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Abstract

Compositionality has traditionally been under-
stood as a major factor in productivity of lan-
guage and, more broadly, human cognition.
Yet, recently, some research started to ques-
tion its status, showing that artificial neural net-
works are good at generalization even without
noticeable compositional behavior. We argue
that some of these conclusions are too strong
and/or incomplete. In the context of a two-
agent communication game, we show that com-
positionality indeed seems essential for suc-
cessful generalization when the evaluation is
done on a proper dataset.

1 Introduction

Compositionality is a property of language that de-
scribes its specific hierarchical structure. Multiple
atomic units (e.g., words) can be combined to pro-
duce more complex units (e.g., sentences), while
the meaning of the larger units can be inferred from
the simpler parts and the way they are combined.

Of course, there are inherently noncompositional
structures in language, idioms being a prime exam-
ple. If someone is making waves, it usually means
that the person is causing trouble and no water is
implied. Still, many reputable researchers (Nowak
et al., 2000; Pinker, 2000; Fodor and Lepore, 2002;
Lake et al., 2017) have seen compositionality as
a key ingredient that enables language to be used
productively, i.e., in an infinite number of novel sit-
uations. Often, this productivity is juxtaposed with
the learning of Artificial Neural Networks (ANNs),
whose performance is known to suffer when tested
in new scenarios.

Recently, a strand in the literature has been mak-
ing waves (sic) by calling into question the pro-
posed benefits of compositionality. Various papers
have shown that ANNs can generalize well to un-
seen contexts (be productive) even if they work
with internal representations that are noncomposi-
tional (Kottur et al., 2017; Andreas, 2019; Baroni,

2019; Chaabouni et al., 2020; Kharitonov and Ba-
roni, 2020).

The goal of this paper is to counterbalance these
claims.1 More precisely, we would like to rela-
tivize some of the stronger conclusions that are
provided and show (by running modified experi-
ments) that the reported experimental results can
be harmonized with the view that compositionality
is necessary for successful knowledge transfer.

We will do this by first providing an overview
of the related research in Section 2. Then in Sec-
tion 3, we give our arguments against some of the
presented assumptions and/or conclusions. These
arguments are further supported by experiments
that are described in Section 4. We conclude the
paper with a short discussion in Section 5.

2 Emergent languages generalize without
compositionality

Much of the critical research comes from exper-
imentation with languages that emerge during a
communication game. Here, two agents (ANNs)
are trained to communicate in order to perform a
certain task. The first agent (sender/speaker) en-
codes the input into a message, a sequence of dis-
crete symbols. The second agent (receiver/listener)
does not have direct access to the original input,
but only sees it as represented by the message. The
receiver’s goal is to transform the message into a
desired output.

The output can take many forms depending on
the task: reconstructing the input fully (Chaabouni
et al., 2020; Andreas, 2020) or partially (Kot-
tur et al., 2017) or reconstructing the input after
going through some deterministic transformation
(Kharitonov and Baroni, 2020).

Inputs can be conceptualized as representations
of objects by means of independent nominal at-

1We consider the cited research valuable and important. In
some cases we argue with some statements that were not even
the main topic of the paper in question.

285



tributes, e.g., blue circle, red square, orange trian-
gle for two-dimensional input vectors (color and
shape). A uniform random sample of all such ob-
jects is then held out for testing, the rest of the data
(or its part) is used for training.

Andreas (2019) and Chaabouni et al. (2020) de-
velop custom metrics to measure the composition-
ality of messages passed between the sender and
the receiver. The metrics compare each message to
the corresponding input and try to assess to what
extent each part of the input (attribute value) can
be isolated in the message regardless of the context
(i.e., other attribute values). They report runs in
which models communicate through messages with
low compositionality scores, but still achieve good
generalization on unseen data.

Kharitonov and Baroni (2020) replace training
the first agent (sender) by hand-coding the mes-
sages. This gives them the advantage of hav-
ing direct control over the emergent language.
They find that good generalization can sometimes
be achieved using a non-compositional language
(sometimes leading to even better results than using
a compositional language).

3 Allowing compositionality to have an
effect

Our main argument is that the process of selecting
the test data plays a crucial role in evaluating the ef-
fects of compositionality. Sampling examples with
uniform probability is a mainstay in machine learn-
ing, and algorithms have been shown many times
that they can perform very well under these condi-
tions. However, once we move away from the static
world of i.i.d. data samples into the dynamic world
of ever-changing distributions, the limitations of
such models become obvious.

We argue that this is where compositionality
is supposed to be helpful. Analyzing the world
(or data points to keep the discussion down to
earth) through a hierarchy of parts and their re-
lations enables inferring a ‘rule-based algebraic
system’, which is ‘an extremely powerful gener-
alization mechanism’ (Baroni, 2019). Systematic
compositionality exploited by human learners en-
ables them to be sample efficient, i.e., quickly learn
a new task seeing just one or a limited number of
training examples (Lake et al., 2017). Therefore,
we conclude that showing compositionality not be-
ing correlated with generalization on in-domain
held-out data is not very informative. Instead, it is

preferable to control the exposition of certain pat-
terns in the training and testing data as illustrated
by, e.g., the SCAN benchmark (Lake and Baroni,
2018).

We also point out that Andreas (2019) and
Chaabouni et al. (2020) implement both agents
(sender and receiver) as relatively standard en-
coder/decoder architectures with recurrent (LSTM,
GRU) layers. These architectures are not neces-
sarily known for their ability to produce or utilize
compositional sequences.

The assumption seems to be that when running
an experiment many times (with different random
initialization of the models), some runs will be suc-
cessful in the sense that the agents will develop
a more or less compositional language by chance.
Moreover, the degree of compositionality would
have to be large enough to influence the generaliza-
tion of the models (should such an effect be real).
We do not think this assumption is justified.

Kharitonov and Baroni (2020) avoid a part of
the above problem by creating compositional mes-
sages manually. Their main conclusion is that one
can devise different tasks, and in some of them
a compositional representation of the input data
might even prove disadvantageous. Indeed, it is
possible to create, for example, an arbitrary bijec-
tive function from the input space to the output
space and train a model to learn such a mapping.
Not surprisingly, such a model will fail at the test
time. However, if we first encode the input with the
same arbitrary transformation (thus creating a non-
compositional representation of the input data), the
model is then asked to learn the identity function,
which it might achieve quite well. Therefore, we
agree with the conclusion that ‘in isolation from
the target task, there is nothing special about a lan-
guage being . . . compositional.’

Yet, as mentioned above, compositionality is of-
ten discussed in conjunction with natural language
or human cognitive abilities more generally. In
the lived experience of biological species (to be
less human-centric), it is reasonable to expect that
the ‘underlying factors of variation’ or ‘explana-
tory factors’ (Bengio et al., 2013) behind the input
data a) repeat in many different situations and b)
are directly relevant for different tasks. For exam-
ple, it is reasonable to expect that many languages
have a word for water rather than a word for water
and the wind is blowing, simply because the first
is more useful. Therefore, we believe that the em-
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Model train in-domain test out-of-domain test
sender (ours) 1.00± 0.01 1.00± 0.00 0.99 ± 0.06
sender (Chaabouni et al., 2020) 1.00± 0.04 1.00± 0.03 0.83± 0.19

receiver (ours) 1.00± 0.00 1.00± 0.00 1.00 ± 0.02
receiver (Chaabouni et al., 2020) 1.00± 0.02 1.00± 0.00 0.44± 0.32

Table 1: Learning alone experiment: Comparing the accuracy (mean ± std over 20 runs) of two types of architecture
in different data splits. Each agent (sender/receiver) is trained independently of the other by using fixed messages.

phasis on compositionality in research can be more
than ‘a misguided effect of our human-centric bias’
(Kharitonov and Baroni, 2020).

4 Experiments

We follow the communication game experiments
of Chaabouni et al. (2020). We create a set of
instances, each of which is represented by iatt at-
tributes. Each attribute has nval possible values.
The messages passed between the agents are lim-
ited by the maximum length (clen) and the size
of the vocabulary (cvoc). The receiver’s goal is to
reconstruct the input.

As messages are sequences of discrete symbols,
which prevents gradients from passing through, the
sender must be trained with the REINFORCE al-
gorithm Williams (1992). The receiver is trained
using backpropagation. We use the EGG toolkit
(Kharitonov et al., 2019) to implement the experi-
ments.2

We focus mainly on the setting of (iatt = 2, nval

= 100, clen = 3, cvoc = 100). In this case, the dataset
contains isntances such as (12, 34), (0, 99), (99, 0)
etc. We create three splits. The out-of-domain
(OOD) test set contains all pairs where 0 appears,
apart from three examples: (0, 0), (0, 1), and (1, 0).
The training set contains these three zero examples
together with 90% of the remaining (nonzero) ex-
amples (random sample). The rest of the data con-
stitute in-domain (IND) test set. In other words, we
designate a special symbol (0), which appears only
in a limited number of contexts in training. We
then separately evaluate how the models perform
on unseen examples with ordinary symbols (IND
test set) and on unseen examples with the special
symbol (OOD test set).

Given the absence of any incentive for the mod-
els to develop compositional messages during train-
ing, we opt for architectural biases in our experi-
ments. We use the models that have been proven to
be successful in OOD generalization in the SCAN

2The code is available at https://github.com/
michal-au/emlang-compos.git

benchmark (Li and Bowling, 2019; Russin et al.,
2020; Auersperger and Pecina, 2021). Each agent
is implemented as a separate seq2seq encoder-
decoder architecture with recurrent layers and a
modified attention mechanism. Details are pro-
vided in Appendix A

4.1 Learning alone

We first want to know whether the architectures
used for implementing the agents are capable of
achieving systematic compositionality on their
own, that is, outside of the context of the 2-agent
communication game. To do this, we handcode
the messages that are to be created (sender) or re-
ceived (receiver) and train each agent using regular
backpropagation on the corresponding task.

We first create an arbitrary bijective mapping
from the input vocabulary to the message vocab-
ulary. Furthermore, to introduce variability in the
length of the messages, we duplicate the occur-
rences of all tokens with odd indices in the mes-
sage vocabulary. For example, having a mapping
tr : 0 → 3, 1 → 8, 2 → 2, . . . , we produce (among
others) the following input–message pairs: (0, 0) –
(3, 3), (1, 0) – (8, 8, 3), (2, 1) – (2, 2, 8, 8).

We train 2 types of agent for both sender and
receiver comparing our architecture with the de-
fault used by Chaabouni et al. (2020). There are
500 training epochs and 20 runs with different ran-
dom initializations for each agent. The results are
presented in Table 1. They show that at least for
this simple task, adding architectural bias helps
with compositional generalization to out-of-domain
data. The results also suggest that the default ar-
chitectures are unlikely to provide systematic gen-
eralization in the communication game since they
are unable to achieve it even if their communica-
tion partner does never make mistakes (i.e. the
messages are guaranteed to be produced/received
correctly).

We experimented with limiting the capacity of
the default architecture to see if such kind of reg-
ularization could help with generalization perfor-
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Figure 1: Communication game experiment: Training
and OOD accuracy during training. Compositionality
measures at the end of training. Orange represents runs
of our architecture, blue represents runs of the architec-
ture used by Chaabouni et al. (2020). There were 20
runs for each architecture.

mance. Besides the original size (500), four addi-
tional sizes of hidden layers were tested (100, 200,
300, 400). For the default receiver, a smaller capac-
ity (100) improved the OOD accuracy from 0.44
(±0.32 std) to 0.81 (±0.21 std).

We point out that it is the out-of-domain test
set that reveals the difference between the architec-
tures.

4.2 Communication game

Having seen that in some tasks our architectures are
capable of approaching systematic compositional-
ity, we turn our attention to the full communication
game. We train both the default and our modified
architectures on the full task for the maximum num-
ber of 2,000 epochs. Similarly to Chaabouni et al.
(2020), we use early stopping when training accu-
racy reaches 99.999%, however, we evaluate all the
runs, even those that never reach perfect training
accuracy. Each experiment was repeated 20 times
with different random initializations. The training
progress is visualized in Figure 1 and the results
are given in Table 2.

The experiments demonstrate that our changes to
the default architecture lead to some out-of-domain
generalization, but we were unable to guarantee
such behavior for each run (accuracy 0.42± 0.27
std). In contrast, the original architecture does
never succeed (accuracy 0.00± 0.01 std).

We evaluated the three compositionality metrics
used by Chaabouni et al. (2020) and found signifi-
cant differences between the two architectures. In
two of the metrics, namely positional disentangle-

ment and topographic similarity, we achieve higher
scores than the original architecture, while in bag-
of-symbol disentanglement the situation is reversed.
We show the relationship between compositionality
and generalization in Figure 2.
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Figure 2: Compositionality measures and generalization
in out-of-domain dataset. Successful generalization was
possible only with large posdis and/or topsim scores.

Both Andreas (2019) and Chaabouni et al. (2020)
claim that compositionality is not a necessary con-
dition for good generalization, but that it might
be a sufficient condition (Chaabouni et al., 2020).
Choosing the out-of-domain data for evaluation
and training models whose architecture is biased
towards utilizing composationality of a language,
we arrive at the opposite conclusion: composition-
ality is a necessary but not sufficient condition for
good generalization. In other words, we often ob-
serve runs where both agents communicate through
relatively compositional messages, but fail to gen-
eralize. However, we never observe a run where
generalization is successful in spite of a low com-
positionality (posdis or topsim) score.

However, given the size of the input space
(100× 100) and the proportion of training data
(about 90%), we did not expect to find such a no-
ticeable difference in performance in the in-domain
test set. This suggests that such test data is not
completely agnostic to the notion of composition-
ality (which is somewhat contrary to our previous
argumentation). Yet, we still maintain that the out-
of-domain dataset is much more informative with
respect to evaluating the benefits of compositional-
ity.

Similarly to the previous experiment, we tested
additional sizes of hidden layers of the original
architecture (100, 200, 300, 400) but were not able
to match the IND accuracy of our architecture.

Looking at the OOD generalization performance
of our models, it is notable that most models oper-
ate in one of three regimes: the accuracies tend to
cluster above 0, below 0.5, or below 1. Manual in-
spection of the agents’ communication showed that
most of the time agents successfully reconstruct the
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Model train IND test OOD test posdis bosdis topsim
Chaabouni et al. (2020) 0.99± 0.07 0.91± 0.09 0.00± 0.01 0.32± 0.15 0.67± 0.07 0.53± 0.18

ours 0.99± 0.03 0.98± 0.05 0.42 ± 0.27 0.71± 0.11 0.11± 0.04 0.83± 0.11

Table 2: Communication game experiment: Accuracy (mean ± std) measured in different data splits, Three
compositionality measures of the messages (mean ± std) evaluated in out-of-domain test data.

non-zero symbols, which means that most of the er-
rors are caused by wrongly reconstructing the zero
symbol. These errors are also systematic, meaning
that, given the position in the string, the zero sym-
bol is replaced by the same symbol regardless of its
neighbor. Thus, agents successfully reconstructing
zero at both positions achieve accuracies close to
1, agents successfully reconstructing zero only in
a single position achieve scores close to 0.5 and
in the rest of the runs, agents fail regardless of the
position.

5 Discussion

There are many questions that remain for further
analysis. The distinction between the in-domain
and out-of-domain data is not clear-cut. One might
object that seeing just one or two examples of a
given symbol in the training data is too little for
ANNs to learn its embedding and reliably map it
close to other ‘similar’ symbols in the semantic
space (Lake and Baroni, 2018; Loula et al., 2018).
This is actually the issue as it seems that human
learners unlike ANNs are able to succeed in such
a scenario and work with limited data or, in other
words, ‘not-yet-converged embeddings’. See Lake
et al. (2017) for a more thorough discussion.

The goal of this paper was to show that some con-
clusions in the literature on compositionality are
too strong or incomplete. However, there are other
arguments that remain untackled. Baroni (2019)
gives examples of neural networks that generalize
(partially) well to out-of-domain data. For instance,
Dessi and Baroni (2019) show that a simple con-
volutional network is enough to improve accuracy
from 1.2% to 60% in a difficult task from the SCAN
benchmark. Gulordava et al. (2018) demonstrate
that a language model is capable of preferring gram-
matical nonsense sentences (certainly not seen in
training) to ungrammatical ones. In general, the
practical success of ANNs in many applications
can serve as a proof of their strong generalization
abilities (Lake and Baroni, 2018; Baroni, 2019).

In response, we would like to point out that such
success often coincides with new developments in
neural architectures (convolutional NNs in vision,

attention in NLP). These developments might ac-
tually point in the direction of compositionality. A
trained convolutional NN actually detects primitive
shapes (at least by the filters in the lower layers) and
combines these into composit representations. Sim-
ilarly, a trained attention-based encoder-decoder
language model represents each input as a sequence
of contextualized embeddings of the original units.
Some of these embeddings might primarily rep-
resent the corresponding input units, and others
might represent their collections.

We also acknowledge that for practical applica-
tions, especially in the short term, focusing on com-
positionality is not guaranteed to help (Kharitonov
and Baroni, 2020). The most practical way so far
has been to enable training on as much data as pos-
sible. However, it is likely that such an approach
will eventually result in diminishing returns.

There are many potential aspects that favor com-
positional behavior: inductive architectural biases
(e.g., attention); limited channel capacity relative
to the input space (Nowak et al., 2000); ease of
transmission within the population (Chaabouni
et al., 2020); generalization pressure (contrary to
Chaabouni et al. 2020), if such a pressure is al-
lowed to have some effect (e.g., by meta-learning);
. . . . It is also possible that systematic composition-
ality might emerge3 only as a result of multiple
such factors.
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A Appendix

A.1 Architecture
Both the sender and the receiver are implemented
by the following encoder-decoder architecture:

The encoder produces two embeddings (size
500) for each input symbol, one syntactic and one
semantic. A uni-directional GRU (Chung et al.,
2014) layer (size 500) transforms the syntactic em-
beddings to contextualized embeddings.

The autoregressive decoder embeds the last pro-
duced symbol (or the start-of-sequence symbol)
(size 500) and transforms it with another GRU
layer (size 500). This contextualized embedding is
then used as a query in the dot-product attention
(Luong et al., 2015) and matched against the con-
textualized embeddings produced by the encoder.
The attention weights are then used to produce the
weighted sum of the semantic embeddings of the
input symbols. This vector (size 500) is added to
the query and transformed by a linear layer to the
output symbol logits.
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