset, I
decided to binarize the dataset by defining a fixed
threshold. Novikova et al. (2017) classify all the
ratings with scores greater than or equal to 5 as
good ratings. Hence, I chose 5 as the threshold.
All the instances with median scores below five are
assigned a label of ’0’ and are considered bad ut-
terances. All instances with median scores greater
than or equal to 5 are assigned a label of ’1’ and
considered good utterances.

Class naturalness quality informativeness
0 3450 3904 1920
1 7672 7218 9202

Table 3: Distribution of the binarized scores
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Field Value
System Generated Output x is a french and restaurant near x..
Original Reference x is a restaurant serving french food, near x
Judge 3
Informativeness 2
Naturalness 2
Quality 2
BLEU-1 0.875
BLEU-2 0.790569415
BLEU-3 0.678604404
BLEU-4 0.5
rouge-L 0.944690265
meteor 0.540778542

Table 1: Example of an instance from the dataset.

Table 3 shows the new distribution after binariz-
ing the dataset. It can be observed that judgments
are still skewed towards the higher scores. The
ratios of positive (greater than or equal to 5-points)
for the three aspects are 68:32, 64:36, and 82:18,
respectively. The dataset (11122 instances) is ran-
domly split into train, validation, and test with an
80:10:10 ratio.

4.2 Baseline
To test the performance of the proposed architec-
ture, I use another approach that involves fine-
tuning BERT. In this approach, I use three differ-
ent BERT models, each fine-tuned to predict one
of the aspects pertaining to the system-generated
utterance. This approach is computationally less ef-
ficient than my proposed approach because it takes
more time to train and get inferences from 3 dif-
ferent models. Also, this approach utilizes close to
three times the memory used by my approach.

4.3 Experimental Setting
The BERT-base model contains 12 layers, 768 hid-
den states, and 12 attention heads. The pooled out-
put is fed to a linear layer that contains 768 nodes.
For all the experiments, I set the batch size to 16.
I use the Adam optimizer and set the learning rate
to 3e-4. All the models were run for five epochs.
Since I use the BERT-Base model, the linear layer
has dimension 768.

To deal with the class imbalance problem, I use
the balanced cross-entropy function (L) (see equa-
tion 1) where ŷ refers to the model output and y
refers to the ground truth.

L = −βylog(ŷ)−(1−β)(1−y)(log(1−ŷ)) (1)

This loss function penalizes the model by a greater
factor when it misclassifies an instance with a nega-
tive label than a positive label. I tune the parameter
β using grid-search for the approach that uses 3
different BERT models. Zhou et al. (2017) sug-
gests utilizing the ratio of negative instances to the
total number instances as this factor. So I perform
a grid search over values 5%, 10%, 15%, 20%, and
25% lesser as well as greater than this ratio. I ob-
serve that the optimal parameters obtained from
grid search to be 0.3535, 0.3130, and 0.1454 for
naturalness, quality, and informativeness, respec-
tively. I use the same parameter for my approach
with a single BERT model with three prediction
heads.

5 Results and Discussion

Table 4 reports the comparison of the accuracies
between both of my approaches. Given that the
data is imbalanced, I also compare the f-1 scores
of both of my approaches in Table 5. The tables
report the mean and standard deviation of each
metric computed over five iterations, each iteration
having a different random seed. In Table 4 and
Table 5, 3-BERT indicates three separate BERT
models, and shared-BERT indicates a single BERT
model with three prediction heads. The accuracy
and f-1 scores suggest that shared-BERT outper-
forms 3-BERTs with respect to both measures for
naturalness and informativeness. Since the predic-
tion for all three aspects would require similarly en-
coded input representations, having a shared model
instead of 3 individual models can significantly re-
duce the memory needed. Shared weights act as a
regularizer and lessen the chances of over-fitting.
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Aspect 3-BERT shared-BERT
naturalness 76.19 (±1.00) 77.98∗ (±1.99)

quality 67.66 (±3.14) 66.01 (±1.69)

informativeness 86.48 (±2.31) 89.04∗ (±0.79)

Table 4: Comparison of accuracies of predicting labels
for system evaluation. ∗ indicates that the difference is
statistically significant with p < 0.05.

Aspect 3-BERT shared-BERT
naturalness 81.81 (±1.60) 84.63∗ (±1.44)

quality 73.87 (±3.27) 73.17 (±1.90)

informativeness 91.78 (±1.55) 93.53∗ (±0.48)

Table 5: Comparison of f-1 scores of predicting labels
for system evaluation. ∗ indicates that the difference is
statistically significant with p < 0.05

Also, such a model can generalize well on new as-
pects that can be added in the future. The results
suggest that both models can model the data well
despite the class imbalance. This can be attributed
to the balanced cross-entropy loss function.

I use the ANOVA test (Girden, 1992) to test the
statistical significance of the difference in the f-1
scores and accuracies between both approaches. I
set the significance level to 0.05. I observe that
the results are statistically significant for natural-
ness and informativeness, which clearly demon-
strates that the shared BERT model outperforms
the 3-BERT model on these two aspects. For the as-
pect of quality, 3-BERT shows better performance.
However, the gain in performance is not statistically
significant. Further, in terms of model complexity,
shared-BERT has only 2304 (768x3) learnable pa-
rameters more than a single BERT model, and the
3-BERT approach has three times the number of
learnable parameters compared to a single BERT
model. Hence, shared-BERT is a more efficient
model in terms of memory occupied and computa-
tional complexity.

Qualitative example: I consider the example
instance from Table 1. The scores from the auto-
mated evaluation metrics suggest that the system-
generated output is a good one. However, the hu-
man annotator assigned low scores for this instance.
Table 6 presents the scores obtained from both my
approaches for this instance. These low probabil-
ities indicate that the system-generated output is
not natural, not informative and not fluent. This is
an example of an instance which demonstrates the
significance of having human annotations, and how

Aspect 3-BERT shared-BERT
naturalness 0.15 0.12
quality 0.28 0.19
informativeness 0.33 0.22

Table 6: Model Output for considered example

the proposed models can mimic human annotators.

6 Conclusion and Future Work

In this paper, I proposed an automated approach
to evaluate three aspects of a system-generated
sentence : naturalness, quality, and informative-
ness. I experiment with two BERT-based model
approaches. Experimental validation suggests that
the proposed approach that uses a single BERT
model with three prediction heads is more efficient
than three different BERT models with a single
prediction head each.

The goal of this paper is to reduce the load on
human annotators and automate the evaluation of
dialogue systems. I hope that this work will moti-
vate researchers to realize that this process can be
automated and be made more reliable with the col-
lection of additional relevant data. Further, aspects
other than the three considered in this paper can
yield some more insights into the performance of
a dialogue system. As an extension of this work,
I will verify the performance of my approach on
other NLG systems like image captioning, question
answering, machine translation, etc.
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Abstract

Named entity linking (NEL) in news is a chal-
lenging endeavour due to the frequency of un-
seen and emerging entities, which necessitates
the use of unsupervised or zero-shot meth-
ods. However, such methods tend to come
with caveats, such as no integration of suitable
knowledge bases (like Wikidata) for emerg-
ing entities, a lack of scalability, and poor in-
terpretability. Here, we consider person dis-
ambiguation in QUOTEBANK, a massive cor-
pus of speaker-attributed quotations from the
news, and investigate the suitability of intu-
itive, lightweight, and scalable heuristics for
NEL in web-scale corpora. Our best perform-
ing heuristic disambiguates 94% and 63% of
the mentions on QUOTEBANK and the AIDA-
CoNLL benchmark, respectively. Additionally,
the proposed heuristics compare favourably to
the state-of-the-art unsupervised and zero-shot
methods, EIGENTHEMES and mGENRE, re-
spectively, thereby serving as strong baselines
for unsupervised and zero-shot entity linking.

1 Introduction

While many of the most famous historic quotes
are wise irrespective of their origin, this is less
true for the majority of contemporary quotes in
the news, which require speaker attribution to be
useful in journalism or the social and political
sciences. This observation is the motivation be-
hind the construction of QUOTEBANK, a corpus of
178 million unique quotations that are attributed
to speaker mentions and were extracted from 162
million news articles published between 2008 and
2020 (Vaucher et al., 2021). However, given the am-
biguity of names, attributing quotes to mentions is
insufficient for proper attribution, and thus, named
entity disambiguation is required, a feature which
QUOTEBANK lacks.

∗Research done while at EPFL.
†Corresponding author.

To tackle this shortcoming and investigate the
disambiguation of person mentions in QUOTE-
BANK as a prototypical example of a web-scale
corpus, we explore the suitability of scalable named
entity linking (NEL) heuristics, which map men-
tions of entity names in the text to a unique iden-
tifier in a referent knowledge base (KB) and thus,
resolve the ambiguity. NEL is an established task
and solutions have been used for a variety of appli-
cations such as KB population (Dredze et al., 2010)
or information extraction (Hoffart et al., 2011), yet
the frequency of emerging and unseen entities in
news data renders the adaptation of supervised NEL
approaches difficult and tends to require unsuper-
vised or zero-shot methods.

While such unsupervised methods (Le and Titov,
2019; Arora et al., 2021) and zero-short meth-
ods (Logeswaran et al., 2019; Cao et al., 2021)
have been developed in recent years, scalability
is an issue. For example, fully disambiguating
QUOTEBANK with the state-of-the-art zero-shot
NEL method, mGENRE (De Cao et al., 2022),
would require approximately 37 years on a sin-
gle GPU according to our experimental estimates.
Therefore, we investigate the suitability of heuristic
NEL methods that rely on signals that are simple
to extract from mention contexts or entity entries
in a KB. In contrast to mGENRE, we find that our
best-performing heuristics can solve the same task
in 108 days on a single CPU core, i.e., orders of
magnitude faster and on cheaper hardware, while
achieving comparable performance.

Contributions. To address the need for NEL
in web-scale corpora, we investigate the disam-
biguation performance of simple, interpretable,
scalable, and lightweight heuristics and compare
them to state-of-the-art zero-shot and unsupervised
NEL methods. Our experiments on QUOTEBANK

and the AIDA-CoNLL benchmark demonstrate the
competitiveness of these heuristics.
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2 Related Work

Viable learning-based methods for NEL in settings
without available training data can be classified into
zero-shot and unsupervised learning.

Zero-shot NEL was introduced by Logeswaran
et al. (2019) with the objective of linking mentions
to entities that were unseen during training. Later,
Wu et al. (2020) proposed a BERT-based model
for this task. Finally, Cao et al. (2021) proposed
GENRE, a supervised NEL method that leverages
BART to retrieve entities by generating their unique
names autoregressively, conditioned on the context
by employing beam search. While GENRE uses
Wikipedia as its referent KB and is not directly
compatible with our setting, we compare our meth-
ods to mGENRE (De Cao et al., 2022), a multilin-
gual adaptation of GENRE using Wikidata.

Unsupervised NEL. Le and Titov (2019) proposed
τMIL-ND, a BiLSTM model trained on noisy la-
bels, which are generated via a heuristic that ranks
the candidate entities of a mention based on match-
ing words in a mention and candidate labels. Sim-
ilarly, Fan et al. (2015) experiment with distant
learning for NEL and create training data by merg-
ing Freebase with Wikipedia. Recently, Arora et al.
(2021) proposed EIGENTHEMES, which is based
on the observation that vector representations of
gold entities lie in a low-rank subspace of the full
embedding space. These low-rank subspaces are
used to perform collective entity disambiguation.

While powerful, the aforementioned methods are
designed for general domains and multiple entity
types, and thus, cannot capitalize on domain- and
entity-specific signals. In the following, we investi-
gate the suitability of unsupervised NEL heuristics
for person disambiguation in the domain of news
quotes in comparison to these methods.

3 Problem Formalization

The input to our NEL system are articles a ∈ A
from the set A of all articles in QUOTEBANK. In
each article a, a set of entity mentions Ma is anno-
tated. Each such mention m ∈ Ma can be mapped
to a set of candidate Wikidata entities Em, which
are uniquely identified by their Wikidata QID iden-
tifier (for further details regarding Wikidata, see
Appendix D). If multiple entity candidates are avail-
able for a mention, we refer to this mention as am-
biguous. Conversely, unambiguous mentions have
only a single candidate entity. Given an article

a ∈ A , an ambiguous mention m ∈ Ma, and all
candidate entities Em, the task of NEL is to identify
the entity e ∈ Em to which m refers.

We assume that NEL methods assign a rank
r(e,m) to each candidate entity e ∈ Em by rank-
ing candidates according to the score provided by
the method, which corresponds to the likelihood
that e is the correct entity for m. Consequently,
we assume that methods cannot identify cases in
which the entity does not exist in the KB or is not
contained in the list of candidates (i.e., out-of-KB
or NIL predictions). Thus, our focus is on the
evaluation of methods in cases where at least one
candidate is available.

4 Scoring Methods

We consider three main signals for entity candidate
ranking methods: entity popularity, entity-content
similarity, and entity-entity similarity. Implementa-
tion details are provided in Appendix B.

4.1 Entity Popularity

Entity popularity is an important signal for dis-
ambiguating entities in news articles as popular
entities are more likely to appear in the news (Shen
et al., 2015). Since popularity cannot be measured
directly, we utilize 4 proxies derived from Wiki-
data, some of which have also been used previously
as features for supervised NEL (Delpeuch, 2020).

Number of properties (NP). Based on the assump-
tion that Wikidata contains more information for
popular entities, we use the number of Wikidata
properties to approximate entity popularity.

Number of site links (NS). Similar to NP, a more
popular entity is likely connected to more Wikime-
dia pages. We thus use the number of site links to
estimate entity popularity.

PageRank (PR) is a graph centrality metric that
was originally developed for web search as a part
of Google’s search engine (Page et al., 1999). We
experiment with two PageRank scores computed
on the Wikidata graph (PRWD) and the Wikipedia
graph (PRWP) and report their results separately.

Lowest QID (LQID). The Wikidata QID is an auto-
incremented integer identifier. Intuitively, well-
known entities are added to Wikidata early and
their QIDs are low. Therefore, we simply select the
candidate with the lowest QID value.
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4.2 Entity-Content Similarity

In addition to entity-centric information, we con-
sider the mention context and attempt to match it to
the attributes of candidate entities in the KB. Con-
sider the following example from QUOTEBANK:

“Professor Tim Wheeler, Vice-Chancellor of the
University of Chester, said: "The university is ded-
icated to educating the very best nurses [...]”

Tim Wheeler’s title, Vice-Chancellor of the Uni-
versity of Chester, exactly matches the short de-
scription of a Wikidata entity with QID Q2434362.
Therefore, it stands to reason that we can leverage
content similarity metrics for entity linking.

Intersection score (IScore). The IScore captures
word overlap between mention context and entity
descriptions. Let Wa be a set of lowercased words
occurring in article a, let We be a set of words oc-
curring in the textual representation of an entity
in Wikidata, and let Wsw be a set of English stop-
words. We then compute the IScore of an entity e
with respect to article a as

IScore(a,e) = |(Wa ∩We)\Wsw| (1)

While we could normalize the score by |Wa ∪We|
to obtain a Jaccard similarity, we intentionally bias
the IScore towards entities with more substantial
descriptions, thereby implicitly incorporating entity
popularity information. We use the Porter stemmer
(Porter, 1980) for stemming words before matching
(please see Appendix E for experiments with IScore
using raw input words or lemmatization).

Narrow IScore (NIScore). For a more focused
context representation, we also compute a version
of the IScore with a narrow context that only con-
tains the sentences in which a mention of the given
entity occurs. For further experiments with the
selection of mention contexts, see Appendix E.

Cosine similarity of embeddings (CSE). Follow-
ing a baseline from Arora et al. (2021), to capitalize
on the effectiveness of transformer models for NLP
tasks, we leverage contextualized language mod-
els to create embeddings of article contents and
candidate entity descriptions, which are then com-
pared. We employ BARTBASE (Lewis et al., 2020)
to generate embeddings and then compute cosine
similarity scores. For details, see Appendix B.

Narrow CSE (NCSE). Similar to the NIScore, we
consider a narrow context around entity mentions
for computing the CSE by restricting the context

that is used for the creation of embeddings to sen-
tences in which the entity occurs.

4.3 Entity-Entity Similarity
Since many mentions of entities can be expected
to be unambiguous, we may use such mentions
as anchors and leverage their relations to ambigu-
ous mentions for the purpose of disambiguation.
Similar to the entity-content similarity methods de-
scribed above, we experiment with metrics that use
intersections of entity occurrences and embedding
similarities of attribute values from Wikidata.

Entity-entity IScore (EEIScore). Following the
above intuition, the EEIScore utilizes the infor-
mation that is contained in relations between am-
biguous and unambiguous mentions. Let Ua be
the set of all entities that can be mapped to un-
ambiguous mentions in an article a (i.e., mentions
that can be trivially disambiguated). Let Se be
the set of all statements that occur in the Wiki-
data entry corresponding to an entity e. We de-
fine SUa :=

⋃
e∈Ua

Se. Using this set of all state-
ments of unambiguous entities, we then compute
the EEIScore of a candidate entity e for an ambigu-
ous mention as:

EEIScore(e,Ua) = |Se ∩SUa | (2)

Cosine similarity of statement value embeddings
(CSSVE). We refine the idea behind the intersec-
tion score of entity relations by using embeddings
of Wikidata statement values and property types
(i.e., relations in Wikidata). For each entity e, Wi-
kidata contains a set of statements se = (pe,ve),
consisting of a property pe and a value ve. Using
this data, we first create embeddings ε(v) of the
values for all statements s ∈ SUa ∪Se. We then
compute CSSVE as the sum of cosine similarities
of statement value embeddings between all pairs of
statements of the candidate entity and statements
of unambiguous mentions in the article that have
matching property types (i.e., describe the same
type of relation):

CSSVE(e,Ua) =
∑

(su,se)∈(SUa×Se)
pu=pe

ε(vu) ·ε(ve)

∥ε(vu)∥∥ε(ve)∥
(3)

4.4 Composite Scores
We also use two composite scores in our evalua-
tion: UIScore refers to the weighted sum of IScore,
NIScore, and EEIScore, while UCSE refers to the
weighted sum of CSE, NCSE, and CSSVE. Since
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CSE and NCSE are cosine similarities, their out-
puts are constrained to the [−1,1] interval, while
CSSVE is unbounded. To ensure similar magni-
tudes we map all scores to the [0,1] interval by ap-
plying the transformation f (x) = 1

2(x+1) to CSE
and NCSE, and additive smoothing to CSSVE.

5 Data

We focus on QUOTEBANK data, but also investigate
the performance on AIDA-CoNLL as a benchmark.
Similar to Arora et al. 2021, Raiman and Raiman
2018, and Guo and Barbosa 2018 we label the men-
tions as either ‘easy’ or ‘hard’. In QUOTEBANK,
we deem a mention easy if it can be correctly dis-
ambiguated using NS and hard otherwise, while in
AIDA-CoNLL we use the definition proposed by
Arora et al. 2021. In Table 1 we present the statis-
tics for easy and hard mentions in the datasets.

QUOTEBANK is a collection of quotes that were
extracted from 127 million news articles and at-
tributed to one of 575 million speaker mentions
(Vaucher et al., 2021), out of which 75% are un-
ambiguous. For our evaluation, we use a randomly
sampled subset of 300 articles that are manually
annotated with 1,866 disambiguated person men-
tions. 70% of these mentions are unambiguous.
Out of the ambiguous mentions, it was possible to
determine ground truth labels for 310 (57%), which
we use in our evaluation. We split the ground truth
into 245 mentions (79%) for evaluation and 65
mentions (21%) for parameter tuning. For a more
thorough description of the QUOTEBANK ground
truth, see Appendix A.

AIDA-CoNLL. To assess whether the proposed
methods can be used for unsupervised NEL in gen-
eral, we also evaluate their performance on the
AIDA-CoNLL benchmark (Hoffart et al., 2011),
which is based on the CoNLL 2003 shared task
(Sang and Meulder, 2003). We use the same setup
as Arora et al. 2021 and use the validation set for
hyperparameter optimization. The differences be-
tween the evaluation setups of QUOTEBANK and
AIDA-CoNLL are explained in Appendix C.

6 Evaluation

All the resources (code, datasets, etc.) re-
quired to reproduce the experiments in this pa-
per are available at https://github.com/
epfl-dlab/nelight.

Table 1: The number of mentions in different difficulty
categories. The definitions of Easy and Hard mentions
are presented in § 6.2. On AIDA-CoNLL, #Easy +
#Hard ̸= #Overall because for some mentions, the gold-
entity was not contained in the candidate set.

Dataset #Easy #Hard #Overall

QUOTEBANK 203 42 245
AIDA-CoNLL 2555 1136 4478

6.1 Evaluation Setup

We use micro precision at one (P@1) and mean
reciprocal rank (MRR) as the evaluation metrics.
The metrics are aggregated over all ambiguous
mentions for which ground truth data is available.
Performance is reported with 95% bootstrapped
confidence intervals (CIs) over 10,000 bootstrap
samples. To identify optimal weight parameters for
the composite metrics, we perform a grid search
over the range [0,1]. For the QUOTEBANK data, the
best performance is obtained for weights (1,1,1)
for UIScore and (0.45,0.9,0.2) for UCSE. For the
AIDA-CoNLL data, we perform the parameter op-
timization on the official validation set, where the
best performance is obtained for weights (0.9,0,1)
and (0,1,1) for UIScore and UCSE, respectively.

Tie breaking. Several ranking methods introduce
ties, which we break by using popularity heuris-
tics. Among the popularity heuristics, only LQID
is injective and always outputs distinct scores for
different entities. In our experiments, we, there-
fore, use LQID to break ties if they remain after
using other tie-breakers. A full breakdown of the
tie-breaking performance for all popularity-based
methods can be found in Appendix E.3.

6.2 Results

We report P@1 for all the methods in Table 2, and
MRR in Appendix G. For comparison, we present
the analytically computed performance of a random
baseline, which picks one of the entity candidates
uniformly at random.

QUOTEBANK. Among the popularity-based met-
rics, the best results are achieved by NS. However,
considering the confidence intervals, the perfor-
mance gains of NS over PRWP and NP are not
significant. LQID and PRWD perform poorly in
comparison to the other methods. All popularity
methods outperform the random baseline, confirm-
ing their usefulness as a prior for NEL.
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Table 2: P@1 of the methods on QUOTEBANK and AIDA-CoNLL. Eigen (IScore) refers to EIGENTHEMES weighted
by IScore. Eigen on QUOTEBANK is weighted by NS, while On AIDA, it denotes the results obtained by Arora et al.
2021. The best obtained P@1 in each column is highlighted bold.

QUOTEBANK AIDA-CoNLL

Method Easy Hard Overall Easy Hard Overall
Random 0.374 ± 0.017 0.260 ± 0.045 0.354 ± 0.024 0.267 ± 0.014 0.066 ± 0.004 0.169 ± 0.009
LQID 0.828 ± 0.054 0.238 ± 0.140 0.727 ± 0.056 0.856 ± 0.014 0.259 ± 0.029 0.554 ± 0.016
NP 0.921 ± 0.040 0.143 ± 0.120 0.788 ± 0.052 0.856 ± 0.014 0.190 ± 0.023 0.536 ± 0.015
NS 1.000 ± 0.000 0.000 ± 0.000 0.829 ± 0.048 0.908 ± 0.012 0.275 ± 0.026 0.588 ± 0.014
PRWD 0.768 ± 0.059 0.214 ± 0.132 0.673 ± 0.061 0.838 ± 0.014 0.155 ± 0.021 0.517 ± 0.015
PRWP 0.926 ± 0.040 0.333 ± 0.140 0.824 ± 0.048 0.938 ± 0.010 0.282 ± 0.027 0.607 ± 0.014
IScore 0.956 ± 0.030 0.762 ± 0.134 0.922 ± 0.034 0.863 ± 0.014 0.549 ± 0.029 0.632 ± 0.015
NIScore 0.966 ± 0.030 0.571 ± 0.151 0.851 ± 0.014 0.851 ± 0.014 0.407 ± 0.028 0.562 ± 0.015
CSE 0.901 ± 0.044 0.500 ± 0.159 0.833 ± 0.047 0.386 ± 0.019 0.276 ± 0.026 0.290 ± 0.014
EEIScore 0.951 ± 0.034 0.690 ± 0.143 0.906 ± 0.036 0.815 ± 0.016 0.382 ± 0.031 0.562 ± 0.015
CSSVE 0.872 ± 0.049 0.357 ± 0.155 0.784 ± 0.051 0.712 ± 0.017 0.256 ± 0.026 0.471 ± 0.015
UIScore 0.966 ± 0.030 0.833 ± 0.123 0.943 ± 0.029 0.833 ± 0.014 0.577 ± 0.028 0.621 ± 0.014
UCSE 0.941 ± 0.034 0.595 ± 0.156 0.882 ± 0.042 0.465 ± 0.019 0.386 ± 0.029 0.363 ± 0.014
Eigen 0.995 ± 0.010 0.238 ± 0.134 0.865 ± 0.044 0.859 ± 0.014 0.500 ± 0.030 0.617 ± 0.015
Eigen (IScore) 0.956 ± 0.030 0.714 ± 0.147 0.914 ± 0.037 0.794 ± 0.015 0.702 ± 0.029† 0.631 ± 0.014
mGENRE 0.995 ± 0.010 0.810 ± 0.143 0.963 ± 0.025 0.925 ± 0.011 0.610 ± 0.028 0.682 ± 0.014†

† Indicates statistical significance (p < 0.05) between the best and the second-best method using bootstrapped 95% CIs.

Table 3: P@1 of representative methods on various en-
tity types in the AIDA-CoNLL dataset. In the evaluation
dataset, there are 1016 PER, 1345 ORG, 1575 LOC, and
542 MISC mentions. The best P@1 in each column is
highlighted bold.

Method PER ORG LOC MISC
NS 0.687 ± 0.030 0.410 ± 0.027 0.777 ± 0.021 0.292 ± 0.039
PRWP 0.719 ± 0.029 0.477 ± 0.026 0.752 ± 0.023 0.293 ± 0.042
IScore 0.786 ± 0.026 0.597 ± 0.026 0.694 ± 0.022 0.245 ± 0.035
UIScore 0.789 ± 0.026 0.601 ± 0.026 0.664 ± 0.023 0.232 ± 0.035
mGENRE 0.720 ± 0.027 0.608 ± 0.027 0.858 ± 0.018 0.284 ± 0.039
Eigen (IScore) 0.760 ± 0.026 0.732 ± 0.025 0.608 ± 0.024 0.205 ± 0.035
Eigen 0.696 ± 0.028 0.671 ± 0.026 0.655 ± 0.023 0.223 ± 0.035

The performances of entity-entity similarity
methods are similar to their entity-content similar-
ity counterparts. This is in line with the hypothesis
that the gold entities mentioned in the same article
are more closely related than the other subsets of
entity candidates (Arora et al., 2021). Generally,
combining the entity-content similarity methods
with their entity-entity similarity counterparts leads
to performance gain, as seen from the example of
UIScore and UCSE. Considering the overall per-
formance, UIScore outperforms CSE and all entity
popularity methods. The performance of CSE is
similar to the performance of NS, which is consider-
ably simpler. Finally, the performance of UIScore
is comparable to mGENRE, achieving a slightly
higher P@1 on hard mentions.

AIDA-CoNLL. In the AIDA-CoNLL data, IScore
and UIScore achieve a comparable performance
to the current state-of-the-art in unsupervised en-
tity linking, EIGENTHEMES (Arora et al., 2021),

but lag slightly behind mGENRE (De Cao et al.,
2022), the state-of-the-art zero-shot method. In
contrast to QUOTEBANK, we do not observe per-
formance gains as a result of combining different
heuristics as UIScore fails to outperform IScore.
EIGENTHEMES weighted by IScore achieves by far
the strongest performance on the hard mentions,
despite a relatively poor performance on easy men-
tions. Overall, the performance makes an encour-
aging case for the heuristics to be used as strong
baselines for entity linking in general, and on large
data sets in particular.

AIDA-CoNLL entity type analysis. The results
of the analysis with respect to the entity types avail-
able in the original CoNLL 2003 dataset (Sang and
Meulder, 2003) are shown in Table 3. In CoNLL
2003, there are four entity types: person (PER),
organization (ORG), location (LOC), and miscella-
neous (MISC).

The UIScore heuristic achieves the best per-
formance on PER mentions, outperforming even
mGENRE. As described in Subsection 4.2, per-
sons that are mentioned in the news are usually
introduced by a simple description of their back-
ground or current occupation even if they are well
known. Since the heuristics proposed for person
disambiguation in QUOTEBANK are based on this
assumption, this explains a relatively strong per-
formance of the UIScore heuristic on PER type
entities in AIDA-CoNLL.
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Despite superior performance on PER men-
tions, UIScore lags behind mGENRE and EIGEN-
THEMES on other types. We attribute this to a lack
of introductory context in comparison to PER men-
tions (e.g., a mention of “China” in an article would
typically not be followed by “a state in East Asia”).
Furthermore, non-person named entities are fre-
quently used as metonyms (e.g., “Kremlin” is a
frequent metonym for the Russian government, but
it can also refer to the Kremlin building). Depend-
ing on the context, a simple heuristic such as IScore
may thus struggle to properly link candidates.

Computational performance. While mGENRE
achieves the best performance on both QUOTE-
BANK and on AIDA-CoNLL, it is a transformer
model and takes substantially longer to run in com-
parison to UIScore. Disambiguating a single men-
tion with mGENRE takes approximately 533 times
longer than with UIScore, and approximately 533K
times longer than with NS, thereby rendering it
infeasible for speaker disambiguation in QUOTE-
BANK, which contains millions of news articles.
For a detailed breakdown of inference times per
mention, see Appendix F.

7 Discussion

Overall, the results highlight the practicality of
the proposed heuristics. Our simple heuristics
outperform those based on word embeddings and
are competitive in comparison to mGENRE.

7.1 Error analysis

To take a closer at avenues for improvement, we
show a manual error analysis for UIScore in Ta-
ble 4. In 6 cases, the predicted entity and the
gold entity have a matching domain (e.g., both are
sportsmen). In 4 cases, the key property by which
a human could determine the correct entity was
only implicitly mentioned in the context, which
caused a failure in string matching. For 3 articles,
a key property of the gold entity was not listed
in Wikidata, even though it could be found in ex-
ternal sources such as Wikipedia. The remaining
error stems from the presence of a “decoy” entity,
i.e, an influential but unrelated entity that induced
spurious matches. For a thorough description and
illustration of the error categories, see Appendix H.

7.2 Limitations

Since UIScore is the most promising of our heuris-
tics, we focus on it and its components.

Table 4: Error sources for UIScore.

Error source #Mentions

Similar domain 6 (42.9%)
Key property implicit in the text 4 (28.6%)
Key property not in Wikidata 3 (21.4%)
Decoy mention 1 (7.1%)

The biggest limitation of IScore is imposed by
the equal importance that is assigned to words in
the context, which could be improved by re-ranking
important words for given entities. Similarly, Wiki-
data properties for EEIScore and CSSVE could be
ranked or filtered (for example, the property date
of birth is likely to cause spurious matches, while
occupation is likely useful).

Regarding tie-breaking, the use of LQID is in-
tuitive for persons in the news domain, but may
fail for other entity types and other domains, and
is dependent on Wikidata. Finally, in our focus on
QUOTEBANK data, we are reliant on the authors’
method for candidate generation, which could be
improved for better performance in the future.

8 Conclusions and Future Work

We tackled the problem of entity linking in QUOTE-
BANK by employing heuristics that rely on simple
signals in the context of mentions and the refer-
ent KB. The solid overall performance of the pro-
posed heuristics on QUOTEBANK, their low compu-
tational complexity, and competitive performance
on the AIDA-CoNLL benchmark suggest that they
can be used as strong baselines for unsupervised
entity linking in large datasets.

Future work. We plan to experiment with weight-
ing schemes that account for word importance, uti-
lize additional signals from the KB, and include im-
proved candidate generation methods. Finally, we
aim to provide a disambiguated version of QUOTE-
BANK to the community.
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Appendix

A Ground Truth Data

For the method evaluation, we randomly sample
300 articles from QUOTEBANK. The ground truth
for 160 articles is determined by the author, while
the remaining 140 articles are annotated by the au-
thor’s colleagues. The annotators were provided
with article content, article title, publication date,
article URL, a list of ambiguous named entity men-
tions, and for each ambiguous mention, a candidate
set of QIDs as listed in QUOTEBANK. The annota-
tors had to either select the correct QID from the
candidate set or select one of the following cate-
gories if the correct QID is not listed:

• The mention does not refer to a person. Some-
times, buildings and other artifacts named af-
ter some person are identified as a person. We
ignore such mentions in the evaluation.

• The correct QID does not exist in Wikidata.
This means that a person is likely not signif-
icant enough to have a Wikidata item. For
example, sometimes a journalist or a photog-
rapher of a newspaper where the article is
published shares the name of a famous person
and is therefore listed as a speaker candidate.

• The correct QID exists in Wikidata but is not
listed. This can happen if the correct QID is
added to Wikidata after the candidate entities
were generated.

• Impossible to determine. Some articles are
either too noisy or do not contain enough in-
formation for disambiguation to be feasible.

In Table 5, we present the distribution of person
mentions in the evaluation data with respect to dif-
ferent categories. We observe that more than 70%
of the 1866 mentions are unambiguous. For 310
(57%) of the ambiguous mentions, it was possible
to determine the ground truth based on the given
candidate sets. For the majority of the remaining
43% of ambiguous mentions no correct entity was
available in Wikidata.

The main drawback of the QUOTEBANK eval-
uation dataset is its small size. Since all articles
were annotated by only one annotator, there is no
data on the inter-annotator agreement. In the future,
we aim to create a more sophisticated benchmark
dataset via crowdsourcing.

Table 5: Distribution of mentions in the ground truth
data with respect to ambiguity and availability of ground
truth.

Category #Mentions

Unambiguous 1322 (70.8%)

Ambiguous

Gold entity exists 310 (16.6%)
No correct QID in Wikidata 151 (8.1%)
Impossible 37 (2.0%)
Correct QID not listed 24 (1.3%)
Not a person 22 (1.2%)

Total 1866

B Implementation Details of the Scoring
Methods

B.1 IScore

To calculate the IScore, we first obtain labels of
Wikidata statement values listed for e. We then
tokenize the content of a using the tagset of the
Penn Treebank Tokenizer. We use the computed
tokens to create sets Wa and We. Then, we apply
the formula given in equation 1 and compute the
IScore based on Wa, We, and a predefined set of
English stopwords Wsw

1.

B.2 CSE

To embed an article, we follow the standard trans-
former model preprocessing procedure. We tok-
enize the article content using the model-specific
tokenizer, respecting BART’s 1024 token limit by
simply truncating the input if the limit is exceeded.
We then feed the obtained tokens to BART and aver-
age the last hidden state of the model output. Since
truncation leads to loss of information in compari-
son to other methods, we experimented with chunk-
ing the input into chunks of at most 1024 tokens,
computing token embeddings in each chunk sepa-
rately, and aggregating the obtained token embed-
dings. However, this did not improve performance
on QUOTEBANK (0.698 P@1 and 0.818 MRR),
while all articles from AIDA-CoNLL are within
the token limit so we report the results of the first
approach.

Embedding the entity is slightly more challeng-
ing. Following the same procedure as for the com-
putation of the article content embeddings, we com-
pute the embedding the the first paragraph in an
entity’s Wikipedia page if such a page is avail-
able. Otherwise, we compute the embeddings of
the short description, and each statement value la-

1https://gist.github.com/sebleier/554280
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Table 6: Results of the IScore ablation study with respect to word normalization and inclusion of different Wikidata
features. In each row, we report P@1 and MRR of IScore method for the combinations of the following Wikidata
features: short description (D), Wikipedia first paragraph (P), statement value labels (S), and statement value labels
and aliases (SA) for a setting without word normalization, as well as for settings with stemming and lemmatization.
The best results in each column are in bold. Since SA is essentially a superset of S, we omit the combinations where
both S and SA appear. All the experiments were run with NS as a tie-breaker.

No normalization Lemmatization Stemming

Combination P@1 MRR P@1 MRR P@1 MRR

D 0.869 ± 0.044 0.921 ± 0.027 0.890 ± 0.040 0.930 ± 0.026 0.894 ± 0.039 0.934 ± 0.026
P 0.832 ± 0.049 0.903 ± 0.030 0.816 ± 0.051 0.895 ± 0.029 0.832 ± 0.047 0.902 ± 0.029
S 0.894 ± 0.040 0.936 ± 0.026 0.898 ± 0.039 0.940 ± 0.024 0.906 ± 0.038 0.944 ± 0.024
SA 0.886 ± 0.041 0.932 ± 0.025 0.890 ± 0.042 0.935 ± 0.025 0.898 ± 0.039 0.939 ± 0.024

D + P 0.841 ± 0.046 0.907 ± 0.028 0.820 ± 0.050 0.898 ± 0.030 0.841 ± 0.047 0.906 ± 0.028
D + S 0.902 ± 0.039 0.943 ± 0.024 0.906 ± 0.038 0.945 ± 0.022 0.918 ± 0.035 0.952 ± 0.021
D + SA 0.890 ± 0.041 0.937 ± 0.023 0.906 ± 0.038 0.947 ± 0.022 0.914 ± 0.037 0.950 ± 0.022
P + S 0.861 ± 0.044 0.919 ± 0.028 0.861 ± 0.045 0.920 ± 0.028 0.873 ± 0.044 0.925 ± 0.026
P + SA 0.878 ± 0.042 0.928 ± 0.025 0.882 ± 0.041 0.931 ± 0.025 0.882 ± 0.042 0.930 ± 0.025

D + P + S 0.861 ± 0.045 0.921 ± 0.026 0.861 ± 0.045 0.920 ± 0.027 0.873 ± 0.042 0.926 ± 0.026
D + P + SA 0.886 ± 0.042 0.934 ± 0.025 0.886 ± 0.041 0.934 ± 0.025 0.882 ± 0.042 0.930 ± 0.026

Table 7: Comparison of performances of CSE and IS-
core when considering different context sizes. Ensemble
refers to the sum of the scores obtained considering the
narrow and entire context of the article, respectively.
The best results for each scoring method are in bold. All
the experiments were run with NS as a tie-breaker.

Method Context P@1 MRR

CSE
Narrow 0.751 ± 0.055 0.857 ± 0.033
Entire 0.833 ± 0.050 0.902 ± 0.029
Ensemble 0.857 ± 0.044 0.921 ± 0.025

IScore
Narrow 0.898 ± 0.039 0.941 ± 0.023
Entire 0.918 ± 0.035 0.952 ± 0.021
Ensemble 0.922 ± 0.036 0.954 ± 0.022

bel listed for an entity in Wikidata, and aggregate
them via arithmetic mean.

B.3 mGENRE

We use mGENRE in a similar setup as De Cao et al.
(2022). Suppose that we want to disambiguate
entity mention m occurring in an article a. We
first enclose m with special tokens [START] and
[END] that correspond to the start and the end of
a mention span. We then take at most t mBART
(Liu et al., 2020) tokens from either side. As the
input for mGENRE, we use a string consisting of
the left context, the mention enclosed with the spe-
cial tokens, and the right context. mGENRE then
outputs the top k entity QIDs and their respective
scores, where k is the beam size. For entities in Qm

that are not retrieved by mGENRE, we simply as-
sign 0 as a score. Note that mGENRE outputs the

Table 8: Performances of mGENRE for different con-
text sizes. The best result in each column is highlighted
bold.

QUOTEBANK AIDA-CoNLL

t P@1 MRR P@1 MRR
64 0.951 ± 0.029 0.968 ± 0.018 0.664 ± 0.013 0.713 ± 0.012
128 0.963 ± 0.025 0.976 ± 0.017 0.675 ± 0.014 0.723 ± 0.013
256 0.959 ± 0.026 0.972 ± 0.021 0.682 ± 0.014 0.730 ± 0.013

scores corresponding to the negative log-likelihood
of the resulting sequence. Thus, in order for 0 to
be the smallest possible score, we exponentiate the
scores obtained from mGENRE. In the QUOTE-
BANK setup, we also perform one additional step:
since each speaker candidate can be mentioned
multiple times in the text, we run mGENRE for
each of the speaker candidate mentions and sum the
scores obtained for each of the candidate Wikidata
entities.

In Table 8, we present the performances of
mGENRE on both QUOTEBANK and AIDA-
CoNLL for different values of t, while in Table
2 we report only the best obtained P@1. In all our
experiments with mGENRE, we set the beam size
k to 10.

C Evaluation Setup Details

QUOTEBANK. The QUOTEBANK data exclusively
contains annotations of person mentions. Be-
fore training a model that attributes the quotations
to their respective speakers, the quotations and
speaker candidates are identified in the article text
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(Vaucher et al., 2021). The extraction of speaker
candidates is explained in detail by Pavllo et al.
(2018). Although a speaker candidate can appear in
an article multiple times, the quotations are not at-
tributed to specific mentions but rather to the most
likely speaker candidate. Thus, we evaluate our
methods on QUOTEBANK on a speaker candidate
level and refer to speaker candidates as mentions
to ensure that our method and result descriptions
are consistent with the standard nomenclature.

AIDA-CoNLL. When evaluating our methods on
the AIDA-CoNLL benchmark, we do not ignore the
mentions for which the gold entity either cannot be
determined or is not retrieved by the candidate gen-
erator. As a consequence, the resulting P@1 and
MRR reported on AIDA-CoNLL are significantly
lower in comparison to the QUOTEBANK results
as they are bounded by the recall of the candidate
generator. We use the same candidate generator as
Arora et al. (2021), which imposes an upper bound
of 0.824 to P@1 and MRR. Additionally, to en-
sure a fair comparison with Arora et al. (2021), we
break ties by selecting the first speaker candidate
with the same score and use the same definition
of the easy and hard mentions when reporting the
method performances.

D Wikidata

Wikidata is a large community-driven KB. It boasts
more than 96 million data items as of January 2022,
out of which 6 million are humans. Each Wi-
kidata item is identified by a unique positive in-
teger prefixed with the upper-case letter Q, also
known as QID (e.g. Earth (Q2), Mahatma Gandhi
(Q1001)). Obligatory data fields of items are a la-
bel and a description. Labels and descriptions need
not be unique, but each item is uniquely identified
by a combination of a label and a short descrip-
tion. Therefore, each QID is linked to the label-
description combination. Optionally, some items
consist of aliases (alternative names for an entity)
and statements. Statements provide additional in-
formation about an item and they consist of at least
one property-value pair. A property is a pre-defined
data type, identified by a unique positive integer,
but unlike items, it is prefixed with the upper-case
letter P (e.g. occupation (P106), sex or gender
(P21)). The value of a statement may take on many
types, such as Wikidata items, strings, numbers,
or media files. Some items also have a list of site
links that connect them to the corresponding page

of the entity in other Wikimedia projects, such as
Wikipedia or Wikibooks. The methods we propose
in Section 4 leverage the described information to
link the named entity mentions in the news articles
to their respective Wikidata entities.

E Additional Experiments

E.1 Wikidata Features and Word
Normalization Ablation for IScore

In Table 6, we show the results of an ablation study
that aims to assess the effect of the inclusion of dif-
ferent Wikidata entity features on the performance
of IScore and word normalization methods. The
features we consider are short descriptions, state-
ment value labels with and without aliases, and
Wikipedia first paragraphs. We obtain the best re-
sults by leveraging short descriptions and Wikidata
statement values. When using only Wikipedia first
paragraphs, we obtain a performance similar to NS,
a simple entity popularity metric. Seemingly, the
inclusion of aliases does not improve the perfor-
mance. Additionally, we observe that lemmatiza-
tion (using the WordNet lemmatizer (Miller, 1995))
and stemming (using the Porter stemmer (Porter,
1980)) improve IScore performance by a small mar-
gin. Furthermore, we observe a slight performance
gain of stemming over lemmatization. This is es-
pecially important considering the volume of the
data and the inefficiency of lemmatization when
compared to stemming.

E.2 Context Size

As shown in Table 7, narrowing down the context
has a negative impact on the performances of both
the CSE and IScore scoring methods. However, we
hypothesize that the words that occur close to the
entity mention are more important than those in
a broader context. Therefore, we also experiment
with the linear combination of the respective scores
for each context size. In both cases, the optimal
weights obtained through grid search optimization
are (1,1). We observe a slight performance gain
for the ensemble of both scoring methods.

E.3 Tie breakers

In Table 6, we present the results of the experi-
ment with various tiebreakers. Seemingly, all the
tie-breakers are a reasonable choice since no tie-
breaker clearly outperforms the others.

244



Table 9: P@1 of different popularity metrics as tiebreakers. Rows correspond to scoring methods and columns to
tiebreakers. CSE and UCSE are omitted from the table because their performance remains the same irrespective of
the tiebreaker. The best P@1 in each row is highlighted bold.

NS NP PR WP PR WD LQID
IScore 0.918 ± 0.036 0.922 ± 0.035 0.918 ± 0.036 0.918 ± 0.036 0.906 ± 0.038
EEIScore 0.898 ± 0.039 0.894 ± 0.039 0.906 ± 0.037 0.878 ± 0.042 0.873 ± 0.042
CSSVE 0.784 ± 0.052 0.780 ± 0.054 0.784 ± 0.053 0.784 ± 0.051 0.784 ± 0.052
UIScore 0.939 ± 0.032 0.939 ± 0.032 0.942 ± 0.031 0.935 ± 0.033 0.931 ± 0.033

Table 10: Estimated per-mention inference times of the
selected methods. mGENRE is run on Nvidia GeForce
GTX TITAN X, while UIScore and NS were executed
on a single 2.5 GHz core of Intel Xeon E5-2680 proces-
sor.

Inference time
Method QUOTEBANK AIDA-CoNLL

mGENRE 8.0 s 1.9 s
NS 15 µs 26 µs
IScore 7.9 ms 67 ms
UIScore 15 ms 135 ms
Eigen 11 ms 39 ms

F Inference Time

In Table 10, we present the inference times of
mGENRE, EIGENTHEMES, our best-performing
methods on QUOTEBANK and AIDA-CoNLL:
UIScore and IScore, respectively, and the well-
performing entity popularity metric NS. EIGEN-
THEMES and the selected heuristics are signifi-
cantly more efficient than mGENRE. The differ-
ences in inference times on Quotebank and AIDA-
CoNLL are due to the setup differences (see C).
Additionally, the inference times of NS, IScore,
UIScore, and EIGENTHEMES largely depend on
the number of candidates per mention. Thus, since
on average, the number of candidate entities per
mention on AIDA-CoNLL (approx. 18) is substan-
tially larger than in QUOTEBANK (approx. 5), their
inference times on AIDA-CoNLL are longer. Note
that our best methods do not require GPU, making
them easily parallelizable on CPU cores.

G Mean reciprocal rank of the methods

As an extension of Table 2, in Table 11 we present
the MRR of the methods. MRR follows similar
trends as P@1.

H Error Source Descriptions

Similar domain. If the gold entity and the system
output have similar backgrounds or occupations,
their Wikidata items tend to contain similar state-
ments. For example, in one of the articles, the
gold entity for Shawn Williams was Q7491485
(lacrosse player), while the output of the model
was Q13064143 (American football player, defen-
sive back). Shawn Williams first appears in the
following sentence:

Canada head coach Randy Mearns kept his No. 51
warm-up shirt - honoring Tucker Williams, the son
of NLL star Shawn Williams of the Buffalo Ban-
dits who is currently undergoing the treatment for
Burkitt’s Lymphoma - on throughout the game.

Earlier in the article, lacrosse was mentioned di-
rectly, which in addition to the mention of NLL
(National Lacrosse League) made it clear that
Q7491485 is the gold entity. However, the UIS-
core of Q13064143 was just 1 point higher than the
UIScore of Q7491485, which led to the erroneous
prediction.

Key property not in Wikidata. In some cases, the
Wikidata item does not contain the key informa-
tion that is used to describe the entity in the article.
Such cases are difficult even for humans as they
require background knowledge stored in multiple
sources. An example of this is John Prendergast
(Q6253345), who was described in one article as
the co-founder of Enough. This property is not
listed in the Wikidata item of Q6253345 but can be
found in external sources. The output of the model
was Q6253343, a late British Army officer who
served in World War II. The article in which Pren-
dergast was mentioned was about violent events
in Congo and was thus rich in war-related terms.
Most importantly, World War II was mentioned
in the article, leading to three spuriously matched
words in Q6253343’s Wikidata item. The final
scores of Q6253345 and Q6253343 were 8 and 12
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Table 11: MRR of the methods on QUOTEBANK and AIDA-CoNLL. Eigen and Eigen (IScore) have the same
definition as in Table 2. The best obtained MRR in each column is highlighted bold.

QUOTEBANK AIDA-CoNLL

Easy Hard Overall Easy Hard Overall
Random 0.622 ± 0.022 0.484 ± 0.058 0.597 ± 0.030 0.387 ± 0.013 0.205 ± 0.006 0.273 ± 0.009

LQID 0.904 ± 0.030 0.505 ± 0.094 0.836 ± 0.036 0.912 ± 0.009 0.451 ± 0.021 0.635 ± 0.013
NP 0.959 ± 0.021 0.457 ± 0.082 0.873 ± 0.034 0.901 ± 0.010 0.352 ± 0.021 0.603 ± 0.013
NS 1.000 ± 0.000 0.389 ± 0.044 0.895 ± 0.031 0.943 ± 0.007 0.485 ± 0.020 0.661 ± 0.012
PRWD 0.873 ± 0.032 0.453 ± 0.098 0.801 ± 0.039 0.903 ± 0.009 0.336 ± 0.019 0.601 ± 0.013
PRWP 0.962 ± 0.020 0.561 ± 0.101 0.893 ± 0.031 0.966 ± 0.005 0.491 ± 0.020 0.676 ± 0.012

IScore 0.977 ± 0.016 0.842 ± 0.096 0.954 ± 0.022 0.908 ± 0.009 0.686 ± 0.021 0.692 ± 0.013
NIScore 0.980 ± 0.016 0.750 ± 0.093 0.941 ± 0.023 0.903 ± 0.010 0.538 ± 0.024 0.651 ± 0.013
CSE 0.947 ± 0.023 0.682 ± 0.099 0.902 ± 0.029 0.871 ± 0.011 0.455 ± 0.024 0.612 ± 0.013

EEIScore 0.972 ± 0.018 0.801 ± 0.097 0.943 ± 0.023 0.555 ± 0.016 0.467 ± 0.022 0.435 ± 0.011
CSSVE 0.930 ± 0.027 0.586 ± 0.100 0.871 ± 0.033 0.796 ± 0.013 0.412 ± 0.023 0.559 ± 0.013

UIScore 0.980 ± 0.015 0.891 ± 0.080 0.965 ± 0.019 0.888 ± 0.010 0.718 ± 0.020 0.689 ± 0.013
UCSE 0.970 ± 0.018 0.743 ± 0.099 0.931 ± 0.025 0.874 ± 0.011 0.630 ± 0.021 0.659 ± 0.013

Eigen (IScore) 0.974 ± 0.018 0.817 ± 0.092 0.947 ± 0.024 0.864 ± 0.011 0.804 ± 0.020† 0.697 ± 0.013
Eigen 0.998 ± 0.005 0.529 ± 0.090 0.917 ± 0.027 0.910 ± 0.009 0.674 ± 0.019 0.690 ± 0.012
mGENRE 0.998 ± 0.005 0.869 ± 0.089 0.976 ± 0.017 0.959 ± 0.006 0.720 ± 0.022 0.730 ± 0.012†

† Indicates statistical significance (p < 0.05) between the best and the second-best method using bootstrapped 95% CIs.

respectively. If co-founder of Enough was listed
in Wikidata and if World War II was treated as a
single noun phrase, the UIScore of the gold entity,
Q6253345, would beat the score of Q6253343.

Key property implicit in text. Some errors oc-
cur when enough information is provided in the
article and in Wikidata, but the key properties are
not mentioned in the text explicitly. For example,
professional golfer Will Mackenzie (Q8002946)
was mentioned in an article that was clearly about
golf. However, golf was not mentioned at all in
the article, yet Mackenzie’s profession could be
inferred from other terms related to golf, such as
PGA Tour, which does not appear in the Wikidata
item of Q8002946. The output of the method was
Q4019878 (actor and director). Although there
were other golfers mentioned in the article (lead-
ing to an EEIScore of 4 for Q8002946), its item
matched no stems in text, while Q4019878 matched
two stems that were completely unrelated to the ar-
ticle: provid (He was born in Providence which
shares the same stem as provide) and televis (he
was a television actor). Furthermore, Q4019878
matched citizenship, spoken language, and gender
with other unambiguous mentions in the article. As
a result, Q4019878 was the predicted label. This in-
dicates the need for assigning weights to Wikidata
properties to avoid irrelevant matches.

Decoy mention. To illustrate the decoy mention
error source, we consider the following example:

"Amazon will debut five new comedy drama pilots
in 2014, including "The After", from Chris Carter
("The X-Files"); "Bosch", based on book series by
Michael Conelly; "Mozart in the Jungle", from Ro-
man Coppola ("The Darjeeling Limited"); "The
Rebels" from former New York Giants football
player Michael Strahan; and "Transparent" from
Jill Soloway ("Six Feet Under")."

Suppose that we want to disambiguate Chris Carter.
Clearly, the correct entity corresponding to Chris
Carter is the movie producer who created the
science-fiction drama "The X-Files" (Q437267).
However, the appearance of Michael Strahan in-
creased the IScore of sportsmen named Chris
Carter that played for a New York team (due to
the appearance of the words "player", "New", and
"York"). Note that a limitation of IScore is that it
treats the words New and York separately, although
they should be treated as a single noun phrase.
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Abstract

Each person has a unique personality which001
affects how they feel and convey emotions.002
Hence, speaker modeling is important for the003
task of emotion recognition in conversation004
(ERC). In this paper, we propose a novel graph-005
based ERC model which considers both conver-006
sational context and speaker personality. We007
model the internal state of the speaker (per-008
sonality) as Static and Dynamic speaker state,009
where the Dynamic speaker state is modeled010
with a graph neural network based encoder. Ex-011
periments on benchmark dataset shows the ef-012
fectiveness of our model. Our model outper-013
forms baseline and other graph-based methods.014
Analysis of results also show the importance of015
explicit speaker modeling.016

1 Introduction017

Emotion recognition in conversation (ERC) is a018

task within the sphere of emotion recognition. ERC019

aims to predict the emotion of each utterance in a020

conversation. With the recent advances of dialogue021

research, ERC has gained popularity due to its po-022

tential to support downstream applications such as023

affective dialog systems (Majumder et al., 2020)024

and opinion mining from social media chats (Chat-025

terjee et al., 2019).026

The emotion of an utterance depends on many027

factors including surrounding context and speaker028

personality. Previous studies show that the same029

utterance can express different emotions under dif-030

ferent contexts (Poria et al., 2019b). On the other031

hand, the speaker’s personality and background032

should be considered when we interpret the emo-033

tion of an utterance. For example, in Figure 1, the034

utterance “This is great!” can carry the emotion035

of anger (sarcastic person) or joy (not sarcastic).036

This difference can be attributed to the different037

personalities of the speakers.038

In speaker modeling, we aim to model the inter-039

nal state of the speaker. Moreover, we distinguish040

Figure 1: The emotion conveyed by the phrase “This is
great” can either be anger (sarcasm) or joy (in the case
that the person ordered the wrong item). This example
is taken from (Poria et al., 2019b).

between the Static and Dynamic states of a speaker. 041

The Static speaker state refers to the average state 042

of a person that remains unchanged over a long 043

period of time. On the other hand, the Dynamic 044

speaker state refers to the deviation from the Static 045

state in presence of external stimuli. External stim- 046

uli can dictate and change the speaker’s internal 047

state, which in turn affects the emotion displayed 048

by an individual, hence modeling the Dynamic state 049

of a speaker is important for ERC. 050

In the past few years, Graph Neural Networks 051

(GNNs) have been used increasingly for ERC. 052

GNNs provide an intuitive way to model conversa- 053

tions (Shen et al., 2021) given the inherent struc- 054

tural flexibility of the graph. The graph structure 055

can be used to capture the dependency between 056

utterances and speakers. 057

Recent works such as DialogGCN (Ghosal 058

et al., 2019), RGAT (Ishiwatari et al., 2020), 059

EmoBERTa (Kim and Vossen, 2021) and DAG- 060

ERC (Shen et al., 2021) have modelled conver- 061

sational contexts using various methods, however 062

they do not model speaker state explicitly. Whereas 063

ConGCN (Zhang et al., 2019) and MMGCN (Hu 064

et al., 2021) models the speaker state explicitly, 065

however, they use random embedding for initializa- 066

tion and model just the Static aspect. 067

In this study, we propose a novel graph-based 068

ERC model which considers both Static and Dy- 069

namic aspects of speaker state. We utilize a graph 070

1
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Figure 2: Model overview. The target utterance is denoted in yellow color.

which includes past utterance nodes and explicit071

speaker nodes to model the interactions between ut-072

terances and speakers in the dialogue. Experimen-073

tal results on the benchmark MELD dataset (Poria074

et al., 2019a) verified the effectiveness of our model075

regarding both context and speaker modeling.076

2 Related Work077

DialogGCN (Ghosal et al., 2019) was the first pa-078

per to use GNN to model dialogues. Given an079

input dialogue, a complete graph within a fixed080

context (past and future) window is built. Since081

graph-based neural networks do not take sequen-082

tial information into account, RGAT (Ishiwatari083

et al., 2020) uses relational positional encodings084

to improve upon DialogGCN. DAG-ERC (Shen085

et al., 2021) built a more intuitive graph structure086

by considering local and remote information, with-087

out using any future utterance.088

EmoBERTa (Kim and Vossen, 2021) modeled the089

speaker state and context by prepending the speaker090

names to utterances and inserting separation tokens091

between the utterances in a dialogue, and feeding092

it to RoBERTa. ConGCN (Zhang et al., 2019) ex-093

plicitly used speaker nodes, which were initialized094

randomly. MMGCN (Hu et al., 2021) also incorpo-095

rated randomly initialized speaking embeddings in096

their model.097

3 Methodology098

Our model consists of three components: Feature099

extractor, Graph encoder, and Prediction layer. Fig-100

ure 2 shows an overview of our proposed model.101

We will give a detailed explanation of our model in 102

this section. 103

3.1 Problem Definition 104

In ERC, a dialogue is defined as a sequence of ut- 105

terances {U1, U2, ..., UN}, where N is the number 106

of utterances. Each utterance Ui is spoken by a 107

speaker Si and has an emotion label Yi. The goal 108

of ERC is to predict the emotion label Yt for a given 109

Ut and St . 110

3.2 Feature Extractor 111

We use pretrained RoBERTa (Liu et al., 2019) as 112

our feature extractor. Inspired by EmoBERTa (Kim 113

and Vossen, 2021), we feed the following sequence 114

to RoBERTa for each utterance Ui with speaker Si 115

(as shown in Figure 2): 116

[CLS]Si : Ui[SEP ] (1) 117

For each utterance Ui, we take the output vector 118

of RoBERTa corresponding to the [CLS] token 119

as the utterance embedding hui . In addition, we 120

extract the RoBERTa output vector corresponding 121

to the speaker token1 Si as the speaker embedding 122

hsi . This component is responsible for the Static 123

speaker state modeling and hsi represents the Static 124

speaker state. 125

3.3 Graph Encoder 126

In this section, we introduce the construction of a 127

dialogue graph and the details of the graph encoder. 128

1In the case when speaker name is a multi-token entity, we
consider the first token for the speaker embedding.

2
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3.3.1 Graph Construction129

For a target utterance Ut in the dialogue, we build130

a graph G = (V,E) to model the surrounding131

context and speaker information, where V denotes132

the set of nodes and E is the set of edges.133

The graph G contains two types of nodes:134

• Utterance node: We consider the target utter-135

ance Ut and up to w utterances preceding Ut136

as past utterances.137

• Speaker node: We consider the unique speak-138

ers of the target and past utterances.139

The set of nodes can be represented as:140

V = {Ui}i=t
i=t−w ∪ Uniq({Si}i=t

i=t−w) (2)141

where the function Uniq() returns all the unique142

elements in a set.143

Our graph contains two types of edges:144

• Utterance-Utterance Edge: We connect each145

utterance to its previous utterance. These146

model the effect of past utterance on the147

present utterance. These are given by Euu =148

{(Ui−1, Ui)}i=t
i=t−w+1149

• Utterance-Speaker Edge: We connect each150

utterance Ui to its corresponding speaker Sj .151

The set of utterance-speaker edges are denoted152

as Eus = {(Ui, Sj)}i=t
i=t−w. These edges153

model the effect of speakers on the utterances.154

The set of edges can be given by:155

E = Euu ∪ Eus, (3)156

Figure 2 (Graph Encoder part) illustrates an ex-157

ample of the constructed graph with a target ut-158

terance U4 (colored in yellow) and 3 past utter-159

ances. U1 and U3 are spoken by a unique speaker160

S1, while U2 and U4 are spoken by another unique161

speaker S2. (Note that the subscripts of the speak-162

ers reflects the indices after Uniq().)163

3.3.2 Node Initialization164

We initialize the Utterance and Speaker nodes as165

follows:166

• Utterance node : u0i = hui ∀i ∈ [t− w, t]167

• Speaker node : s0j = avg(hsi ) ∀i spoken by168

Sj .169

Since there is only one speaker node for each170

unique speaker, we use the averaged speaker em-171

beddings to initialize the Speaker node.172

3.3.3 GNN-Based Graph Encoding Layers 173

After constructing and initializing the graph, we 174

feed it to the GNN-based encoding layers, which 175

update node representations considering the graph 176

structure. This component is responsible for the 177

Dynamic speaker state modeling. 178

We use l-layered GNN to get the updated node 179

representations based on the graph structure of G. 180

For kth layer, all the nodes (Speaker and Utterance 181

nodes) are updated considering each of their direct 182

neighbours: 183

({uki }, {skj }) = GNNk({uk−1
i }, {sk−1

j }) (4) 184

After being updated by l layers, the Static 185

speaker state, s0j , is updated to slj , which repre- 186

sents the Dynamic speaker state. Similarly, the 187

initial utterance embedding u0i is updated to final 188

utterance embedding uli. 189

3.4 Emotion Classification 190

Finally, we concatenate the initial and the final ut- 191

terance embeddings of target utterance and feed it 192

through a feed-forward network to classify emo- 193

tions. 194

Pt = softmax(FFN(u0t ||ult)), (5) 195

196

Y ∗
t = argmax(Pt), (6) 197

Here, || denotes the concatenation operation, FFN 198

is the feed-forward neural network layer, and Pt is 199

the probability distribution for the predicted emo- 200

tion. 201

3.5 Training Objective 202

We use the standard cross-entropy along with L2- 203

regularization as the loss (L): 204

L = −
M∑

x=1

Nx∑

t=1

logPx,t[Yx,t] + λ||θ||2, (7) 205

Here, M is the total number of training dia- 206

logues, Nx is the number of utterances in the xth 207

dialogue, Px,t and Yx,t are the predicted probability 208

distribution of emotion labels and the truth label 209

respectively for utterance t of the dialogue x. λ is 210

the L2-regularization weight, and θ is the set of all 211

trainable parameters. 212
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Train Dev Test
# Utterance 9,989 1,109 2,610

# Dialogue 1,039 114 280

Table 1: Statistics for the MELD dataset.

4 Experiments and Results213

Experiments on the benchmark dataset shows the214

effectiveness of our model. Details of experiments215

and analysis are given in this section.216

4.1 Dataset217

We evaluate our model on the benchmark Multi-218

modal EmotionLines Dataset (MELD) dataset (Po-219

ria et al., 2019a). MELD is a multi-modal dataset220

collected from the TV show Friends. There are 7221

emotion labels: neutral, happiness, surprise, sad-222

ness, anger, disgust, and fear. Since this is an im-223

balanced dataset, weighted-F1 is used as the evalu-224

ation metric. More than 85% of the utterances in225

MELD are spoken by 6 main speakers, this high226

utterance per speaker is useful for modeling the227

speaker state. The statistics of MELD are shown in228

Table 1.229

4.2 Experimental Settings230

The feature extractor used is the pre-trained231

RoBERTa-large (Liu et al., 2019). The size of232

all the hidden features is 1024. We experiment233

with Graph Convolutional Network(GCN) (Kipf234

and Welling, 2017) and Graph Attention Net-235

work(GAT) (Veličković et al., 2018) as the GNN-236

based graph encoding layers. For the GCN based237

model, the past context is set to be 3 utterances and238

the number of GNN layers was set to be 2. For the239

GAT based model, the past context is set to be 5240

utterances and the number of GNN layers was set241

to be 3. GAT model also has three attention heads242

in addition to the above settings.243

The models are trained for 10 epochs, batch size244

is set to be 8, and the learning rate is set to 1e-6.245

The model with the highest weighted-F1 on the246

validation set is selected for evaluation. Due to247

the stochastic nature of the model, we report the248

averaged score of 3 random runs on the test set.249

4.3 Evaluation250

Compared Methods and Results: We compare251

our proposed model with baselines and previous252

works. The results are reported in Table 2.253

First, we establish two baselines: RoBERTa (no 254

context) and RoBERTa (w/ modified input). In the 255

RoBERTa (no context) utterance alone is used as 256

input to the pre-trained RoBERTa model. In the 257

RoBERTa (w/ modified input) we use a modified in- 258

put as given by Equation 1. Our proposed method 259

outperforms both RoBERTa baselines by F1 scores 260

of 2.4 and 1.8, respectively. This shows the advan- 261

tage of using the graph encoding mechanism. 262

Next, we compare our model with other GNN- 263

based models: DAG-ERC, DialogGCN and RGAT. 264

For fair comparison, we use the models which 265

use RoBERTa-large as the feature extractor2. Our 266

model outperforms all these models, proving the 267

advantage of using explicit speaker nodes to model 268

conversations. 269

Finally, we compare our results with the 270

EmoBERTa model3. Our model with GCN encoder 271

performs slightly worse than EmoBERTa. How- 272

ever, our model with GAT encoder outperforms 273

EmoBERTa. Hence, we can state that the perfor- 274

mance of our model and EmoBERTa is comparable. 275

Note that EmoBERTa uses both past and future ut- 276

terances as context, whereas we only use the past 277

utterances as context, which is more natural as 278

conversations proceed with time and future utter- 279

ances cannot be used for real-time applications. 280

Under the condition that only the past utterances 281

are allowed, both our proposed models outperform 282

EmoBERTa (wo/ future context). 283

GCN vs. GAT: In our experiments, models 284

which utilize GAT as graph encoders outperformed 285

the GCN ones. The edge weights for all edges 286

in our GCN models were set to be 1. On the 287

other hand, the edge weights for GAT models were 288

learned and optimized during the training of our 289

model due to the explicit attention heads of the 290

GAT based models. 291

We speculate that since the utterance-utterance 292

edge and speaker-utterance edge are different in 293

nature so their edge weight should be different, 294

hence GAT outperformed GCN and has the ability 295

to better represent the relations between nodes. 296

Since, GAT based model performs superior to 297

GCN based one, we use GAT based models for 298

further analysis. 299

2The authors of DAG-ERC re-implement DialogGCN and
RGAT using RoBERTa-large as feature extractor, we include
the scores reported by the DAG-ERC paper.

3EmoBERTa was the SOTA model while this re-
search was conducted, the new SOTA model is EmotionFlow.
(https://github.com/fpcsong/emotionflow/blob/master/EmotionFlow.pdf)
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Model Weighted-F1
RoBERTa (no context) 0.635

RoBERTa (w/ modified input) 0.641

DAG-ERC 0.636

RGAT (+RoBERTa) 0.628

DialogueGCN (+RoBERTa) 0.630

EmoBERTa 0.656

EmoBERTa (wo/ future context) 0.646

Proposed (GCN) 0.652

Proposed (GAT) 0.659

Table 2: Experimental results on MELD.

Method Weighted-F1
Proposed (Static + Dynamic) 0.658
Proposed (wo/ speaker) (Static) 0.646

Proposed (random init. speaker) 0.638

Table 3: Impact of speaker modeling.

4.4 Analysis300

In this section, we conduct various analysis of our301

proposed model.302

4.4.1 Impact of Speaker Modeling303

To investigated the impact of the speaker modeling304

on the performance, we evaluated our model by305

removing speaker nodes, Proposed (wo/ speaker),306

and by randomly initializing speaker nodes, Pro-307

posed (random init. speaker). The results are308

shown in Table 3. These results are with three309

past context and two GAT layer model.310

Removing speaker nodes reduces the weighted-311

F1 score by 1.2. The significant decrease indicates312

the importance of speaker modeling to the ERC313

task. Whereas, randomly initializing speaker nodes314

results in a performance drop of 2.0 points. More-315

over, the score with random speaker initialization316

is lower than the score of the model without any317

speaker nodes. We hypothesize that the random em-318

beddings create noise and hinder the performance.319

4.4.2 Impact of Context Window Size and the320

Number of GAT layers321

To analyze the impact of context window size, we322

varied the past context window size from 1 to 5.323

The results are reported for two and three GAT324

layers in Figure 3. The model performs worst when325

we use only one past context, which illustrates the326

necessity to model sufficient context. Moreover,327

we also find out that the optimal number of past328

context varied for different number of GNN layers 329

(3 context for 2 layers and 5 context for 3 layers). 330

Next, we investigated the effect of changing the 331

number of layers on the performance. One layer of 332

graph encoder updates a node considering all the 333

one-hop neighbours. The scores for the number of 334

layers from two to five for a past context of size five 335

is given in the Figure 4. The score is highest for 336

three layers. Our graph structure allows informa- 337

tion to be aggregated from the last context utterance 338

in few hops due to utterances being connected by 339

speaker nodes, so the performance does not change 340

greatly by changing the number of layers. 341

4.4.3 Case Study 342

We performed a qualitative analysis for our model. 343

We used the model with five past contexts and three 344

GAT layers. We manually inspected ten test sam- 345

ples that were predicted correctly and ten instances 346

that were predicted incorrectly. 347

We found that utterances with speakers other 348

than the six main speakers have a higher chance 349

of being predicted incorrectly (six out of ten in- 350

correctly predicted test samples contained at least 351

one speaker other than the main speakers). We 352

speculate that this can be attributed to the fact that 353

we only modeled the main six speakers, and for 354

the case of other speakers, we did not construct 355

any speaker nodes. In the first sample given in Ta- 356

ble 4 it is noted that a non-main speaker (Steve) 357

accounts for a considerable part of the dialogue and 358

our system predicts the emotion incorrectly. 359

However, in the cases in which the main speakers 360

make up the majority of the past context, the emo- 361

tion of utterances of other speakers can be predicted 362

correctly. The second sample in Table 4 shows this, 363

where the emotion label for the dialogue of a non- 364

main speaker (Fireman #1) is predicted correctly. 365

The reason might be that the speaker nodes of the 366

main speakers assist the model in predicting the 367

emotion label. 368

5 Conclusion 369

We proposed a novel graph-based method to model 370

speaker states explicitly for the task of ERC. Exper- 371

iments showed that our model outperforms base- 372

lines and other graph-based models. We analyse 373

the impact of speaker modeling and show that both 374

Static speaker state and Dynamic speaker state mod- 375

eling are important for the accurate prediction of 376

emotions in ERC. In addition, we investigate the 377
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Dialogue Predicted Gold
Steve: Oh, okay, I get it.

Ross : No wait, look. Look! I’m sorry, it’s just I’ve never even

Steve: Howard’s the,

Ross: Yes but too me he’s just, man.

Steve : Okay, fine, whatever. Welcome to the building. neutral anger
Phoebe: Oh!

Rachel : My God!

Joey: Hey buddy, do you think I can borrow your uniform this Thursday?

Fireman #1: Excuse me? surprise surprise

Table 4: Case study. The target utterance is shown in italics.

Figure 3: Impact of past context size with two and three
GAT layers.

Figure 4: Impact of number of GAT layers. Context
window is of size 5.

effect of changing the number of GNN layers and378

the past context on the performance of our model.379
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Abstract 

Abstractive summarization of medical 

dialogues presents a challenge for standard 

training approaches given the paucity of 

suitable datasets. We explore the 

performance of state-of-the-art models 

with zero-shot and few-shot learning 

strategies and measure the impact of pre-

training with general domain and dialogue 

specific text on the summarization 

performance. 

1 Introduction 

Clinical dialogues between patients and health 

professionals are among the core elements of the 

clinical encounter, containing most of the initial 

anamnesis questions, diagnostic information, 

treatment options, patient advice and counselling. 

Doctors usually summarize the content of these 

conversations into clinical notes, after each 

clinical visit or make use of expensive human 

medical scribes. As recent speech-recognition 

technologies show increasingly good performance 

(Chung et al., 2021; Zhang et al., 2020b), 

capturing these dialogues and generating 

abstractive summaries would help to reduce 

clinician load and improve patient care (Coiera et 

al., 2018). 

Abstractive summarization has been one of the 

main challenges for NLP (Gupta and Gupta, 

2019). The accuracy of abstractive summarization 

has improved over the past years due to the use of 

transformer-based, sequence to sequence 

(seq2seq) models (Aghajanyan et al., 2021; Raffel 

et al., 2019), larger training datasets and denser 

neural networks. Although several general-

purpose datasets such as XSum (Narayan et al., 

2018), CNN-DailyMail (Hermann et al., 2015), 

and SAMSUM (Gliwa et al., 2019) have been 

used for their training and development, few 

corpora exist that could be applied to the health 

scenario, medical terminology rich dialogues, 

with frequent interjections, ellipsis, and logical 

connections between semantic units (e.g., drug Y 

treats condition Z and not vice versa). 

We fine-tuned several state-of-the-art (SOTA) 

models in a newly created medical dialogue 

dataset of 143 snippets, based on 27 general 

practice conversations paired with their respective 

summaries. We tested 10 transformer models to 

assess their performance in abstractive 

summarization of these dialogues. We learned that 

models pre-trained on general dialogues 

outperform baseline models. BART-based models 

were found to achieve the highest scores, although 

medical inconsistencies persisted in the generated 

summaries. In the future, we plan to perform 

further evaluations as the need for metrics that 

highlight inconsistencies in medical summaries 

remains unresolved. 

2 Background 

Training and fine-tuning NLP models for medical 

tasks has been a challenge, given the paucity of 

high-quality training data, although several 

initiatives such as MIMIC (Johnson et al., 2016) 

and n2c2 challenges (Henry et al., 2020) have 

advanced the field. Strategies to reduce 

dependence on large training datasets, such as 

transfer learning, have been explored (Fabbri et 

al., 2021a) to improve the model performance. 

Transformer-based models and their various 

implementations are well suited for transfer 

learning and fine-tuning with sparse datasets. 

Few-Shot Fine-Tuning SOTA Summarization Models for Medical Dialogues 
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Additionally, zero-shot and few-shot approaches 

may help strike the balance between the model’s  

 

 
Box 1: Dialogue-summary example 

 

performance, training time and training data 

requirements. Several recent developments have 

shown the effect of few-shot strategies in medical 

abstractive summarization (Goodwin et al., 2020) 

as well as in online medical dialogues (Nair et al., 

2021).  

Although few-shot and pre-training strategies 

have been studied separately, none have 

experimentally compared how these two interact 

in the medical dialogue domain and how different 

seq2seq models perform under these 

circumstances. In this work, we study how 

different few-shot strategies and pre-trained 

models affect the performance of abstractive 

summarization in medical dialogues. 

3 Methods 

3.1 Dataset 

Our dataset consisted of 27 recorded 

conversations between general practitioners and 

patients collected by (Quiroz et al., 2020), where 

the data was used to characterize the structure and 

content of primary care consultations. These 

recordings took place at Primary Care facilities at 

Macquarie Health Clinics, Sydney, Australia. The 

conversations were professionally transcribed and 

anonymized. The conversations included in the 

dataset exceeded the token limit for existing 

language models (either 512 or 1024 tokens). 

Thus, we pre-processed the dataset by slicing the 

conversations into 400-word snippets. They were 

further processed to ensure that they contained 

semantically sound pairs of clinician-patient 

interactions, e.g., Doctor asks questions and 

Patient answers. A small number of snippets (less 

than 5%) were removed as they did not contain 

relevant medical information, such that the final 

dataset consisted of 143 snippets, containing 

56,158 words. Box 1 shows a sample snippet. The 

dataset was partitioned using an 80-20 train-

evaluation split.  The training split was then 

subsequently split into further incremental few-

shot sub-samples. 

3.2 Annotation 

A trained primary care physician with over 7 years 

of practical experience created summaries for all 

the snippets maintaining the following clinical 

information: medical information, medical advice, 

prescriptions, and general patient information. 

Annotation was performed by a single person; 

therefore, no inter-annotator agreement was 

calculated. Summaries varied in length between 

17 and 158 words, as some snippets were more 

informative than others, with an average length of 

68 words. 

3.3 Models 

Transformer-based models are currently the SOTA 

in several summarization benchmarks 

(Aghajanyan et al., 2020). We included the BART 

(Lewis et al., 2019), PEGASUS (Zhang et al., 

2020a), and T5 (Raffel et al., 2019) families of 

models in our evaluation. 

Among the various fine-tuned variants of these 

models, we included those having a fine-tuned 

version of the base model trained on the 

SAMSUM dialogue dataset (Gliwa et al., 2019). 

This dataset contains dialogues from various 

online chats, and it is one of the freely available 

dialogue summarization datasets. We harnessed 

the 'large' versions of these models. To explore 

Dialogue: Doctor: Okay. Thank you for seeing 

Jane Doe. Jane is a student here. She gives a 

history of intermittent ear pain, both ears, isn't it? 

Jane: Yeah, both ears. Doctor: Bilateral ear pains at 

night? Jane: Yep, and occasionally throughout the 

day. Doctor: Oh okay? Jane: Yeah. Not like the 

pain, just the pulsing. Doctor: Oh okay? Jane: 

Sorry, I mean. Doctor: For several years and also, 

mainly in your right ear, isn't it? Jane: The pulsing 

is in the right ear. The pain is in the left ear. 

Doctor: Oh, pain in your left? Jane: Sorry. I'm just 

thinking about it now. Doctor: Sorry. I thought. 

Doctor: It was both ears? Jane: I'm noticing, when 

I think about it, sorry, the pulsing is definitely 

more in the right ear. Doctor: Left ear pain and also 

right ear pulsing? Jane: But I don't know how else 

to describe it. Like that's. Doctor: No, no. We 

know exactly what you mean? Jane: It, yeah, like 

a. Doctor: A throbbing? Jane: It's like a, yeah, 

throbbing. Like a blood rush sort of. Doctor: 

Pulsation? Jane: Sensation. But not. Doctor: Okay. 

With throbbing? Jane: Obviously blood rush. 

Doctor: Throbbing in, for up to six months, maybe 

six months? Jane: Yeah. About, up to six months. 

Doctor: She looks very well, looks very well. Nil 

to find today, today. BP, what was it? I think it was 

104. Doctor: Okay. 

Summary: Jane has a history of bilateral ear pains 

at night in her left ear and pulsing, throbbing 

sensation in her right ear, like a blood rush, for 

about six months. She looks well. BP was 104. 
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medical transfer learning, we also included one 

model fine-tuned for PubMed summarization 

(Gupta et al., 2021). All the models included are 

available at HuggingFace
1
. Overall, 10 models 

were included in our evaluation: T5, T5SAMSUM, 

BART, BARTSAMSUM, BARTCNN-Dailymail, 

BARTCNN-SAMSUM, PEGASUS, PEGASUSCNN-

Dailymail PEGASUSCNN-Dailymail-SAMSUM, and 

PEGASUSPUBMED. The complete training strategy 

and best-fine-tuned models are available in our 

GitHub repository
2

 and on the HuggingFace 

platform
3
.  

3.4 Fine-tuning strategy 

We used the HuggingFace implementation of 

transformers and adapted their default fine-tuning 

scripts
4
. The default fine-tuning strategy consisted 

of training models for 3 epochs without further 

adjustments. Given the small size of the dataset, 

the evaluation split was only used at the end of the 

training and was not used to adjust the learning 

rate, which was set to the default value for each 

model. Initial analysis also showed that the loss 

value increased with additional training epochs. 

Therefore, to avoid overfitting, no further rounds 

of training were performed. 
We implemented an incremental few-shot 

learning (FSL) strategy evaluating the models at 

zero-shot, and then incrementally fine-tuning pre-

trained models with 10-shot, 20-shot, 50-shot, and 

the full dataset.  

3.5 Metrics and evaluation 

We quantitatively evaluated the summaries using 

the ROUGE scores (ROUGE-1, ROUGE-2, 

ROUGE-L, ROUGE-L-sum) (Lin, 2004) for each 

model and FSL strategy. These were calculated 

immediately after training with the provided script 

in the 20% (29 snippets) that were held out for 

evaluation. We also computed the improvement 

over zero-shot learning (ZSL) for each model with 

each incremental FSL step. 

For the qualitative evaluation, a small sample 

of 7 generated snippets was inspected by a 

                                                 
1
 https://huggingface.co/models 

2
https://github.com/dafraile/Clinica

l-Dialogue-Summarization 
3
 https://huggingface.co/dafraile 

4
https://github.com/huggingface/tran

sformers/tree/master/examples/pytorc

h/summarization 

clinician, aiming to analyse the semantic and 

medical accuracy of the generated summaries 

according to the following aspects: (1) assertion 

(e.g., information is correctly affirmed or 

negated); (2) major (e.g., symptom, diagnosis or 

treatment) or minor medical information missing; 

(3) medical coherence (e.g., wrong cause-and-

effect relationship); and (4) contradicting advice 

(e.g., stop treatment instead of start treatment). 

4 Results 

4.1 Quantitative evaluation 

All the models pre-trained with dialogues 

outperformed their base counterparts both in ZSL 

and across all the FSL steps, irrespective of the 

underlying model (T5, BART or PEGASUS). 

Table 1 shows the ZSL performance of the base 

models and dialogue (SAMSUM) pre-trained 

models. The best-performing model within each 

family is highlighted for each metric. Table 2 

shows the performance of the models pre-trained 

with the full dataset of 114 snippets. Figure 1 

shows ROUGE-1 score for all models being 

incrementally trained with 0, 10, 20, and 50 shots, 

and the full dataset.  

Overall, BART-based models outperformed 

both T5 and PEGASUS, both for ZSL and 10, 20, 

and 50 FSL steps. Training on the full dataset, 

BART-CNN-SAMSUM scored highest for ROUGE-1 

and ROUGE-2, but T5-SAMSUM outperformed it for 

the ROUGE-L and ROUGE-L-sum scores. 

Appendix A shows the full results across the FSL 

steps for all models. 

 
Baseline R-1 R-2 R-L R-L-

Sum 

T5 30.93 11.40 22.44 28.59 

T5-SAMSUM 35.74 13.99 24.63 33.76 

BART 32.70 9.69 19.74 30.78 

BART-CNN 36.72 11.90 22.46 34.73 

BART-

SAMSUM 

37.38 15.88 26.11 35.40 

BART-CNN-

SAMSUM 

40.82 16.00 27.26 38.78 

PEGASUS 35.23 11.46 22.95 32.83 

PEGASUS 

CNN 

34.36 12.06 23.66 29.68 

PEGASUS 

CNN-SAMSUM 

33.69 13.63 24.79 31.79 

PEGASUS 

-PUBMED 

15.31 1.00 10.41 13.99 

Table 1: Zero-shot ROUGE scores  
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Full 

training 

(n=114) 

R-1 R-2 R-L R-L-

Sum 

T5 51.79 23.77 37.54 49.41 

T5-SAMSUM 54.91 26.64 40.46 52.37 

BART 52.31 23.66 34.18 49.34 

BART-CNN 53.59 25.07 37.72 50.96 

BART-

SAMSUM 

52.99 24.88 37.22 50.87 

BART-CNN-

SAMSUM 

55.32 27.12 39.67 52.22 

PEGASUS- 39.51 15.74 27.57 37.22 

PEGASUS--

CNN 

50.94 23.30 36.40 48.52 

PEGASUS-

CNN-SAMSUM 

50.89 24.54 37.25 48.92 

PEGASUS--

PUBMED 

30.87 11.13 21.05 28.30 

Table 2 ROUGE scores for the full dataset training 

 

Table 3 shows the average (across multiple 

models) relative improvement obtained for ZSL to 

FSL with 10, 20, and 50 shots, and the full dataset. 

This is further broken down into the baseline and 

dialogue-trained models. The performance of the 

models consistently improved with FSL 

increasing steadily up to 50-shot and further to the 

full dataset. The largest improvements were 

observed from baseline to 10-shot, and from 20-

shot to 50-shot. Appendix B presents all the 

increments observed across FSL. 
 

 
Figure 1: ROUGE-1 scores for each model for  

ZSL, FSL step, and the full dataset

 

Base Models R-1 R-2 R-L  R-Lsum 

10-shot 13.45 32.23 13.94 15.07 

20-shot 22.70 49.71 23.60 26.13 

50-shot 37.50 82.56 43.13 41.81 

Full dataset 46.74 98.81 56.48 51.35 

Dialogue Pre-

Trained 
R-1 R-2 R-L  R-Lsum 

10-shot 30.69 52.52 35.32 31.43 

20-shot 33.37 49.04 33.64 33.44 

50-shot 41.43 67.31 46.20 43.38 

Full dataset 45.49 74.17 50.65 46.83 

Table 3: Average relative (%) improvement for the 4 

ROUGE metrics and incremental FSL strategy 

4.2 Qualitative evaluation 

We focused our evaluation on the three best 

performing models of each family with respect to 

ROUGE scores: BARTCNN-SAMSUM, T5SAMSUM, and 

PEGASUS-CNN-SAMSUM. We detected several 

inconsistencies, incorrect advice, and missing 

information across the produced summaries. Box 

2 shows a sample of the generated summaries, 

where the Doctor explores irritated tonsils caused 

by acid reflux and provides advice and treatment 

(Mylanta®). 

 

PEGASUS-CNN-SAMSUM  

She is coughing but not coughing. Her tonsils are 

still swollen. If it is acid coming up, it can give her 

irritation in the throat. She hasn't lost a lot of weight, 

but she has lost one kilo. It is common to have acid 

problems related to spicy food, coffee, chocolate, 

alcohol and acidic food. (Missing: no blood in 

bowel motions or vomiting, treatment advice, 

weight is missing) 

BART-CNN-SAMSUM 

No coughing, but the tonsils are still swollen. Acid 

can give you irritation in the throat. She hasn't lost a 

lot of weight. Fifty-four point three is one kilo less. 

There is no blood in bowel motions or vomiting 

blood. Sometimes it can be related to the food you 

eat spicy or acidic. You don't want to eat a huge 

amount of food in one sitting because it puts 

pressure on the stomach. At night is pain at 11 

when drinking hot milk. Tablets can also be bought 

from chemist Mylanta from Cambodia. 

T5-SAMSUM 
Tonsils are still swollen and she is not coughing. 

Acid can give irritation in the throat. She hasn't lost 

a lot of weight. One kilo less. No blood in bowel 

motions or vomiting blood. Sometimes it can be 

related to spicy food, coffee, chocolate, alcohol or 

food that is very acidic. Trying to avoid certain 

foods. Drinking hot milk can sometimes help. 

There are tablets and also Mylanta liquid that she 

can drink. (Missing: 54.3 kg is the actual weight) 
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Human 

No coughing but tonsils are still swollen. Acid 

coming up can irritate the lining of the throat. 

Weights 54.3 kilos and has lost a kilo. No blood in 

the bowel motions or when vomiting. Acid can 

relate to food you eat like spicy, coffee, chocolate, 

or alcohol. Sometimes a cup of hot milk helps. You 

can also buy Mylanta from the chemist. 

 
Snippet evaluation (n=7) T5-

samsum 

Pegasus-

cnn-

samsum 

Bart-

cnn-

samsum 

Missing information 

major 
2 5 1 

Missing information 

minor 
2 2 1 

Contradicting advice 0 0 1 

Medical incoherencies 0 3 1 

Assertion confused 1 3 0 

Table 4: Qualitative examination of summaries 

 

In the above examples, the best performing 

model, BARTCNN-SAMSUM offered contradicting 

advice and incorrectly pointed out that the 

medicine needed to be bought in Cambodia (the 

country appeared in the text, but the meaning was 

confused). PEGASUSCNN-SAMSUM missed 

completely the medical advice given. T5SAMSUM 

did not produce incoherencies but failed to 

capture the actual patient weight. Table 4 shows 

the number of issues detected across the 7 

examined snippets. Appendix C contains all the 

generated snippets and highlights additional 

issues.  

5 Discussion 

Our experiment shows that fine-tuning pre-trained 

models with few-shot learning offers a reliable 

strategy to improve summarization scores with 

small training data, making it appropriate for fine-

tuning transformer models in domain-specific 

contexts, such as medical dialogues. By contrast, 

pre-training on medical literature did not improve 

results and showed poorer performance than the 

baseline models. BART based models achieve the 

highest ROUGE scores across all the FSL steps, 

with a relatively smaller footprint in terms of the 

required training time and the number of 

examples compared to both T5 and PEGASUS. 

Our experiment confirms previous findings that 

BART based models outperformed PEGASUS 

and T5 for summarization (Aghajanyan et al., 

2020) and with few-shot strategies (Fabbri et al., 

2021a). However, we observe that T5 gets higher 

ROUGE-L and ROUGE-L-sum results when 

trained on the full dataset. Although we obtain 

differences in the ROUGE scores across the best 

performing models, a limited qualitative analysis 

did not show a clear difference for T5 vs. BART. 

Our preliminary qualitative evaluation shows that 

T5 produced usable summaries (with no 

contradicting advice and no medical 

incoherencies) although further evaluation is 

required. This may reflect that relevant medical 

information may be situated at longer than 1-gram 

or 2-gram distances, suggesting that the longest 

common subsequence metric (ROUGE-L) can be 

more important for the quality of conversation 

summaries. 

Moreover, we focus our analysis on the 

ROUGE score metrics, although this family of 

metrics alone is often insufficient to 

computationally appraise the quality of the 

summarization (Suleiman and Awajan, 2020). For 

instance, character n-gram F-score (chrF) 

(Popović, 2015), when evaluated for 

summarization tasks (Fabbri et al., 2021b) shows 

a higher correlation with the coherency of 

produced summaries than the ROUGE metrics. 

Further research is needed to establish the most 

apt metrics for evaluating the quality of medical 

summaries, especially as the need for maximizing 

factual correctness is critical for practical 

summarization applications in the medical 

domain. 

An important limitation of our study is the 

small number of snippets and size of the medical 

dialogue dataset. Given the sensitive nature of 

medical conversations, this is a pervasive problem 

facing the development of NLP medical models. It 

is unlikely that medical dialogue conversations 

can be easily recorded, transcribed, and released 

as a public dataset given that they are likely to 

contain highly sensitive information. However, 

our experimental design focuses on this pervasive 

issue in medical NLP by exploring how FSL and 

pre-training may be leveraged to overcome the 

scarcity of large datasets.  

In this work, we focus on a single document 

abstractive summarization. Given the length and 

complexity of medical dialogues, further 

Box 2: Sample of generated summaries and their 

evaluation. Legend: Bold – contradicting advice,  

Italic – medical incoherence, Underlined – missing 

information (minor or major), Strikethrough –  

incorrect affirmation 

258



6 

 

 

experiments exploring multi-document 

summarization, aimed at producing full-dialogue 

summaries, would be necessary. Previous 

strategies for long-text summarization, such as 

global encoding seq2seq approach (Xi et al., 

2020) or a globalized BERT architecture using a 

hierarchical propagation layer (Grail et al., 2021), 

may prove successful for summarizing long 

medical dialogues.  Further model development, 

as well as refined training and fine-tuning 

strategies (e.g., adjusting transformer’s structure, 

learning rate optimizations, and optimizing for 

additional metrics) or domain-specific dialogue 

datasets, may help further improve performance. 

Medical knowledge embeddings may also be a 

suitable strategy to improve performance and 

prevent medical incoherencies illustrated above. 

Additional evaluations involving multiple 

clinicians and creating a more encompassing 

taxonomy of medical summarization errors would 

be needed for a thorough qualitative evaluation 

and proper appraisal of the model output quality. 

Establishing additional contrasts between 

qualitative and quantitative analysis may help to 

identify metrics that reliably capture important 

medical qualitative differences, potentially 

informing the development of new metrics, and 

quantifying the issues identified in our evaluation. 

6 Conclusions and future work 

Summarization of medical dialogues with FSL 

using pre-trained models is a feasible strategy for 

model development. Future research needs to 

focus on uncovering the most adequate set of 

metrics for capturing medically relevant and 

factually correct information in medical 

summaries. Additional qualitative evaluation may 

shed light on these issues and inform either the 

selection or development of the right metrics. 
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Appendices 3 

Appendix A: Results for 10, 20, and 50 few-shot strategies 4 

Baseline(ZSL) loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large 2.78 30.93 11.40 22.44 28.59 

t5-large-samsum 2.26 35.74 13.99 24.63 33.76 

bart-large 3.26 32.70 9.69 19.74 30.78 

bart-large-cnn 2.15 36.72 11.90 22.46 34.73 

bart-large-samsum 2.18 37.38 15.88 26.11 35.40 

bart-large-cnn-samsum 2.00 40.82 16.00 27.26 38.78 

pegasus-large 3.15 35.23 11.46 22.95 32.83 

pegasus-large-cnn_dailymail 2.65 34.36 12.06 23.66 29.68 

pegasus-large-cnn-samsum 2.20 33.69 13.63 24.79 31.79 

pegasus-large-pubmed 6.93 15.31 1.00 10.41 13.99 

10 shot loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large 1.94 35.31 11.58 24.38 33.29 

t5-large-samsum 1.79 44.81 20.05 33.55 42.73 

bart-large 2.23 45.66 19.63 25.36 42.73 

bart-large-cnn 1.95 50.79 23.22 34.90 48.17 

bart-large-samsum 2.27 51.23 25.61 35.63 48.76 

bart-large-cnn-samsum 1.97 52.28 26.18 37.84 49.65 

pegasus-large 2.28 25.95 7.53 19.03 23.43 

pegasus-large-cnn_dailymail 2.19 34.88 11.57 22.30 32.65 

pegasus-large-cnn-samsum 1.93 44.56 19.33 32.19 42.41 

pegasus-large-pubmed 4.99 18.81 2.74 13.22 17.20 

20shot loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large 1.68 40.37 15.46 29.05 38.17 

t5-large-samsum 1.55 47.47 20.54 33.83 45.29 

bart-large 2.20 48.89 22.05 27.17 47.01 

bart-large-cnn 1.96 51.88 23.37 35.30 49.39 

bart-large-samsum 2.22 51.65 24.21 34.79 49.11 

bart-large-cnn-samsum 2.02 53.32 24.93 36.99 49.97 

pegasus-large 2.09 30.49 9.82 20.94 28.52 

pegasus-large-cnn_dailymail 2.05 36.31 12.44 24.23 34.22 

pegasus-large-cnn-samsum 1.89 44.42 19.21 31.82 41.98 

pegasus-large-pubmed 4.63 22.67 4.58 16.67 20.92 

50shot loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large 1.47 51.03 23.15 36.77 48.46 

t5-large-samsum 1.43 53.19 25.02 38.98 51.07 

bart-large 1.98 50.76 22.26 28.96 48.39 

bart-large-cnn 2.11 54.06 26.80 39.18 51.79 

bart-large-samsum 2.29 53.63 26.40 36.54 51.38 

bart-large-cnn-samsum 2.10 53.15 25.19 38.99 51.11 

pegasus-large 1.89 35.74 13.14 24.59 33.25 

pegasus-large-cnn_dailymail 1.89 40.76 16.87 29.22 39.15 

pegasus-large-cnn-samsum 1.81 48.27 22.71 35.60 46.20 

pegasus-large-pubmed 4.07 27.29 8.69 18.56 24.85 
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all(114 shot) loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large 1.39 51.79 23.77 37.54 49.41 

t5-large-samsum 1.39 54.91 26.64 40.46 52.37 

bart-large 1.86 52.31 23.66 34.18 49.34 

bart-large-cnn 2.05 53.59 25.07 37.72 50.96 

bart-large-samsum 2.05 52.99 24.88 37.22 50.87 

bart-large-cnn-samsum 2.04 55.32 27.12 39.67 52.22 

pegasus-large 1.78 39.51 15.74 27.57 37.22 

pegasus-large-cnn_dailymail 1.81 50.94 23.30 36.40 48.52 

pegasus-large-cnn-samsum 1.76 50.89 24.54 37.25 48.92 

pegasus-large-pubmed 3.66 30.87 11.13 21.05 28.30 

 5 
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Appendix B:  Relative (%) increase by training strategy for all models with 10, 20, 50 and full dataset 7 

Model (10 shot % increase) loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large -30.08% 14.17% 1.60% 8.63% 16.44% 

t5-large-samsum -20.84% 25.38% 43.32% 36.19% 26.58% 

bart-large -31.42% 39.62% 102.71% 28.51% 38.84% 

bart-large-cnn -9.59% 38.31% 95.23% 55.42% 38.68% 

bart-large-samsum 4.06% 37.05% 61.25% 36.47% 37.74% 

bart-large-cnn-samsum -1.62% 28.06% 63.65% 38.78% 28.03% 

pegasus-large -27.59% -26.34% -34.31% -17.09% -28.63% 

pegasus-large-cnn_dailymail -17.57% 1.52% -4.06% -5.76% 10.01% 

pegasus-large-cnn-samsum -12.25% 32.29% 41.87% 29.84% 33.39% 

pegasus-large-pubmed -27.97% 22.85% 173.45% 27.04% 22.89% 

20 shot % increase loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large -39.51% 30.54% 35.64% 29.44% 33.50% 

t5-large-samsum -31.51% 32.81% 46.84% 37.31% 34.14% 

bart-large -32.34% 49.49% 127.63% 37.68% 52.73% 

bart-large-cnn -9.22% 41.27% 96.48% 57.21% 42.20% 

bart-large-samsum 2.03% 38.18% 52.46% 33.26% 38.73% 

bart-large-cnn-samsum 1.04% 30.61% 55.84% 35.66% 28.84% 

pegasus-large -33.62% -13.45% -14.33% -8.76% -13.11% 

pegasus-large-cnn_dailymail -22.60% 5.65% 3.15% 2.44% 15.31% 

pegasus-large-cnn-samsum -14.42% 31.88% 41.00% 28.32% 32.06% 

pegasus-large-pubmed -33.11% 48.09% 357.35% 60.19% 49.51% 

50 shot % increase loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large -46.98% 65.00% 103.14% 63.84% 69.47% 

t5-large-samsum -36.83% 48.80% 78.88% 58.22% 51.28% 

bart-large -39.35% 55.20% 129.81% 46.72% 57.24% 

bart-large-cnn -2.16% 47.22% 125.27% 74.46% 49.09% 

bart-large-samsum 5.15% 43.46% 66.26% 39.97% 45.15% 

bart-large-cnn-samsum 5.20% 30.18% 57.43% 43.01% 31.79% 

pegasus-large -39.86% 1.46% 14.67% 7.12% 1.31% 

pegasus-large-cnn_dailymail -28.62% 18.62% 39.93% 23.51% 31.92% 

pegasus-large-cnn-samsum -17.79% 43.29% 66.69% 43.61% 45.30% 

pegasus-large-pubmed -41.32% 78.25% 767.70% 78.32% 77.56% 

full dataset % increase loss rouge-1 rouge-2 rouge-L rouge-Lsum 

t5large -49.78% 67.46% 108.51% 67.30% 72.81% 

t5-large-samsum -38.30% 53.61% 90.42% 64.25% 55.11% 

bart-large -42.90% 59.93% 144.22% 73.15% 60.32% 

bart-large-cnn -5.06% 45.92% 110.73% 67.97% 46.71% 

bart-large-samsum -5.96% 41.76% 56.65% 42.58% 43.70% 

bart-large-cnn-samsum 1.79% 35.51% 69.54% 45.51% 34.64% 

pegasus-large -43.53% 12.16% 37.36% 20.12% 13.40% 

pegasus-large-cnn_dailymail -31.89% 48.24% 93.25% 53.88% 63.50% 

pegasus-large-cnn-samsum -20.00% 51.06% 80.05% 50.26% 53.86% 

pegasus-large-pubmed -47.18% 101.67% 1010.81% 102.24% 102.21% 
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Appendix C: Evaluation snippets and human summary. 9 

model prediction_t5 model_prediction_pegasus model_prediction_bart human_summary 

She was on Yas before 

and didn't get different 

headaches. She has not 

noticed a real 

difference in her 

headache since then. 

Sometimes hormones 

and migraines are 

related. Do you get 

worse when you are 

having your period or 

just before? Sometimes 

dehydration might 

trigger them. It is just 

the heat and if it rains it 

changes. A starting 

point would be to keep 

some sort of headache 

diary. 

She didn't get more, 

different headaches on Yas 

or Estelle. It would have 

been nine months. 

Sometimes hormones and 

migraines are related. She 

does not get headaches 

worse when she is having 

a period or just before. On 

Sunday it was really hot 

and she was feeling 

basically dead. 

She was on Yas before and 

didn't like it. She hasn't 

noticed any difference in 

headaches since then. 

Sometimes hormones and 

migraines are related. Not 

related to her period. Keep a 

headache calendar to see if 

there is a pattern. Try 

different treatments and also 

writing down the days and 

mark when periods are and 

exams are. Has no neck 

issues. 

She was on Yas before, 

but she didn't liked it. 

She has been nine 

months on Estelle. She 

has not noticed a 

difference in headaches 

since then. She does not 

get worse headaches 

when having a period. 

She does not keep a 

calendar. On Sunday it 

was terrible, and it was 

really hot. A starting 

point is to keep a 

headache diary to see if 

there is a pattern. She 

does not have neck 

issues or pains. 

She is in the boot still. 

She fractured one of 

the metatarsals and has 

avascular new necrosis 

on her talus. It took 

ages to figure it out 

because everyone 

thought it was the 

fracture that was 

painful. 

She fractured one of the 

metatarsals and she has 

avascular new, new 

necrosis on her talus. She 

has been in the boot for 11 

weeks and has an 

appointment with the 

orthopaedic surgeon in two 

weeks. 

She fractured her toe and 

fractured one of the 

metatarsals. She has 

avascular new necrosis on 

her talus and has been in the 

boot for 11 weeks. Has an 

appointment with the 

orthopaedic surgeon in two 

weeks to check it out. Had a 

pelvic exam before. Is 

studying clinical science at 

Macquarie for two years. It is 

not covered by HECS. 

Doing the swabs 

involves a pelvic exam 

and having a look at the 

external skin. She 

fractured her toe and is 

in the boot still. She 

fractured one of the 

metatarsals and have an 

avascular necrosis of 

the talus. She has been 

on the boot for 11 

weeks. She has an 

appointment with the 

orthopaedic surgeon in 

two weeks. She studies 

clinical science at 

Macquarie. She does 

not know what she will 

do next. 

He is coughing for two 

weeks. He feels itchy 

inside and there are 

sticky things in his 

throat. When he coughs 

it feels like a dry cough 

but it is not coming 

out. Breathing feels 

normal sometimes. Has 

asthma or chest 

problems. Used to use 

puffers. Had asthma 

four years ago and 

coughed all the winter. 

Have allergies to some 

food like yellow beans, 

beans and flour or 

some plant or seafood. 

He has been coughing for 

two weeks. itchy inside of 

here and annoying sticky 

things in his throat. It feels 

like there is a bit of stuff 

there but it is not coming 

out. Has a history of 

asthma or chest problems. 

He used to have puffers 

but they are a long time 

ago. There was no fever or 

sore throat and nothing 

else. After he had ice 

cream he coughed a runny 

nose. 

Cough has been two weeks. 

Apart from the cough he 

feels itchy. There are 

annoying sticky things in his 

throat. It feels like there is a 

bit of stuff there, but it is not 

coming out. Breathing feels 

normal sometimes. He had a 

history of asthma and chest 

problems in China and used 

to take puffers. Nothing else 

besides cough. No fever, sore 

throat, or runny nose. Cough 

reminds him of a cough a 

few years ago that didn't 

stop. Has allergies to some 

food but not heavy. Some 

kind of plant or seafood. 

Cough for two weeks, 

feeling itchy inside and 

having stuff that is not 

coming out. Sometimes 

having difficulty 

breathing. Four years 

ago, had an asthma 

episode in China and 

used a puffer. No fever 

or sore throat. No runny 

nose. This cough 

reminds of the previous 

one. He says it start 

after a cold drink or ice-

cream especially in 

winter. He has mild 

allergies to some food, 

usually pimples on the 

skin, but not affecting 

breathing. 
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Nothing like that. He is 

generally healthy. At 

night he coughs more 

but still has good sleep. 

Before this two weeks, 

if you are running or 

exercising, you get 

breathing problems or 

cough. Two weeks ago 

was in China and will 

start coughing after two 

ice creams. 

Temperature can 

sometimes have an 

effect on breathing. It 

could be that you 

picked up some sort of 

infection that has 

triggered the cough, but 

it is more like asthma. 

They will listen to his 

chest and use a puffer. 

There is no one around 

him. 

He is generally healthy. He 

coughs more at night but 

has good sleep. If he is 

running or exercising he 

gets breathing problems or 

cough. Two weeks ago he 

was in China and had a 

cough one day before 

leaving. It doesn't sound 

like he has had the runny 

nose or sore throat. 

He is generally healthy. He 

coughs more at night but still 

gets good sleep. Usually, he 

doesn't exercise or run. Two 

weeks ago he was in China 

and ate two ice creams. 

Temperature can have an 

effect on breathing but not 

like weeks of cough. It 

doesn't sound like he had a 

runny nose or sore throat. 

There are a lot of sticky 

things in the chest but it does 

not come out. They will have 

a listen to his chest and 

check his throat and ears and 

temperature.  He may need to 

use a puffer for a while. 

Nobody else has a cough 

He is healthy. Coughing 

more at night but still 

sleeping. He will cough 

when running for a train 

or bus or when exerting. 

He felt the cough was 

starting after eating an 

ice cream. Temperature 

can have an effect but 

won't give weeks of 

cough. He just has 

sticky things that 

doesn't come out. It 

could be some infection 

that triggered the 

cough. No one around 

him has cough. 

It is difficult to breathe. 

She feels a little bit 

painful in the food 

pipe. Her digestion 

system is not 

functioning well. The 

intestine is fine. When 

she is hungry the acid 

level goes up and up. 

Last year she used to 

have that but she had 

some medicine to 

reduce the level in 

Cambodia. It helped 

when she took the 

medicine. Sometimes 

we do an endoscopy to 

look down with the 

camera. There is no 

vomiting or other 

stomach symptoms. No 

runny nose. 

It feels like difficult to 

breathe. She feels pain in 

the food pipe. Her 

digestion system is not 

functioning well, so she 

thought it might be the 

stomach. The stomach is 

fine. Last year she used to 

have some medicine to 

reduce the acid level and it 

improved. It was 

prescribed in Cambodia. 

It is difficult to breathe when 

breathing and a bit painful in 

the food pipe. The first time 

she met you said it was about 

the windpipe but because her 

digestion system is not 

functioning well, she thought 

it might be the front. There is 

nothing down here. She feels 

very hungry high up in her 

tummy and acid levels go up 

and up. Last year she used to 

have acid reflux but then she 

took some medicine to 

reduce acid level and it 

improved. It was prescribed 

in Cambodia. Taking the 

medicine helped. Sometimes 

we trial some treatment and 

if it responds it can be done 

with an endoscopy. Has not 

vomited or had a fever or 

runny nose. 

It feels like is difficult 

to breathe and 

sometimes a little 

painful in the food pipe. 

Intestines and tummy 

feel fine. Feels 

uncomfortable when 

very hungry and that 

the acid is coming up. 

Used to have it last year 

but improved with 

medicine to reduce 

acid. It was prescribed 

in Cambodia. 

Sometimes we trial 

treatments, we don't 

rush in and do an 

endoscopy if not 

necessary. Felt tired. No 

vomiting, fever or 

runny nose. 

Tonsils are still swollen 

and she is not 

coughing. Acid can 

give irritation in the 

throat. She hasn't lost a 

lot of weight. One kilo 

less. No blood in bowel 

motions or vomiting 

blood. Sometimes it 

can be related to spicy 

food, coffee, chocolate, 

alcohol or food that is 

very acidic. Trying to 

She is coughing but not 

coughing. Her tonsils are 

still swollen. If it is acid 

coming up, it can give her 

irritation in the throat. She 

hasn't lost a lot of weight, 

but she has lost one kilo. It 

is common to have acid 

problems related to spicy 

food, coffee, chocolate, 

alcohol and acidic food. 

No coughing, but the tonsils 

are still swollen. Acid can 

give you irritation in the 

throat. She hasn't lost a lot of 

weight. Fifty-four point three 

is one kilo less. There is no 

blood in bowel motions or 

vomiting blood. Sometimes 

it can be related to the food 

you eat spicy or acidic. You 

don't want to eat a huge 

amount of food in one sitting 

because it puts pressure on 

No coughing but tonsils 

are still swollen. Acid 

coming up can irritate 

the lining of the throat. 

Weights 54.3 kilos and 

has lost a kilo. No 

blood in the bowel 

motions or when 

vomiting. Acid can 

relate to food you eat 

like spicy, coffee, 

chocolate, or alcohol. 

Sometimes a cup of hot 
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avoid certain foods. 

Drinking hot milk can 

sometimes help. There 

are tablets and also 

Mylanta liquid that she 

can drink. 

the stomach. At night is pain 

at 11 when drinking hot 

milk. Tablets can also be 

bought from chemist 

Mylanta from Cambodia. 

milk helps. You can 

also buy Mylanta from 

the chemist. 

She had a miscarriage 

and gave some test on 

Tuesday. She started 

vaginal bleeding on last 

Wednesday and she 

was not here on 

Thursday. They gave 

her an ultrasound and 

they couldn't hear the 

heartbeat. The baby did 

not grow much. 

She had a miscarriage. She 

was in study notes and 

couldn't do the test on 

time. Before last 

Wednesday she started 

bleeding, vaginal bleeding. 

On the Thursday she came 

to see the doctor and told 

them. They appointed her 

to Lucy and gave her 

ultrasound. The first 

ultrasound was 153 

heartbeat. Then on the 

same day they could not 

find heartbeat and the baby 

didn't grow much. 

She had a miscarriage. She 

was given a test on Tuesday 

and couldn't do it on time. 

Before last Wednesday she 

started bleeding, vaginal 

bleeding. They couldn't hear 

the heartbeat and she was 

about 13 weeks pregnant. 

The baby didn't grow much, 

about seven or eight weeks 

growth. 

Lucy had a miscarriage. 

She started a vaginal 

bleeding last 

Wednesday. They did 

an emergency 

ultrasound and could 

not hear a heartbeat. 

First ultrasound was 

normal. She was 13 

weeks pregnant. The 

first ultrasound showed 

it wasn't growing. 
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Abstract
We introduce a novel tree-based model that
learns its composition function together with its
structure. The architecture produces sentence
embeddings by composing words according to
an induced syntactic tree. The parsing and the
composition functions are explicitly connected
and, therefore, learned jointly. As a result, the
sentence embedding is computed according to
an interpretable linguistic pattern and may be
used on any downstream task. We evaluate our
encoder on downstream tasks, and we observe
that it outperforms tree-based models relying
on external parsers. In some configurations,
it is even competitive with BERT base model.
Our model is capable of supporting multiple
parser architectures. We exploit this property to
conduct an ablation study by comparing differ-
ent parser initializations. We explore to which
extent the trees produced by our model com-
pare with linguistic structures and how this ini-
tialization impacts downstream performance.
We empirically observe that downstream su-
pervision troubles producing stable parses and
preserving linguistically relevant structures.

1 Introduction

Computing sentence semantic representations tradi-
tionally calls for a recursive compositional function
whose structure is tree-shaped. There is a strong
intuition in natural language processing that lan-
guage has a recursive structure (Chomsky, 1956;
Shen et al., 2019). Tree-based models should thus
mimic the compositional effect of language and
enable better generalization and abstraction.

Yet, tree-based models need carefully hand-
annotated data to be trained. Alternative methods
such as recurrent neural network (Hochreiter and
Schmidhuber, 1997; Cho et al., 2014) or BERT (De-
vlin et al., 2019) have gained increased popularity
as they only require raw text as input. On the other
hand, as many results suggest (Linzen et al., 2016;
Jawahar et al., 2019; Clark et al., 2019), these new
models acquire some sort of tree structure.

Another line of work, called latent tree learning,
induces trees from raw text and computes seman-
tic representations along with the inferred struc-
ture (Socher et al., 2011; Bowman et al., 2016;
Dyer et al., 2016; Maillard et al., 2019; Yogatama
et al., 2017; Kim et al., 2019). Such methods pre-
serve explicit recursive computation and produce
intelligible tree structures. Moreover, the parser
and composition function are learned jointly and
are specific to a given task or domain. Choi et al.
(2018) propose the closest approach to ours by com-
posing a tree using the Gumbel-Softmax estimator.
The method is fully differentiable, produces a dis-
crete tree, and does not require training the parser
using an auxiliary task. However, Williams et al.
(2018) show the method does not produce mean-
ingful syntactic representations and that trees are
inconsistent across initializations. Moreover, Choi
et al. (2018) produces trees by selecting and merg-
ing adjacent nodes. Therefore, it cannot directly
use architectures designed for standard parsing for-
malisms such as dependency structures.

We propose a unified architecture, which infers
an explicit tree structure and recursively trains
a sentence embedding model. Our method is
fully differentiable and relies on existing and well-
known components. We use a standard dependency
parsing structure, obtained using a graph-based
biaffine dependency parser (Dozat and Manning,
2017). However, our model is not limited to a
particular parser architecture as long as it is differ-
entiable.

We organize our paper as follows: we present
our model in section 2. In section 3, we evaluate
our model on textual entailment and semantic sim-
ilarity tasks. We then conduct an ablation study
and analyze the impact of the parser initialization.
We compare the learned structures across initializa-
tions and with interpretable annotations (4.1) and
we study how latent structures impact performance
on downstream tasks (4.2).
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2 Model

Our model jointly performs sentence parsing and
the prediction of a sentence embedding. The sen-
tence embedding is predicted by a weighted TREE-
LSTM whose tree structure is provided by a de-
pendency parser. The TREE-LSTM recursive com-
position function crucially uses a weighted sum of
the child representations whose weights are pro-
vided by the parser edges, hence linking the parser
outputs to the TREE-LSTM recursion. Figure 1
illustrates the architecture detailed in Eq. 1 to 10.

Parsing model The parser is a standard graph
based biaffine dependency parser1 (Dozat and Man-
ning, 2017). It is formalized in two steps. First, Eq.
1 and 2 compute a weight matrix that is interpreted
as a weighted directed graph whose nodes are the
sentence tokens:

a
(dep)
k = MLP(hk), a

(head)
j = MLP(hj) (1)

s
(arc)
kj = (a

(dep)
k ⊕ 1)⊤U (b)a

(head)
j + b(b) (2)

With hk ∈ Rd the hidden state associated with
the word at index k in the input sentence and in
Eq. 2, U (b) ∈ R(d+1)×d and b(b) ∈ R. The symbol
⊕ denotes vector concatenation and MLP in Eq. 1
are single-layer perceptron networks.

The second step performs parsing by comput-
ing a maximum spanning tree from the graph. As
in Dozat and Manning (2017), we use the Max
Spanning Tree (MST) algorithm to ensure the well-
formedness of the tree (Chu, 1965; Edmonds et al.,
1967):

αkj = 1
mst(s

(arc)
kj )

s
(arc)
kj (3)

Where αkj is the probability of the edge linking
node j to node k. For a given node k, there is at
most one non-zero edge leading to its governor j.

Compositionally weighted tree LSTM Given
a predicted tree structure, we recursively encode
the sentence using a variant of the Child Sum Tree
model from Tai et al. (2015). The recursion fol-
lows the predicted structure: from the leaves to the
root. At each step j, the transition function takes
as input the word vector representation xj of the

1We give hyper-parameter details for the biaffine parser in
Appendix A.3.

Figure 1: We illustrate the architecture detailed in Eq. 1
to 10. The Biaffine parser provides the sentence struc-
ture from which the TREE-LSTM computes sentence
embeddings. The full pipeline is differentiable as the
TREE-LSTM weights are given by the parser.

head node j and the previously computed hidden
states hk from all its children.

h̃j =
∑

k∈C(j)

αkjhk, (4)

ij = σ
(
W (i)xj + U (i)h̃j + b(i)

)
, (5)

oj = σ
(
W (o)xj + U (o)h̃j + b(o)

)
, (6)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
, (7)

fjk = σ
(
W (f)xj + U (f)hk + b(f)

)
, (8)

cj = ij ⊙ uj +
∑

k∈C(j)

fjk ⊙ ck, (9)

hj = oj ⊙ tanh(cj), (10)

Where xj and hj are respectively the word vec-
tor representation and hidden state associated with
the head node j. In Eq. 4, C(j) denotes the set of
children of node j. σ denotes the logistic sigmoid
function and ⊙ denotes elementwise multiplica-
tion. Crucially, in our case, Eq. 4 is a weighted
sum rather than a standard sum and the weights are
those αkj provided by the parser.

We use the embedding computed by the
weighted TREE-LSTM at the root of the tree as
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the sentence embedding. The tree shape and the
edge weights are given by the best prediction of a
graph parser. The parsing model is linked to the
TREE-LSTM by the weights αkj . This architec-
ture allows us to jointly update the parser and the
TREE-LSTM weights using only the downstream
task loss. The supervision comes only from the
objective of the downstream task, and no interme-
diate structure target is required. Our model is fully
differentiable and preserves the discreteness of the
tree composition process. It relies on a dependency
parsing formalism and could accommodate any dif-
ferentiable parser.

3 Evaluation

Our architecture primarily aims to produce relevant
embeddings for downstream tasks. To this end, we
compare our setup with other models from the liter-
ature on various tasks. For this comparison, we first
pre-train the parsing submodel on human-annotated
sentences from the Penn Tree Bank (PTB) (Marcus
et al., 1993) converted to Stanford dependencies.
We then fine-tune the parser’s parameters on the
task while training the full model2.

3.1 Semantic textual similarity (STS)
We first evaluate our model on the SICK-R down-
stream task (Marelli et al., 2014), which is dedi-
cated to assessing models’ compositional proper-
ties. The dataset comprises 9,927 sentence pairs,
distributed in a 4,500/500/4,927 train/dev/test split,
annotated for semantic similarity on a 1 to 5 real
range. It includes specific examples of variations
on passive and active forms, quantifier and modifier
switches, or negations3.

We use a similar training procedure as in Tai
et al. (2015). We transform the target y from the
SICK-R task into the distribution p defined by:

pi =





y − ⌊y⌋, i = ⌊y⌋+ 1
⌊y⌋ − y + 1, i = ⌊y⌋
0 otherwise

We use a dedicated architecture to predict the
similarity distribution from a pair of sentences. The

2In this configuration, we observe pre-training the parser
may cause weights α to become too large in Eq. 3. This leads
to poor downstream performance. We correct this with a multi-
plicative parameter τ whose value is estimated during training.
It means we replace Eq. 3 with: αkj = τ · 1

mst(s
(arc)
kj

)
s
(arc)
kj

for tree weights computation.
3Appendix A.1 details the hyper-parameters and training

infrastructure.

similarity module takes as input a pair of sentence
vectors hL and hR and computes their component-
wise product hL⊙hR and their absolute difference
|hL − hR|. Given these features, we compute the
probability distribution p̂θ using a two-layer per-
ceptron network (MLP):

h× = hL ⊙ hR, h+ = |hL − hR|,
hs = σ(W (×)h× +W (+)h+ + b(h)),

p̂θ = softmax(W (p)hs + b(p)),

(11)

We use the KL-divergence between the predic-
tion p̂θ and the ground truth p as training objective:

J(θ) =
1

N

N∑

k=1

KL(p(k)||p̂(k)θ ) + λ||θ||22 (12)

Finally during inference, the similarity score ŷ
is computed as ŷ = r⊤p̂θ with r⊤ = [1, . . . , 5].

Encoder r

BOW† 78.2 (1,1)

LSTM† 84.6 (0.4)

Bidirectional LSTM† 85.1 (0.4)

N-ary TREE-LSTM† (Tai et al., 2015) 85.3 (0.7)

Childsum TREE-LSTM† (Tai et al., 2015) 86.5 (0.4)
BERT-base (Devlin et al., 2019) 87.3 (0.9)

Unified TREE-LSTM† (Our model) 87.0 (0.3)

Table 1: Evaluation on the SICK-R task: we pre-train
our parsing module on the PTB and continue to update
the full model on the SICK-R task. We compare with
BERT and models relying on sequential and tree struc-
tures. We report Pearson correlation on the test set, by
convention as r × 100 (avg. and std. from 5 runs). † in-
dicates models that we trained. All models are trained
following the same procedure detailed in Appendix A.1.

Table 1 reports the results from the test set. As
expected, structured models perform better than
models using weaker underlying structures. We
also observe that our model is competitive with a
BERT-base upper-line. It is essential to note that
BERT models are heavily pre-trained on vast cor-
pora, whereas our structured models are trained
only on the SICK-R and PTB data.

3.2 Textual entailment

We also test our model on the Stanford Natural
Language Inference (SNLI) task (Bowman et al.,
2015), which includes 570k pairs of sentences with
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the labels entailment, contradiction, and neutral,
distributed in a 550k/10k/10k train/dev/test split4.

We use a similar training procedure as in Choi
et al. (2018). A dedicated architecture is used to
predict the similarity distribution from a pair of
sentences. The similarity module takes as input a
pair of sentence vectors hL and hR and computes
their componentwise product hL ⊙ hR and their
absolute difference |hL−hR|. Given these features,
we compute the probability distribution p̂θ using a
three-layer perceptron network (MLP):

h× = hL ⊙ hR, h+ = |hL − hR|,
hs = h× ⊕ h+ ⊕ hL ⊕ hR

hs = ReLU(W (1)hs + b(1)),

hs = ReLU(W (2)hs + b(2)),

p̂θ = softmax(W (p)hs + b(p)),

(13)

We use the cross entropy loss between the predic-
tion p̂θ and the ground truth p as training objective:

J(θ) = − 1

N

N∑

k=1

p(k) log p̂
(k)
θ + λ||θ||22 (14)

Encoder Test Acc.

SPINN \w Reinforce (Yogatama et al., 2017) 80.5
CYK and TREE-LSTM (Maillard et al., 2019) 81.6

SPINN (Bowman et al., 2016) 83.2
ST-Gumbel (Choi et al., 2018) 86.0

Structured Alignment (Liu et al., 2018) 86.3
BERT-base (Zhang et al., 2020) 90.7

Unified TREE-LSTM (Our model) 85.0 (0.2)

Table 2: Evaluation on the SNLI-R task: We pre-train
our parsing module on the PTB and continue to update
the full model on the SNLI task. We compare with
BERT and latent tree learning models. We report the
accuracy on the test set (avg. and std. from 2 runs).

We report the results in Table 2. Our results
are close to Choi et al. (2018), which also com-
pute semantic representations along to discrete tree
structures but relies on a distinct syntactic formal-
ism. In models from Liu et al. (2018) and Zhang
et al. (2020) sentences are encoded with direct in-
teraction using an attention mechanism. These
architectures relying on cross sentence attention
outperform those without. We hypothesize that,

4Appendix A.2 details the hyper-parameters and training
infrastructure.

on this textual entailment task, the final prediction
cannot be directly deduced from both sentence em-
beddings. In this case, BERT and the structured
alignment model have a clear advantage since they
encode interactions between both sentences.

4 Impact of the parser initialization

Our framework primarily aims to be a structured
sentence encoder. Accordingly, we have demon-
strated in the previous section that our architec-
ture is competitive with comparable approaches
and might even be competitive with BERT-based
models. We are also interested in interpreting the
structures the model actually learns and how such
structures impact downstream performance.

In the previous section, we pre-trained the parser
on human annotated data. However, the optimal
structure might differ from the task. Moreover,
for computational reasons, it might even differ sig-
nificantly from linguistic insights. In this section
we perform an ablation study to better understand
how the initialization of the parser impacts the re-
sulting structures (4.1) and the final downstream
performance (4.2). We define two initialization
scenarios below. In both, we either continue to
update the parser when fine-tuning the model on
downstream tasks or freeze the parser and only
train the TREE-LSTM. These two configurations
are indicated with respectively✓ and × symbols.

Linguistic annotations Tree-structured models
traditionally rely on linguistic structures obtained
by parsers (Tai et al., 2015). For languages such
as English, linguistic resources are available; it is
technically possible to pre-train the parser. How-
ever, resources such as the PTB are not available
in all languages. To better quantify the benefits of
using linguistic annotations, we propose the follow-
ing configurations, using various proportions of the
PTB to initialize the parser:

• In the PTB-All configuration, the parser is
previously pre-trained on the PTB. This con-
figuration is the same as in section 3.

• In the PTB-∅ configuration, the parser param-
eters are randomly initialized

• We also consider an initialization with only a
small proportion of the PTB and train a parser
by only using 100 randomly selected samples.
This configuration is referred as PTB-100.
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Unsupervised structures Many lines of work
investigate if attention matrices from large pre-
trained models reflect syntactic structures (Jawahar
et al., 2019; Clark et al., 2019; Ravishankar et al.,
2021) or if tree structures can be integrated into
transformers (Wang et al., 2019; Bai et al., 2021).

Since our model is not specific to any parser
architecture. It is possible to use the internal repre-
sentations from BERT to infer sentence structure.

BERT relies upon the self-attention mechanism.
Inside each layer, tokens are computed as a
weighted combination from each other. For each
token x, a query and key vector are computed using
a linear transformation detailed in Eq 15. Given
these vector tuples, the attention weights s are com-
puted following Eq 16 in which N refers to the
dimension of the query and key vectors.

qj , kj = W (q,k)xj + b(q,k) (15)

skj = softmax

(
kk · qj√

N

)
(16)

We induce a tree structure following a procedure
close from Ravishankar et al. (2021). We inter-
pret the combination weights s as a weighted graph
whose nodes are tokens. We then apply Eq 2 to in-
duce a maximum spanning tree from the attention
matrix as detailed in section 2. We make use of the
last layer and induce a tree for each attention head
taken separately5. Given the tree structure induced
from BERT, we apply our TREE-LSTM model de-
tailed in Eq. 4 to 10. In this configuration, we only
use BERT as an unsupervised parser to infer a sen-
tence structure. The semantic composition along
with the structure to produce a sentence embedding
is solely computed by the weighted TREE-LSTM.

4.1 Impact on parses
This section analyzes to which extent the struc-
tures generated by our model are comparable with
meaningful linguistic annotations. We compare the
parses generated by two distinct models differing
by their initialization on the development set of
both tasks. Our reference is the silver parses from
the PTB-All configuration, where the parser is pre-
viously pre-trained on the full PTB and not updated
during training.

Table 3 measures the Unlabeled Attachment
Score (UAS) between the two parsers, that is, the

5We give details about the hyper-parameters in Ap-
pendix A.4.

ratio from the number of common arcs between
two parses by the total number of arcs6.

Parser 1 Parser 2 SICK-R
(dev UAS)

SNLI (dev
UAS)

Impact of parser fine-tuning

PTB-100 (✓) PTB-100 (×) 85.2 (1.5) 5.6 (1.9)
PTB-All (✓) PTB-All (×) 98.4 (0.1) 11.7 (0.9)

Impact of the PTB sample size

PTB-100 (✓) PTB-∅ (✓) 6.3 (0.0) 10.1 (10.7)
PTB-All (✓) PTB-∅ (✓) 10.1 (0.0) 15.1 (15.4)
PTB-All (✓) PTB-100 (✓) 76.9 (0.7) 0.3 (0.2)

Unsupervised parser

BERT (×) PTB-All (×) — 13.0 (4.9)
BERT (✓) PTB-All (×) — 13.7 (2.7)

Table 3: Impact of the parser initialization on parses:
we compare the parses from the SICK-R and SNLI de-
velopment sets using different parser initializations. We
obtained the PTB parses with the graph parser initialized
on a given proportion of the PTB (section 2). Regarding
BERT , we inferred the structures from the pattern learn
by the pre-trained model (section 4). We either continue
to update the parser (✓) when fine-tuning the model
on downstream tasks or freeze the parser (×) and only
train the TREE-LSTM. UAS corresponds to the mean
pairwise comparison of two configurations between two
runs (std. in parentheses).

We observed distinct behaviors given both tasks.
We believe this effect is due to the differences be-
tween training configurations. In particular, we use
the Adagrad optimizer for the SICK-R task and
Adam for the SNLI task.

For the SICK-R task, the UAS between PTB-∅
and PTB-All are very low. This reveals that the
parses obtained with only downstream task super-
vision have few in common with gold linguistic
parses. In this regard, we share the observation
from Williams et al. (2018) that latent trees ob-
tained from sole downstream supervision are not
meaningful in syntax. However, PTB-All and PTB-
100 are remarkably close; only a few PTB samples
are needed to obtain intelligible linguistic parses
with our setup. Regarding the PTB-100 configura-
tion, we note an evolution of the parses when fine-
tuning on the downstream task. We hypothesize
that the model can adapt to the dataset’s specificity.

For the SNLI task, fine-tuning the parser deeply
impacts the shape of the parses. Depending from
the initialization, parses will converge to distinct
structures. Indeed, the UAS between all configura-

6We present some parse tree examples in Appendix A.5.
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tions is very low. Moreover, when using a random
initialization (PTB-∅), the standard deviation be-
tween UAS from various runs is very high: without
fixed initialization, parses become unstable.

For the initialization with an unsupervised struc-
ture, we only evaluate our setup on the SNLI task,
which has more training samples. We compare the
structures obtained with BERT with the silver trees
from the PTB-All-× configuration. We present
the mean UAS over the trees obtained for all at-
tention heads. The standard deviation is relatively
high, pointing underlying structures differ given
the attention head. Nonetheless, self-supervised
structures do not align well with linguistic insights.
When updating BERT together with the TREE-
LSTM, the UAS increases while the standard devi-
ation decreases. As BERT is fine-tuned, structures
tend to become more standard and present slightly
more similarities with linguistic patterns.

4.2 Impact on downstream tasks
We observed in previous section 4.1 that the initial-
ization and the training configuration of the parser
component deeply impact the resulting parses. We
now study the impact of the parser initialization on
downstream performance.

PTB
sample size

Parser
fine-tuning SICK-R (r) SNLI (Acc.)

Linguistic annotations

PTB-∅ ✓ 85.6 (85.6) 84.6 (85.5)

PTB-100 × 86.4 (86.6) 84.5 (85.5)
PTB-100 ✓ 86.5 (86.9) 84.9 (85.8)

PTB-All × 86.8 (87.2) 85.0 (85.8)
PTB-All ✓ 87.0 (87.5) 85.0 (85.5)

Unsupervised parser

BERT × — 84.4 (85.3)
BERT ✓ — 84.6 (85.1)

Table 4: Impact of the parser initialization on down-
stream task performance: We pre-train the parser mod-
ule with a given sample size from the PTB. We either
freeze (×) or update (✓) the parser during the fine-
tuning. We report the average test score set from 5 runs
for SICK-R and 2 runs for SNLI (the score from the
development set are in parentheses). We report Pearson
correlation by convention as r × 100.

Table 4 compares the impact of the different
initializations for both tasks. We report the Pearson
correlation on the test set of the SICK-R task and
the accuracy on the test set from the SNLI task.

We either freeze the parser component or con-

tinue to update it, given the downstream loss for
each initialization. Fine-tuning the parser on the
task generally leads to an improvement of the down-
stream results. In that regard, we share the observa-
tion from other latent tree learning methods (Mail-
lard et al., 2019; Choi et al., 2018); models jointly
learning the parsing and composition function out-
perform those with a fixed structure.

Models using the full or partial annotated data
outperform models relying on the sole downstream
supervision (PTB-∅), in particular on the SICK-R
task. We previously observed that fine-tuning the
parser can lead to tree structure diverging from lin-
guistic patterns. Nonetheless, regarding the down-
stream performance, human annotation appears as
a good initialization for our model.

Models relying on linguistic-driven structures
seem to achieve better performance. Nonetheless,
the difference is thin, and we present here an av-
erage score across trees obtained from all atten-
tion heads. Therefore some attention heads might
present structures as efficient as linguistic patterns.

5 Conclusion and future work

We investigate the relevance of incorporating tree-
like structural bias in the context of sentence se-
mantic inference. To this end, we formulate an
original model for learning tree structure with dis-
tant downstream supervision. Our model is based
on well-known components and could therefore ac-
commodate a variety of parsing architectures such
as graph parsers or attention matrices from BERT.

We evaluate our model on textual entailment and
semantic similarity tasks and outperform sequen-
tial models and tree-structured models relying on
external parsers. Moreover, when initialized on
human-annotated structures, our model improves
inference close to BERT base performance on the
semantic similarity task.

We then conduct an ablation study to quantify
the impact of the parser initialization on the result-
ing structures and downstream performance. We
corroborate that the sole use of downstream super-
vision is insufficient to produce parses that are easy
to interpret. To encourage convergence towards
readable linguistic structures, we examine a num-
ber of initialization setups. Our structures often
converge toward trivial branching patterns, which
have few in common with gold linguistic parses.
Yet, regarding downstream performance, linguistic
insights appear as a relevant initialization.
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A Appendices

A.1 SICK-R training configuration
Hyper-parameters We set the hyperparameters
given literature on the domain, in particular regard-
ing choices made in Tai et al. (2015). For all ex-
periments detailed in the current section, the batch
size is fixed to 25, weight decay to 1e−4 and gra-
dient clipping set to 5.0. The learning rate is set
to 0.025 for the TREE-LSTM parameters. When
using a pre-training procedure for the parser, we
set the learning rate to 5e−3 and use the following
warm-up: for the first epoch, the parser is frozen.
For the following epochs, all parameters are trained.
At each epoch, the parser learning rate is divided
by a factor of two. Without pre-training, the learn-
ing rate is set to 5e−4 for the parser. All model
weights are initialized with a Xavier distribution.
The hidden size of the similarity architecture is set
to 50. The TREE-LSTM hidden size is set to 150.
We use the Adagrad optimizer. We do not apply
any dropout. We perform training for a maximum
of 20 epochs and stop when no improvement was
observed on the development set for 3 consecutive
epochs. Regarding the vocabulary, we limit the
size to 20,000 words and initialize the embeddings
layer with 300-dimensional GloVe embeddings7.
The embeddings are not updated during training.

Training infrastructure We trained all models
on a single 1080 Ti Nvidia GPU. Training time for
each epoch is approximately 1 minute. The model
counts 13.7M parameters. Data can be downloaded
using the SentEval package8.

A.2 SNLI training configuration
Hyper-parameters We set the hyper-parameters
given literature on the domain, in particular regard-
ing choices made in Choi et al. (2018). For all
experiments detailed in section 3.2, the batch size
is fixed to 128, weight decay to 0, and gradient clip-
ping set to 5.0. The learning rate is set to 1e−3 for
the TREE-LSTM and the parser. The hidden size
of the similarity architecture is set to 1,024. The
TREE-LSTM hidden size is set to 600. We use the
Adam optimizer. We apply a 0.2 dropout within the
similarity architecture. We perform training for a
maximum of 20 epochs and stop when no improve-
ment was observed on the development set for 3

7https://nlp.stanford.edu/projects/
glove/

8https://github.com/facebookresearch/
SentEval

consecutive epochs. Regarding the vocabulary, we
limit the size to 100,000 words and initialize the
embeddings layer with 300-dimensional GloVe em-
beddings. The embeddings are not updated during
training.

Training infrastructure We trained all models
on a single 1080 Ti Nvidia GPU. Training time
for each epoch is approximately 2h30 hours. The
model counts 13.7M parameters. Data can be
downloaded using the SentEval package9.

A.3 Model Architecture

Regarding the biaffine parser, all parameters are
chosen given Dozat and Manning (2017) recom-
mendations. We use a hidden size of 150 for the
MLPs layers and 100 for the biaffine layer. The
dropout rate is fixed to 0.33. We use an open-
source implementation of the parser and replace
the pos-tags features with character level features.
Therefore we don’t need pos-tags annotations to
parse our corpus10. We encode words using 100-
dimensional GloVe embedding and a character em-
bedding size of 50. Word vectors are then fed to a
bidirectional LSTM with 3 layers of size 400.

A.4 BERT unsupervised parsing

When using BERT to perform unsupervised parsing,
we use the implementation of BERT-base model
from the Transformers library11. When fine-tuning
the parser component, we set the learning rate to
2e−5 When fine-tuning BERT parser, each epoch
takes around 5 hours on the SNLI. Without fine-
tuning, this time is reduced to 90 minutes.

A.5 Visualization of the parses

We illustrate the effect summarize on Table 3 on
some random examples. Figures from the first col-
umn (2a, 2c and 2e) show the parses obtained with-
out updating the parser component on the down-
stream task. Figures from the second column(2b,
2d and 2f) show the evolution of the parses for the
same initialization but after fine-tuning the parser
on the SNLI task. Figures from the first row (2a
and 2b) are initialized using the full PTB, the sec-
ond row (2c and 2d) is initialized using 100 PTB

9https://github.com/facebookresearch/
SentEval

10https://github.com/yzhangcs/
biaffine-parser

11https://huggingface.co/transformers/
model_doc/bert.html
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(a) Parse obtained using the the PTB-All (×) configuration. (b) Parse obtained using the the PTB-All (✓) configuration.

(c) Parse obtained using the the PTB-100 (×) configuration. (d) Parse obtained using the the PTB-100 (✓) configuration.

(e) Parse obtained using the attention head #1 and without
updating BERT.

(f) Parse obtained using the attention head #1 and updating
BERT.

Figure 2: Example of parse obtained using various configurations from our model. The parser component is
initialized on PTB-All (2a, 2b), PTB-100 (2c, 2d) or BERT (2e, 2f). We either freeze (×) or update (✓) the parser
during the fine tuning on the SNLI. We include the weights α produced from the parser. We report the accuracy
from a single run on the test set.

samples while the one from the last row (2e and 2f)
are initialized using unsupervised patterns.

For the initialization with the PTB, we observe
the fine-tuning makes the tree evolve to trivial struc-
tures and tend to connect every node to an arbi-
trary root. We hypothesize, such trivial structures
present advantages from a computational point of
view. As observed in Shi et al. (2018), trivial trees
without syntax properties might lead to surpris-
ingly good results. Shi et al. (2018) hypothesize
that trivial trees gain might benefit from shallow
and balanced properties.

For BERT parser initialization, we observe the
fine-tuning produces rather sequential patterns,
with words connected to direct neighbors. Some
isolated groups of words also present inner connec-
tions.
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Abstract

Transformer-based models have been achiev-
ing state-of-the-art results in several fields of
Natural Language Processing. However, its di-
rect application to speech tasks is not trivial.
The nature of this sequences carries problems
such as long sequence lengths and redundancy
between adjacent tokens. Therefore, we believe
that regular self-attention mechanism might not
be well suited for it.

Different approaches have been proposed to
overcome these problems, such as the use of
efficient attention mechanisms. However, the
use of these methods usually comes with a cost,
which is a performance reduction caused by
information loss. In this study, we present
the Multiformer, a Transformer-based model
which allows the use of different attention
mechanisms on each head. By doing this, the
model is able to bias the self-attention towards
the extraction of more diverse token interac-
tions, and the information loss is reduced. Fi-
nally, we perform an analysis of the head con-
tributions, and we observe that those architec-
tures where all heads relevance is uniformly dis-
tributed obtain better results. Our results show
that mixing attention patterns along the differ-
ent heads and layers outperforms our baseline
by up to 0.7 BLEU.

1 Introduction

Conventionally, Speech-to-text Translation (ST)
task has been addressed through cascade ap-
proaches (Ney, 1999), which consists of the con-
catenation of an Automatic Speech Recognition
block (ASR), for the audio transcription, with an-
other Machine Translation block (MT), for the
translation of such transcription into the desired
language. However, this approach ignores some
information present in the audio, since it trans-
lates from the audio transcript, and is also vul-
nerable to error propagation, since an error in the
ASR block automatically causes a mistranslation

(Sperber and Paulik, 2020; Bentivogli et al., 2021).
Consequently, end-to-end alternatives based on
an encoder-decoder structure and attention mecha-
nisms have become increasingly popular in recent
years (Anastasopoulos et al., 2016; Duong et al.,
2016; Weiss et al., 2017). These are capable of
translating the audio without the explicit need for
transcription, thus avoiding the problems of the cas-
cade approach and allowing unified optimization
of the training parameters.

The advent of the Transformer (Vaswani et al.,
2017) revolutionized the MT field, enabling mod-
els based on this architecture to achieve the state-
of-the-art results. Nowadays, Transformer-based
models are used to process all types of data, such
as images (Parmar et al., 2018) or speech (Dong
et al., 2018; Di Gangi et al., 2019a). However, due
to its self-attention mechanism, the vanilla Trans-
former scales quadratically with the input sequence
length, which makes it extremely inefficient when
processing long sequences.

In speech tasks, it is common to extract audio
features every 10 ms to build the input sequences,
which causes them to be considerably longer than
text sequences. Moreover, since the representation
of a single phoneme requires several tokens (Igras
et al., 2013; Ma et al., 2021), the presence of redun-
dancy among the audio tokens is inferred. There-
fore, state-of-the-art architectures propose the im-
plementation of down sampling strategies prior to
the model collapsing adjacent vectors in a fixed way
(Bérard et al., 2018; Di Gangi et al., 2019b; Wang
et al., 2020a). Similarly, some studies propose
to extract more informative sequences using pre-
trained compression modules (Salesky et al., 2019;
Zhang et al., 2020; Gaido et al., 2021), obtaining
considerable translation quality gains. While these
achieve good results, we propose another approach,
questioning the use of multi-head self-attention
(MHSA), originally proposed for text, for the infor-
mation extraction from speech sequences.
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The closest work to ours was done by Alastruey
et al. (2021), who used Longformer’s (Beltagy
et al., 2020) local attention pattern as an efficient
alternative to self-attention for speech processing.
However, they observed that, due to the scarcity
of global context in the encoder output, the quality
of the translations was slightly hindered. Recently,
inspired by Linformer’s (Wang et al., 2020b) at-
tention, Papi et al. (2021) proposed ConvAttention
as an attention mechanism that, by compressing
keys and values, is more efficient and therefore
able to directly process long sequences. However,
this mechanism is not used as a replacement of the
encoder self-attention, but as an extra input pro-
cessing before a CTC-based compression module
(Gaido et al., 2021).

Our contribution to ST field is a new Transformer
variant, the Multiformer, an architecture based on
the S2T Transformer by Wang et al. (2020a). Our
architecture enables the use of different attention
mechanisms in the same encoder layer, by config-
uring individually the pattern of each head. With
this approach, the Multiformer is able to apply effi-
cient attention mechanisms, while maintaining the
ability to learn both local and global content from
speech sequences. This diversity among heads in
a layer is also meant to stimulate a more varied
information extraction and, therefore, reduce the
presence of low-relevant heads (Voita et al., 2019;
Michel et al., 2019; Bian et al., 2021; Zhang et al.,
2021). Furthermore, we explore the use of different
head configurations for each encoder layer. This
could help to adapt the attention mechanisms to
the needs of each layer. To the best of our knowl-
edge, this is the first study that allows this kind of
head-wise configuration.

2 Model

In this section, we first introduce a new self-
attention module that allows the use of multiple
attention mechanisms in parallel (§2.1). Next, we
explain the Multiformer (§2.2), which replaces the
Transformer encoder MHSA by the new proposed
module.

2.1 Multi-head Multi-attention

An increasing number of studies have observed
the presence of redundant heads in multi-head self-
attention (Michel et al., 2019; Bian et al., 2021;
Zhang et al., 2021). Moreover, Voita et al. (2019)
even tried to prune them, and observed that the

quality of the translations (in MT) was almost not
affected. This suggests that the model does not ex-
ploit the full potential present in the use of attention
heads. In addition, the quadratic time and memory
complexity of Self-Attention with respect to the
input sequence length makes it impossible to use it
directly in Speech tasks. To address this challenge,
end-to-end ST models are based on reducing the
length of speech sequences, usually by a factor of
4, through compression techniques, so that they
can be processed by the Transformer (Di Gangi
et al., 2019b; Wang et al., 2020a). However, after
this compression, the resulting sequences are still
considerably longer and more redundant than their
text counterparts. Alastruey et al. (2021) proposed
the use of efficient Transformers for ST, but, as ob-
served in different tasks by Tay et al. (2021), they
suffer from a drop in performance quality. The
main reason for this deterioration is that most effi-
cient Transformers propose strategies that deprive
the model of the ability to learn all types of content
from the input stream.1

Figure 1: Scheme of the MHMA with the representation
of each of the attention mechanisms it incorporates. The
function g() denotes the downscaling and computation
of the softmax() function.

To solve the aforementioned problems, we pro-
pose multi-head multi-attention (MHMA) (Figure
1) which, using heads with different attention mech-
anisms, is meant to force a more diversified learn-
ing, thus (i) hindering the presence of irrelevant
heads and (ii) allowing the model to learn both
local and global content from the input sequence,

1In efficient Transformers that approximate the
softmax() function (Choromanski et al., 2021) or the
attention matrix (Wang et al., 2020b), the quality drop can be
attributed to an imperfection in these approximations.
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while applying efficient attention mechanisms. The
MHMA module is manually set by selecting the
type of attention mechanism for each head in each
layer within the following ones:

ConvAttention. Efficient attention mechanism
proposed by Papi et al. (2021). The ConvAtten-
tion compresses the keys and values by means of a
convolutional layer, decreasing the size of the atten-
tion matrix by a factor of χ, to reduce the original
complexity to O((nχ)

2). By not compressing the
queries, they manage to maintain the dimensions
of the input sequence at the output.

Local Attention. Attention mechanism with a
sliding window pattern (Beltagy et al., 2020). It
only computes the product between queries and
keys of nearby tokens within the same input se-
quence, so it is more efficient than the regular Self-
Attention. In particular, given a fixed window size
w, each token attends to w

2 tokens on each side,
achieving a linear scaling (O(n× w)) of the mod-
ule complexity. As in Alastruey et al. (2021), this
attention pattern is intended to force the learning
of local relations, while being more efficient.

2.2 Multiformer
The Multiformer is a Transformer-based architec-
ture inspired by Wang et al. (2020a). The original
model consists on a regular Transformer, preceded
by two 1D convolutional layers, that help to tackle
speech-specific problems such as a longer sequence
length or information redundancy in adjacent to-
kens. The Multiformer proposes to modify the
self-attention module on each encoder layer by a
MHMA, since we believe that this module could
be helpful to deal with speech.

The introduction of MHMA allows the model
to learn from different representational and con-
textual levels. This enables the construction of
architectures capable of extracting different kinds
of information from the input sequence, while per-
forming more efficient attention mechanisms. In
addition, the model is biased towards learning dif-
ferent types of token interactions, hindering the
presence of irrelevant heads.

However, the generation of attention diversity
at the head level does not address the presence of
redundancy between layers noted by Dalvi et al.
(2020), who, using linear Center Kernel Align-
ment (Kornblith et al., 2019), observed that, except
for the last two layers, layer redundancy increases
throughout the encoder. Moreover, the information

Figure 2: Diagram of the Multiformer encoder. It com-
prises N layers, each one with C heads that can use
different attention mechanisms.

processed by each layer differs, hence using the
same MHMA configuration in all encoder layers
may not be the optimal.

Therefore, the Multiformer (Figure 2) allows
the use of different MHMA configurations, which
is meant to create architectures that process the
speech sequence in a more progressive manner.
This approach emphasizes the learning of different
content along the encoder layers, while hampering
information redundancy.

3 Heads Contribution Analysis

MHMA allows the use of different attention mech-
anisms in parallel, therefore we wanted to evaluate
the head contribution in each of the encoder layers.

In general, given an input sequence of n tokens
{x1, ...,xn} ∈ Rn×d and a model with an embed-
dings dimension d (head dimension dh), the output
of each attention-head zhi ∈ Rdh is:

zhi =
N∑

j

Ah
i,jWvh xj (1)

where Ah
i,j is the attention weight of token j on

token i and Wvh ∈ Rdh×d is the learned projec-
tion matrix of the values. The final output represen-
tation of the attention module yi ∈ Rd is:

yi = Wo Concat{z1i , ..., zHi }+ bo (2)
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Figure 3: Head relevance for each layer of the proposed models. They have been computed using the median of n
contributions (equation 4) from 500 random samples of the en-de training partition. Heads marked in orange use
Local Attention while those in purple are using ConvAttention.

with Wo ∈ Rd×H·dh as the output projection
matrix trained jointly with the model, and bo ∈
Rd referring to the bias. As previously done for
interpretability research (Kobayashi et al., 2020),
the above expression (equation 2) can be rewritten
as follows:

yi =

H∑

h

Woh zhi + bo (3)

where Woh ∈ Rd×dh is the part of the output
projection matrix corresponding to each head. Note
that from this last expression, it can be defined
ξhi = Wohzhi ∈ Rd as the projected output vector
of a head.

Inspired by Kobayashi et al. (2020), for each
layer, we define the contribution of each head to
the attention output yi as the Euclidean norm of
the projected output vector of heads:

ci,h = ||ξhi ||2 (4)

4 Experiments

In this section we first explain the training details
(§4.1) in order to ensure reproducibility of experi-
ments.2 Then we briefly describe Multiformer ar-
chitectures and the procedure we followed (§4.2).

4.1 Experimental Settings
The Multiformer architectures have been trained
on 3 different language directions of the MuST-C
dataset (Cattoni et al., 2021). This corpus consists
of audio, transcriptions, and translations of TED
talks in English. MuST-C provides 8 language

2Code available: https://github.com/mt-upc/
fairseq/tree/multiformer

directions ranging in size from 385 (Portuguese) to
504 (Spanish) hours of transcribed and translated
speech.

To ensure a faithful comparison with the base-
line model, the small architecture of the S2T Trans-
former in Fairseq (Wang et al., 2020a), all our mod-
els consist of 12 encoder layers, 6 decoder layers
and 4 heads in each attention layer. The embed-
ding dimension of the model is 256. Moreover,
following the baseline architecture, we have kept
the convolutional layers with downsampling prior
to the model.

For the ConvAttention, we use a kernel size of 5
and a stride of 2, reducing the length of keys and
values to the half. Regarding the Local Attention,
as in Alastruey et al. (2021) we have chosen a win-
dow size of 64 tokens. These hyperparameters have
been employed in all Multiformer architectures.
For a detailed description of training parameters,
see appendix A.

4.2 Experiments Description

First, we trained two architectures based on a single
attention mechanism (Local or ConvAttention), in
order to obtain a comparison between models with
and without diversity.

After this, we trained the first Multiformer archi-
tecture, the multiformer_lc. It has a configura-
tion of the MHMA with 2 heads of ConvAttention
and 2 heads of Local Attention for all encoder lay-
ers. Then, we analyzed the contribution of each
head following the methodology described in §3.
This allowed us to better understand the needs of
each layer, and to propose architectures based on
this. From Figure 3, it can be seen that in the first
3 layers, the multiformer_lc assigns low rele-
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Model en-de en-fr en-es Avg(∆%)BLEU ∆BLEU ∆% BLEU ∆BLEU ∆% BLEU ∆BLEU ∆%
baseline 22.65 - - 32.97 - - 26.99 - - -
local_attention 22.69 +0.04 +0.17 33.00 +0.03 +0.09 27.10 +0.11 +0.41 +0.22
conv_attention 22.45 −0.20 −0.88 33.07 +0.10 +0.30 26.96 −0.04 −0.15 −0.73
multiformer_lc 22.80 +0.15 +0.66 33.25 +0.28 +0.85 27.56 +0.57 +2.11 +1.21
multiformer_v1 23.16 +0.51 +2.25 33.10 +0.13 +0.39 27.68 +0.69 +2.56 +1.73
multiformer_v2 22.98 +0.33 +1.46 33.26 +0.29 +0.88 27.44 +0.45 +1.67 +1.34

Table 1: BLEU results in 3 different language directions of the MuST-C dataset, English→German (en-de),
English→French (en-fr) and English→Spanish (en-es). Relative improvements are calculated with respect to the
baseline (Wang et al., 2020a).

vance to the representations extracted by one of
the Local Attention heads, which could indicate
the prioritization of the global context in the first
layers. In the middle layers, a change in this trend
is observed, with Local Attention heads acquiring
more importance. As for the last layers, we see an
equal relevance distribution between heads of both
mechanisms.

These observations have motivated the training
of the multiformer_v1, which tries to correct the
abandonment of Local Attention heads observed in
the initial layers. It consists of substituting a Local
Attention head for a ConvAttention head in the first
six layers of the encoder.

Finally, the multiformer_v2 is built more
strictly from the analysis. It incorporates 3 dif-
ferent MHMA configurations. In the first 3 layers,
it uses 1 head of Local Attention and 3 heads of
ConvAttention. The next 5 layers (from the 4th to
the 8th) use 3 Local Attention heads and 1 ConvA-
ttention head, to finish the remaining 4 layers with
2 heads of each type.

In general, it is clear that, whereas the baseline
uses few heads in most layers, Multiformer archi-
tectures3 force the model to have a more uniformly
distributed contribution between heads.

5 Results

First, it can be observed from Table 1, that the
efficient architecture based only on Local Atten-
tion (local_attention) already obtains the same
results as the baseline, suggesting the presence of
unnecessary computations in self-attention. Unlike
previous works (Alastruey et al., 2021), this archi-
tecture maintains the convolutional layers, so the
amount of global content within the attention mech-
anism is higher using the same window size. On
the other hand, while the architecture based exclu-
sively on ConvAttention (conv_attention), man-

3More details in Table 2 in the Appendices.

ages to achieve baseline results in English→French
(en-fr) and English→Spanish (en-es), its score in
English→German (en-de) drops 0.2 BLEU, sug-
gesting the need for a higher resolution extraction
of representations for that language pair.

Secondly, analyzing the heads contribution of the
baseline architecture, we can observe that the heads
contribution tends to accumulate in few heads. This
means we obtain similar conclusions than Voita
et al. (2019), but for the ST setting. Furthermore,
our work goes one step further, showing that those
architectures where the heads contribution is uni-
formly distributed, obtain a higher performance.
This finding confirms that, in ST, some heads on a
regular Transformer tend to learn irrelevant infor-
mation. This shows that MHSA might not be as
capable as expected of extracting different kinds
of patterns, unless it is biased on purpose towards
doing so.

In particular, all Multiformer variants improve
the results obtained by the baseline and the
local_attention and conv_attention architec-
tures. However, these improvements are not equal
in all languages pairs, and go from 0.15 to 0.57
BLEU for multiformer_lc, from 0.13 to 0.69
BLEU for multiformer_v1 and from 0.29 to
0.45 BLEU for multiformer_v2, becoming the
latter the architecture with the most robust gains.

6 Conclusions

In this paper, we present the Multiformer, the first
Transformer-based model that allows to combine
different attention mechanisms in the MHSA mod-
ule. This helps the model extracting different types
of token interactions from each head, hence pre-
venting the appearance of irrelevant heads. By
applying this diversity of attention patterns with
efficient mechanisms, the model is able to maintain
both local and global context across encoder lay-
ers while being more efficient. Experiments on 3
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language pairs show that all Multiformer architec-
tures outperform the results achieved by the S2T
Transformer in the ST task, with an improvement
up to 0.69 BLEU for the English-Spanish direction
in the multiformer_v1.
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Name MHMA Configurations

conv_attention 12× ( 4× Conv (5, 2) ) - -

local_attention 12× ( 4× Local (64) ) - -

multiformer_lc 12×
(

2× Local (64)
2× Conv (5, 2)

)
- -

multiformer_v1 6×
(

1× Local (64)
3× Conv (5, 2)

)
6×

(
2× Local (64)
2× Conv (5, 2)

)
-

multiformer_v2 3×
(

1× Local (64)
3× Conv (5, 2)

)
5×

(
3× Local (64)
1× Conv (5, 2)

)
4×

(
2× Local (64)
2× Conv (5, 2)

)

Table 2: Multiformer architectures. The notation for each configuration is as follows:
Nlayers × (Nheads × Attention (hyperparameters) ).

A Detailed Experimental Settings

The training has been performed using the label
smoothed cross entropy loss (Szegedy et al., 2016)
and the Adam optimizer (Kingma and Ba, 2015).
The learning rate has been set to 2 · 10−3 with an
inverse square-root scheduler and 10,000 warm-up
updates. We have set a maximum number of 32,000
tokens for the construction of the mini-batches and
an update frequency of 5. The training has been
hosted on 2 NVIDIA GeForce RTX 2080 Ti GPUs
until the completion of 50,000 updates. For a better
performance in ST, models have been pretrained
in ASR (Bérard et al., 2018).4 For this pretraining,
all the parameters have been set as in ST, with the
exception of the learning rate, which has been set
to 1 · 10−3.

For the S2T evaluation of the architectures, we
averaged the 7 checkpoints around the best one and
then computed the BLEU score (Papineni et al.,
2002).

To visualize the layer-level relevance of each
head (Figure 3), we computed the median of the
contributions (§3) of each head for all the tokens
in 500 random samples. Since we want to observe
which head is the most relevant during training, the
en-de training partition was used.

4For the use of the ASR pretrained encoder in ST training,
the best checkpoint has been used, being this the one that
obtains the lowest loss.
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Abstract

Compositionality has traditionally been under-
stood as a major factor in productivity of lan-
guage and, more broadly, human cognition.
Yet, recently, some research started to ques-
tion its status, showing that artificial neural net-
works are good at generalization even without
noticeable compositional behavior. We argue
that some of these conclusions are too strong
and/or incomplete. In the context of a two-
agent communication game, we show that com-
positionality indeed seems essential for suc-
cessful generalization when the evaluation is
done on a proper dataset.

1 Introduction

Compositionality is a property of language that de-
scribes its specific hierarchical structure. Multiple
atomic units (e.g., words) can be combined to pro-
duce more complex units (e.g., sentences), while
the meaning of the larger units can be inferred from
the simpler parts and the way they are combined.

Of course, there are inherently noncompositional
structures in language, idioms being a prime exam-
ple. If someone is making waves, it usually means
that the person is causing trouble and no water is
implied. Still, many reputable researchers (Nowak
et al., 2000; Pinker, 2000; Fodor and Lepore, 2002;
Lake et al., 2017) have seen compositionality as
a key ingredient that enables language to be used
productively, i.e., in an infinite number of novel sit-
uations. Often, this productivity is juxtaposed with
the learning of Artificial Neural Networks (ANNs),
whose performance is known to suffer when tested
in new scenarios.

Recently, a strand in the literature has been mak-
ing waves (sic) by calling into question the pro-
posed benefits of compositionality. Various papers
have shown that ANNs can generalize well to un-
seen contexts (be productive) even if they work
with internal representations that are noncomposi-
tional (Kottur et al., 2017; Andreas, 2019; Baroni,

2019; Chaabouni et al., 2020; Kharitonov and Ba-
roni, 2020).

The goal of this paper is to counterbalance these
claims.1 More precisely, we would like to rela-
tivize some of the stronger conclusions that are
provided and show (by running modified experi-
ments) that the reported experimental results can
be harmonized with the view that compositionality
is necessary for successful knowledge transfer.

We will do this by first providing an overview
of the related research in Section 2. Then in Sec-
tion 3, we give our arguments against some of the
presented assumptions and/or conclusions. These
arguments are further supported by experiments
that are described in Section 4. We conclude the
paper with a short discussion in Section 5.

2 Emergent languages generalize without
compositionality

Much of the critical research comes from exper-
imentation with languages that emerge during a
communication game. Here, two agents (ANNs)
are trained to communicate in order to perform a
certain task. The first agent (sender/speaker) en-
codes the input into a message, a sequence of dis-
crete symbols. The second agent (receiver/listener)
does not have direct access to the original input,
but only sees it as represented by the message. The
receiver’s goal is to transform the message into a
desired output.

The output can take many forms depending on
the task: reconstructing the input fully (Chaabouni
et al., 2020; Andreas, 2020) or partially (Kot-
tur et al., 2017) or reconstructing the input after
going through some deterministic transformation
(Kharitonov and Baroni, 2020).

Inputs can be conceptualized as representations
of objects by means of independent nominal at-

1We consider the cited research valuable and important. In
some cases we argue with some statements that were not even
the main topic of the paper in question.
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tributes, e.g., blue circle, red square, orange trian-
gle for two-dimensional input vectors (color and
shape). A uniform random sample of all such ob-
jects is then held out for testing, the rest of the data
(or its part) is used for training.

Andreas (2019) and Chaabouni et al. (2020) de-
velop custom metrics to measure the composition-
ality of messages passed between the sender and
the receiver. The metrics compare each message to
the corresponding input and try to assess to what
extent each part of the input (attribute value) can
be isolated in the message regardless of the context
(i.e., other attribute values). They report runs in
which models communicate through messages with
low compositionality scores, but still achieve good
generalization on unseen data.

Kharitonov and Baroni (2020) replace training
the first agent (sender) by hand-coding the mes-
sages. This gives them the advantage of hav-
ing direct control over the emergent language.
They find that good generalization can sometimes
be achieved using a non-compositional language
(sometimes leading to even better results than using
a compositional language).

3 Allowing compositionality to have an
effect

Our main argument is that the process of selecting
the test data plays a crucial role in evaluating the ef-
fects of compositionality. Sampling examples with
uniform probability is a mainstay in machine learn-
ing, and algorithms have been shown many times
that they can perform very well under these condi-
tions. However, once we move away from the static
world of i.i.d. data samples into the dynamic world
of ever-changing distributions, the limitations of
such models become obvious.

We argue that this is where compositionality
is supposed to be helpful. Analyzing the world
(or data points to keep the discussion down to
earth) through a hierarchy of parts and their re-
lations enables inferring a ‘rule-based algebraic
system’, which is ‘an extremely powerful gener-
alization mechanism’ (Baroni, 2019). Systematic
compositionality exploited by human learners en-
ables them to be sample efficient, i.e., quickly learn
a new task seeing just one or a limited number of
training examples (Lake et al., 2017). Therefore,
we conclude that showing compositionality not be-
ing correlated with generalization on in-domain
held-out data is not very informative. Instead, it is

preferable to control the exposition of certain pat-
terns in the training and testing data as illustrated
by, e.g., the SCAN benchmark (Lake and Baroni,
2018).

We also point out that Andreas (2019) and
Chaabouni et al. (2020) implement both agents
(sender and receiver) as relatively standard en-
coder/decoder architectures with recurrent (LSTM,
GRU) layers. These architectures are not neces-
sarily known for their ability to produce or utilize
compositional sequences.

The assumption seems to be that when running
an experiment many times (with different random
initialization of the models), some runs will be suc-
cessful in the sense that the agents will develop
a more or less compositional language by chance.
Moreover, the degree of compositionality would
have to be large enough to influence the generaliza-
tion of the models (should such an effect be real).
We do not think this assumption is justified.

Kharitonov and Baroni (2020) avoid a part of
the above problem by creating compositional mes-
sages manually. Their main conclusion is that one
can devise different tasks, and in some of them
a compositional representation of the input data
might even prove disadvantageous. Indeed, it is
possible to create, for example, an arbitrary bijec-
tive function from the input space to the output
space and train a model to learn such a mapping.
Not surprisingly, such a model will fail at the test
time. However, if we first encode the input with the
same arbitrary transformation (thus creating a non-
compositional representation of the input data), the
model is then asked to learn the identity function,
which it might achieve quite well. Therefore, we
agree with the conclusion that ‘in isolation from
the target task, there is nothing special about a lan-
guage being . . . compositional.’

Yet, as mentioned above, compositionality is of-
ten discussed in conjunction with natural language
or human cognitive abilities more generally. In
the lived experience of biological species (to be
less human-centric), it is reasonable to expect that
the ‘underlying factors of variation’ or ‘explana-
tory factors’ (Bengio et al., 2013) behind the input
data a) repeat in many different situations and b)
are directly relevant for different tasks. For exam-
ple, it is reasonable to expect that many languages
have a word for water rather than a word for water
and the wind is blowing, simply because the first
is more useful. Therefore, we believe that the em-
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Model train in-domain test out-of-domain test
sender (ours) 1.00± 0.01 1.00± 0.00 0.99± 0.06
sender (Chaabouni et al., 2020) 1.00± 0.04 1.00± 0.03 0.83± 0.19

receiver (ours) 1.00± 0.00 1.00± 0.00 1.00± 0.02
receiver (Chaabouni et al., 2020) 1.00± 0.02 1.00± 0.00 0.44± 0.32

Table 1: Learning alone experiment: Comparing the accuracy (mean ± std over 20 runs) of two types of architecture
in different data splits. Each agent (sender/receiver) is trained independently of the other by using fixed messages.

phasis on compositionality in research can be more
than ‘a misguided effect of our human-centric bias’
(Kharitonov and Baroni, 2020).

4 Experiments

We follow the communication game experiments
of Chaabouni et al. (2020). We create a set of
instances, each of which is represented by iatt at-
tributes. Each attribute has nval possible values.
The messages passed between the agents are lim-
ited by the maximum length (clen) and the size
of the vocabulary (cvoc). The receiver’s goal is to
reconstruct the input.

As messages are sequences of discrete symbols,
which prevents gradients from passing through, the
sender must be trained with the REINFORCE al-
gorithm Williams (1992). The receiver is trained
using backpropagation. We use the EGG toolkit
(Kharitonov et al., 2019) to implement the experi-
ments.2

We focus mainly on the setting of (iatt = 2, nval

= 100, clen = 3, cvoc = 100). In this case, the dataset
contains isntances such as (12, 34), (0, 99), (99, 0)
etc. We create three splits. The out-of-domain
(OOD) test set contains all pairs where 0 appears,
apart from three examples: (0, 0), (0, 1), and (1, 0).
The training set contains these three zero examples
together with 90% of the remaining (nonzero) ex-
amples (random sample). The rest of the data con-
stitute in-domain (IND) test set. In other words, we
designate a special symbol (0), which appears only
in a limited number of contexts in training. We
then separately evaluate how the models perform
on unseen examples with ordinary symbols (IND
test set) and on unseen examples with the special
symbol (OOD test set).

Given the absence of any incentive for the mod-
els to develop compositional messages during train-
ing, we opt for architectural biases in our experi-
ments. We use the models that have been proven to
be successful in OOD generalization in the SCAN

2The code is available at https://github.com/
michal-au/emlang-compos.git

benchmark (Li and Bowling, 2019; Russin et al.,
2020; Auersperger and Pecina, 2021). Each agent
is implemented as a separate seq2seq encoder-
decoder architecture with recurrent layers and a
modified attention mechanism. Details are pro-
vided in Appendix A

4.1 Learning alone

We first want to know whether the architectures
used for implementing the agents are capable of
achieving systematic compositionality on their
own, that is, outside of the context of the 2-agent
communication game. To do this, we handcode
the messages that are to be created (sender) or re-
ceived (receiver) and train each agent using regular
backpropagation on the corresponding task.

We first create an arbitrary bijective mapping
from the input vocabulary to the message vocab-
ulary. Furthermore, to introduce variability in the
length of the messages, we duplicate the occur-
rences of all tokens with odd indices in the mes-
sage vocabulary. For example, having a mapping
tr : 0 → 3, 1 → 8, 2 → 2, . . . , we produce (among
others) the following input–message pairs: (0, 0) –
(3, 3), (1, 0) – (8, 8, 3), (2, 1) – (2, 2, 8, 8).

We train 2 types of agent for both sender and
receiver comparing our architecture with the de-
fault used by Chaabouni et al. (2020). There are
500 training epochs and 20 runs with different ran-
dom initializations for each agent. The results are
presented in Table 1. They show that at least for
this simple task, adding architectural bias helps
with compositional generalization to out-of-domain
data. The results also suggest that the default ar-
chitectures are unlikely to provide systematic gen-
eralization in the communication game since they
are unable to achieve it even if their communica-
tion partner does never make mistakes (i.e. the
messages are guaranteed to be produced/received
correctly).

We experimented with limiting the capacity of
the default architecture to see if such kind of reg-
ularization could help with generalization perfor-
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Figure 1: Communication game experiment: Training
and OOD accuracy during training. Compositionality
measures at the end of training. Orange represents runs
of our architecture, blue represents runs of the architec-
ture used by Chaabouni et al. (2020). There were 20
runs for each architecture.

mance. Besides the original size (500), four addi-
tional sizes of hidden layers were tested (100, 200,
300, 400). For the default receiver, a smaller capac-
ity (100) improved the OOD accuracy from 0.44
(±0.32 std) to 0.81 (±0.21 std).

We point out that it is the out-of-domain test
set that reveals the difference between the architec-
tures.

4.2 Communication game

Having seen that in some tasks our architectures are
capable of approaching systematic compositional-
ity, we turn our attention to the full communication
game. We train both the default and our modified
architectures on the full task for the maximum num-
ber of 2,000 epochs. Similarly to Chaabouni et al.
(2020), we use early stopping when training accu-
racy reaches 99.999%, however, we evaluate all the
runs, even those that never reach perfect training
accuracy. Each experiment was repeated 20 times
with different random initializations. The training
progress is visualized in Figure 1 and the results
are given in Table 2.

The experiments demonstrate that our changes to
the default architecture lead to some out-of-domain
generalization, but we were unable to guarantee
such behavior for each run (accuracy 0.42± 0.27
std). In contrast, the original architecture does
never succeed (accuracy 0.00± 0.01 std).

We evaluated the three compositionality metrics
used by Chaabouni et al. (2020) and found signifi-
cant differences between the two architectures. In
two of the metrics, namely positional disentangle-

ment and topographic similarity, we achieve higher
scores than the original architecture, while in bag-
of-symbol disentanglement the situation is reversed.
We show the relationship between compositionality
and generalization in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
ood accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

po
sd

is

0.0 0.2 0.4 0.6 0.8 1.0
ood accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

bo
sd

is

0.0 0.2 0.4 0.6 0.8 1.0
ood accuracy

0.0

0.2

0.4

0.6

0.8

1.0

to
ps

im

Figure 2: Compositionality measures and generalization
in out-of-domain dataset. Successful generalization was
possible only with large posdis and/or topsim scores.

Both Andreas (2019) and Chaabouni et al. (2020)
claim that compositionality is not a necessary con-
dition for good generalization, but that it might
be a sufficient condition (Chaabouni et al., 2020).
Choosing the out-of-domain data for evaluation
and training models whose architecture is biased
towards utilizing composationality of a language,
we arrive at the opposite conclusion: composition-
ality is a necessary but not sufficient condition for
good generalization. In other words, we often ob-
serve runs where both agents communicate through
relatively compositional messages, but fail to gen-
eralize. However, we never observe a run where
generalization is successful in spite of a low com-
positionality (posdis or topsim) score.

However, given the size of the input space
(100× 100) and the proportion of training data
(about 90%), we did not expect to find such a no-
ticeable difference in performance in the in-domain
test set. This suggests that such test data is not
completely agnostic to the notion of composition-
ality (which is somewhat contrary to our previous
argumentation). Yet, we still maintain that the out-
of-domain dataset is much more informative with
respect to evaluating the benefits of compositional-
ity.

Similarly to the previous experiment, we tested
additional sizes of hidden layers of the original
architecture (100, 200, 300, 400) but were not able
to match the IND accuracy of our architecture.

Looking at the OOD generalization performance
of our models, it is notable that most models oper-
ate in one of three regimes: the accuracies tend to
cluster above 0, below 0.5, or below 1. Manual in-
spection of the agents’ communication showed that
most of the time agents successfully reconstruct the
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Model train IND test OOD test posdis bosdis topsim
Chaabouni et al. (2020) 0.99± 0.07 0.91± 0.09 0.00± 0.01 0.32± 0.15 0.67± 0.07 0.53± 0.18

ours 0.99± 0.03 0.98± 0.05 0.42± 0.27 0.71± 0.11 0.11± 0.04 0.83± 0.11

Table 2: Communication game experiment: Accuracy (mean ± std) measured in different data splits, Three
compositionality measures of the messages (mean ± std) evaluated in out-of-domain test data.

non-zero symbols, which means that most of the er-
rors are caused by wrongly reconstructing the zero
symbol. These errors are also systematic, meaning
that, given the position in the string, the zero sym-
bol is replaced by the same symbol regardless of its
neighbor. Thus, agents successfully reconstructing
zero at both positions achieve accuracies close to
1, agents successfully reconstructing zero only in
a single position achieve scores close to 0.5 and
in the rest of the runs, agents fail regardless of the
position.

5 Discussion

There are many questions that remain for further
analysis. The distinction between the in-domain
and out-of-domain data is not clear-cut. One might
object that seeing just one or two examples of a
given symbol in the training data is too little for
ANNs to learn its embedding and reliably map it
close to other ‘similar’ symbols in the semantic
space (Lake and Baroni, 2018; Loula et al., 2018).
This is actually the issue as it seems that human
learners unlike ANNs are able to succeed in such
a scenario and work with limited data or, in other
words, ‘not-yet-converged embeddings’. See Lake
et al. (2017) for a more thorough discussion.

The goal of this paper was to show that some con-
clusions in the literature on compositionality are
too strong or incomplete. However, there are other
arguments that remain untackled. Baroni (2019)
gives examples of neural networks that generalize
(partially) well to out-of-domain data. For instance,
Dessi and Baroni (2019) show that a simple con-
volutional network is enough to improve accuracy
from 1.2% to 60% in a difficult task from the SCAN
benchmark. Gulordava et al. (2018) demonstrate
that a language model is capable of preferring gram-
matical nonsense sentences (certainly not seen in
training) to ungrammatical ones. In general, the
practical success of ANNs in many applications
can serve as a proof of their strong generalization
abilities (Lake and Baroni, 2018; Baroni, 2019).

In response, we would like to point out that such
success often coincides with new developments in
neural architectures (convolutional NNs in vision,

attention in NLP). These developments might ac-
tually point in the direction of compositionality. A
trained convolutional NN actually detects primitive
shapes (at least by the filters in the lower layers) and
combines these into composit representations. Sim-
ilarly, a trained attention-based encoder-decoder
language model represents each input as a sequence
of contextualized embeddings of the original units.
Some of these embeddings might primarily rep-
resent the corresponding input units, and others
might represent their collections.

We also acknowledge that for practical applica-
tions, especially in the short term, focusing on com-
positionality is not guaranteed to help (Kharitonov
and Baroni, 2020). The most practical way so far
has been to enable training on as much data as pos-
sible. However, it is likely that such an approach
will eventually result in diminishing returns.

There are many potential aspects that favor com-
positional behavior: inductive architectural biases
(e.g., attention); limited channel capacity relative
to the input space (Nowak et al., 2000); ease of
transmission within the population (Chaabouni
et al., 2020); generalization pressure (contrary to
Chaabouni et al. 2020), if such a pressure is al-
lowed to have some effect (e.g., by meta-learning);
. . . . It is also possible that systematic composition-
ality might emerge3 only as a result of multiple
such factors.
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A Appendix

A.1 Architecture
Both the sender and the receiver are implemented
by the following encoder-decoder architecture:

The encoder produces two embeddings (size
500) for each input symbol, one syntactic and one
semantic. A uni-directional GRU (Chung et al.,
2014) layer (size 500) transforms the syntactic em-
beddings to contextualized embeddings.

The autoregressive decoder embeds the last pro-
duced symbol (or the start-of-sequence symbol)
(size 500) and transforms it with another GRU
layer (size 500). This contextualized embedding is
then used as a query in the dot-product attention
(Luong et al., 2015) and matched against the con-
textualized embeddings produced by the encoder.
The attention weights are then used to produce the
weighted sum of the semantic embeddings of the
input symbols. This vector (size 500) is added to
the query and transformed by a linear layer to the
output symbol logits.
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Abstract

Previous research has found that Acoustic
Models (AM) of an Automatic Speech Recog-
nition (ASR) system are susceptible to di-
alect variations within a language, thereby ad-
versely affecting the ASR. To counter this,
researchers have proposed to build a dialect-
specific AM while keeping the Language
Model (LM) constant for all the dialects. This
study explores the effect of dialect mismatched
LM by considering three different Telugu re-
gional dialects: Telangana, Coastal Andhra,
and Rayalaseema. We show that dialect varia-
tions that surface in the form of a different lexi-
con, grammar, and occasionally semantics can
significantly degrade the performance of the
LM under mismatched conditions. Therefore,
this degradation has an adverse effect on the
ASR even when dialect-specific AM is used.
We show a degradation of up to 13.13 perplex-
ity points when LM is used under mismatched
conditions. Furthermore, we show a degrada-
tion of over 9% and over 15% in Character Er-
ror Rate (CER) and Word Error Rate (WER),
respectively, in the ASR systems when using
mismatched LMs over matched LMs.

1 Introduction

Automatic Speech Recognition (ASR) systems
are rapidly becoming part of our everyday lives
through voice assistants such as Siri, Alexa, and
Google Assistant. Since these voice assistants can
now perform various day-to-day tasks exceedingly
well, they have now become an integral part of
many devices such as phones, televisions, music
players, and smartwatches.

Accurate and reliable ASR systems for Indian
languages would have a significant impact due to
two reasons: Firstly, India is home to many lan-
guages and dialects. Many of these languages and
dialects do not have a written form. Secondly,
a considerable amount of the population in India

cannot read or write, as evidenced by the low liter-
acy rates.1 This leaves such people with only one
mode of communication – the spoken form.

Despite the advances made by spoken technol-
ogy research in recent years, dialect or accent vari-
ation proves to be a huge challenge.2 Huang et al.
(2001) show that accent variation contributes most
to speech variability after gender. Biadsy et al.
(2012); Elfeky et al. (2018) show the amount of
degradation in ASR performance when it is not
trained on dialect-specific data. Therefore, cur-
rently, state-of-the-art systems, including those of
Google and Microsoft, use dialect-specific ASR
systems.

However, multi-dialect ASR is an attractive so-
lution in scenarios where sufficient dialect-specific
data or information is not available. Therefore,
Liu and Fung (2006); Rao and Sak (2017); Jain
et al. (2018); Yang et al. (2018); Fukuda et al.
(2018); Jain et al. (2019); Viglino et al. (2019); Li
et al. (2018); Deng et al. (2021) attempt to improve
multi-dialect ASR systems.

Liu and Fung (2006) use auxiliary accent trees
to model Chinese accent variation. These are de-
cision trees that model accent-specific triphone
units and have a similar function as the decision
trees that are used for state-tying of standard tri-
phones. Rao and Sak (2017) show that grapheme-
based Recurrent Neural Network-Connectionist
Temporal Classification (RNN-CTC) ASR mod-
els outperform their phoneme-based counterparts
when trained and used in multi-dialect English
conditions. Furthermore, they study modelling
phoneme recognition as an auxiliary task to im-

1https://censusindia.gov.in/2011-prov-results/
data_files/mp/07Literacy.pdf

2In this paper, we use the words, ‘dialect’ and ‘accent’ in-
terchangeably. However, we make one important distinction
between dialect and accent: accent differences are largely
constrained to the spoken form while dialect differences are
not.
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Dialect Sentence

Coastal Andhra పర్ తిపౌరుడుఓటుతపప్కవేయాలండి
Rayalaseema మాకుమాపలెల్ టూరుఅంటేచానాఇషట్ ము

Telangana గాఫుటాబ్ల్గురించిఅయితేనాకుమస్త్గాతెలుసురాబై

Table 1: Sentences of Different Dialects Taken from the Dataset

prove grapheme recognition and show improved
performance when tested on multiple English di-
alects. Yang et al. (2018); Jain et al. (2018)
explore the benefits of learning an accent clas-
sifier and multi-accent acoustic model under a
multi-task learning framework. Viglino et al.
(2019) explore incorporating various accent em-
beddings into a multi-accent End-to-End ASR
model. All of these multi-accent studies report
significant relative Word Error Rate improvements
in their ASR models on various English accents.
Li et al. (2018) incorporate dialect-specific infor-
mation at the acoustic feature and textual level
into multi-dialect End-to-End ASR and report that
such a model outperforms dialect-specific End-to-
End ASR systems. Zhang et al. (2021) propose
a Transformer-based (Vaswani et al., 2017) en-
coder to simultaneously detect the dialect and tran-
scribe an audio sample. More recently, with in-
creased interest in self-supervised learning, Deng
et al. (2021) explored self-supervised learning
techniques to predict the accent from speech and
use the predicted information to train an accent-
specific self-supervised ASR. They report that
such a model significantly outperforms an accent-
independent ASR system.

Many researchers have previously studied the
effects of dialect mismatched acoustic models in
ASR systems. However, to the best of our knowl-
edge, we are the first to explore the effects of a di-
alect mismatched Language Model (LM) in ASR
systems.

Our language of interest in this paper is Telugu.
Telugu is a South Central Dravidian language pri-
marily spoken in two states of India: Telangana,
and Andhra Pradesh. As previously mentioned,
low literacy states in these states has motivated re-
searchers to build Telugu ASR systems (Srivastava
et al., 2018; Diwan and Jyothi, 2020; Bhanuprasad
and Svenson, 2008; Vegesna et al., 2017; Diwan
et al., 2021). However, they largely concentrate
on building ASR systems for “standardised” Tel-
ugu. While Mirishkar et al. (2021b) collect dialect-

specific Telugu data, they do not conduct any ASR
experiments on individual Telugu dialects. We
conduct our experiments on three regional Tel-
ugu dialects, i.e., Telangana, Rayalaseema, and
Coastal Andhra. A considerable portion of di-
alect variation in Telugu can be seen in the lexi-
con, grammar, and occasionally semantics. Addi-
tionally, since Indian languages are considered to
be low-resource in nature, adding external text to
the LM is a solution that has gained interest (Pham
et al., 2020; Karpov et al., 2021; Mirishkar et al.,
2021a; Klejch et al., 2021). While such a method
has shown significant benefits in their ASR sys-
tems, we argue that if proper care is not taken in
matching the dialect of the external text with that
of the ASR, it could lead to degradation in perfor-
mance. These are the primary motivations for us
to conduct this study. To this effect, the following
are the major contributions of the paper:

• We show significant degradation of the per-
plexity scores of the LMs when tested on a
different Telugu dialect.

• We use these LMs in a dialect mismatched
ASR and report degradation of over 15%
WER in such a setting compared to matched
setting.

The rest of the paper is organised as follows.
In Section 2, a brief description of the three di-
alects used in this study is given. In Section 3,
we describe the dataset used in the study. In Sec-
tion 4 and Section 5, we describe our experimental
setup and discuss results under matched and mis-
matched settings. We conclude the paper with Sec-
tion 6 and discuss possible future directions.

2 Telugu Dialects

All Telugu dialects can be broadly classified
into three regional dialects: Telangana, Coastal
Andhra, and Rayalaseema. The formation of these
dialects is primarily due to the influence of neigh-
boring states, and the regional culture (Mannepalli
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et al., 2016). The Nizams ruled the Telangana re-
gion, whose official languages were Persian and
Urdu. Thus, one can see the influence of Urdu
with many nativised Urdu words present in Telan-
gana (Ithagani, 2014). Here are some such exam-
ples: కాకా,జాగా, దవాఖానా .3 There is also some in-
fluence of the neighboring states’ languages like
Kannada on Telangana. The Coastal Andhra di-
alect is largely influenced by Sanskrit as well as
Tamil due to historical and geographical reasons
(Shivaprasad and Sadanandam, 2020). Finally, the
Rayalaseema dialect is influenced by neighboring
states’ languages, i.e., Tamil and Kannada (Shiv-
aprasad and Sadanandam, 2020). Interested read-
ers are referred to Table 1 to see a few sample sen-
tences of each dialect from the corpus. We also
discuss these sentences in detail in Appendix B.

3 Dataset

We conduct our experiments on a corpus of
three Telugu dialects collected by Mirishkar et al.
(2021b). It is a crowd-sourced read speech corpus
collected from the native speakers of the regional
dialects of Telugu. In Table 2, we present dataset
statistics we use in this study.4

Dialect Train Test Vocabulary

Coastal Andhra 70.90K 1.99K 91737

Telangana 84.88K 2K 115505

Rayalaseema 65.32K 1.99K 90093

Table 2: Number of utterances in training and test set
in each dialect (K for thousand)

All audio used in this study is mono channel,
sampled at 16KHz with 16-bit encoding. The
prompt given to the speakers is hand-curated.
Therefore, we were able to ensure that the datasets
across dialects have no domain mismatch. This al-
lows us to study dialect mismatch better, which is
our primary interest in this study.

3.1 Analysis

Since the dataset used in this paper is crowd-
sourced read speech, we found a number of speak-
ers not speaking in their native regional accent
but in the “standardised” Telugu accent. However,

3transliteration of the words using the WX notation
(Gupta et al., 2010) are as follows: kAka, jAgA, xavAKAnA

4A more detailed analysis of the data used in this paper
has been provided by Mirishkar et al. (2021b). We refer inter-
ested readers to their paper.

the prompt given to the speakers is hand-curated
which reflects the variations exhibited by the three
dialects of interest. Additionally, we focus on di-
alect mismatched LMs in this paper. These rea-
sons motivated us to limit ourselves to a textual
analysis.

To analyse the three dialects, we choose to fine-
tune IndicBERT (Kakwani et al., 2020) on a di-
alect classification task. IndicBERT is an AL-
BERT (Lan et al., 2020) based pre-trained multi-
lingual model. It achieves state-of-the-art results
on many Indic benchmarks and is trained on Indic-
Corp (Kakwani et al., 2020), one the largest pub-
licly available Indian corpora.

To fine-tune IndicBERT, we use the same tran-
scripts provided to the ASR models for train-
ing. We tokenise the input sequence using In-
dicBERT’s pre-trained tokeniser. We add a classi-
fication head to the pre-trained model. We use an
initial learning rate of 1×10−5 with an Adam opti-
miser (Kingma and Ba, 2015). We train this model
for 10 epochs. To get t-SNE representations, we
take the sentence representations of the fine-tuned
model and use sklearn’s implementation with de-
fault parameters.5

Figure 1: t-SNE plot of IndicBERT sentence represen-
tations of the three Telugu dialects. In this plot, TG
is Telangana, CA is Coastal Andhra, and RY is Ray-
alaseema.

Figure 1 shows the t-SNE (van der Maaten and
Hinton, 2008) plot of the sentence representations
of IndicBERT. It can be observed that each of the
dialects form its own cluster with some overlap
with the other dialects. Out of the three, Ray-

5https://scikit-learn.org/stable/modules/
generated/sklearn.manifold.TSNE.html
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alaseema cluster overlaps most with both Coastal
Andhra and Telangana dialects, which shows that
Rayalaseema dialect has a lot of similarities with
both Coastal Andhra and Telangana dialect.

4 Experimental Setup

All of the ASR experiments are conducted using
ESPnet (Watanabe et al., 2018). The input acous-
tic features are 80-dimensional log mel features
extracted on the fly. We choose to use the Con-
former model (Gulati et al., 2020) as it was able
to achieve state-of-the-art performance on many
standard datasets. The encoder of the ASR uses
12 Conformer (Gulati et al., 2020) blocks with 8
attention heads while the decoder uses 6 Trans-
former (Vaswani et al., 2017) blocks with 4 atten-
tion heads. We train both the encoder and decoder
with a dropout rate of 0.1. All the models are
trained based on the Hybrid CTC/Attention archi-
tecture (Kim et al., 2017; Watanabe et al., 2017).
The training is done within the Multi-Objective
Learning (MOL) framework. The CTC loss term
helps the Attention model converge faster. The
training objective (LMOL) is as follows:

LMOL = λ log pctc(c|x)+(1−λ ) log p∗att(c|x)

Here, λ is the multitask coefficient which
should satisfy the following condition: 0 ≤ λ ≤ 1.
We found λ set to 0.3 while training and 0.4 while
decoding gave us the best results for our datasets.
c is the output unit. This could be characters, sub-
word units, or words. Using words as output units
could lead to two major issues: Out of Vocabulary
(OOV%) cannot be handled well. The number of
output units could be very high, especially in an
agglutinative language like Telugu, which could
lead to data sparsity. Chiu et al. (2018) show that
using subwords over characters leads to better per-
formance of End-to-End ASR systems. Thus we
opted to use subwords as the output units. We
used SentencePiece (Kudo and Richardson, 2018)
to tokenise the words into subwords.6 We found
a vocabulary of around 500 tokens to give us the
best performance on all the three datasets. We re-
fer readers interested in how vocabulary size af-
fects the performance of ASR of different Telugu
dialects to Appendix A. Finally, x, in the above
equation, is the input acoustic features.

6We used no external text to train the tokeniser.

We take mucs21_subtask17 recipe in ESPnet
since it is tuned to perform well on a similar sized
Indian dataset and make the following modifica-
tions: Change the initial learning rate to 5×10−4,
and use early stopping with a criterion to stop train-
ing the model if its performance does not improve
for 5 consecutive epochs on the validation set.

We train an independent 16 block Transformer
LM with an embedding size of 128 and a hidden
encoder size of 512 for a maximum of 25 epochs.
Finally, the decoder uses an LM weight of 0.6 to
predict a sequence of subwords.8 This method of
integrating LM into the End-to-End ASR is known
as Shallow Fusion (Kannan et al., 2018) and it is
shown to give better results than other forms of
integrating LM into the End-to-End ASR (Toshni-
wal et al., 2018). To decode, we use beam search
of size 10 to predict the sequence.

5 Results & Discussion

In this section, the results of the experiments
conducted are reported, and briefly analysed.

Biadsy et al. (2012) experiment the effective-
ness of cross-dialect ASR in Arabic by experi-
menting with cross-dialect Acoustic Model (AM)
and training the LM on target dialect data. In this
paper, we take the exact opposite approach, i.e.,
train the AM (in this case, End-to-End ASR before
the independent LM is fused) on the target dialect
data and experiment by using a cross-dialect LM.
We do this to test the effectiveness of the LM and
thereby the ASR in cross-dialect conditions.9 No
external text was used to train LMs as it is difficult
to obtain dialect information of external text.10

We report the performance of the LM both in
terms of extrinsic metric, i.e., CER and WER of
the ASR which uses the LM in question as well as
an intrinsic metric, i.e., perplexity. Table 3 shows
the performance of ASR systems in terms of CER
and WER in both dialect matched and mismatched
settings.11

7https://github.com/espnet/espnet/tree/master/
egs2/mucs21_subtask1

8The rest of the weight is given to the CTC/Attention Hy-
brid Model.

9This is only possible because all dialects we experiment
with share a common orthography

10For the rest of the paper, when we refer to a setting as
mismatched consider only the LM to be mismatched.

11Even though WER is the most widely used metric, we
report CER as we find WER to be not as reliable for agglu-
tinative languages like Telugu as it is for analytic languages
like English. However, in this paper, both the metrics are
largely in agreement with each other.
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Dialect/LM None Coastal Andhra Telangana Rayalaseema All Dialects

Coastal Andhra 11.6/36.4 11.6/34.3 14.0/38.7 14.8/39.4 11.2/34.3
Telangana 7.6/27.9 16.7/40.1 7.6/25.4 17.0/40.9 7.5/24.7

Rayalaseema 8.6/26.5 8.2/25.4 7.9/25.1 7.7/24.2 9.0/23.0

Table 3: CER/WER(%) with Dialect Matched & Mismatched Language Models

As expected, ASR performs best when the LM
is trained on all dialects outperforming ASR sys-
tems under matched conditions by approximately
a WER of 1%. Since the dialect-specific text in our
setup is not heavily skewed towards one dialect,
the ASR performs well on all dialects. However,
text collected from most external sources are heav-
ily skewed towards the “standardised” Telugu di-
alect. Therefore, in the remaining part of the sec-
tion, we focus on ASR systems where its LM is
trained on a single dialect.

From Table 3, it can be observed that the av-
erage WER of the ASR in matched conditions
is 27.96% and average CER is 8.96%. On the
other hand, the average WER of the ASR in mis-
matched conditions is 34.93% and the average
CER is 13.1%. This absolute difference of 6.97%
in WER and 4.14% in CER of the ASR shows that
having a dialect-specific LM can lead to the supe-
rior performance of an ASR. Moreover, our exper-
iments with having no LM in ASR show that such
a system can outperform ASR in mismatched con-
ditions by upto 13% absolute WER. This shows
that when the LM of the ASR is trained on text
from a different dialect, it can actively hinder the
performance of the ASR.

From Table 3, we can also observe that there
is dissimilar amount degradation across all the
three dialect ASR under mismatched settings.
Telangana-specific ASR under mismatched condi-
tions leads to over 15% WER drop compared to
matched conditions. This is primarily due to the
data imbalance in the dataset we used. Telangana
dialect has most amount of data which leads to a
superior performance when the LM is trained on it.
However, when it is trained on other dialects, it is
not only of different dialect but also trained on sig-
nificantly lesser amount of data, which leads to an
inferior model. On the other hand, Rayalaseema-
specific ASR is robust to dialect mismatch with
only slightly above 1% drop in performance com-
pared to matched conditions. This is because Ray-
alaseema has a significant overlap with both Telan-

gana and Coastal Andhra as shown in Figure 1.
Since it has similarities with both Coastal Andhra
and Telangana dialect, it performs relatively well
even under dialect mismatched conditions.

Figure 2: Perplexity in Cross-Dialect Conditions

Figure 2 shows the perplexity scores of LMs in
dialect matched and mismatched settings. One can
draw similar inferences from the perplexity scores
as from the WERs of the ASR systems under dif-
ferent conditions presented in Table 3.

As expected, the perplexity of the LM trained
on all the dialects is the least. LM’s perplexity un-
der matched settings much better in all the three
dialects compared to mismatched conditions. As
discussed before, Telangana LM is highly sensi-
tive to dialect mismatch, with perplexity increas-
ing by over 13 points. LM trained on Coastal
Andhra and Telangana and tested on Rayalaseema
leads to the highest increase in perplexity, i.e., 5.82
and 13.13 points, respectively. On the other hand,
Rayalaseema LM is most robust to any dialect mis-
match.

6 Conclusion & Future Work

This paper studies how LMs perform under di-
alect mismatched conditions. Our experiments re-
veal that LMs perform poorly, with the perplex-
ity score increasing sharply in dialect mismatched
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conditions. We use the mismatched LMs in ASR
systems to study how they are affected. Similar
to what we have observed with perplexity scores
of the LM, we notice a significant degradation in
the performance of the ASR with over 15% dif-
ference in WER in dialect mismatched conditions
when compared to its matched counterpart. Fur-
thermore, through our study, we show that mis-
matched LMs can actively hinder the performance
of ASR by comparing it to ASR systems with no
LM. These findings show the importance of care-
ful curation of external text when training a dialect-
specific ASR system.

These experiments have also led to an interest-
ing finding: Rayalaseema dialect is more robust
under dialect mismatched conditions as it shares
a lot of similarities with both Coastal Andhra and
Telangana.

In the future, we plan to improve the LM and
thereby the ASR in dialect mismatched conditions
using various adaptation techniques available in
the literature. We hope that our future work would
lead to LMs that are more robust to dialect mis-
matched conditions, thereby leading to improved
ASR systems.
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Vocab/Dialect Coastal Andhra Telangana Rayalaseema

500 11.6/34.3 7.6/25.4 7.7/24.2
700 11.8/35.0 7.9/25.5 8.2/25.1

1200 13.3/36.5 7.9/25.6 8.7/25.6
2500 15.3/38.1 8.7/25.9 10.0/27.1

Table 4: CER/WER(%) for Different Vocabulary Sizes

A Experiments with Different
Vocabulary Sizes

In this paper, we conducted experiments with
the following vocabulary sizes: 500, 700, 1200,
2500. Table 4 shows the performance of the ASR
under these settings. We found that using 500 to-
kens results in best performance in all 3 dialect-
specific ASR systems. We also conducted prelimi-
nary experiments by reducing the vocabulary size
beyond 500 tokens but we could not find any no-
ticeable improvement.

B Example Sentences

Table 5 presents the example sentences along
with their transliterations using the WX nota-
tion (Gupta et al., 2010) and their translations.
In Coastal Andhra, we notice the usage of the
word “aMdi” frequently. In the example sentence,
this word is fused with another word “veyAli”
to become “veyAlaMdi”. In the example Ray-
alaseema sentence, we notice the usage of the
word “chaana”. This is specific to the Ray-
alaseema dialect. The corresponding equivalent
words in Coastal Andhra and Telangana would be
“cAnA” and “masw”, respectively. In Telangana,
we notice the influence of Urdu/Hindi. In the ex-
ample sentence, the words “masw” and “bE” have
its origins in Urdu/Hindi.
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Dialect Sentence with Transliteration and Translation

Coastal Andhra
పర్ తిపౌరుడుఓటుతపప్కవేయాలండి

prawi pOrudu otu wappaka veyAlaMdi
every citizen should vote without fail

Rayalaseema
మాకుమాపలెల్ టూరుఅంటేచానాఇషట్ ము

mAku mA palleVtUru aMte cAnA iRtamu
we like our village very much

Telangana
గాఫుటాబ్ల్గురించిఅయితేనాకుమస్త్గాతెలుసురాబై

gA PutbAl guriMci ayiwe nAku masw gA weVlusu rA bE
I know a lot about football

Table 5: Example Sentences of Different Dialects
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