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Abstract

Multimodal Neural Machine Translation is fo-
cusing on using visual information to translate
sentences in the source language into the target
language. The main idea is to utilise informa-
tion from visual modalities to promote the out-
put quality of the text-based translation model.
Although the recent multimodal strategies ex-
tract the most relevant visual information in
images, the effectiveness of using visual infor-
mation on translation quality changes based on
the text dataset. Due to this, this work stud-
ies the impact of leveraging visual information
in multimodal translation models of ambigu-
ous sentences. Our experiments analyse the
Multi30k evaluation dataset and calculate ambi-
guity scores of sentences based on the WordNet
hierarchical structure. To calculate the ambi-
guity of a sentence, we extract the ambiguity
scores for all nouns based on the number of
senses in WordNet. The main goal is to find
in which sentences, visual content can improve
the text-based translation model. We report the
correlation between the ambiguity scores and
translation quality extracted for all sentences in
the English-German dataset.

1 Introduction

In recent years, Neural Machine Translation (NMT)
model is widely used in translation tasks and repre-
sents remarkable performance in terms of fluency
and precision compared with the previous gener-
ations of machine translation. Recurrent Neural
Network (RNN)-based NMT with Attention mecha-
nism has found broad application in different fields
of NLP tasks such as machine translation. The
transformer model as a Self-attention based model
has been introduced by Google in 2017 as a new
architecture for NMT (Vaswani et al., 2017). The
self-attention mechanism uses cross-lingual atten-
tion that allows the input words to interact with
each other (self) and find out which one should
pay more attention to (attention). In addition to

the mechanism of cross-lingual attention, the trans-
former model uses a stacked self-attention layer
that follows with a point-wise feed-forward compo-
nent. Recently many studies in machine translation
have been increasingly focusing on using visual
content well as textual to improve the translation
quality. Therefore, Multimodal Neural Machine
Translation (MNMT) as a subarea of NMT has
been introduced to use visual information extracted
from other modalities such as speech, image or
video to translate a sentence in a source language
into the target language.

MNMT is an area of research that plays an im-
portant role in machine translation tasks since mul-
timodal resources have been increasingly used in
deep learning techniques. MNMT tries to extend
the ability of the NMT models by taking visual
context such as images as an additional input to
better translate the source text. The main idea be-
hind this is that the textual context does not pro-
vide sufficient information for the text-based NMT
model in some situations to translate ambiguous
sentences (ambiguous terms or grammatical gen-
der). Due to this, visual information can enrich
text-best NMT systems by adding extra informa-
tion to disambiguate the input words and provide
correct translations on the target side.

One of the main ideas of using multimodality in
Machine Translation is that visual information can
help the textual context to find the correct sense of
ambiguous words in the translation process of the
source sentence. For example, the word “track” in
the English sentence “A man is performing a trick
on a track” is an ambiguous word and could have
at least two different translations in German – (1)
“Ein Mann führt einen Trick auf einer Strecke aus”,
and (2) “Ein Mann führt einen Trick auf einem
Bahngleis aus”. Given the word “track”, the con-
text does not provide enough information to dis-
ambiguate and translate it correctly. Therefore,
multimodal resources such as images can guide the
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translation system to select the correct sense based
on the visual information. Word Sense Disambigua-
tion (WSD) is widely studied in different natural
language processing tasks. WSD analyses given
the context of an ambiguous word to assign the
correct sense based on a pre-defined sense net for
words. Visual Sense Disambiguation (VSD) as a
modified version of WSD use visual context instead
of textual to disambiguate words. Although disam-
biguation of word sense can be done directly by Ma-
chine Translation models, research on Multimodal
Machine Translation more focuses on analysing
of contributions of each modality to disambiguate
words in the translation process.

In this work, we focus on identifying ambiguous
sentences and leverage therefore the WordNet hier-
archical structure to calculate an ambiguity score
for each sentence. This is then used to study a
correlation between ambiguity and translation eval-
uation scores. Analysing the lexical ambiguity and
translation quality allowed us to identify sentences
that are more challenging in the translation process
and most likely visual content can help the text-
based NMT to translate sentences more accurate.

2 Related Work

Multimodal Machine Translation is a new trend in
machine translation tasks that aims to create mul-
timodal frameworks to use information from vi-
sual modality as well as text context (Specia et al.,
2016). Different practices were used for the vi-
sual part of the MMT framework. The common
approach is to extract visual information by using
Convolutional Neural Networks (CNN) and then in-
tegrate this information with textual features (Yao
and Wan, 2020). Many MMT models were de-
veloped based on the Transformer approach. The
transformer approach extracts the relationships be-
tween words in the source and target sentences
by using a multihead self-attention mechanism
(Vaswani et al., 2017)

In some studies, the global image features are
used in the encoder beside word sequences to use
both types of features in the decoding stage (Huang
et al., 2016) or used to initialise the hidden param-
eters of the encoder and decoder in RNN (Calixto
and Liu, 2017). (Caglayan et al., 2017) use ele-
mentwise multiplication to initialise hidden states
of encoder/decoder in the attention-based model.
(Zhou et al., 2018) links visual and correspond-
ing text semantically by using a visual attention

mechanism.
Despite successfully using multimodal informa-

tion in MMT, recent studies show that most of
the information in the image is not related to the
text while the translation process and when there
is limited textual information, visual content plays
more important for the translation model (Caglayan
et al., 2019). The studies use visual features by
focusing on relative importance among different
modalities. (Lala et al., 2018) introduced a mul-
timodal cross-lingual word sense disambiguation
model based on Multimodal Lexical Translation
Dataset (MLTD) (Lala and Specia, 2018) to gen-
erate contextually correct translations for the am-
biguous words. MLTD includes a list of words
of the source language with multiple translations
in the training set of Multi30k. (Ive et al., 2019)
introduced a translate-and-refine mechanism by us-
ing images in a second stage decoder to refine the
text-based NMT model in the ambiguous words
listed in MLT dataset. (Calixto et al., 2019) use
a latent variable model to extract the multimodal
relationships between modalities. Recent methods
try to reduce the noise of visual information and
select visual features related to the text. (Yao and
Wan, 2020) use a multimodal transformer-based
self-attention to encode relevant information in im-
ages. To capture various relationships, (Yin et al.,
2020) propose a graph-based multimodal fusion
encoder.

3 Experimental Setup

This section provides insights on the dataset used in
this work, neural architectures and the translation
evaluation metric BLEU.

3.1 Multi30K Dataset

Multi30K (Elliott et al., 2016) is an extended ver-
sion of the Flickr30K dataset that includes images
and paired descriptions expressed by one English
sentence and translated sentences in multiple lan-
guages. Firstly, the German translation was added
to the dataset (Young et al., 2014) and then it ex-
tended to French and Czech (Elliott et al., 2017)
(Barrault et al., 2018). Many recent models in
MNMT have focused on Multi30K as it provides an
image for each sentence in English and three trans-
lation directions, i.e. in German, French and Czech.
In this study, the evaluation dataset of Multi30k
contains 1,000 instances.
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3.2 Text-based NMT

OpenNMT (Klein et al., 2018) is used to train the
text-based NMT model on a general En-De dataset.
The model used a 6-layer transformer mechanism
for both the encoder and decoder stage. We trained
the model for 50,000 steps on a general dataset
and set the parameters of the model to the original
implementations of OpenNMT.

As the text-based NMT system cannot leverage
the visual information, and to ensure a broad lex-
ical and domain coverage of our text-based NMT
system, we merged existing parallel for the English-
German language pair from the OPUS web page1

into one parallel corpus, i.e., Europarl (Koehn,
2005), DGT (Steinberger et al., 2014), EMEA,
KDE4, OpenOffice (Tiedemann, 2009), OpenSub-
titles2012 (Tiedemann, 2012), and randomly se-
lected 10 million sentences for our training step.

3.3 Doubly-attentive MNMT

For the visual side, we used the model that pro-
posed in (Zhao et al., 2020) to apply semantic im-
age region features2 for MNMT. This model is
based on the Doubly-attentive mechanism (Cal-
ixto and Liu, 2017) to integrate visual and textual
features by applying 100 semantic image features
with a dimension of 2,048 at each time step. The
hidden state dimension of the visual model is 500
for both 2-layer GRU encoder and 2-layer GRU
decoder. The work also set the dimension of the
source word embedding to 500, batch size to 400,
beam size to 5, text dropout to 0.3, and image re-
gion dropout to 0.5. After training the model for
25 epochs using stochastic gradient descent with
ADADELTA (Zeiler, 2012) and a learning rate of
0.002, the model of epoch 16 has been selected
based on comparing BLEU scores of the final mod-
els.

3.4 Evaluation Metric

We report the automatic evaluation based on BLEU
for the automatic evaluation. BLEU (Papineni et al.,
2002) is calculated for individual translated seg-
ments (n-grams) by comparing them with a dataset
of reference translations. For this work we use the
sacrebleu3 library (Post, 2018).

1https://opus.nlpl.eu/
2https://github.com/Zhao-Yuting/

MNMT-with-semantic-regions
3https://github.com/mjpost/sacrebleu

3.5 Princeton WordNet
Princeton WordNet (Fellbaum, 1998) is a manu-
ally created resource that has been used in many
different tasks and applications across linguistics
and natural language processing. WordNet’s hier-
archical structure makes it a useful tool for many
semantic applications and it also plays a vital role
in various deep learning approaches (Rychalska
et al., 2016).

3.6 Correlation Coefficients
The correlation coefficient is a measure to deter-
mine the relationship between two variables (Janse
et al., 2021). In correlated data, the change in
the magnitude of one variable leads to a change
in the magnitude of another variable either in the
same or in the opposite directions. Pearson product-
moment correlation is a typical type of correlation
for a linear relationship between two continuous
variables. The range of the correlation coefficient is
between -1 and +1, where 0 shows that there is no
correlation between the two variables. The correla-
tion coefficient near +1 and -1 shows a strong, same
or opposite, correlation respectively. The equation
for the correlation coefficient is:

Correl(X,Y ) =

∑
(x− x̄)(y − ȳ)√∑

(x− x̄)2
∑
(y − ȳ)2

where x̄ and ȳ are the sample means of array X
and Y respectively.

4 Methodology

In this section, we explain our methodology to cal-
culate the ambiguity scores for each sentence based
on the hierarchical structure of WordNet. To find
a meaningful relationship between ambiguity and
translation quality, we analyse the correlation func-
tions between different ambiguity scores and the
translation evaluation metric BLEU. Our focus in
this work is on the inherited structure of English
nouns in WordNet. Each noun in WordNet can
be defined as a set W of pairs (w,s) where w is a
word in that language and a sense s is possible set
of meanings (synonyms or synsets) for the word
w. Table 1 shows all synset entries (11) for the
noun track in WordNet. The inherited structure in
WordNet is a hierarchical structure to organise the
semantic relations of synsets. Furthermore, synsets
in WordNet have different hierarchical structures
from each other including hyponymy and hyper-
nymy. Figure 1 shows the WordNet inherited struc-
ture of synset entries for the word track. Entity
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path, track, course a line or route along which something travels or moves
lead, track, trail evidence pointing to a possible solution
track a pair of parallel rails providing a runway for wheels
racetrack, racecourse, raceway, track a course over which races are run
cut, track a distinct selection of music from a recording or a compact disc
track, caterpillar track, caterpillar tread an endless metal belt on which tracked vehicles move over the ground
track, data track one of the circular magnetic paths on a magnetic disk that serve ... for writing and reading data
track a groove on a phonograph recording
track, rail, rails, runway a bar or pair of parallel bars of rolled steel making the railway along which railroad ... can roll
track, cart track, cartroad any road or path affording passage especially a rough one
track, running the act of participating in an athletic competition involving running on a track

Table 1: Synset entries (11) for the word track in the Princeton WordNet.
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Figure 1: Hierarchical structure of the WordNet entry track.

(level 0), is the root node for all synset entries in
WordNet. Each path between the root node and
a synset entry has a different length that shows
the different abstraction level. For example of the
word track, min_length has a path length of
4, with six unique abstract concepts (Information,
Act, Writing, Line, Solid, Artifact). On the other
hand, min_length-1 at the path length of 3, has
six concepts as well, i.e. Cognition, Event, Writ-
ten Communication, Shape, Location, Whole. The
number of all synsets for track in WordNet is 11.
After extracting this information for each word,
we use the sum and multiply functions on all
nouns of a sentence to calculate the overall ambigu-
ity score (see example in Table 2 for the sentence
Dog runs at a track). We normalised these scores
by dividing them by the number of content words
(nouns with more than one synset in WordNet) of

the sentence to minimise the effect of sentence
length on our experiments.

5 Results

This section provides the results of our experi-
ments. After calculating ambiguity and BLEU
scores (NMT, MNMT) for each sentence in the
test set, we analysed the correlation coefficients
between ambiguity and translation quality scores
to find a meaningful relationship between them. To
better analyse the correlation between the sentence
ambiguity and translation quality, we grouped them
into sets of 50 sentences (resulting in 20 groups)
after ranking them by the ambiguity score. The
corpus BLEU scores for NMT and MNMT on the
evaluation dataset in En-De are 30.66 and 35.80
respectively.

Table 3 illustrates the correlation score (see Sec-

92



Approach # of Concepts # Nouns Ambiguity

Sum(synsets) 7 + 11 2 9.0
Sum(min_length) 7 + 10 2 8.5

Sum(min_length-1) 6 + 6 2 6.0

Multiply(synsets) 7 * 11 2 38.5
Multiply(min_length) 7 * 10 2 35.0

Multiply(min_length-1) 6 * 6 2 18.0

Table 2: Examples of calculating the ambiguity score
based on the number of concepts of each word, i.e. dog
and track, at the certain hierarchical level, normalised
with the set of nouns in the sentence.

Approach NMT MNMT

Sum(Synsets) 0.3987 0.3841
Sum(min_length) 0.2226 0.0445

Sum(min_length-1) 0.1017 -0.0453

Multiply(Synsets) -0.5511 -0.6744
Multiply(min_length) -0.5846 -0.6020

Multiply(min_length-1) -0.5292 -0.6039

Table 3: Correlation between the calculated ambiguity
scores and BLEU metric for NMT and MNMT on 20
groups.

tion 3.6), ambiguity scores and the BLEU evalua-
tion metric for the approaches used to calculate the
ambiguity scores of the sentences. As seen in the
table, the best correlations for NMT and MNMT
are obtained by the Multiply(min_length)
and Multiply(Synsets) approaches respec-
tively. Due to this, we focused on the Multiply
approaches and provide graphs, which illustrate the
correlation between the ambiguity and translation
quality.

As seen in Figure 2 the ambiguity score cal-
culated by the WordNet hierarchy correlates with
the translation quality, i.e., if the ambiguity of a
sentence is high, the translation quality in terms
of BLEU is low. On the other hand, if the am-
biguity of a sentence is low, the translation qual-
ity in terms of the BLEU metric improves. This
can be seen for all methods used to calculate
the ambiguity, i.e. synsets, min_length,
min_length-1. In addition to that, the graphs
also illustrate the better performance of the MNMT
system (orange points) compared to the text-based
NMT system (blue points).

6 Conclusion

Recent studies in Multimodal Machine Translation
focused on using visual information to improve the
quality of translation tasks. One of the main chal-

NMT MNMT

0

2000

4000

6000

8000

10000

12000

20 25 30 35 40 45 50

M
u
lt
ip
ly
(S
yn
se
ts
)

BLEU

0

200

400

600

800

1000

1200

1400

1600

20 25 30 35 40 45 50

M
u
lt
ip
ly
(m

in
_l
e
n
gt
h
)

BLEU

0

50

100

150

200

250

300

350

400

20 25 30 35 40 45 50

M
u
lt
ip
ly
(m

in
_l
e
n
gt
h
-1
)

BLEU

Figure 2: Correlation representation between the Multi-
ply approach’s ambiguity scores and the BLEU metric
for NMT and MNMT on 20 groups.

lenges for the translation systems is to find a correct
translation in terms of the context used. Despite the
progress of research in this area, the performance
of multimodal translation systems is more related
to the quality of visual content which is used along
with textual dataset. In this study, we analysed
different approaches to calculate the ambiguity of
the sentence to find a correlation between sentence
ambiguity and the translation quality in terms of
the BLEU metric. We tested different approaches
to calculate the ambiguity and observed that multi-
plying the number of entries at the minimum length
level of the WordNet hierarchy for each noun pro-
vided the best correlation to the evaluation metric
for each sentence. Within our future work, we plan
to consider the frequency and further linguistic fea-
tures of WordNet synsets. In addition to that, we
plan to leverage the Polylingual Wordnet (Arcan
et al., 2019), a large multilingual WordNet in more
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than 20 European languages, to calculate the lexical
ambiguity beyond English. Furthermore, we plan
the incorporation of ImageNet (Deng et al., 2009),
which has an image dataset organised according to
the WordNet hierarchy.
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