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Abstract

Commonsense reasoning tasks follow a stan-
dard paradigm of finetuning pretrained lan-
guage models on the target task data, where
samples are introduced to the model in a ran-
dom order during training. However, recent
research suggests that data order can have a
significant impact on the performance of fine-
tuned models for natural language understand-
ing. Hence, we examine the effect of a human-
like easy-to-difficult curriculum during finetun-
ing of language models for commonsense rea-
soning tasks. We use paced curriculum learning
to rank data and sample training mini-batches
with increasing levels of difficulty from the
ranked dataset during finetuning. Further, we
investigate the effect of an adaptive curriculum,
i.e., the data ranking is dynamically updated
during training based on the current state of
the learner model. We use a teacher model to
measure difficulty of each sample and exper-
iment with three measures based on question
answering probability, variability and out-of-
distribution. To understand the effectiveness
of curriculum learning in various scenarios,
we apply it on full model fine-tuning as well
as parameter-efficient prompt-tuning settings.
Our results show that fixed as well as adap-
tive curriculum learning significantly improve
performance for five commonsense reasoning
tasks, i.e., SocialIQA, CosmosQA, CODAH,
HellaSwag, WinoGrande in both tuning set-
tings. Further, we find that prioritizing the diffi-
cult samples in the tail end of training improves
generalization to unseen in-domain data as well
as out-of-domain data. Our work provides evi-
dence and encourages research into curriculum
learning for commonsense reasoning.1.

1 Introduction

Curriculum learning (Elman, 1993; Bengio et al.,
2009) is an alternative to the typical uniform ran-
dom sampling of training data and is motivated by

1Code: https://github.com/adymaharana/
curriculum_learning
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Figure 1: Curriculum Learning. The curriculum of
the learner model i.e., the ranked dataset for finetuning
is prepared using scores from the teacher model. The
ranking remains unchanged in fixed curriculum learning
whereas the learner state is used as feedback to update
the ranking in adaptive curriculum learning.

the gradual progression of human learning from
easier to difficult concepts (see Figure 1). In the
machine learning paradigm, a ‘teacher’ ranks the
training samples from easy to difficult and intro-
duces them to the ‘learner’ in that order. Dodge
et al. (2020) show that randomly initialized train-
ing data orders can lead to large variance in model
performance on the GLUE benchmark (Wang et al.,
2018). In light of such evidence, we seek to answer:
Does a meaningful data order such as a curriculum
based on model confidence or dataset distribution
outperform a random data order? Such experiments
have been carried out for some NLP tasks like ma-
chine translation (Platanios et al., 2019) and natu-
ral language understanding (Xu et al., 2020) with
positive outcomes. While large pretrained models
(PTLMs) have been achieving high performance on
such tasks, their commonsense reasoning abilities
have been limited. Moreover, the process of com-
monsense acquisition in humans has been shown
to be informative for developing algorithms to ac-
complish the same in machines (Zhu et al., 2020).
Hence, we study the effect of a human-like curricu-
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lum learning to improve the finetuning of PTLMs
for commonsense reasoning tasks.

To impose structure on the data order for sam-
pling training mini-batches, we adopt paced cur-
riculum learning by transfer as proposed in Ha-
cohen and Weinshall (2019). In this method, a
pacing function determines the speed at which the
ranked data is introduced to the model during train-
ing. Ranking of the training dataset is performed
using outputs from a pretrained network which has
been finetuned on the target dataset using a random
training order. We refer to this approach as fixed
curriculum learning. During human acquisition of
skill sets, a student can benefit from a curriculum
that is continuously adjusted by the teacher accord-
ing to the learning progress of the student. Hence,
we also investigate adaptive curriculum learning
for commonsense reasoning tasks. The initial data
order imposed by the teacher model is updated
at regular intervals during training by taking the
learner model’s current state into account (Kong
et al., 2021). Importantly, we propose to reverse
the ranking to a difficulty-to-easy curriculum in
ACL, in order to reinforce feedback from the hard-
to-learn data points, which has been shown to be
beneficial for generalization (Swayamdipta et al.,
2020). In order to measure difficulty, we explore
three different data-sample informativeness scor-
ing methods i.e. Question Answering Probability
(QAP) (Zhang and Bansal, 2019), Energy-based
Out-of-Distribution Score (Liu et al., 2020) and
Cartography-based Variability (Swayamdipta et al.,
2020). Our work is most related to Xu et al. (2020)
which splits the training data into N meta-datasets,
trains N models for computing the curriculum and
follows a heuristically designed training regimen.
In contrast, we train a single model for comput-
ing the curriculum and use Bayesian optimization
(Snoek et al., 2012) to find the best pacing of the
curriculum for the target dataset, which is more ef-
fective than Xu et al. (2020) as we show in Sec. 5.4,
besides being computationally efficient.

We analyze these methods on five commonsense
reasoning datasets dealing with various tasks such
as reasoning about social interactions (SocialIQA;
Sap et al. (2019)), reading comprehension (Cos-
mosQA; Huang et al. (2019)), natural language in-
ference (HellaSwag; Zellers et al. (2019)), pronoun
resolution (WinoGrande; Sakaguchi et al. (2020))
and adversarial commonsense (CODAH; Chen et al.
(2019)). We explore curriculum learning in full-

model finetuning as parameter-efficient tuning and
show significant improvements using curriculum
learning on each of these datasets. We also demon-
strate that curriculum learning prevents the learner
model from over-fitting on the training set, which
leads to improved generalization to in-domain and
out-of-domain data.

2 Related Work

Curriculum learning (CL) is widely used in rein-
forcement learning (Zaremba and Sutskever, 2014;
Matiisen et al., 2019; Graves et al., 2017) and
neural machine translation (Platanios et al., 2019;
Kocmi and Bojar, 2017; Guo et al., 2020). Sachan
and Xing (2018), Penha and Hauff (2020), Xu et al.
(2020) and Jafarpour et al. (2021) demonstrate the
effectiveness of CL for question generation, infor-
mation retrieval, natural language understanding
and named entity recognition respectively. To the
best of our knowledge, we are the first to examine
the efficacy of CL for commonsense reasoning.

Various task-specific measures for sample com-
plexity have been proposed in previous works, such
as inter-annotator agreement for natural language
inference (Laverghetta Jr et al., 2020), sub-graph
depth for Abstract Meaning Representation (AMR)
structures (Wang et al., 2021a), noise rate in PCA
jittering-based data augmentation (Ye et al., 2021),
sentence length for sequence modelling (Cirik et al.,
2016), and semantic similarity for sentiment anal-
ysis (Han and Myaeng, 2017) etc. Wang et al.
(2021b) use a neural density estimator to model
graph embeddings distribution for the task of graph
classification. We use scores based on pretrained
models (Zhang and Bansal, 2019; Swayamdipta
et al., 2020; Liu et al., 2020) to compute difficulty.

Kong et al. (2021) and Cai et al. (2020) demon-
strate that an adaptive curriculum can improve con-
vergence for image classification and neural re-
sponse generation respectively. We examine adap-
tive CL for commonsense reasoning.

3 Methods

3.1 Curriculum Learning
Curriculum learning has two axes of variations, i.e.,
ranking of samples in terms of difficulty, and transi-
tioning of easy to difficult samples during training.
Following the transfer method proposed by Wein-
shall et al. (2018), we use the predictions of a model
that has been trained on target dataset (without cur-
riculum learning) in order to rank the synthetic as

984



well as original samples by difficulty (see Teacher
Model in Fig. 1). We adapt the fixed pacing func-
tion (Hacohen and Weinshall, 2019) to implement
transition of easy to difficult examples and opti-
mize for hyperparameters of the pacing functions
using Bayesian optimization. The pacing function
pf (i) is used to determine a sequence of subsets
X1, ..., Xm ⊆ X of size |Xi| = pf (i) ∗ |X| from
which mini-batches {Bi} are sampled uniformly
during training. Here, X is the ranked training
dataset. The fixed pacing function is comprised
of three parameters: (1) starting percentage, (2)
increase factor, and (3) step length. The number
of training iterations in each step of curriculum
learning is defined as step length. The starting per-
centage decides maximum difficulty of the training
samples introduced to the model in first step of
curriculum learning. The increase factor is used
to exponentially scale up the maximum difficulty
at the end of each step. The usage percentage is
calculated as pf (i) = t ∗ λ⌊i/S⌋ where t, λ, S and
i are the tunable parameters i.e. starting percent,
increase factor, step length and current training iter-
ation, resp. Training is initialized by sampling from
t% of the ranked dataset and the usage percentage
is re-computed at the end of every S iterations.

3.2 Adaptive Curriculum Learning
When the optimal curriculum for a student is not
known in advance, a teacher usually draws up a
curriculum based on past teaching experience and
then adjusts with the learning progress of the stu-
dent. Accordingly, Kong et al. (2021) propose ini-
tializing the curriculum using the difficulty score
obtained from the teacher model and then adapt
the score to the current state of the learner model
(see Fig. 1). During training, the scores are up-
dated after every L optimization steps. At the
(k + 1)th update, the difficulty score is computed
as µk+1 = (1−α)µk +αµcur where µcur, µk and
µk+1 are difficulty scores after the current step, the
kth and the (k + 1)th updates respectively. α and
L are tunable hyper-parameters. The ranking is
flipped to a difficult-to-easy curriculum using the
updated scores for subsequent training, in order to
maximize exposure to difficult samples.

3.3 Difficulty Scoring Functions
Question Answering Probability (QAP). The
probability that the teacher model can correctly pre-
dict the answer to a question is a measure of model
confidence for that particular data sample (Zhang

and Bansal, 2019). We propose to use this metric
to rank datasets i.e. data samples with high QAP
are considered as easy and those with low QAP are
treated as difficult examples. Given a model with
parameters θ, the QAP µi for question-answer pair
(xi, y

∗
i ) is measured as µi = pθ(y

∗
i |xi).

Model Variability. Swayamdipta et al. (2020)
propose the model confidence (µ̂i) and vari-
ability (σ̂i) measures to identify the effect of
data samples on the model’s generalization er-
ror. Specifically, µ̂i = 1

E

∑E
e=1 pθ(y

∗
i |xi) and

σ̂i =

√∑E
e=1 (pθ(y

∗
i |xi)−µ̂i)

2

E , where E is the num-
ber of training epochs. We rank samples in the
ascending order of variability i.e. samples with
low-variability are ranked as easy.

Energy. Liu et al. (2020) show that the energy
score can be reliably used for distinguishing be-
tween in- and out-of-distribution (OOD) samples.
We use this metric to rank OOD samples as "diffi-
cult" and in-distribution samples as "easy" in our
curriculum. Energy of a given sample is computed
as E = −T ∗ log∑K

i expfi(x)/T where fi(x) are
the logits for a given sample, taken from the teacher
model, and T is the temperature.

4 Experimental Setup

We use a suite of large and small datasets formatted
as multiple-choice question answering tasks for our
experiments. SocialIQA (Sap et al., 2019), Cos-
mosQA (Huang et al., 2019) and WinoGrande-XL
(Sakaguchi et al., 2020) contain upto 60K train-
ing samples. Additionally, we use the CODAH
dataset (Chen et al., 2019) and also follow the
method in Yang et al. (2020) to create HellaSwag-
2K (Zellers et al., 2019) for testing our methods
in low-resource scenarios. Models are evaluated
using the respective task-specific accuracies (see
Appendix for dataset statistics). We use pretrained
RoBERTaLARGE (Liu et al., 2019) as the teacher as
well as learner model in our full-model finetuning
experiments. In the first stage, the teacher model is
finetuned on randomly sampled training data and
used to compute the difficulty scores. Models are
also subjected to grid-search based tuning of train-
ing hyperparameters in the first stage whenever
necessary. In the second stage, we use Bayesian
optimization for finding the optimum pacing func-
tion parameters for fixed as well as adaptive CL
(and use the same training hyperparameters as first
stage). For adaptive learning, we set L = S and
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Method SIQA CosQA CDH H2K WG
Results on test set
RoBERTa 76.74* 79.23* 82.32 73.40 79.12
+ fixed CL 78.14 80.04 83.91 75.42 79.51
+ adaptive CL 78.53 80.43 84.75 76.10 79.97
Results on validation set
RoBERTa 77.78 80.45 84.28 74.72 79.63
+ fixed CL 78.86 81.0 85.92 77.23 80.11
+ adaptive CL 79.22 81.57 86.03 77.89 81.05

Table 1: Results on commonsense datasets using
RoBERTa and various CL methods. *values are taken
from leaderboards. (SIQA = SocialIQA, CosQA =
CosmosQA, CDH = Codah, H2K = HellaSwag2K,
WG=WinoGrande-XL)

Method SIQA CosQA CDH H2K
RoBERTa 77.78 80.45 84.24 76.80
+ QAP 78.86 81.69 85.92 77.98
+ Energy 77.93 80.67 85.09 75.94
+ Variability 78.41 81.58 84.95 77.81

Table 2: Ablation results on validation set of common-
sense reasoning datasets using fixed CL with RoBERTa
and various difficulty measures.

optimize for α, t, λ and S parameters. For prefix-
tuning experiments, we use GPT2LARGE (Radford
et al., 2019) as the PTLM for tuning. See Appendix
for dataset statistics and hyperparameter bounds.

5 Results & Analysis

5.1 Main Results

Our experiments with curriculum learning yield
upto 2% improvements across five commonsense
reasoning tasks using RoBERTa model (see Ta-
ble 1). Fixed CL results in 1.4%, 0.81% and 0.4%
improvement over baseline i.e. no CL (see row
1 in Table 1) for the larger datasets SocialIQA,
CosmosQA and WinoGrande respectively. With
adaptive CL, the improvements increase to 1.79%,
1.20% and 0.85% respectively. For the smaller
datasets, we see similar benefits i.e. 1.7% and 2.5%
with fixed CL, and 2.4% and 3.17% with adaptive
CL over the baselines of Codah and HellaSwag-2K
respectively. These results are obtained using QAP
as difficulty score, which is the superior metric
for measuring sample difficulty in multiple-choice
datasets (see Sec. 5.2). The optimum α values in
our experiments are closer to 1.0, which suggests
that the initial ranking using teacher model is not
quite useful after the first S training steps.

To investigate the effectiveness of curriculum
learning, we compare the difficulty scores on the
training and validation sets for the teacher vs.
learner models. See Figure 4 for a demonstration

Method WG (ID) WSC (OOD)
RoBERTa 79.63 88.07
+ fixed CL 80.11 88.77
+ adaptive CL 81.05 90.17

Table 3: In-domain (ID) and out-of-domain (OOD) ac-
curacies for RoBERTaLARGE models trained with and
without CL on the WinoGrande-XL (WG) dataset.

(a)

(b)

Figure 2: Comparison of QAP scores on the (a) train-
ing and (b) validation sets of HellaSwag-2K, for the
RoBERTa models trained with and without CL.

of the same for HellaSWAG-2K. We observe that
the learner model is less confident about the train-
ing data implying that there is less overfitting. This
results in improved generalization to unseen data
in the validation set, and more uniform distribution
of QAP scores over the samples. We observe simi-
lar trends in other datasets as well (see Appendix
for more figures), which suggests that curriculum
learning acts as a regularizer during training. In
order to further test this hypothesis, we evaluate the
out-of-distribution generalization of WinoGrande
models by evaluating on the Winograd Schema
Challenge (WSC) dataset (Levesque et al., 2012).
We observe 0.7% and 2.1% improvement in the
performance on WSC using fixed and adaptive CL
respectively (see Table 3), indicating that adaptive
CL is especially effective at promoting generaliza-
tion of the trained model. This result also aligns
with the finding in Swayamdipta et al. (2020) that
hard-to-learn examples play a significant role in
learning and generalization.

5.2 Difficulty Metrics

We use three measures of difficulty for ranking the
samples in the training data. Results on fixed CL
with RoBERTa are shown in Table 2. We see the
largest improvements with QAP, similar behavior
with variability, and lesser or no improvements with
energy. Scatter plot between QAP and variability
for SIQA data samples reveals that samples with
higher QAP also tend to have lower variance, hence
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Method MNLI QNLI QQP RTE SST-2 MRPC CoLA STS-B Avg.
BERTLARGE 86.7 92.5 91.2 76.1 94.0 91.4 66.1 90.2 83.7
+ CL (Xu et al., 2020) 86.6 92.8 91.8 76.2 94.2 91.9 66.8 90.6 84.1
+ fixed CL (ours) 86.8 93.1 91.8 77.1 94.6 92.3 66.8 91.0 85.6
+ adaptive CL (ours) 87.9 93.5 92.7 77.9 94.6 92.4 66.5 91.8 86.1

Table 4: Results on validation sets of the GLUE dataset using fixed and adaptive CL with BERTLARGE .

Method SIQA CosQA CDH H2K
Prefix-tuning 65.39 68.34 73.16 70.24
+ fixed CL 66.18 69.10 75.28 72.58
+ adaptive CL 66.91 69.42 75.56 72.68

Table 5: Results on validation set of commonsense rea-
soning datasets using prefix-tuning of GPT2 and cur-
riculum learning with QAP as difficulty measure.

Figure 3: Visualization of scatter plots for QAP vs.
Variability (left) and QAP vs. Energy (right) scores
from the RoBERTa teacher model for SocialIQA.

leading to similar behavior from both metrics in
curriculum learning. The energy score fails to yield
benefits for CL because the datasets used in our
experiments are mostly homogeneous.

5.3 Curriculum Learning for Prefix-Tuning

In the interest of parameter-efficient methods for
training PTLMs to perform specialized tasks, we
conduct CL experiments for prefix-tuning (Li and
Liang, 2021) of GPT2LARGE models on target
datasets (see Appendix). We introduce a prefix
of length 16 and train a reparameterization net-
work that updates 0.2% of GPT2’s parameters for
commonsense-based question answering. Results
in Table 5 show that CL yields up to 1.5% improve-
ments for smaller datasets and up to 1% improve-
ment on larger datasets, suggesting that CL could
be also effective for prompt-tuning settings.

5.4 Curriculum learning for Natural
Language Understanding

We evaluate the performance of our proposed cur-
riculum learning methods on conventional NLU
tasks i.e. GLUE. In order to facilitate direct com-
parison to the meta-dataset approach presented in
Xu et al. (2020), we train BERTLARGE models
with our fixed as well as adaptive curriculum learn-
ing methods on all sub-tasks in GLUE (Wang et al.,
2018). Results on the validation sets of GLUE are

SI
Q

A

Cameron gave Casey a drink. He loved helping
kids and giving them things. How would Casey
feel as a result? [A] very apathetic [B] very
grateful [C] somewhat infdifferent

C
od

ah

We organized a bonfire party. I [A] brought
marshmallows to toast [B] like to play with fire
[C] threw a bucket of water at the bonfire [D]
howled like a wolf.

Table 6: Most difficult samples of SIQA and CODAH
as ranked by QAP scores. Labels are marked in green.

presented in Table 4. Our proposed method out-
performs Xu et al. (2020) across all sub-tasks. We
see upto 1% improvement on the larger datasets
i.e. MNLI, QNLI and QQP. For the smaller GLUE
datasets, we observe small improvement margins
with curriculum learning approaches, as opposed
to the larger improvements for small commonsense
reasoning datasets as seen in Table 1.

6 Limitations

Our results are limited to the task of multiple choice
question-answering based commonsense reasoning
and natural language understanding, but are encour-
aging and warrant further research into effective
adaptive CL methodologies for other NLP tasks.
The adaptive curriculum learning method proposed
in our paper is expensive for larger datasets since
the ranking needs to be recomputed several times
during training using the current version of the
learner model. Further work is needed to optimize
curriculum learning methods for larger datasets
like AbductiveNLI (Bhagavatula et al., 2019) and
for using larger models like UnifiedQA (Khashabi
et al., 2020) for finding the right curriculum.

7 Conclusion

We conduct an empirical analysis of fixed and adap-
tive curriculum learning (CL) for five common-
sense reasoning tasks using pretrained language
models (PTLMs). Results show that CL can bene-
fit downstream task performance when introducing
a new task to a PTLM, in fully-finetuned as well
prompt-tuned settings, and for in-domain as well
as out-of-domain data. Our work motivates future
research into CL for commonsense reasoning.
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Figure 4: Comparison of QAP scores on the (a) training
and (b) validation sets of SocialIQA, for the RoBERTa
models trained with and without CL.

A Prefix-Tuning Model

For this scenario, we finetune a GPT2LARGE

model for the task of multiple-choice reasoning us-
ing prefix-tuning, wherein the weights of pretrained
GPT2 are frozen, and only a matrix of prefix em-
beddings are trained for the target task. Following
Li and Liang (2021), we prepend a prefix to the in-
puts of GPT2 model i.e. z = [PREFIX, x, y] where
(x, y) is the question-answer input pair. We also
a parameterization network to compute the prefix
embeddings i.e., Pθ = MLP (Pθ′ ) where Pθ is the
prefix embedding used during inference, Pθ′ is a
smaller prefix matrix used for reparameterization
during training and MLP is the dense layer used
as the reparameterization network. We set the pre-
fix length to 16, and the dimensions of Pθ′ to 512.
The dimensions of Pθ is 1024, according to the
hidden size of GPT2LARGE . This leads to a total
of 0.2% trainable parameters in our prefix-tuning
based GPT2 model.

B Experimental Setup

Datasets. We use two large multiple-choice
commonsense-based question answering datasets
for our experiments i.e. SocialIQA (Sap et al.,
2019) and CosmosQA (Huang et al., 2019). Ad-
ditionally, we also use the CODAH dataset (Chen
et al., 2019) folds released in Yang et al. (2019)
and follow their method to create HellaSwag-2K
(Zellers et al., 2019) for testing our methods on
low-resource scenario. All of the above datasets
are being for their intended purposes i.e. research
only, in our work. All of these datasets are in the
English language. Models are evaluated using the
respective task-specific accuracies. See Table 9 for
dataset statistics.
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Hyperparameter SocialIQA CosmosQA CODAH HellaSwag2K WinoGrande (XL)
Starting Percent (sp) 0.26 0.37 0.5 0.26 0.39
Increase Factor (inc) 1.89 1.74 1.32 1.05 1.8
Update Steps (S) 1789 1745 332 199 405
Adaptive Factor (α) 0.93 0.99 0.55 0.09 0.19

Table 7: Best adaptive curriculum learning pacing function parameters for finetuning RoBERTa on various datasets

Parameter Bounds
Grid-search Based Optimization

Learning Rate [1e-5, 5e-5, 1e-6, 5e-6]
Batch Size (inc) [8, 16]
Total Train Epochs [3, 4, 5]

Bayesian Optimization
Starting Percent (t) [0.01, 0.5]
Increase Factor (λ) [1.05, 2.0]
∗Update Steps (S) [0.01, 3]*250
Adaptive Factor (α) [0, 1.0]

Table 8: Optimization bounds for grid-search based tun-
ing of training hyperparameters and bayesian optimiza-
tion of curriculum learning parameters. *We expand
the search window for update steps to 2500 for larger
datasets in adaptive CL

Split SIQA CosQA CDH H2K WG
Train 33,410 25,778 1666 2000 40,498
Dev 1954 3000 566 1000 1266
Test 2224 7000 566 5000 1767

Table 9: Number of samples in each split of the datasets
used in our experiments. (SIQA = SocialIQA, CosQA
= CosmosQA, CDH = Codah, H2K = HellaSwag2K,
WG=WinoGrande-XL)

Models & Hyper-parameters. We use
RoBERTaLARGE Liu et al. (2019) as the main
PTLM in our experiments. We perform Bayesian
optimization for finding the optimum parameters
for fixed as well as adaptive CL. For adaptive
learning, we set L = S and optimize for α,
t, λ and S parameters. All models are also
subjected to grid-search based tuning of training
hyperparameters.

B.1 Hyperparameter Tuning Bounds

We perform grid-search based optimization for find-
ing the best training hyperparameters for each train-
ing scenario and dataset. For curriculum learning
based parameters, we first perform bayesian opti-
mization (Snoek et al., 2012) of curriculum learn-
ing parameters using the best training hyperparame-
ters for the baseline (non-CL) model. For bayesian
optimization, each model is subjected to 15 itera-
tions of optimization with 3 restarts and the tuning

Figure 5: Demonstration of the optimized learning pace
of RoBERTa for various datasets. Usage percentage k
(y-axis) at training step n (x-axis) refers to the top k%
easiest examples of the ranked dataset.

is based on accuracy on validation set.
For the prefix-tuning models, we perform grid-

search based tuning of training hyperparameters
according to the bounds reported in Table 8 and in
addition, up to 10 training epochs.

991



Hyperparameter SocialIQA CosmosQA CODAH HellaSwag2K WinoGrande (XL)
Learning Rate 5e-6 5e-6 1e-5 1e-5 1e-5
Epochs 3 4 5 5 5
Max Gradient Norm 1.0 1.0 1.0 1.0 1.0
Weight Decay 0.01 0.01 0.01 0.01 0.01
Batch Size 8 8 16 16 16
Max Length 128 128 90 128 70
Warmup Ratio 0.06 0.06 0.06 0.06 0.06
LR Decay Linear Linear Linear Linear Linear
Optimizer AdamW AdamW AdamW AdamW AdamW
Hardware RTX 2080 Ti RTX 2080 Ti RTX 2080Ti RTX 2080Ti RTX 2080Ti
Single GPU training time 5 hours 5 hours 2 hours* 2 hours 5 hours

Table 10: Training hyperparameters for finetuning RoBERTa on various datasets.
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