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Abstract

Motivated by the need for accelerating text en-
try in augmentative and alternative communi-
cation (AAC) for people with severe motor im-
pairments, we propose a paradigm in which
phrases are abbreviated aggressively as primar-
ily word-initial letters. Our approach is to
expand the abbreviations into full-phrase op-
tions by leveraging conversation context with
the power of pretrained large language mod-
els (LLMs). Through zero-shot, few-shot, and
fine-tuning experiments on four public conver-
sation datasets, we show that for replies to the
initial turn of a dialog, an LLM with 64B pa-
rameters is able to accurately expand over 70%
of phrases with abbreviation length up to 10,
leading to an effective keystroke saving rate of
up to 77% on these expansions. Including a
small amount of context in the form of a single
conversation turn more than doubles abbrevia-
tion expansion accuracies compared to having
no context, an effect that is more pronounced
for longer phrases. Additionally, the robust-
ness of the models against typo noise can be
enhanced through fine-tuning on noisy data.

1 Introduction

The prevalent paradigm of text entry on computing
devices is sequential typing of characters. Word
completion and prediction can theoretically save
up to 40-50% keystrokes when 3-5 predictions
are provided (Trnka and McCoy, 2008; Fowler
et al., 2015). This reduces the motor and cogni-
tive demand of entering text, especially on devices
where typing is difficult, e.g., phones. In AAC
use cases such as eye-gaze keyboards for severely
motor-impaired individuals, the cost per keystroke
is so high that there is a desire to save as many
keystrokes as possible. Gaze-typing requires the
user to precisely control the direction and timing of
gaze for each keystroke, resulting in an extremely
low text-entry speed of 8-10 words per minute and

∗equal contribution

Figure 1: Our approach to abbreviation expansion based on an
LLM with context compared to one without. The conversation
context (e.g., a previous turn of conversation) along with the
abbreviation of the intended phrase form the LLM’s input.
Sampled continuations from the model are filtered to discard
those that do not match the abbreviation. Top-5 options after
sorting by frequency are presented.

severely limiting real-time communication (Waller,
2019). A text-entry paradigm with substantially
higher keystroke saving rate (KSR) can reduce mo-
tor demand and thereby benefit AAC usage in real-
time communication.

One potential paradigm is "SMS language",
a spontaneously-evolved system for saving
keystrokes in which each word is abbreviated as
a single letter, such as in the well-known abbrevi-
ations sg for sounds good and ttyl for talk to you
later (Anjaneyulu, 2013). SMS language features
a high KSR (75-80%), but is limited by its small
closed set of common phrases of mostly six words
or shorter. Its abbreviation scheme is not applied to
longer or less frequent phrases because such abbre-
viations would be hard for the recipient to decipher.
For example, the abbreviation iipitb is highly am-
biguous and may represent many possible phrases,
e.g., it is pouring in the bay and it is pretty in the
backyard (see Figure 1 for more examples). Some
existing AAC systems support abbreviation expan-
sion (e.g., Tobii), but are limited by hardcoded,
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closed phrase sets.
The current study is based on the insight that

although decoding open-set phrases from abbre-
viations is hard without context due to ambiguity,
providing conversational context significantly con-
strains the space of likely phrases as shown by
the example in Fig.1 (it is playing in the back-
yard). Hence we propose a high-KSR abbrevia-
tion scheme that focuses on conversational scenar-
ios. We apply this scheme to three existing dialog
datasets and create datasets for abbreviation expan-
sion (AE).

This allows us to study whether LLMs, trained
on web text including conversational data, can en-
able AE and benefit from added context. We take a
64B parameter LLM and compare zero-shot, few-
shot, and fine-tuning performance on the AE task.
Additionally, we simulate typing noise to study
tolerance of the approach to typos. The main con-
tributions of our work are:

1. Demonstrating the potential of abbreviation
expansion using LLMs aided by conversational
context for highly-abbreviated text entry, while
measuring the effects of different amounts of con-
text and different dialog turns.

2. Describing a high-KSR abbreviation scheme,
a method for simulating typing noise, and conver-
sation datasets based on these.

3. Comparing zero-shot, few-shot, and model
fine-tuning approaches for the AE task and their
tolerance to typo noise.

2 Related Work

Abbreviation expansion for text entry. Previ-
ous research on aiding text entry through AE used
abbreviation schemes such as using only content
words (Demasco and McCoy, 1992), discarding
certain vowels and consonants (Shieber and Nelken,
2007), and flexible letter saving schemes (Pini et al.,
2010; Adhikary et al., 2021; Gorman et al., 2021).
Spontaneous abbreviations schemes primarily omit
vowels, repeating consonants, last characters, and
spaces, and lead to modest KSR (e.g., 25-40%
in Willis et al. 2005, and 21% in Adhikary et al.
2021.) The low KSR of such schemes can be at-
tributed to the implicit need for a human reader
to decode the phrases without significant cogni-
tive burden. N-gram models and neural language
models (LMs) have been applied to expanding ab-
breviations for these relatively low-KSR schemes.
By using LSTM models and context, Gorman et al.

(2021) achieve a word error rate of 1.5%. Adhikary
et al. (2021) report a 24.2% top-5 sentence error
rate decoding abbreviations using an RNN to aug-
ment an n-gram LM. Our presented approach is a
step towards using automation and context to ex-
pand abbreviations at a higher KSR that is close to
that of SMS language.

Large language model prompting and fine-
tuning. Our approach builds on prior work on
LLMs including few-shot prompting, fine-tuning,
and conversation models (Raffel et al., 2019;
Brown et al., 2020; Adiwardana et al., 2020;
Roller et al., 2020). We focus primarily on few-
shot prompting (Brown et al., 2020) and fine-
tuning (Ruder, 2021). Few-shot prompting uses a
text description of a task along with a small number
of examples for the task in the input text in order
to elicit desired task responses from an LLM. In
the zero-shot scenario, no examples are provided.
Prompting involves no updates to the model pa-
rameters. Model fine-tuning requires more data
compared to prompting, but often leads to higher
task accuracy than prompt engineering (e.g., Austin
et al. 2021; Lester et al. 2021). For our AE task,
data for fine-tuning can be synthesized from exist-
ing conversation datasets based on an abbreviation
scheme (Sec. 3). Thus, we explore both prompting
and fine-tuning and compare their performance.

Assisting text entry with context. Textual con-
texts have been exploited to aid email writing (Kan-
nan et al., 2016; Chen et al., 2019). For text en-
try in AAC, Wisenburn and Higginbotham (2008)
demonstrated that providing noun phrases from a
conversation partner’s speech as selection options
increases text-entry speed by 36.7%. Adhikary et al.
(2019) concluded that with currently-attainable ac-
curacy of ASR, partner speech can be valuable in
improving language modeling for AAC text entry.
Shen et al. (2022) used a fine-tuned GPT-2 model
(Radford et al., 2019) to expand bags of keywords
into full phrases in conversational contexts based
on the ConvAI2 dataset (Dinan et al., 2020) and
reported a KSR of 77% at a word error rate thresh-
old of 0.65. Our current study differs from the
previous studies in the following aspects. First, we
provide an abbreviation scheme to allow greater
user control over the exact phrase structure and
wording. Second, we performed detailed quantita-
tive analysis of the combined predictive power of
state-of-the-art LLMs and context awareness.
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3 Methodology

Abbreviation Scheme. Our abbreviation
scheme differs from previous studies in that we
optimize for KSR and do not expect a human
reader to be able to easily decode the abbreviations.
Additionally, it offers the benefit that each given
phrase is mapped to a fixed abbreviation. The
detailed rules for abbreviating phrases are:

1. Each word is abbreviated as its initial letter,
unless the word contains an apostrophe (i.e., con-
traction), in which case the word is split at the
apostrophe and the initial letters from the splits are
taken (e.g., can’t –> ct). This prevents abbrevia-
tions that are otherwise identical but semantically
opposite (e.g., can vs. can’t).

2. All letters in the abbreviation are lowercase.

3. Arabic numerals in a sentence are preserved
(e.g., see you at 10 o’clock –> sya10oc).

4. Sentence-final punctuation are removed. Mid-
sentence punctuation and special characters (e.g., #
and $) are preserved to help constrain the structure
of the sentence (e.g., OK, but be quick. –> o,bbq).

3.1 Datasets for context-aware AE

We study modified versions of existing dialog
datasets, which we converted for the context-aware
AE task. We also describe how we simulate typos.

Datasets. Table 1 summarizes the four datasets.
We use their original train/dev/test splits in our ex-
periments. The Turk Dialogues dataset (Vertanen,
2017) consists of crowd-sourced dialogs, each of
which is exactly six turns in length. The dataset has
typos and grammatical errors. We manually cor-
rect these and refer to the corrected dataset as Turk
Dialogues Corrected (TDC).1 We use three more
datasets, DailyDialog (Li et al., 2017), a dataset of
everyday conversations; the Cornell Movie Dia-
logues (CMD) (Danescu-Niculescu-Mizil and Lee,
2011) based on movie scripts, and the Turk AAC
dataset (TAC) (Vertanen and Kristensson, 2011).
For evaluation on out-of-domain dialogs, we use
the TaskMaster-1 Self Dialogs (TMSD) dataset
(Byrne et al., 2019), a corpus of dialogs written by
crowdworkers for task-oriented scenarios such as
ordering pizza. TMSD is used only for evaluation
and not for training or validation of the models. For
DailyDialog, we remove 228 dialogues from the

1The corrected version is available in the file
turk_dialogues_corrected.txt in Supplemental Data

test split that are duplicate with conversations in the
train split (see Appendix A), which leads to what
we call the DailyDialog Corrected (DDC) dataset.
No correction is applied to the other datasets. The
TAC dataset contains only isolated phrases without
any conversational-turn context. Hence we use it
only for training. In all of our experiments, we com-
bine data from the training splits of all four datasets
when fine-tuning models. We perform evaluations
on the TDC, DDC, CMD, and TMSD datasets. The
TDC dataset is chosen as our primary benchmarks
because of its strict six-turn dialog structure.

Modifications for the AE task. The above-
mentioned datasets are typically used to study
dialog generation. For our scenario, we con-
vert each turn of the conversation in these
datasets into the following canonical format:

Context: {Content of the contextual turn}
Shorthand: {Abbreviation of next turn}
Full: {Expanded content of next turn}
Context: {Would you like to sit down?}
Shorthand: {n,imfsu}
Full: {No, I’m fine standing up}

For the AE task, the context consists of one or
more previous dialog turns. When context is absent
(e.g., for the opening turn), the context part is
omitted. For a multi-turn dialog, the nth (1-based)
example contains the first (n - 1) dialog turns as the
context as well as the shorthand and the full form
of the nth turn. Thus, a 6-turn conversation yields
six examples for the AE task. When multiple
sentences are present in a single turn, we use only
the first sentence for expansion; when a turn is
used as context, all available sentences are used.
Table 2 shows examples generated from all six
turns of a dialog from TDC. Each dialog in the
TDC, DDC, and CMD datasets yields several
examples covering different amount of context.
We create only 0-context-turn examples for the
TAC dataset since it contains only isolated phrases.

Text-entry noise in AE datasets. As with our
AE scheme, the introduction of noise to the datasets
is also motivated by the AAC text entry use case,
and in particular eye-gaze typing, which is error
prone (Feit et al., 2017). Here, misclicks occur
frequently and must be taken into account when
designing a gaze-driven text entry system. In order
to simulate the noise, we model eye-gaze typing
as uncorrelated 2D Gaussian distributions around
the intended key (Azenkot and Zhai, 2012). To
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train dev test
Dataset #conv. #examples Avg. tokens #conv. #examples Avg. tokens #conv. #examples Avg. tokens

Turk Dialogues Corrected (TDC) 859 5,154 54.4 ± 24.0 280 1,680 54.5 ± 24.3 280 1,680 55.0 ± 24.7
Turk AAC (TAC) 5,019 5,019 20.5 ± 4.3 559 559 20.9 ± 4.4 565 565 20.1 ± 4.0
DailyDialog Corrected (DDC) 11,188 87,170 101.1 ± 77.0 823 6,498 98.9 ± 72.3 772 5,852 96.7 ± 69.2
Cornell Movie Dialog (CMD) 66,848 244,798 68.3 ± 71.8 8,645 31,272 65.5 ± 67.4 7,444 27,429 69.8 ± 76.2

Table 1: Summary of datasets with number of conversations (conv.), examples, and average tokens (mean ± 1 SD in number of
SentencePiece tokens) used in our experiments for the context-aware AE task.

Original dialog AE example AE example (noise σ=0.3)

Would you like to sit down?

No, I’m fine standing up

Are you sure you don’t
want to sit down?

Been sitting all day. Work was

just one meeting after another.

Oh, I’m sorry. I don’t enjoy

work days like that.

It feels good to stretch

my legs a bit.

0-turn context: Shorthand: {wyltsd}.
Full: {Would you like to sit down?}
1-turn context: Context: {Would
you like to sit down?}. Shorthand:
{n,imfsu}. Full: {No, I’m fine stand-
ing up}
· · ·
5-turn context: Context: {Would you
like to sit down?} {No, I’m fine stand-
ing up} {Are you sure you don’t want to
sit down?} {Been sitting all day. Work
was just one meeting after another.}
{Oh, I’m sorry. I don’t enjoy work
days like that.}. Shorthand: {ifgtsm-
lab}. Full: {It feels good to stretch my
legs a bit.}

0-turn context: Shorthand: {wy!tsd}.
Full: {Would you like to sit down?}
1-turn context: Context: {Would
you like to sit down?}. Shorthand:
{n,infsu}. Full: {No, I’m fine stand-
ing up}
· · ·
5-turn context: Context: {Would you
like to sit down?} {No, I’m fine stand-
ing up} {Are you sure you don’t want to
sit down?} {Been sitting all day. Work
was just one meeting after another.}
{Oh, I’m sorry. I don’t enjoy work days
like that.}. Shorthand: {ifgtsmoab}.
Full: {It feels good to stretch my legs a
bit.}

Table 2: An example dialog and the generated AE examples without and with typo noise. The six-turn dialog is an excerpt from
the train split of the TDC dataset. In the 3rd column, the typos in abbreviation are marked in red.

Figure 2: Keyboard layout for simulating noise in AE key-
presses. The circles on the f key show 1σ around the mean
for σ ∈ {0.3, 0.5} in the 2D Gaussian distributions used to
model typing noise.

simulate noise in the abbreviation input, we use a
simplified rectangular-grid qwerty keyboard layout
with 30 keys arranged in three rows and 10 columns.
The keys are 1×1 squares with no gaps in between.
The keystrokes for an intended key are drawn from
2D Gaussian distribution centered on the center of
the intended key and standard deviations denoted
σ equal in the two spatial dimensions. To model
different levels of noise, we use three values of
σ: 0.0 (i.e., no-typo baseline), 0.3, and 0.5, which
corresponds to 0%, 13%, and 44% character error
rates, respectively. Examples with simulated typos
are shown in Table 2.

3.2 Large Language Model
One of our goals is to test whether zero-shot and
few-shot prompting of LLMs are effective at the
AE task without the need for supervised fine-tuning.
Prompting is the method of eliciting desired task-
specific responses from an LLM by including a

natural-language description of the task and/or
input-output examples of the task in the input string
for an LLM, without altering the model’s weights
(Brown et al., 2020). Zero- and few-shot prompting
differ in whether any examples are included in the
prompt to the LLM. For this, we use a decoder-
only Transformer language model (Vaswani et al.,
2017) from the LaMDA (Thoppilan et al., 2022)
family of models. Our experiments are based
on the 64B parameter model, unless otherwise
specified. This model has 32 Transformer layers,
with dmodel = 8192, dff = 65536, h = 128,
dk = dv = 128. The model was pre-trained on
2.97B public web documents, Wikipedia, and di-
alogs. The training data was tokenized with the
SentencePiece vocabulary (Kudo and Richardson,
2018) of size 32K. We call this the BaseLLM.

We also developed fine-tuned versions of this
model for the AE task. The fine-tuning uses ex-
amples in the format as shown in Table 2. Since
the BaseLLM is a decoder only model, and we
use both the context and abbreviation as triggers
to the model during inference, we modify the loss
to only be calculated on the tokens of the AE tar-
get, i.e. the full form to be predicted in the pair
of curly brackets after "Full:". For both training
and inference, we split the characters in the ab-
breviation with spaces to force SentencePiece to
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use per-character IDs. We tune 2 two models, FT-
LLM on the combined AE datasets without typos,
and FTnoise-LLM on the version with simulated
typos. Both use early stopping on a dev set consist-
ing of combined examples from the dev splits of
TAC and TDC (Table 1).

4 Experiments

Models. We use and compare the following mod-
els in our different experiment settings.

Look-Up Table (LUT). As a straight-forward,
non-ML baseline, we compile a dictionary of
375,298 sentence-level abbreviations from the train
splits of the datasets in Table 1. Each abbreviation
maps to one or more phrases with their frequencies,
leading to 447,249 unique abbreviation-sentence
pairs. During evaluation, we map the query abbrevi-
ation to the top-5 expansion phrases (by frequency)
by using the dictionary and breaking ties randomly.

BaseLLM (from Sec. 3.2). We study the
BaseLLM in the zero-shot and few-shot (specif-
ically 4-shot) settings3. The four examples are
selected from the train split of the TDC dataset (see
Appendix B). We quantify the variability of the
model on a sets of 856 4-example sequences from
the train split of the TDC dataset. The best per-
forming one on the dev set is denoted BaseLLM∗.

FTnoise-LLM tuned on simulated typos with
noise level σ = 0.3 (see Appendix C), and FT-
LLM tuned on AE data without noise as described
in Sec. 3.2 are additional models we compare to.

T5 encoder-decoder. For comparison with
smaller models, we use the T5 encoder-decoder
small (60M), large (770M), and 3B parameter
models fine-tuned on AE data without noise, iden-
tical to FT-LLM.

We evaluate the fine-tuned models in the set-
ting without any explicit natural language instruc-
tions (denoted “no instr.”) unless mentioned oth-
erwise. For all models, we perform random sam-
pling with temperature=1.0 over the top_k=40 can-
didates with the highest logits at each step. We
decode 128 samples for each abbreviation unless
otherwise specified. For each model and evaluation
setting we report the standard deviations (SDs) of
metrics over 3 repeated runs.

2Appendix D and F provide details on fine-tuning and
discuss the effect of character splitting.

3The prompts are prefixed with the natural language in-
struction “Given acronym, write the full phrase.” when there’s
no context or “Given previous turn(s) of conversation and
acronym of reply, write the full phrase.” when there is context.

Abbv.
length TDC (dev) TDC (test) DDC (test) CMD (test) TMSD (test)

1-2 85 (5.1%) 105 (6.2%) 166 (21.5%) 2,003 (26.9%) 176 (22.9%)
3-4 324 (19.3%) 293 (17.4%) 168 (21.8%) 1,753 (23.6%) 109 (14.2%)
5-6 454 (27.0%) 439 (26.1%) 152 (19.7%) 1,396 (18.8%) 113 (14.7%)
7-8 339 (20.2%) 376 (22.4%) 118 (15.3%) 851 (11.4%) 129 (16.8%)

9-10 221 (13.2%) 218 (13.0%) 64 (8.3%) 528 (7.1%) 111 (14.4%)
1-10 1,423 (84.7%) 1,431 (85.2 %) 668 (86.5%) 6,531 (87.8%) 638 (82.9%)

Table 3: Datasets used for evaluation sliced by abbreviation
lengths. Number of dialog turns in each range and their per-
centage (in parentheses) as compared to the total are noted.

Studies. For the BaseLLM, we study the vari-
ance in performance based on the prompt selection.
For all the models, we sample multiple responses
for each query, hence we study the effect of number
of responses sampled on AE accuracy and latency.
We also compare the performance of the models
with varying amounts of conversation context and
with no context. To study the effect of typos, we
compare the performance of the models on the
noise induced AE dataset. To measure the impact
of model size on accuracy and latency, we also fine-
tune and evaluate performance of the decoder-only
LaMDA models with fewer than 64B parameters,
specifically 4B, 8B, and 27B parameters. All these
models were trained on the same data, so that the
model size consitutes the only difference.

Evaluation. We only evaluate on conversation
queries with abbreviation length ≤ 10 charac-
ters. This encompasses the majority (85%) of
the dialog turns from the original dataset (Table
3). Where applicable, we prepend the following
natural-language instruction to the model input for
the AE task: "Given previous turn(s) of conversa-
tion and acronym of reply, write the full phrase."

Before calculating performance metrics, we fil-
ter the model’s responses: we remove sentence-
final punctuation, standardize whitespace to one
space, lower-case, de-duplicate, and filter for pre-
cise match of the abbreviation. The responses that
pass the filtering are sorted by descending count.
For evaluation with noise, we do filtering to allow
matches to nearby characters on the keyboard.

Metrics. Accuracy measures whether any re-
sponse expansion exactly matches the ground truth
(with standardized letter-casing and whitespace,
and discarded final punctuation). Additionally, we
measure BLEU score (Papineni et al., 2002) us-
ing the SacreBLEU library (Post, 2018) as a more
fine-grained metric for the similarity between AE
options and the ground truth. For both metrics, we
report performance in the top-5 responses after they
are sorted based on frequency.

Key Stroke Savings (KSR) measures the num-
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TDC-test TDC-test+noise (σ=0.3) DDC-test CMD-test TMSD-test
Model Acc.@5 BLEU@5 Acc.@5 BLEU@5 Acc.@5 BLEU@5 Acc.@5 BLEU@5 Acc.@5 BLEU@5

Look-Up Table (LUT) 14.3 ± 0.2 23.6 ± 0.1 10.5 ± 0.0 15.8 ± 0.7 48.1 ± 0.2 55.4 ± 0.3 30.9 ± 0.1 39.2 ± 0.1 29.3 ± 0.1 34.7 ± 0.1
T5-small (60M) 42.7 ± 0.5 59.9 ± 0.1 21.2 ± 0.1 36.1 ± 0.3 69.1 ± 0.5 78.1 ± 0.6 38.7 ± 0.0 50.4 ± 0.1 50.7 ± 0.3 64.8 ± 0.5
T5-large (770M) 55.2 ± 0.6 68.6 ± 0.4 27.3 ± 0.6 40.9 ± 0.3 74.2 ± 0.1 81.7 ± 0.1 41.2 ± 0.0 52.6 ± 0.1 57.1 ± 0.1 70.1 ± 0.2
T5-3B (3B) 59.4 ± 0.4 72.8 ± 0.1 26.9 ± 0.8 41.9 ± 0.7 77.6 ± 0.5 83.9 ± 0.5 43.5 ± 0.1 54.8 ± 0.2 59.5 ± 0.2 72.5 ± 0.3
BaseLLM∗ 64B (best, 4shot) 43.7 ± 1.2 54.9 ± 0.5 38.1 ± 0.1 42.0 ± 0.5 38.4 ± 0.4 43.3 ± 0.6 22.5 ± 0.2 25.9 ± 0.1 32.0 ± 0.7 36.2 ± 0.3
FT-LLM 64B (no instr.) 74.4 ± 1.0 81.8 ± 0.8 44.5 ± 0.7 55.0 ± 0.3 75.1 ± 0.6 82.1 ± 0.6 48.1 ± 0.1 57.9 ± 0.2 62.0 ± 0.3 73.9 ± 0.2
FTnoise-LLM 64B (no instr.) 72.3 ± 0.9 81.1 ± 0.5 60.9 ± 0.3 71.4 ± 0.5 74.8 ± 0.4 82.1 ± 0.3 47.5 ± 0.1 57.3 ± 0.1 63.3 ± 0.1 74.4 ± 0.2

Table 4: Comparing models (from Sec. 4) on the AE task on turn-2 given turn-1 as context. We report accuracy and BLEU score
at top-5, as percentages, std. dev. computed on 3 runs. Higher is better, values in bold are highest in each column.

ber of saved keystrokes compared to the full length
of the phrase. Note, however, that AE succeeds
only for a subset of the cases, while for others the
top-5 options do not contain the intended phrase.
Hence we compute two types of KSR:

KSRall, computed on all phrases, is defined as

KSRall =





(
1 − Labbrev

Lfull

)
× 100, if in top-5.

(
1 − Labbrev+Lfull

Lfull

)
× 100, otherwise.

(1)

where Labbrev and Lfull are the character lengths
of the abbreviation and full phrase, respectively. In
other words, if a phrase has a matching option in the
top-5, we calculate the KSR as the percentage of
keypresses saved by using the abbreviation. If the
ground truth is not in top-5, we add a penalty term
(Lfull) to account for the need to enter the phrase
by starting anew character-by-character, leading to
a negative KSR.KSRall is calculated by averaging
over all phrases in an experiment. KSRsuccess, is
calculated by averaging over only the subset of
phrases with exact matches and uses the first case
in Equation 1.

5 Results

We present the main results comparing the models
on all datasets in Table 4 and then highlight results
from specific experiments.

The accuracy of LLMs at expanding word-
initial abbreviations is enhanced by fine-tuning.
Table 4 compares the performance of all the mod-
els on the abbreviation expansion (AE) task4. The
data shown in the table are for AE on the 2nd turn
of a dialog that utilizes the 1st turn as the context,
which focuses on our main hypothesis regarding
the effect of context on AE.

It’s noteworthy that the BaseLLM∗, which has
seen just four examples in its prompt (unlike the
other models), shows performance that exceeds
the look-up table (LUT) baseline in many cases,

4Appendix Tab. 8 reports performance on dev split of the
TDC (TDC-dev) which was used for hyperparameter tuning.

demonstrating the versatility of LLMs. The higher
scores of the LUT on DailyDialogs (DDC) and Cor-
nell Movie Dialogues (CMD) datasets are indica-
tive of the high percentage of similar phrases in the
train and test sets of the datasets. Unsurprisingly,
the fine-tuned models (FT-LLM , FTnoise-LLM,
and T5 models) far outperform even the best 4-shot
BaseLLM∗, achieving 74-77% top-5 exact-match
accuracy on the TDC and DDC datasets in the ab-
sence of typo noises. The accuracies are lower on
the CMD dataset (comprised of movie scripts.) The
out-of-domain evaluation on the TaskMaster Self
Dialogs (TMSD) dataset also showed accuracies
lower than the TDC and DDC datasets, but higher
than the results from the CMD dataset.

Fine-tuning and tolerance to noise. For condi-
tions that involve simulated typo noise in the ab-
breviation input, FTnoise-LLM shows superior per-
formance compared to other models (see the col-
umn "TDC-test + noise" in Table 4.) Interestingly,
the performance of the BaseLLM∗ doesn’t drop as
much as any of the fine-tuned models - T5 or FT-
LLM - in this setting. However, while FT-LLM still
outperforms BaseLLM on the noisy abbreviations,
the smaller T5 models fail to do so.

Context is critical for AE accuracy Figure 3
show how the AE accuracy of FT-LLM varies when
different amounts of context from previous turns
of the conversation are provided. Compared to
having no context (dash-dotted curve), including
just one previous turn of context (dashed curve)
approximately doubles accuracy. Using the full
context (all dialog turns from the 1st to the (n-
1)th, solid curve) leads to further improvements
indicating that prior turns carry useful information
for the AE task.

Compared to the 1st turn, AE under no context
on subsequent turns (2nd-6th) shows significantly
worse accuracy. This is due to the fact that the
first turn consists of conversation starters that are
easier to predict without context. Overall, irrespec-
tive of context, the accuracy of AE decreases as
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Figure 3: AE accuracy of FT-LLM, evaluated (inference only)
with different amounts of input context (different curves) on
different dialog turns (x-axis) on the TDC dev set. With all
turns as context (solid blue curve) or just the previous turn
as context (dashed orange curve), the model considerably
outperforms the setting where no context is provided (dot-
dash green) with the abbreviation query.

Figure 4: AE accuracy as a function of abbreviation length
(AL). The results shown are from FT-LLM evaluated with no
prompt. Different colors of bars show AE on the 1st and 2nd
turns of the dialog in the TDC dev split, with 0 and 1 previous
turn as the context. The 1-2 bin contains no 1st-turn examples.

the number conversation turns increases, indicating
increasing difficulty in predicting the full phrases
from the abbreviation as the dialogs progress. How-
ever, including full context during inference still
achieves accurate expansions for 60%-70% of the
cases on the later turns.

Effect of context is more pronounced on
longer abbreviations. When performance is
sliced by the abbreviation length (Figure 4), accu-
racy without context decreases sharply and nearly
monotonically with increasing abbreviation length,
regardless of whether it’s the opening turn or the
2nd turn. With context however, the accuracy
remains higher and decreases more slowly with
abbreviation length, extending the approximately
80% or higher accuracy into longer phrase lengths.

The variability and usefulness of few-shot
prompts decreases after model tuning. Here
we focus on how much the LLM benefits from

Acc.@top-5 BaseLLM FT-LLM

4-shot prompt 31.71 ± 4.83 74.43 ± 1.79
0-shot prompt 37.10 ± 1.38 77.10 ± 0.38
No instr. 14.00 ± 1.01 76.65 ± 1.06

Table 5: Mean and standard deviation of Accuracy@top-5 for
the BaseLLM and FT-LLM over 856 different 4-shot prompts
from the TDC train set, 3 repeated runs under 0-shot prompts
(instruction only) and No instr. (i.e., neither instructions nor
examples), based on AE on turn-2 given turn-1 as context.

Figure 5: Increasing number of samples from the LLMs im-
proves top-5 exact-match accuracy. FT-LLMs, even with
fewest samples and smallest model size, outperform the
BaseLLM∗.

prompting before and after fine-tuning. The first
row of Table 5 compares AE accuracies from
different 4-shot prompts on the TDC dataset for
BaseLLM and FT-LLM. We use the 856 example
abbreviation-expansion pairs from the train split of
the TDC dataset, using four conversation examples
for the prompt at a time. The BaseLLM shows a
large variance in performance depending on the
selected examples in the prompt by as much as
SD = 4.83. The best 4-shot prompt for BaseLLM
outperforms the 0-shot prompt, despite the fact that
the average 4-shot prompt accuracy is lower. There-
fore for BaseLLM we report the results from the
best 4-shot prompt (BaseLLM∗). By contrast, the
fine-tuned model (FT-LLM) shows significantly
lower prompt-related variance (SD = 1.79) in
addition to a 2.3-fold increase in the mean accu-
racy. Moreover, FT-LLM is able to perform the AE
task with only a natural-language prompt without
examples (0-shot prompt) and even without any
instruction (“No instr.”) at average accuracies that
are more than 1 SD above that of 4-shot prompting.
The “No instr.” setting is attractive due to its sim-
plicity (no need to search for or hand-engineer a
prompt) and reduced latency (due to shorter input
prefix lengths). Given these results, we use the
“No instr.” as the default setting and for all other
experiments on FT-LLM and FTnoise-LLM.
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Dataset-split AE task KSRall KSRsuccess

TDC-test 1st turn (no context) 37.1 ± 0.19 76.8 ± 0.04
2st turn (with context) 49.0 ± 0.99 73.5 ± 0.03

DDC-test 1st turn (no context) 20.0 ± 1.15 74.6 ± 0.04
2st turn (with context) 49.0 ± 0.60 72.9 ± 0.04

Table 6: KSR computed on all phrases and only phrases with
matching AE options. The data in this table is computed on
the results from FT-LLM.

Increasing number of decoded samples im-
proves accuracy at the cost of latency. Latency
is important for interactive text-entry applications.
During sampled decoding, the LLMs generate 128
continuations of length 16 tokens for a batch of
prefix length 256 with a median latency of 0.568 s
(interquartile range: 0.16 s).

This latency is close to typical dwell time of
eye-gaze keyboards (Majaranta and Räihä, 2007)
and hence could be acceptable for the eye-gaze
typing use cases. Figure 5 shows the effect of in-
creasing the number of continuations sampled from
the LLMs. As expected, increasing sample count
from 128 to 2048 improves top-5 accuracy for both
BaseLLM* (with 4-shot prompts) and FT-LLM (no
instr.). Improved accuracy comes at the cost of in-
creased latency.5 BaseLLM benefits significantly
more from increasing sample count than FT-LLM.

Comparison of model sizes Figure 5 also com-
pares fine-tuned models of different sizes (4B, 8B,
27B, and 64B). With model fine-tuning, the ac-
curacy increases monotonically with increasing
number of parameters. Interestingly, even with the
fewest samples (128), fine-tuned models of all sizes
outperform the larger (64B) model under few-shot
learning. Amongst the encoder-decoder T5 models
(Table 4) larger models significantly outperform
smaller ones. As observed for the decoder-only
models, the smaller fine-tuned T5 models outper-
form the few-shot BaseLLM in almost all cases
except when the input consists of typos.

Keystroke saving rates. KSR can be considered
as a proxy measure of usability of the approach
for AAC use-cases. KSRsuccess values are in the
range of 73-77% for the 1st and 2nd turns of di-
alogs in the TDC and DDC datasets (Table 6), indi-
cating that our proposed AE scheme does indeed
lead to high KSRs. Values of KSRall are lower,
reflecting the penalties for when a perfect match
is not achieved. However, with context, KSRall

5Note, that it is possible to cut down latency by paralleliz-
ing sampling, however this might increase hardware require-
ments at inference time.

Figure 6: AE accuracy with and without typo noise in the
input abbreviation. We compare the accuracies of the models
fine-tuned without and with noise. Each curve shows the
average top-5 accuracy in the 2nd turns of the dialogs in the
test split of the TDC dataset.

approaches 50% and is higher compared to no con-
text (20%-37%). Note that KSRall is extremely
conservative as it does not consider (a) the possi-
bility of using the information already contained in
the abbreviation to "recover from AE failure" (e.g.,
by letting the user specify a word and invoke the
LLM again) or (b) the fact that word completion
and prediction may still be utilized even if the user
falls back to sequential text entry.

Fine-tuning with noise improves typo tolerance.
Figure 6 compares the AE accuracies of LLMs
fine-tuned with and without noise (FTnoise-LLM
and FT-LLM). While both models show decreasing
AE accuracies with increasing amounts of typos,
FTnoise-LLM is much more robust showing lesser
drop in performance. Further, on noise-free inputs
(σ=0), FTnoise-LLM shows only slight accuracy
deterioration compared to FT-LLM. We also find
that typo tolerance, for both FT-LLM and FTnoise-
LLM, is more pronounced with context than with-
out.

Cross-domain generalization. We use the
TMSD dataset to compare and evaluate the
performance of models on conversation domains
not seen in training. In Table 4 we can observe
that few-shot prompting does fall behind the
simple Look-Up Table baseline on DDC and CMD
datasets. However, when we evaluate the models
on cross-domain TMSD dataset of dialogs we can
observe that the fine-tuned and few-shot models do
generalize better to unseen domains and perform
better than the baseline look-up.

6 Discussion

Qualitative analysis of AE failures. As indi-
cated by the relatively high BLEU scores in Table 4
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(> 80%), there are many expansions in the top-5
options that are "near misses". Appendix Table
7 shows a few examples of such near misses, in
which the options differ from the the ground-truth
phrase by only a semantically-similar word (e.g.,
“yes” vs. “yeah”, “head out” vs. “head over”.) Fu-
ture studies need to investigate the frequency and
UX acceptability of such near-miss AE options.
But their existence implies that exact-match ac-
curacy reported above slightly underestimates the
practical effectiveness of the models. Another cat-
egory of AE failures involve phrases that contain
certain proper nouns. The last four examples in Ta-
ble 7 show such cases in which the model correctly
expands all the words but a proper noun. When
such errors occur, the model tends to predict more
common proper nouns, which is likely a reflection
of the higher frequency of the predicted nouns in
the model’s pre-training and fine-tuning datasets.

The benefit of AE relative to sequential text en-
try. Word completion and prediction incur scan-
ning cost: users scan the options in order to deter-
mine whether any of them match their intention,
which has a detrimental effect on speed that needs
to be overcome by the high quality of the options
(Trnka et al., 2009). Although the speed of AE-
based text entry remains to be quantified in future
studies, we point out that: (1) AE removes over-
head of scanning for options in between keystrokes,
(2) there are fewer characters to examine or correct
when typing, both of which may offer speed-ups in
addition to the higher KSR afforded by AE.

Although the current study is motivated by and
focuses on the AAC use case, our paradigm of ab-
breviated text entry may be applicable to text input
on touch screens as well. The AE approach of the
current study can be regarded as a variation of con-
textual prediction of user text (Kannan et al., 2016;
Chen et al., 2019) that affords greater flexibility in
message content at the trade-off of requiring spec-
ification of the message with a small number of
keystrokes.

Future directions. We found fine-tuning to be
significantly better than prompting in terms of (a)
accuracy (for both scenarios with and without typo-
noise) and also (b) exhibit lower latency as we
achieve better results with fewer samples. Future
work should investigate the differences in laten-
cies between the encoder-decoder architecture and
decoder-only models. For training efficiency, in-

stead of fine-tuning, it will also be worth investigat-
ing strategies such as prompt tuning (Lester et al.,
2021) that continue to keep the model frozen, but
learn some additional parameters for the task.

Even in the best case scenario models can fail
to find accurate expansions6 among the top-5 op-
tions. Recovering from such failures is important
for AAC use cases. Future studies should con-
sider options for partial specifications of one or
more words or selection of some words from the
available options. Once the recovery from failure
is proven in offline analysis, user studies are re-
quired to validate and quantify the actual benefit
of the AE text-entry paradigm in lab and real-life
settings. Integration with UI approaches is also
an essential direction, e.g., speeding up eye-gaze
typing such as cascading dwell time and dwell-free
paradigms (Mott et al., 2017; Kristensson and Ver-
tanen, 2012).

7 Conclusion

In this work we proposed a high-KSR form
of abbreviation expansion to dramatically save
keystrokes for severely-disabled users. We use it to
synthesize three datasets for the AE task. Based on
extensive experiments using few-shot prompting
and model tuning we demonstrate that across the
datasets, fine-tuned LLMs can accurately predict
expansions for 48-77% of phrases that are replies
to initial turns of dialogs and exhibit KSRs in the
range of 73-77% for the correctly predicted expan-
sions, thus pointing at a promising direction for
future user studies of contextual and abbreviated
text entry based on LLMs. Models evaluated with
conversation context show significantly higher ac-
curacy than without, thus supporting our hypothesis
that context is the key to effective abbreviated text
entry in conversational settings. Furthermore, fine-
tuning with simulated typos substantially improves
tolerance to noise in abbreviation.

8 Acknowledgements

We would like to thank Shumin Zhai and Michael
Terry for feedback on a draft of this work, Yanping
Huang for pointers on model inference, as well as
James Stout, Bob MacDonald, Julie Cattiau, and
Maarten Bosma for their support. We are grateful
to Team Gleason for their active involvement and
feedback in the development of this work.

6see Appendix G for analysis

1269



9 Ethical Considerations, Limitations,
and Societal Impact

Accelerating augmentative and alternative com-
munication (AAC) can enhance quality of life of
people with extremely limited mobility by facili-
tating increased social participation and indepen-
dence (Caligari et al., 2013). While the benefits of
AE may be large for this population, we note that
this approach may have risks.

The primary risk of AE is errors in expansions
that substantially misrepresent the intent of the
speaker in a way that might cause harm to them-
selves or others (e.g., failure to correctly convey
critical health information, insertion of offensive
language.) The abbreviation expansions may also
reflect biases in the underlying language model
(e.g., perpetuating stereotypes by more frequently
suggesting male pronouns than female, Weidinger
et al. 2021.)

A more subtle risk is when expansions miss the
ground-truth phrase closely (see Table 7), which
may accurately convey content but reduce the
speaker’s sense of autonomy and authentic self-
expression. Prior work (e.g., Kane et al. 2017) has
shown that people with ALS highly value AAC that
preserves and facilitates authentic identity expres-
sion. Providing speakers with multiple AE options
to choose from and requiring user confirmation be-
fore voicing an expansion are design options that
can mitigate these risks. Model fine-tuning to im-
prove safety or personalization to the end-user’s
communication style are additional risk-mitigation
approaches.

Beyond enhancing communication speed, an-
other intended benefit of AE is the potential to
reduce fatigue associated with gaze-based AAC by
reducing keystrokes; however, a risk of our sys-
tem is that if errors in AE are frequent for a given
user (perhaps due to eye tracker miscalibration or
long-tail abbreviation use) then these savings could
be outweighed by the need to correct errors, inad-
vertently increasing fatigue. User studies to bet-
ter understand error rates in practice, as well as
future work designing interfaces to simplify AE
error correction, are important for minimizing this
risk. Similarly, our abbreviations scheme’s simple
design based on first letters aims to minimize cog-
nitive load; however, user studies with the target
population using instruments such as NASA’s Task
Load Index7 would be required to verify that AE

7https://humansystems.arc.nasa.gov/

does not cognitively strain end-users.
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Appendix

A Removal of duplicate dialogs from the
DailyDialog dataset

We observed that the DailyDialog dataset (Li et al.,
2017) contains a significant number of dialogs in
its dev (validation) and test splits that are identical
or nearly identical to the dialogs found in its train
split. We determined two dialogs to be duplicate
by using the following criterion:

1. If both dialogs consist of the same number
of turns and the corresponding turns are all
identical (case-insensitive), or

2. If both dialogs consist of the same number
of turns and there are three or more turns at
which both dialogs contain identical text (case-
insensitive).

See the file daily_dialog_deduplications.csv in
Supplemental Data for a list of the 177 dialogs in
the dev split and the 228 dialogs in the test splits
that are found to be duplicates with the train split
and hence are removed from our DailyDialog Cor-
rected (DDC) dataset.

B 4-shot examples for BaseLLM∗

We select four consecutive dialogues from the 859
examples from train split of the TDC dataset (Verta-
nen, 2017) while varying the starting conversation,
which yields 859 − 4 + 1 = 856 different 4-shot
prompt sets.

C Tuning on noisy data vs. accuracy

Preliminary experiments have shown that σ = 0.3
is a good trade-off between accuracy gains on noisy
data and losses on non-noisy data.

D Model fine-tuning details

Our model fine-tuning uses the AdaFactor opti-
mizer (Shazeer and Stern, 2018). The nominal
batch size 16 is made more efficient through ex-
ample packing (Raffel et al., 2019), leading to an
average effective batch size of approximately 200
examples under a maximum sequence length of
1024 tokens. We used TPUv3s (Jouppi et al., 2018)
with a configuration of 4x8 for the LLM fine-tuning.
Our fine-tuning recipe applies a constant, low learn-
ing rate of 5×10−5 and a dropout rate of 0.2, which
helps to prevent early overfitting. Early stopping is
based on a dev set consisting of combined examples

from the dev splits of the TAC and TDC datasets.
We find the best checkpoint after 2100 and 1800
training steps for the FT-LLM and FTnoise-LLM
models, respectively, which amounts to approxi-
mately 1-1.2 epochs of training. We ran a small
set of hyperparameter tuning experiments, varying
batch size, learning rate and dropout and chose the
best setting based on the TAC+TDC dev set.

E Computation cost

Fine-tuning of the 64B LLM uses TPU v3 with a
4x8 configuration, i.e., 32 TPUs. FT-LMM and
FTnoise-LLM are each trained for approximately
2100 and 1800 steps, respectively. The training
time is approximately 3 hours. This leads to a
model fine-tuning budget of 32 x 3 = 96 TPU *
hour per model.

Evaluation and inference on the 64B LLM uses
TPU v3 with a 4x4 configuration, i.e., 16 TPUs.
Each example (batch size = 128 samples) takes
0.653 s. This leads to 16 × 0.568/128 = 0.071
TPU × second per sample.

F Splitting characters in abbreviations.

Pilot experiments showed the importance of pro-
grammatically inserting spaces between characters
in the abbreviations. Since the vocabulary used by
the LaMDA models is fairly large (32k entries),
unless we enforce character-level splitting, subse-
quences of multiple characters in many abbrevia-
tions will be combined into spurious tokens, lead-
ing to slightly reduced AE accuracy.

G Recovery from failure - analysis

In the best scenario of replying to a question, the
fine-tuned LLM is capable of predicting the correct
phrase expansion approximately 81% of the times
with top-5 options and sufficient sampling (Figure
5). Hence the model will fail to find the correct
expansion at least 19% of the cases.

H Inference latencies of different
LaMDA model sizes

In Figure H we compare the latencies during infer-
ence time for the decoder-only models of different
sizes. Compared to the 4B model, the 27B model
shows 1.5x latency, while the 64B model shows
2.2x latency. While the latency increase is quite
significant, this analysis shows that we cannot sub-
stitute the 64B model with a smaller model (e.g.,
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# Context Abbreviation Ground truth Non-matching expansion options
1 Awesome! My favorite

weather!
swhottwp Shall we head over to the water

park?
shall we head out to the water park

2 Can we go out for a drive? ygstc Yeah go start the car yes go start the car
yes go straight to church
yes go settle the children
yeah get some tunes cranked
yes go straight to chicago

3 i took a lot of courses, such
as philosophy, logic, ethics,
aesthetics, etc

wcdylb which course did you like best what courses do you like best
what courses did you like best
what course do you like best
what course did you like best
which courses did you like best

4 it’s hard to be optimistic
about things with the way the
economy’s headed... the
trade deficit is getting larger,
consumption’s down, i really
think we’re headed for a
recession

tehbsfawn the economy has been stagnant
for a while now

the economy has been slowing for a
while now
the economy has been sluggish for a
while now
the economy has been strong for a
while now
the economy has been slow for a while
now
the economy has been suffering for a
while now

5 What is your name? mnir My name is Rey my name is robert
my name is rebecca
my name is richard
my name is rose
my name is roy

6 hey, isabelle... l Logan lisa
linda
look
lillian
liz

7 so, paula, where are you from imfc,o i’m from canada, originally i’m from china, ok
i’m from california, originally
i’m from california, ok
i’m from california, okay
i’m from california, obviously

8 hey sandra, what’s wrong?
you look furious

ivhiwt i’ve had it with Tim i’ve had it with this
i’ve had it with them
i’ve heard it was true
i’ve had it with that
i’ve had it with these

Table 7: Examples of failed AE. Examples #1-4 show AE options that miss the ground-truth phrase closely. The cases highlighted
in boldface have near identical meaning to the ground truth, but differ only in details of a single word. Examples #5-8 show AE
options that match the ground truth except for the a proper noun.
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TDC-dev
Model Acc.@5 BLEU@5

Look-Up Table (LUT) 16.9 ± 0.2 25.2 ± 0.2
T5-small (60M) 37.8 ± 0.0 59.2 ± 0.5
T5-large (770M) 48.2 ± 0.0 69.1 ± 0.5
T5-3B (3B) 53.9 ± 0.0 72.3 ± 0.5
BaseLLM∗ (best, 4shot) 43.0 ± 1.0 52.0 ± 1.4
FT-LLM (no instr.) 76.7 ± 1.1 83.9 ± 0.5
FTnoise-LLM (no instr.) 75.8 ± 0.7 83.4 ± 0.2

Table 8: Comparing models (from Sec. 4) on the AE task
on turn-2 given turn-1 as context. We report accuracy and
BLEU score at top-5, as percentages, std. dev. computed on
3 runs. Higher is better, values in bold are highest in each
column. The TDC-dev set was used for model selection before
evaluation on test sets.

Figure 7: Inference latencies for different sizes of the LaMDA
model (4B, 8B, 27B, and 64B.) The latencies are shown as
box plots.

by increasing the number of samples) in a way that
improves latency without significantly harming the
AE accuracy (compare the AE accuracies in Fig-
ure 5.)
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