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Abstract
Paraphrase generation is an important lan-
guage generation task attempting to interpret
user intents and systematically generate new
phrases of identical meanings to the given
ones. However, the effectiveness of para-
phrase generation is constrained by the ac-
cess to the golden labeled data pairs where
both the amount and the quality of the train-
ing data pairs are restricted. In this paper,
we propose a new weakly supervised para-
phrase generation approach that extends the
success of a recent work that leverages rein-
forcement learning (RL) for effective model
training with data selection. While data se-
lection is privileged for the target task which
has noisy data, developing a reinforced selec-
tive learning regime faces several unresolved
challenges. In this paper, we carry on impor-
tant discussions about the above problem and
present a new model that could partially over-
come the discussed issues with a model-based
planning feature and a reward normalization
feature. We perform extensive evaluation on
four weakly supervised paraphrase generation
tasks where the results show that our method
could significantly improve the state-of-the-art
performance on the evaluation datasets.

1 Introduction

Paraphrase generation is an important natural lan-
guage generation task which aims to generate a
target sentence that encapsulates the meaning of
a given source sentence while conforming to the
style of some desired exemplar. It plays an essential
role in many real-world applications for natural lan-
guage processing, such as semantic parsing (Berant
and Liang, 2014; Wu et al., 2021), machine trans-
lation (Resnik et al., 2010; Mallinson et al., 2017),
recommend system (Falke et al., 2020) and ques-
tion answering (Fader et al., 2013; Rinaldi et al.,
2003; Duboué and Chu-Carroll, 2006). Different
from other controllable text generation tasks where
golden labelled data pairs are accessible and often

being readily available, for paraphrase generation
tasks, large scale of parallel paraphrase samples
are often extremely hard to collect because gen-
erating them would often consume extensive do-
main knowledge or the generation could hardly be
standardized. Therefore, the chance of performing
supervised learning in real life scenarios would be
considerably limited.

To overcome the data unattainable issue, un-
supervised and semi-supervised approaches have
achieved growing attention in the recent decade.
Generally, the unsupervised approaches adopt
sampling-based or editing-based techniques (Bow-
man et al., 2016; Miao et al., 2019) to remedy
golden standard knowledge but they generally re-
sult in less coherent or controllable target phrases
due to their lose of supervision. Therefore, in
our paper, we focus on weakly-supervised para-
phrase generation which has demonstrated great
effectiveness in many major natural language pro-
cessing tasks (Dehghani et al., 2017; Sun et al.,
2020). Although weakly-supervised approaches
have successfully pushed forward the state-of-the-
art performance standard for the language-based
tasks, when employed for paraphrase generation,
they still face the challenge of how to acquire high-
quality paired paraphrase data and therefore lead
to noisy data pairs which might bring negative ef-
fect to the downstream task of training paraphrase
generation models.

To overcome the aforementioned challenge and
effectively train paraphrase generation models from
noisy and not equally informative paraphrase pairs,
we adopt a learning to selectively learn approach.
That is, a meta model is learned to select intuitive
paraphrase pairs while eliminating the low qual-
ity ones. Thus the paraphrase generation model
which is jointly learned with the meta data selector
model could achieve better performance through
the carefully specified selective learning process.
Nonetheless, it is impossible for learning an effec-
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tive meta data selection policy to be a supervised
learning task due to the missing of optimal tar-
get selection policy. To overcome this issue, we
adopt a reinforcement learning-based approach to
learn effective selection policy without supervised
signal. To this end, we extend the success of pre-
vious reinforcement learning-based approach for
data selection (Ding et al., 2021). However, formu-
lating a Markov decision process (MDP) for the
paraphrase learning process is a non-trivial task.
In previous works, several important parts of their
MDP formulation, such as the design of reward
signal, are in need of further investigation (Yoon
et al., 2019; Ding et al., 2021) and there also lacks
in depth discussion on the challenge of solving the
reinforcement learning problem. In this paper, we
are motivated to extend this important line of using
reinforcement learning to perform selective learn-
ing in weakly-supervised paraphrase generation
problems and thus overcoming the data unattain-
able issue. Overall we present several key insights
into formulating the MDP for the selective learn-
ing problem as well as developing a model-based
reinforcement learning framework to effectively
solving the MDP.

This paper has three main contributions:

• We present a novel model-based reinforcement
learning approach for effectively training para-
phrase generation models under weakly super-
vised regime, where our proposed reinforce-
ment learning approach could effectively over-
come some of the major limitations of the exist-
ing works for data selection.

• We present an in-depth discussion on the chal-
lenges and the potential ways to formulate the
selective weakly supervised paraphrase gener-
ation tasks with reinforcement learning, which
sheds light on the important direction of devel-
oping more sophisticated reinforcement learn-
ing frameworks for weakly supervised para-
phrase generation.

• We present extensive empirical evaluation re-
sults on four evaluation datasets where the
weakly supervised datasets are generated from
supervised or unsupervised manner. The eval-
uation results show that our proposed method
could lead to substantially better performance
than all the considered baseline approaches over
all the evaluation datasets.

2 Related Work

Paraphrase Generation has long been an im-
portant research problem for the natural lan-
guage processing community. Traditional meth-
ods solve this problem by exploiting linguistic
knowledge (Wubben et al., 2010; McKeown, 1979)
or utilizing statistical machine translation (Quirk
et al., 2004; Dolan et al., 2004). As being
a sequence generation task, most of recently
emerged approaches are framed as instances of the
deep neural networks-based sequence-to-sequence
(seq2seq) models (Prakash et al., 2016; Chen
et al., 2020). Early works are mostly devel-
oped under a supervised setting while discard-
ing the noise in the datasets. Two representa-
tive examples are the Residual LSTM (Prakash
et al., 2016) and BERT (Chen et al., 2020). Later
on, researchers start to work on improving the
quality of the paraphrases, such as leveraging re-
trieval augmented (Kazemnejad et al., 2020; Lewis
et al., 2020b; Hashimoto et al., 2018) or syntac-
tic structure-based (Iyyer et al., 2018; Chen et al.,
2019) approaches to produce better paraphrases.
Besides the aforementioned approaches, there are
also another lines of methods that attempt to al-
leviate the labeling cost with attempts like unsu-
pervised learning (Bowman et al., 2016; Fu et al.,
2019; Bao et al., 2019; Miao et al., 2019; Wang
et al., 2020) as well as simulated annealing (Liu
et al., 2020b) and reinforcement learning (Siddique
et al., 2020). Compared to the conventional re-
inforcement learning methods which consider the
generators as the policy models, our work models
the policy as a meta learner to accomplish a data
selection objective. Our work is mostly related to
(Ding et al., 2021), but we adopt a very different
reinforcement learning approach which is the key
for effective selective learning.

Selective Learning refers to the case of selecting
items, e.g., features or data points, to learn from
among other items. It motivates many important
fields in machine learning, such as active learn-
ing (Cohn et al., 1996; Settles, 2009; Xu et al.,
2013; Fan et al., 2019; Liu et al., 2020a) and robust
machine learning (Hendrycks et al., 2018; Reed
et al., 2015; Mirzasoleiman et al., 2020). Our
work is motivated by the existing instance-wise
active data/feature acquisition approaches. One
typical example is the conventional linear model
that poses sparsity inducing prior distribution to
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the model (Tibshirani, 1996) and thus actively se-
lects important features to the model. Recently,
there also emerged approaches that adopt reinforce-
ment learning to actively find optimal feature sub-
sets (Yoon et al., 2019; Shim et al., 2018; Zannone
et al., 2019). Though such attempts have demon-
strated certain efficacy in handling instance-wise
feature selection, they only deal with non time-
series data in non NLP domains, while the focus
of our work is to deal with noisy labeled pairs in
paraphrase generation tasks. Our work is mostly
related to the instance-level active data acquisi-
tion approaches (Yoon et al., 2020; Ding et al.,
2021), which are mostly adopted under the cir-
cumstances of data efficient or cost-sensitive learn-
ing or when dealing with noisy data. Yoon et al.
(2020) and Ding et al. (2021) are formulation-wise
identical while Yoon et al. (2020) is among the
very first model for active data selective learning,
whereas Ding et al. (2021) applies it on the task
of paraphrase generation. Our work extends this
important direction to perform selective learning
but we formulate a new model-based reinforcement
learning method which aims to overcome partial
limitations for the existing work and is empirically
proven to be more effective than it on all the exper-
imental domains.

3 Reinforced Selective Learning for
Paraphrase Generation

We present the general formulation for reinforce-
ment learning-based selective weakly-supervised
paraphrase generation problems.

3.1 Weakly-Supervised Paraphrase
Generation Problem

Paraphrase generation is a sequence-to-sequence
natural language generation problem. Formally,
given a set of N source sentences X = {xi}Ni=1,
where each sentence Xi is a set of discrete to-
kens, i.e., xi = {oj}Tj=1, paraphrase generation
aims to obtain a non-parallel output sentences
Y = {yi}Ni=1, where each yi encapsulates iden-
tical meaning to xi but comes in the form fol-
lowing some desired exemplars. When training
paraphrase generation model, obtaining golden la-
beled target Y is a critical challenge. Therefore,
we consider a weakly-supervised paraphrase gen-
eration regime, forming a set of pseudo labeled
pairs termed asDpseudo = {xi, yi}Ni=1. When train-
ing models under the weakly-supervised regime,

our work adopts a commonly taken assumption
in weakly-supervised learning works. That is, the
model has access only to a small set of high-quality
parallel sentences Ddev = {xi, yi}Li=1 (L << M )
which could be considered as golden labeled pairs.

To generate high-quality target for the pseudo
labeled pairs, retrieval-based expansion approach is
adopted to generate paraphrase {yi}Ni=1 which has
recently demonstrated great effectiveness in text
generation tasks (Kazemnejad et al., 2020; Lewis
et al., 2020b). Specifically, for each source sen-
tence xi, BM25 (Robertson and Zaragoza, 2009) is
first adopted as an effective retriever. Then we use
Elastic Search (Gormley and Tong, 2015) to create
search indexes for fast searching similar sentences
to xi. The benefit of using such a combination is
that the method provides flexibility for weak su-
pervision while being training-free. Though there
are considerable possibilities for adopting alterna-
tive approaches such as training-based methods for
generating paraphrases, we demonstrate that our
adopted method already yields promising perfor-
mance.

Given the training data Dpseudo and Ddev, the
paraphrase generation model is optimized by Max-
imum Likelihood Estimation (MLE), i.e.,

L(ψ) =
∑

(x,y)∼Dpseudo

−log pψ (y|x). (1)

3.2 Markov Decision Process
Reinforcement learning is an area of machine learn-
ing concerned with how to learn sequential/non-
sequential decision making policies for the prob-
lems formulated as Markov Decision Processes.

Formally, a Markov Decision Process is formu-
lated as a tuple < S,A, P,R, γ >, where S is a
set of states, A is a set of actions, P is a transition
probability matrix,R is the reward function applied
upon a state-action pair, and γ is a discount factor.
Among the transition probability matrix, each of
its entry determines the probability of transiting
from one state to another. In the reinforcement
learning environment, actions are executed state by
state, forming time sequences. At each time step,
the agent observes a state, determines an action to
be issued under the state, and receives a reward
from the environment suggesting the or optimality
of the action given the state. The state is Marko-
vian, which means that the decision could be solely
determined by the presented state and not on its
preceding states. The objective of reinforcement
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learning is to maximize the cumulative rewards
received by the agent.

3.3 Reinforced Paraphrase Generation
We now present a detailed discussion on how to
technically combine reinforcement learning with
paraphrase generation and devise a reinforcement
learning-based selective learning paradigm.

Given the training regime with noisy labeled
data, evaluating the value of the data would be
a fundamental problem. To tackle this problem,
we target at utilizing reinforcement learning tech-
niques to learn an adaptive data valuator model
Mφ(·) which could be jointly updated with the para-
phrase generator model and intuitively give value
evaluation over the pseudo paraphrase pairs. Gener-
ally, Mφ(·) could be considered as a reinforcement
learning agent that we train to maximize the re-
ward signal which is quantitatively represented as
improvement achieved by the generator through-
out the model training period. With this regard,
we present how to formulate the Markov Decision
Process (MDP) from corresponding state, action
and reward for the selective learning of paraphrase
generation task in the following section. We also
discuss the challenges of MDP formulation in se-
lective learning and potential ways to improve it.

STATE The state refers to what the agent observe
for decision making. It is the representation of the
informative features for an instance or a group of
data instances to be evaluated. Ideally, the infor-
mation conveyed by a state should dynamically
change throughout the learning process. With end-
to-end RL, the state could be represented by low-
level raw features, such as image pixels. It is priv-
ileged to use high-level representations for state
which could potentially ease the policy learning. In
our case, we adopt a very common representation
for thestate sentences, which is extracted from a
pretrained language model. Generally it reflects
the static importance of data to the task without de-
tailed modeling on the learning process. However,
the importance values for the data inferred by our
model are dynamic due to the dynamic updates of
model parameters.

ACTION In selective learning, the way we could
model action is relatively fixed. That is, an action
needs to tell the decision about whether a data point
or a group of pints need to be selected or not. In
this paper, we model the action as a Bernoulli vari-
able over each data point. There is generally less

space to improve the action modeling part in the
reinforced paraphrase generation process.

REWARD The reward signal is designated to tell
the benefit of selecting a data instance to update
the model over its paraphrase generation quality.
It is also the most problematic item to model in
the MDP. While the data valuator model is jointly
trained with the generator model, it is impossible
to obtain a golden standard reward signal to tell the
importance of data for the dynamic learning envi-
ronment. Most of the existing selective learning
approach model the reward from the improvement
of the downstream task performance before and
after the model is updated by the data instance
placed in a mini batch of samples. However, such
performance score-based reward modeling has the
following two major limitations: (1) it generates
a reward over a group of mini batch samples and
thus could not yield precise term over each indepen-
dent data point; (2) the reward score has a changing
distribution whose scale keeps decreasing and even-
tually converges to 0, which could bring difficulty
to the policy learning (upon convergence the per-
formance would no more increase and therefore
lead to a mean of 0 over the reward). Most of
the existing works consider the performance score-
based reward modeling only without compensating
its scaling or independence issue. We develop a
method with model-based and scaling flavour to
partially overcome the aforementioned challenges.

4 MB-RPG: Model-based Reinforced
Paraphrase Generation Framework

In this section, we introduce our proposed Model-
based Reinforced Paraphrase Generation frame-
work (MB-RPG). The overview of MB-RPG is
shown in Figure 1. The essences of MB-RPG
can be summarised as two points. One, MB-RPG
adopts model-based planning attempting to per-
form decision making based on multi-step look-
ahead. This way, we can address the first limitation,
namely, the short-slightness brought by the conven-
tional score-based approach, one-step look-ahead.
Two, MB-RPG adopts a reward scaling module
to normalize the reward as a fixed distribution to
overcome the stochasticity of reward distribution.

4.1 Model-based Planning

We present a sophisticated method where the deci-
sion making system is developed to learn the policy
based on long term effects, in order to overcome the
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Figure 1: Overview to our proposed Model-Based Reinforced Paraphrase Generation (MB-RPG) framework. Our
method takes weakly-supervised dataset obtained from a retrieval-based method as its training data. At each time
step, model-based planning is performed which expands the forward direction along multiple action directions and
then perform multi-step look ahead. Then the generator is updated by the best model after the τ -step planning.

limitation of the existing works where the reward
is inferred from short-term noisy prediction loss-
based metrics. In fact, the model-based planning
method has been long studied and been proved ef-
fective in the reinforcement learning literature (Oh
et al., 2015; Wang and Ba, 2020). Unlike model-
free reinforcement learning approaches where the
agent experiences single-length trajectory, at each
time step the episodes expand along one of the ac-
tion directions instead. Accordingly, the resulting
single chain enables our model-based approach to
expand future trajectories through multiple action
directions and perform the decision making based
on the planned roll-outs. Let τ be the planned fu-
ture steps, i.e., at each time step, the policy network
makes decision based on the planned τ -step future
states along multiple (e.g., all) action directions.
Then the multi-step reward for each action direc-
tion can be formulated as follows:

R(sj , aj) = E
[ j+τ∑

t=j

r(st, at)
]
,

where st+1 ∼ Ψ(st+1|st, at), (2)

where Ψ(·) is the learned model of the environ-
ment (e.g., one-step transition model). In our case,
as the environment is only determined by the pa-
rameter value for the generator model, we spec-
ify one independent generator model at each plan-
ning direction. That is, over the N action direc-
tions, we will reserve one model to expand each
action direction. After planning, the decision of
which sample to use is made deterministic by select-
ing argmaxk R(sj , ak). The aggressive planning

scheme enables the decision making to consider
prioritizing the actions with better long-term effect.
This would typically significantly accelerate the
exploration efficiency for the policy training. Such
planning would only take effect on the action sam-
pling part, i.e., which samples to be activated to
choose would be determined by planning. With
this design, the learning part is unaffected and con-
veniently inherits a model-free nature.

4.2 Reward Scaling

One problem in our prediction-loss based reward
modeling is that the reward signal would have a
noisy distribution whose mean would gradually
decay and eventually converge to 0. In order to re-
solve it, inspired by many principled reinforcement
learning methods such as Actor-critic (Konda and
Tsitsiklis, 1999) and PopArt (Hessel et al., 2019),
we propose a simple yet effective reward scaling
approach to normalize the reward signal to a static
distribution. To this end, our normalization method
stores the scalar reward signals within a recent win-
dow, which would typically consume very minimal
amount of memory. Then when we update the pol-
icy model, we normalize the reward signal for each
transition in the following manner,

R̂j =
Rj −Rmin
Rmax −Rmin (3)

where Rj and R̂j are the raw and normalized re-
ward signals, Rmin and Rmax are the minimal and
maximal values obtained from the window of re-
wards. With the normalized reward signal, the data
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Algorithm 1: Pseudocode for Model-based
Reinforced Paraphrase Generation (MB-
RPG) Algorithm
Input: Weakly-labeled parallel dataset

Dpseudo, pretrained language model
gθ(y|x) and RL selector pφ(s|x).

Output: A paraphrase generation model
gθ(y|x).

1 while not done do
2 Sample N mini-batches of data D1..N

B

from Dpseudo
/* Model-based Look-ahead */

3 for agent← 1, N do
4 gagentθ ← gθ
5 for step← 1, N do

/* Data selection */

6 Compute state representation st
7 Compute selection probabilities
8 Sample at for each instance

/* Generator look ahead */

9 Update gagentθ with the samples
10 end
11 end
12 Compute reward using validation data

for each agent model;
/* Generator greedy update */

13 Update gθ(y|x) with the agent with
maximum reward;

/* Valuator update (RL) */

14 Update RL selector pθ(s|x) with the
reward.

15 end

selection policy could be optimized by the REINI-
FORCE algorithm (Sutton et al., 1999). We present
the pseudocode for MB-RPG in Algorithm 1.

5 Experiments

In this section, we present extensive empirical eval-
uation results on comparing our method with its
various counterparts on four commonly used para-
phrase generation datasets1.

5.1 Experimental Setting

Evaluation Datasets. For comparison, we con-
sider to adopt both supervised and unsupervised
datasets. Note that our method adopts a semi-
supervised setting where the target paraphrases are

1The datasets are available in the submitted zip file.

generated following a retrieval-based method intro-
duced in Section 3.1 and thus alleviates the need
for golden labeled target data. Overall, we exper-
iment with the following four datasets. The first
two datasets for supervised setting and the last two
for unsupervised scenario:

• Quora-s: corresponds to the Quora Question
Pairs (QQP) dataset2 which consists of 400,000
question pairs and each pair comes with a binary
tag telling whether that pair is paraphrase or
not. To split the dataset for training and testing,
we follow the existing works (Li et al., 2018;
Kazemnejad et al., 2020; Ding et al., 2021) and
use randomly sampled non-overlapping parallel
pairs with sizes 100K, 3K and 30K for training,
validation and testing, respectively.

• Twitter: is the Twitter News URL Corpus3 pro-
posed by Lan et al. (2017). The dataset is cre-
ated by large-scale sentential paraphrases from
Twitter by linking tweets through shared URL.
Following (Li et al., 2018; Kazemnejad et al.,
2020; Ding et al., 2021), we randomly sample
110K instances from automatically labelled data
as our training dataset and two non-overlapping
datasets of sizes 1K and 5K from the human-
annotated data to form the validation set and the
testing set, respectively.

• Quora-U: is the unsupervised version of Quora-
s. To make a fair comparison, we follow the
settings of the works (Miao et al., 2019; Liu
et al., 2020b) and use two sets of 3K and 20K
non-overlapping pairs as the validation set and
the testing set, respectively.

• MSCOCO: is the COCO image captioning
dataset4. It consists of over 500K captioning
paraphrase pairs for more than 120K images. To
create the datasets for training and testing we
follow Lin et al. (2014) to split the dataset and
adopt an identical evaluation protocol presented
in Liu et al. (2020b).

Implementation. We adopt a pretrained trans-
former encoder-decoder (sequence-to-sequence)
WS-BART (Lewis et al., 2020a) as the backbone
of the generator in our proposed method MB-RPG.

2https://huggingface.co/datasets/quora
3https://github.com/lanwuwei/

Twitter-URL-Corpus
4https://arxiv.org/pdf/1504.00325.pdf

1390

https://huggingface.co/datasets/quora
https://github.com/lanwuwei/Twitter-URL-Corpus
https://github.com/lanwuwei/Twitter-URL-Corpus
https://arxiv.org/pdf/1504.00325.pdf


Method Quora-S Twitter
BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 BLEU-2 BLEU-4 ROUGE-1 ROUGE-2

Supervised

Res-LSTM 38.52 24.56 59.69 32.71 32.13 25.92 41.77 27.94
Transformer 42.91 30.38 61.25 34.23 40.34 32.14 44.53 29.55
RbM 43.54 - 38.11 32.84 44.67 - 41.87 24.23
RaE 40.35 25.37 62.71 31.77 44.33 34.16 47.55 31.53
FSET 51.03 33.46 66.17 39.55 46.35 34.62 49.53 32.04

Weakly-supervised
WS-BART 44.19 31.18 58.69 33.39 45.03 34.00 51.34 35.89
LTSL 49.18 36.05 63.06 39.71 49.30 37.94 56.02 40.61
MB-RPG 54.88 41.56 67.66 43.98 51.65 39.58 61.45 44.19

Method Quora-U MSCOCO
iBLEU BLEU ROUGE-1 ROUGE-2 iBLEU BLEU ROUGE-1 ROUGE-2

Unsupervised

VAE 8.16 13.96 44.55 22.64 7.48 11.09 31.78 8.66
CGMH 9.94 15.73 48.73 26.12 7.84 11.45 32.19 8.67
USPA 12.02 18.21 59.51 32.63 9.26 14.16 37.18 11.21
PUP 14.91 19.68 59.77 30.47 10.72 15.81 37.38 13.87
DBlock 20.93 26.76 65.60 42.09 - - - -

Weakly-supervised
WS-BART 29.30 27.63 58.43 33.39 20.11 15.90 40.65 15.62
LTSL 31.20 29.25 62.71 39.21 23.25 18.87 45.18 19.17
MB-RPG 33.56 33.85 66.30 42.48 28.09 19.39 49.42 25.18

Table 1: Performance scores for our method MB-RPG as well as all the baseline methods on four paraphrasing
datasets under supervised or unsupervised learning setting.

To improve the efficiency of reinforcement learn-
ing, we model the reinforced data valuator model
Mψ as a pretrained BERT followed by two fully-
connected trainable layers as the head for policy
output. BERT serves as a feature extractor and is
kept fixed during policy learning. We present other
details for our method in appendix.

Baseline Methods. We compare our method with
twelve benchmark approaches including the state-
of-the-art method. In general, the baselines
come from the following three categories: (i)
supervised methods that are trained with high-
quality supervised target paraphrases, i.e., Trans-
former (Vaswani et al., 2017), RbM (Li et al.,
2018), Residual LSTM (Prakash et al., 2016)
and two retrieval-based methods FSET (Kazem-
nejad et al., 2020) and RaE (Hashimoto et al.,
2018); (ii) unsupervised methods that do not
have access to the parallel data, including Con-
strained sentence Generation with Metropolis-
Hastings (CGMH) (Miao et al., 2019) VAE (Bow-
man et al., 2016), Unsupervised Paraphrase gen-
eration with Simulated Annealing (UPSA) (Liu
et al., 2020b) and Progressive Unsupervised Para-
phrasing (PUP) (Siddique et al., 2020), Dynamic
Blocking (DBlock) (Niu et al., 2020); (iii) semi-
supervised methods including WS-BART (Lewis
et al., 2020a) which corresponds to BART trained
upon the weakly-supervised data and Learning To
Selectively Learn (LTSL) (Ding et al., 2021) which
is the most closely related method to ours. LTSL
also adopts reinforcement learning for selective

learning and our approach is a model-based im-
proved version over its vanilla policy gradient for-
mulation. Also note that both LTSL and MB-RPG
adopts BART as the pretrained generator.

5.2 Benchmark Results

We present the benchmark results on all the com-
pared methods on the four evaluation datasets in
Table 1. Note that our proposed method is denoted
as MB-RPG. Overall, we could conclude that MB-
RPG outperforms all its baselines with significant
margins in terms of BLEU scores and ROUGE
scores across the four evaluation datasets.

From the results, we could notice that under the
supervised setting, most methods, such as Trans-
former and FSET, could significantly outperform
most of the results obtained from the unsupervised
setting (e.g., CGMH and VAE). Compared with
the supervised methods, even though our method
does not touch the supervised labels, it could still
outperform the supervised methods by noticeable
margins. This further indicates that our method is
promising to be adopted in many real life appli-
cations where there is rather limited access to the
golden labelled paraphrase pairs.

Compared to the unsupervised approaches, MB-
RPG is also superior especially in terms of the
iBLEU and BLEU metrics. The main reason might
be that the word editing or sampling attempts pro-
posed in the unsupervised baselines yield less desir-
able target paraphrases and thus makes the perfor-
mance of the model trained under the unsupervised
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Method Quora-S
BLEU-2 BLEU-4 ROUGE-1 ROUGE-2

WS-BART 44.19 31.18 58.69 33.39
w/o planning 50.67 38.29 64.12 41.28
w/o rew norm 51.26 42.32 66.25 40.23
LTSL 49.18 36.05 63.06 39.71
MB-RPG 54.88 41.56 67.66 43.98

Table 2: Ablation study results for the planning and
reward normalization components on Quora-s.

data fall far below our method and various super-
vised baselines. The inferior performance of the
unsupervised methods has also been empirically
evaluated and discussed by Niu et al. (2020).

From Table 1, we could notice that the perfor-
mance of MB-RPG is much better than its closest
counterpart LTSL, while LTSL is also a reinforce-
ment learning-based selective learning method. In
both supervised and unsupervised scenarios, MB-
RPG could outperform LTSL consistently by a no-
ticeable margins. The average improvements on
BLEU-2 and BLEU-4 scores are 4.02 and 3.57 re-
spectively. On each BLEU or ROUGE metrics,
MB-RPG achieves better scores than LTSL. This
shows that our proposed method MB-RPG achieves
state-of-the-art method on various paraphrase gen-
eration benchmark datasets. It also shows that us-
ing model-based planning and refining the noisy
reward could bring considerable benefit to the data
valuation process. Such result sheds lights to the
research of refining the formulation for the Markov
Decision Process and coming up with more ade-
quate reinforcement learning frameworks to facili-
tate better data valuation. The results reveals that
the performance of the vanilla WS-BART is infe-
rior than LTSL or MB-RPG, both of which adopt
WS-BART as their generators’ backbone.

5.3 Ablation Study

To thoroughly evaluate the effect of the individual
components we proposed upon the vanilla policy
gradient method, we present an ablation study to
evaluate the individual effect of such components.
Specifically, we consider three ablated baselines: 1)
w/o planning: our model without the model-based
planning module; 2) w/o rew norm: our model
without the reward normalization module; 3) LTSL:
without both planning and reward normalization
modules. We present the results in Table 2. From
the results, we notice that the baseline w/o rew plan-
ning achieves similar results with LTSL which is
not comparable to our proposed method. It verifies

the importance of leveraging the model-based plan-
ning to reduce the noise among the short-term one-
step reward signals. From the results shown in Ta-
ble 2, we also notice that the baseline w/o rew norm
achieves better results than LTSL, but not as good
as the full version of our method. This shows that
reward normalization is an essential step to train
the Markov Decision Process formulated for selec-
tive paraphrase generation. The aforementioned
results also reveal that the model-based planning
module and the reward normalization module are
two modules with relatively parallel effects of each
other without much conflicting situations. Lastly,
we wish to highlight that the WS-BART without
reinforcement learning-based selective learning es-
sentially performs very outstanding by itself. How-
ever, leveraging reinforcement learning-based se-
lective learning could result in significant boost to
the performance of WS-BART. This shows that re-
inforced selective learning is a promising direction
to consider for improving the SOTA performance
in paraphrase generation or other generation tasks.

6 Conclusion

Our work tackles an important problem of leverag-
ing reinforcement learning-based selective learning
techniques to effectively deal with the noisy label
issue in paraphrase generation tasks. We introduce
a model-based framework which performs plan-
ning to capture the long-term effects for efficient
exploration so as to overcome the noisy short-term
reward issue experienced by most of the existing
approaches. We also propose an effective reward
normalization approach which could normalize the
noisy reward signal to a distribution with a fixed
zero-mean. We demonstrate that our proposed
method could outperform baseline approaches with
significant margins on the testified domains. Future
work includes refining the state and reward terms
in the Markov Decision Process for better data val-
uation or feature selections. One ongoing work is
to integrate MB-RPG into our previous feature ex-
ploration work in video recommendation (Li et al.,
2020) to improve feature quality. Another one is
to employ MB-RPG in our RL-based coreference
resolution to filter out irrelevant features (Fei et al.,
2019). In addition, we could consider construct-
ing the policy model upon alternative generator
backbone. Also, we could consider inferring the re-
ward from different sources, such as incorporating
auxiliary language models in the training.
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