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Abstract

Spoken language understanding (SLU) tasks
involve mapping from speech signals to se-
mantic labels. Given the complexity of such
tasks, good performance is expected to re-
quire large labeled datasets, which are diffi-
cult to collect for each new task and domain.
However, recent advances in self-supervised
speech representations have made it feasible
to consider learning SLU models with lim-
ited labeled data. In this work, we focus on
low-resource spoken named entity recognition
(NER) and address the question: Beyond self-
supervised pre-training, how can we use exter-
nal speech and/or text data that are not anno-
tated for the task? We consider self-training,
knowledge distillation, and transfer learning
for end-to-end (E2E) and pipeline (speech
recognition followed by text NER) approaches.
We find that several of these approaches im-
prove performance in resource-constrained set-
tings beyond the benefits from pre-trained rep-
resentations. Compared to prior work, we find
relative improvements in F1 of up to 16%.
While the best baseline model is a pipeline
approach, the best performance using external
data is ultimately achieved by an E2E model.
We provide detailed comparisons and analyses,
developing insights on, for example, the ef-
fects of leveraging external data on (i) different
categories of NER errors and (ii) the switch in
performance trends between pipeline and E2E
models.

1 Introduction

Named entity recognition (NER) is a popular task
in natural language processing. It involves detect-
ing the named entities and their categories from a
text sequence. NER can be used to extract infor-
mation from unstructured data, which can also be
used as features for other tasks like question an-
swering (Chen et al., 2017) and slot filling for task-
oriented dialogues (Louvan and Magnini, 2018).
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Figure 1: Improvements in spoken NER with 100 hours
of external data of different types. “Pipeline” refers to
approaches consisting of speech recognition followed
by a text NER model; “E2E” refers to approaches that
directly map from speech to NER-tagged text. The

“Baseline” and “Text NER” numbers are from previ-
ously established baselines (Shon et al., 2022).

Thanks to pre-trained text representations such
as BERT (Devlin et al., 2019), text-based NER has
recently improved greatly (Wang et al., 2021b; Li
et al., 2020b). Spoken NER, on the other hand, is
not as well-studied. It has the added challenges of
continuous-valued and longer input sequences and,
at the same time, provides opportunities to take
advantage of acoustic cues in the input. A recent
study (Shon et al., 2022) shows that there is still
10-20% absolute degradation in the F1 scores of
spoken NER models compared to text-based NER
using gold transcripts (see Figure 1) despite us-
ing large pre-trained speech representation models.
Closing this gap remains a critical challenge.

In this work, we study the potential benefits of us-
ing a variety of external data types: (a) plain speech
audio, (b) plain text, (c) speech with transcripts,
and (d) text-based NER data. We benchmark our
findings against recently published baselines for
NER on the VoxPopuli dataset of European Par-
liament speech recordings (Shon et al., 2022) and
also introduce baselines of our own. We observe
improvement from leveraging every type of exter-
nal data. Our analysis also quantifies the pros and
cons of the pipeline (speech recognition followed
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by text NER) and end-to-end (E2E) approaches.
The key improvements are summarized in Figure 1.
Specific contributions include:
(i) Unlike previous work, we devote equal effort to
improving both pipeline and E2E approaches.
(ii) We present experiments using various external
data types and modeling approaches.
(iii) Overall, we obtain F1 improvements of up to
16% for the E2E model and 6% for the pipeline
model over previously published baselines, setting
a new state of the art for NER on this dataset.
(iv) We benchmark the advantage of self-
supervised representations (SSR) over a baseline
that uses standard spectrogram features. SSR
gives relative improvements of 36%/31% for
pipeline/E2E models, respectively. To our knowl-
edge, prior work has not directly measured this
improvement over competitive baselines tuned for
the task.
(v) We establish that E2E models outperform
pipeline approaches on this task, given access to
external data, while the baseline models without
the external data have the opposite relationship.
(vi) We provide a detailed analysis of model behav-
ior, including differences in error types between
pipeline and E2E approaches and the reasoning for
the superiority of E2E over pipeline models when
using external data but not in the baseline setting.

2 Related work

2.1 Spoken named entity recognition

Relatively little work has been conducted on spo-
ken NER (Kim and Woodland, 2000; Sudoh et al.,
2006; Parada et al., 2011; Ghannay et al., 2018;
Caubrière et al., 2020; Yadav et al., 2020; Shon
et al., 2022) as compared to the extensively studied
task of NER on text (Nadeau and Sekine, 2007;
Ratinov and Roth, 2009; Yadav and Bethard, 2018;
Li et al., 2020a). While spoken NER is commonly
done through a pipeline approach (Sudoh et al.,
2006; Raymond, 2013; Jannet et al., 2015), there
is rising interest in E2E approaches in the speech
community (Ghannay et al., 2018; Caubrière et al.,
2020; Yadav et al., 2020; Shon et al., 2022). These
two approaches are depicted in Fig. 2.

An early E2E spoken NER model was intro-
duced by Ghannay et al. (2018). The approach
is based on the DeepSpeech2 (Amodei et al.,
2016) architecture, with the addition of special
characters for NER labels around the named en-
tities in the transcription, and is trained with

character-level connectionist temporal classifica-
tion (CTC) (Graves et al., 2006). Yadav et al.
(2020) introduced an English speech NER dataset
and proposed an E2E approach similar to Ghannay
et al. (2018). They show that LM fusion improves
the performance of the E2E approach. Caubrière
et al. (2020) provided a detailed comparison be-
tween E2E and pipeline models; however, they fo-
cused on small RNN/CNN models and did not use
state-of-the-art SSR models. All these approaches
use at least 100 hours of annotated data.

These previous efforts have shown that E2E mod-
els can outperform pipeline approaches in a fully
supervised setting. Borgholt et al. (2021) also made
the same observation on a simplified NER task.
However, these studies do not account for improve-
ments in NLP from self-supervised text represen-
tations for their pipeline counterparts. Shon et al.
(2022) introduced and worked with a low-resource
NER corpus and showed that E2E models still do
not rival pipeline approaches when state-of-the-art
pre-trained models are used.

When using pre-trained representations, E2E
models are at a disadvantage since the pipeline
model also has access to a text model trained on
>50GB of text, in addition to the same speech rep-
resentation model as E2E. This inspires us to study
the benefits of using additional unlabeled data.

We choose to work with the NER-annotated Vox-
Populi corpus (Wang et al., 2021a; Shon et al.,
2022). VoxPopuli consists of naturally spoken
speech, unlike Bastianelli et al. (2020), and is an-
notated manually, unlike Yadav et al. (2020) and
Borgholt et al. (2021) who obtain ground-truth
labels using text model predictions. The SLUE
benchmark (Shon et al., 2022) is aimed at low-
resource SLU and includes annotations for only 15
hours of data; this matches with the goals of our
work, making it an ideal choice to benchmark our
findings.

2.2 Self-supervised pre-training

There is a long history of using unsupervised
pre-training in NLP to improve performance over
limited-data supervised training on a broad range
of tasks. SSRs have started to make an impact on
speech tasks as well, with the first improvements
seen in large-scale ASR with wav2vec (Schneider
et al., 2019). More recently, improvements have
been seen on more tasks with wav2vec 2.0 (Baevski
et al., 2020) and other models (Yang et al., 2021).
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Figure 2: High-level summary of approaches typically used to solve spoken and textual NER tasks. Optional LM
decoding is applied in ASR and E2E-NER models.

However, it is not yet clear how universal these
pre-trained representations are for speech tasks,
particularly for semantic understanding tasks like
NER. Some pre-trained models achieve impressive
performance across a variety of tasks, including
some understanding tasks (Yang et al., 2021) and
analyses suggest that they contain at least some
word meaning information (Pasad et al., 2021).
However, these pre-trained models have not yet
been tested on a broad range of challenging under-
standing tasks. We believe our work is the first to
quantify the improvements from SSR, specifically
on spoken NER.

2.3 Leveraging external data

Self-training (Scudder, 1965; Yarowsky, 1995;
Riloff, 1996) is a popular approach to improve
supervised models when some additional unanno-
tated data is available. Self-training has been ob-
served to improve ASR (Parthasarathi and Strom,
2019; Xu et al., 2021) and is also complementary
to pre-training (Xu et al., 2021). To the best of our
knowledge, this is the first work to introduce it to
spoken NER while also studying its effects on both
E2E and pipeline approaches.

Knowledge distillation is widely used in model
compression research. In this approach, some in-
termediate output from a teacher model is used to
train a smaller student model (Hinton et al., 2014).
In the context of our work, the teacher and student
networks are two different approaches to solving
NER tasks, and the latter is trained on the final
output tags of the former.

Transfer learning has been widely employed for
SLU tasks (Lugosch et al., 2019; Jia et al., 2020),
including E2E spoken NER (Ghannay et al., 2018;
Caubrière et al., 2020). Automatic speech recog-

nition (ASR) is a typically chosen task for pre-
training a model before fine-tuning it for SLU. This
choice is facilitated by the wider availability of tran-
scribed speech than SLU annotations. Specifically
for NER, ASR pre-training is expected to help since
the accuracy of decoded texts can directly affect
the final NER predictions.

3 Methods

Spoken NER involves detecting the entity phrases
in a spoken utterance along with their tags. The
annotations include the text transcripts for the au-
dio and the entity phrases with their corresponding
tags. Spoken NER, like any other SLU task, is typi-
cally tackled using one of two types of approaches:
(i) Pipeline and (ii) End-to-end (E2E). As shown
in Fig. 2, a pipeline approach decodes speech to
text using ASR and then passes the decoded text
through a text NER module, whereas an E2E sys-
tem directly maps the input speech to the output
task labels. Each approach has its own set of ad-
vantages and shortcomings. Pipeline systems can
enjoy the individual advances from both the speech
and the text research communities, whereas com-
bining two modules increases inference time, and
propagation of ASR errors can have unexpected
detrimental effects on the text NER module perfor-
mance. On the other hand, E2E models directly
optimize a task-specific objective and tend to have
faster inference. However, such models typically
require a large amount of task-specific labeled data
to perform well. This can be seen from previous
papers on E2E NER (Yadav et al., 2020; Ghannay
et al., 2018), where using at least 100 hours of
labeled data is typical.
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3.1 Baseline models

The baselines we use for E2E and pipeline models
are taken from Shon et al. (2022). Similarly to
previous work (Shon et al., 2022; Ghannay et al.,
2018; Yadav et al., 2020), we formulate E2E NER
as character-level prediction with tag-specific spe-
cial characters delimiting entity phrases. For ex-
ample, the phrases “irish” and “eu” are tagged as
NORP1 ($) and GPE2 (%) respectively in “the $
irish ] system works within a legal and regulatory
policy directive framework dictated by the % eu ]”.

The E2E NER and ASR modules are initialized
with the wav2vec2.0 base (Baevski et al., 2020) pre-
trained speech representation, while the text NER
module is pre-trained with DeBERTa base (He
et al., 2021). These pre-trained models are then
fine-tuned for ASR/NER after adding a linear layer
on top of the final hidden-state output.

Since text transcripts are typically a part of
the NER annotations, we can also train an NER
model that uses the ground-truth text as input. This
text NER model serves roughly as a topline and
is further used in experiments with external data.
The E2E NER and ASR models are trained with
a character-level CTC objective. The text NER
model is trained for token-level classification with
cross-entropy loss.

It is expected that using self-supervised represen-
tations gives a significant boost in limited labeled
data settings. In order to quantify the benefits of
the pre-trained representations in our setting, we
also report the performance of E2E and pipeline
baselines that are trained from scratch, not utilizing
any pre-trained models.

3.2 Evaluation metrics

Similarly to previous work (Ghannay et al., 2018;
Yadav et al., 2020), we evaluate performance using
micro-averaged F1 scores on an unordered list of
tuples of named entity phrase and tag pairs pre-
dicted for each sentence. An entity prediction is
considered correct if both the entity text and the
entity tag are correct.

Spoken NER introduces an added variability to
the possible model errors due to speech-to-text con-
version. We report word error rate (WER) to evalu-
ate this aspect. WER is the word-level Levenshtein
distance between the ground-truth text and the de-
coded text generated by the model. Additionally, to

1NORP: Nationalities or religious or political groups
2GPE: Countries, cities, states

get an idea of the errors made by the model specifi-
cally on named entities, we also evaluate NE ACC,
the proportion of entity phrases correctly decoded
in the speech-to-text conversion. An entity phrase
is considered accurate only if all the words in the
phrase are correctly decoded in the right order.

3.3 Utilizing external data

Next, we describe our approaches that use data
external to the task-specific labeled data to improve
both the pipeline and the E2E models for spoken
NER. We consider four types of external data: (i)
unlabeled speech (Un-Sp), (ii) unlabeled text (Un-
Txt), (iii) transcribed speech (Sp-Txt), and (iv) text-
based NER data.

External
data type Method Target

model

Un-Sp SelfTrain-ASR ASR
Un-Txt SelfTrain-txtNER text NER
Sp-Txt Pre-ASR ASR

Table 1: Methods for using external data for pipeline
models. For “SelfTrain" approaches, the labeling
model is the same as the target model. The method
for external transcribed data (Sp-Txt) is based on trans-
fer learning and thus there is no labeling model. More
details are provided in Sec. 3.3.

The majority of techniques we consider involve
labeling the external data with a labeling model
(typically one of the baseline models) to produce
pseudo-labels. The target model is then trained
on these generated pseudo-labels along with the
original labeled NER data. Tables 1 and 2 present
a detailed list of all methods we consider for im-
proving pipeline and E2E models respectively. The
methods we include use the first three kinds of
external data listed above. The fourth kind, exter-
nal text-based NER data, is used in experiments
attempting to improve the text NER model; since
it does not succeed (Sec. 5.2.1), this data source
is not explored further for the pipeline and E2E
models.

When the labeling model is the same as the target
model, this is a well-established process called self-
training (Scudder, 1965; Yarowsky, 1995; Riloff,
1996; Xu et al., 2020, 2021). In our setting, a
word-level language model (LM) is used for de-
coding both the ASR and E2E NER models. Shon
et al. (2022) observed that a LM consistently im-
proves performance of all of the baseline models.
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External data type Method Labeling model Target model LM for decoding

Un-Sp
SelfTrain-E2E E2E-NER E2E-NER pLabel 4-gram

Distill-Pipeline
Pipeline-NER
(after SelfTrain-ASR)

E2E-NER pLabel 4-gram

Un-Txt Distill-txtNER-lm text NER n/a pLabel 4-gram

Sp-Txt
Distill-txtNER text NER E2E-NER pLabel 4-gram
Pre-ASR n/a n/a ftune 4-gram

Table 2: Methods for using external data for E2E models. Details are provided in Sec. 3.3.

So we may expect self-training from pseudo-labels
to improve the target models by distilling the LM
information into all model layers.

When the two models are different, we refer to
it as knowledge distillation (Hinton et al., 2014),
where the information is being distilled from the
labeling model to the target model. This ap-
proach enables the target model to learn from the
better-performing labeling model via pseudo-labels.
Among the baseline models, the pipeline performs
better than E2E approaches, presumably since the
former uses strong pre-trained text representations.
So, for instance, distilling from the pipeline (la-
beling model) into the E2E model (target model)
is expected to boost the performance of the E2E
model.

The LMs used for decoding in different ap-
proaches are mentioned in Tab. 2. All the ASR
experiments use language models trained on the
TED-LIUM 3 LM corpus (Hernandez et al., 2018)
as in Shon et al. (2022). The language model used
in baseline E2E NER experiments is trained on
the 15hr fine-tune set (ftune 4-gram). The gener-
ated pseudo-labels also provide additional anno-
tated data for LM training, which can be used in
E2E models. These are referred to as plabel 4-
gram) (for "pseudo-label 4-gram").

Unlabeled speech: The unlabeled speech is
used to improve the ASR module of the pipeline
approach via self-training (SelfTrain-ASR).

For improving the E2E model, the improved
pipeline can be used as the labeling model, fol-
lowed by training the E2E model on the generated
pseudo-labels (Distill-Pipeline). Alternatively, the
unlabeled audio can be directly used to improve
the E2E model via self-training (SelfTrain-E2E).

Unlabeled text: The text NER module in the
pipeline approach is improved by self-training us-
ing the unlabeled text data (SelfTrain-txtNER). The
E2E model uses the pseudo labels generated from

the text NER baseline module on the unlabeled
text to update the LM used for decoding (Distill-
txtNER-lm).

Transcribed speech: The pipeline approach
is improved by using the additional transcribed
speech data to improve the ASR module (Pre-ASR).
The E2E model uses this updated ASR as an ini-
tialization in a typical transfer learning setup. Al-
ternatively, for paired speech text data, the pseudo-
labels generated from the text NER model can be
paired with audio and used for training the E2E
model, thus distilling information from a stronger
text NER model into it (Distill-txtNER).

Text NER data: In addition to improving the
pipeline and E2E models using the approaches
mentioned above, we also look for any possible
improvements in the text NER model by leverag-
ing a larger external annotated text NER corpus.
The DeBERTa base model is first fine-tuned on the
larger external corpus, and then further fine-tuned
on the in-domain labeled data. The first fine-tuning
step is expected to help avoid shortcomings in per-
formance due to the limited size of the in-domain
labeled data.

This approach is limited by the availability
of external datasets with the same annotation
scheme as the in-domain corpus. We use the
OntoNotes5.0 (Pradhan et al., 2013) corpus, whose
labeling scheme inspired that of VoxPopuli (Shon
et al., 2022). See Tab. 3 for more information on
OntoNotes5.0.

4 Experimental setup

4.1 Dataset

VoxPopuli (Wang et al., 2021a) is a large multilin-
gual speech corpus consisting of European Parlia-
ment event recordings with audio, transcripts, and
timestamps from the official Parliament website.
The English subset of the corpus has 540 hours of
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Data split # utt Duration
(hours)

# entity
phrases

fine-tune 5k 15 5820
dev 1.7k 5 1862
test 1.8k 5 2006

ext-100h 350k 101
N/A

ext-500h 177k 508
ext-NER
(ontonotes-
train)

66.6k N/A 81.8k

Table 3: Data statistics. The “ext-" prefix denotes ex-
ternal datasets. The external data doesn’t have named
entity annotations, except for OntoNotes 5.0.

spoken data with text transcripts. Shon et al. (2022)
recently published NE annotations for a 15-hour
subset of the train set and the complete standard
dev set. Test set annotations are not public, but
we obtain test set results by submitting model out-
puts following the SLUE site instructions.3 For our
experiments with external in-domain data, we use
uniformly sampled 100-hour and 500-hour subsets
of the remainder of the VoxPopuli train set. The
statistics for these splits are reported in Tab. 3. For
more information on NE tags and label distribution,
we direct the reader to the dataset and annotation
papers (Pradhan et al., 2013; Shon et al., 2022).

4.2 Baseline models

We closely follow the setup for E2E and pipeline
baselines in Shon et al. (2022).4 We use wav2vec
2.0 base (Baevski et al., 2020) and DeBERTa-
base (He et al., 2021) as the unsupervised pre-
trained models, which have 95M and 139M pa-
rameters respectively. The publicly available
wav2vec2.0 base model is pre-trained on 960 hours
of the LibriSpeech audiobooks corpus (Panayotov
et al., 2015).

For baselines that do not use pre-trained rep-
resentations, we utilize the DeepSpeech2 (DS2)
toolkit5 (Amodei et al., 2016). DS2 first converts
audio files into spectrogram features. The model
processes the spectrogram features through two
2-D convolutional layers followed by five bidirec-
tional 2048-dim LSTM layers and a softmax layer.

3https://asappresearch.github.io/slue-toolkit/how-to-
submit.html

4https://github.com/asappresearch/slue-
toolkit/blob/main/README.md

5https://github.com/SeanNaren/deepspeech.pytorch

The softmax layer outputs the probabilities for a
sequence of characters. The model has 26M pa-
rameters and is trained with SpecAugment data
augmentation (Park et al., 2019) and a character-
level CTC objective. Following Shon et al. (2022),
we train on the finer label set (18 entity tags) and
evaluate on the combined version (7 entity tags).

4.3 Utilizing external data
We use fairseq library (Ott et al., 2019) to fine-
tune wav2vec 2.0 models for the E2E NER and
ASR tasks. We fine-tune the model for 80k (160k)
updates on 100 (500) hours of pseudo-labeled data.
It takes 20 (40) hours (wall clock time) to fine-
tune on 100 (500) hours of data using 8 TITAN
RTX GPUs. We use HuggingFace’s transformers
toolkit (Wolf et al., 2020) for training the text NER
model on pseudo-labels. Detailed config files will
be provided in the public codebase.6

5 Results

5.1 Baseline models

NER
system

Pretrained model F1Speech Text

Pipeline 7 DeBERTa-B 52.4
E2E 7 7 51.8

Pipeline W2V2-B DeBERTa-B 72.0
E2E W2V2-B 7 68.1

Text NER 7 DeBERTa-B 86.0

Table 4: Dev set % f-score performance of baseline
models. All models here are trained on the 15hr fine-
tune set. The pre-trained speech and text models are
mentioned wherever used or applicable. The last three
rows are from previously established baselines (Shon
et al., 2022).

Results from all the baseline models are reported
in Tab. 4. The models here are trained on the
15hr fine-tune set. We see that self-supervised
pre-training gives a significant performance boost
over no pre-training. The text NER model (which
uses ground-truth transcripts) is far better than
the pipeline method, which is better than the E2E
model.

5.2 Leveraging external data
We report F1 scores on the dev set using different
pipeline and E2E approaches in Tables 5 and 6 re-

6https://github.com/asappresearch/spoken-ner
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Ext. data Method 100h 500h

Un-Sp SelfTrain-ASR 73.8 74.4
Un-Txt SelfTrain-txtNER 72.3 70.8
Sp-Txt Pre-ASR 75.6 77.7

Table 5: Dev set % f-score performance of the pipeline
models. Note the baseline Pipeline (72) and text NER
(86.0) performances without using any additional data
from Tab. 4.

Ext. data Method 100h 500h

Un-Sp
SelfTrain-E2E 70.6 72.1
Distill-Pipeline 76.5 77.5

Un-Txt Distill-txtNER-lm 71.0 71.7

Sp-Txt
Distill-txtNER 79.2 82.2
Pre-ASR 70.7 73.2

Table 6: Dev set % f-score performance of the E2E
models. Note the baseline E2E (68.1) and text NER
(86.0) performances without using any additional data
from Tab. 4.

spectively. Fig. 1 presents key results when using
each external data type for both E2E and pipeline
models. The key findings are:
(i) Using external data reduces the gap between
spoken NER baselines and text NER.
(ii) With access to either unlabeled speech or tran-
scribed speech, E2E models outperform pipeline
models, whereas, for the baselines, the opposite
holds.
(iii) Using unlabeled text gives the smallest boost
among the three types of external data, and the
pipeline approach performs better in that setting.

A summary of test set results is presented in
Appendix A.1. The results follow the same trend
as on the dev set.

5.2.1 External text NER data

We try to improve the text NER model by using the
OntoNotes5.0 NER corpus (Pradhan et al., 2013).
Fine-tuning DeBERTa-base on OntoNotes5.0 pro-
duces an F1 of 60% on the VoxPopuli dev set. Fine-
tuning it further on VoxPopuli gives F1 86% on the
dev set. Since we do not see any boost over the ex-
isting vanilla approach (86%, see Tab. 4), we retain
the original text NER model using only in-domain
data and do not perform further experiments using
the OntoNotes-finetuned model.

6 Discussion and analysis

The baseline results are not surprising: The limited
labeled data is not enough for the baseline E2E
approach, but the pipeline model can leverage a
strong text representation model, which gives it
an edge. Improvements to these models can be
attributed to either (i) a better speech-to-text con-
version or (ii) a better semantic understanding of
the input content. Next, we use this distinction to
understand the observed improvements from using
external data.

6.1 Improved E2E results

When using external data with the E2E model,
the best performing methods use either (a) exter-
nal unlabeled speech (Distill-Pipeline) or (b) tran-
scribed speech (Distill-txtNER). The labeling mod-
els have a stronger semantic component than the
E2E baseline in both of these scenarios because
of their strong text NER module. The same can-
not be said for the other competing approaches
for these external data categories, SelfTrain-NER
and Pre-ASR, which provide much lower improve-
ments. SelfTrain-NER distills information from the
LM into the model layers, but the n-gram LM is
much less powerful than the transformer-based text
NER module used in Distill-Pipeline. The Pre-ASR
approach has no means to improve the semantic
component in the updated model.

In the presence of unlabeled text data, the modi-
fication comes from a better 4-gram LM trained on
pseudo-labels. Note that the baseline E2E model
parameters do not change, unlike when using the
other two types of external data. This can explain
why this approach only has a small improvement
over the baseline.

6.2 Improved pipeline results

The baseline pipeline model already takes advan-
tage of the text NER module, which leaves little
room for improvement in the semantic understand-
ing component. Specifically, using unlabeled text
data to improve the text NER module (SelfTrain-
txtNER) gives a small boost of 0.4%. For compar-
ison, note that the improvement from using unla-
beled speech is 2.5% over baseline. So, the hope
with pipeline models is for the external data to
improve the speech-to-text conversion, which can
then help reduce error propagation between the
independent pipeline modules.
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6.3 Amount of external data
Almost all experiments produce a larger improve-
ment when using 500 hours of external data than
100 hours. Only SelfTrain-txtNER has a reverse
trend (see Tab. 5). The higher amount of external
data naturally increases the fraction of noisy data
that the target model is trained on, and that may
lead to a poorer model. We hypothesize that meth-
ods for balancing between the effects of manually
annotated and pseudo-labeled examples could help
tackle this issue (Park et al., 2020). However, we
leave an in-depth investigation of this phenomenon
to future work.

6.4 Error analysis
For analysis, we choose the best-performing mod-
els within each category.
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Figure 3: 100−WER (%) and NE ACC (%) values on
the dev set for the best-performing models in each cat-
egory with access to 100 hours of external data.
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Figure 4: Recall and precision on the dev set for the
best-performing models in each category with access
to 100 hours of external data.

Fig. 3 presents the NE accuracy and word error
rates (WER). We strip off the tag-specific special
character tokens when evaluating WER for the E2E

NER models. Note that we report 100− WER so
that higher is better in both plots. We observe that
the ASR used in pipeline models typically performs
better than the speech-to-text conversion of E2E
models, even when the former has a poorer F1
(Fig. 1). This may lead us to hypothesize that the
E2E model recognizes NE words better while doing
worse for other words. However, this hypothesis is
not supported by the NE-ACC results (Fig. 3).

Next, we look at the breakdown of F1 into pre-
cision and recall (Fig. 4). We see that pipeline
models have worse precision, thus suggesting that
these suffer from a higher false-positive rate than
the E2E models. This explains why NE-ACC is not
predictive of F1; the former can inform us about
errors due to false negatives, but not false positives.

6.4.1 Error categories
For a more detailed understanding of model behav-
ior, we categorize the NER errors into an exhaus-
tive list of types (details in Appendix A.2). We
focus on four major categories showing noteworthy
differences between pipeline and E2E approaches.
We provide this analysis for the baselines, Distill-
Pipeline, and SelfTrain-ASR models using external
unlabeled speech data. The trends and observa-
tions presented here are consistent with the other
two external data types.

The major error categories, along with examples,
are presented in Fig. 5. We observe that:
(i) False detections are 1.5 times more common in
pipeline models than in E2E models, as expected
based on the lower precision for the former. This
happens even when the falsely detected text is not
a speech-to-text conversion error.
(ii) Over-detections are 3.5 to 4 times more com-
mon in the pipeline models even when the entity
phrase is decoded correctly.
(iii) Missed detections for the E2E Distill-Pipeline
model are drastically reduced compared to the E2E
baseline. Missed detections refer to cases where the
entity phrases are correctly transcribed but are not
labeled as named entities. The improvement here
therefore suggests that Distill-Pipeline improves
the understanding capability of the E2E model, in
addition to its speech-to-text capability. Also, note
that the pipeline model does not enjoy the same
benefit from unlabeled speech since this only in-
volves self-training (instead of knowledge distilla-
tion from a much richer model for E2E).

Overall, the pipeline models suffer dispropor-
tionately from false positives. This seems to stem
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Error category Example Category occurrence

ASR NER (see the sample below)

The entity phrase is 
correctly decoded, 

but ...

... the prediction includes additional 
surrounding terms

(QUANT, 'only thirty three’)
in predicted

... the entity phrase is not detected as 
a named entity

(QUANT, 'sixty seven’)
in GT

The predicted entity 
phrase is in the GT 
transcript, but ... ... the predicted entity phrase does 

not correspond to any GT entity (after 
accounting for partial overlaps and 

misspellings)

(LAW, 'monetary policy’)
in Predicted

The predicted entity 
phrase is not in the 

GT transcript, and ...

(ORG, 'ssn’)
in predicted

Ground-truth

Predicted

monetary policy i saw that according to the recent poll the majority of icelanders still oppose 
eu membership since sixty seven are against and only thirty three in favour of accession

[('NORP', 'icelanders'), ('PLACE', 'eu'), ('QUANT', 'sixty 
seven'), ('QUANT', 'thirty three’)]

monetary policy i saw that according to the recent poll the majority of iceland still oppose eu
membership since sixty seven are against and only thirty three in favour of ssn

[('PLACE', 'iceland'), ('PLACE', 'eu'), ('QUANT', 'only 
thirty three'), ('LAW', 'monetary'), ('ORG', 'ssn')]

Figure 5: NER error category distribution on the dev set. The category-specific error rates in the plots are normal-
ized by the total number of ground-truth (GT) entities. The examples here are artificially created from the same
ground-truth example for ease of presentation. Actual examples of these categories are presented in Appendix A.2.

from the text NER model, which has even higher
over-detection and false detection rates than the
pipeline baseline models (Fig. 5). The reasons
behind this difference between E2E and pipeline
models need further investigation.

7 Conclusion

We have explored various ways to use different
external data types that improve both pipeline
and E2E methods for spoken NER. The best-
performing model when using external data is an
E2E approach. This is one of the few results in the
literature thus far showing better performance for
E2E over pipeline methods that use state-of-the-art
modules for spoken language understanding. We
develop some insights into this difference; we no-
tice that pipeline models are adversely affected by
false positives and that leveraging external data im-
proves the semantic understanding capability of the
E2E models.

We hope that our work provides guiding prin-
ciples for researchers working on SLU tasks in
similar low-resource domains when some form of
external data is abundant. This work also leaves
some interesting research questions for future work.
For example, we see minor improvements between
100h and 500h of external data (see Tab. 5 and 6),

which suggests the question: What is the smallest
amount of external data needed to obtain signifi-
cant improvements in NER performance? Addi-
tionally, one preliminary experiment with external,
out-of-domain text NER data (OntoNotes 5.0) fails
to improve the text NER performance, suggest-
ing the challenges of dealing with out-of-domain
datasets. The scenario where we have access to
out-of-domain external data is common but chal-
lenging, and warrants further study. From the mod-
eling perspective, better fine-tuning strategies for
wav2vec2.0 in low supervision settings have been
proposed for ASR (Pasad et al., 2021); it would
be interesting to explore how these findings may
transfer to an SLU task.
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A Appendix

A.1 Results on the test set
We obtain test set results for our best-performing
models, by submitting model outputs following the
SLUE instructions.7. These results are presented
in Fig. 6. We observe similar trends as on the dev
set (see Fig. 1).
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Figure 6: Spoken NER test set results with 100 hours
of external data of different types. The “Baseline” and

“Text NER” numbers are from Shon et al. (2022).

We can see from the precision and recall scores
in Fig. 7, that our analytical conclusions about the
pipeline model performing poorly due to false pos-
itives are consistent across these two splits.
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Figure 7: Recall and precision on the test set for the
best performing models using 100 hours of external
data.

A.2 Error categories
Fig. 8 illustrates via a flowchart our process of as-
signing the tuples in ground-truth and predicted
outputs into different error categories. Tab. 7
presents examples for the four categories discussed
in Sec 6.4. These are examples from the dev set,
using the Distill-Pipeline E2E model trained on
100 hours of data.

7https://asappresearch.github.io/slue-toolkit/how-to-
submit.html
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Error category Outputs from E2E model
GT Predicted

Correct ASR,
over detection

and this means that you look
and tell us honestly what does it
mean if you start @ three years ]

later

[(‘WHEN’, ‘three years’)]

this means that you look and
tell us honestly what does it mean if

you start @ three years later ]

[(‘WHEN’, ‘three years later’)]

Correct ASR,
missed detection

the situation in the % drc ] is indeed
terrible and it has been this way for

quite a while and i am deeply
concerned about the handling of the

current issue with regard to the % kasai ]
province

[(‘PLACE’, ‘drc’), (‘PLACE’, ‘kasai’)]

the situation in the drc is indeed
terrible and it has been this way for
for quite a while and i am deeply
concerned about the handling of
the current issue with regard to

the a province

[]

Correct ASR,
false detection

and yet @ one month ] after we adopted
our compromise the council did not

put it on the agenda did not even present
it i used this time to talk to the

member states and the presidencies

[(‘WHEN’, ‘one month’)]

still @ one month ] after we voted
a compromise the ‘ council ] did

not put it on the agenda did
not even present i use this time

to talk with the member states and
the presidency

[(‘WHEN’, ‘one month’),
(‘ORG’, ‘council’)]

Incorrect ASR,
false detection

it has nothing to do with religion
but it has all to do with patriarchy

[]

it has nothing to do with religion
but it has all to do with % turkey ]

[(‘PLACE’, ‘turkey’)]

Table 7: Qualitative examples for different error categories from the output of the E2E model using 100 hours of
unlabeled speech (Distill-Pipeline).
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List of predicted entity tuples, Predicted text
List of GT entity tuples, GT text

Exact
match?

yes
1. correct1

no

Entity phrase 
matches?

yes
2. mislabel1

noEntity phrase 
matches 

partially?2

noEntity phrase is 
misspelled?3

yes

Cond. 
A?

yes 3. correct s2t, over-detect, correct tag1

no

yes Cond. 
C?

yes 5. incorrect s2t, over-detect, correct tag1
Cond. 

C?

4. correct s2t, over-detect, incorrect tag1no

6. incorrect s2t, over-detect, incorrect tag1no

yes

Cond. 
C?

yes7. misspelling, 
correct tag1

8. misspelling, incorrect tag1

no

no

GT tuple 
unaccounted?

yes

Cond. 
B?

Pred tuple 
unaccounted?

yes

END

no

no

END

Cond. 
A?

no

yes

yes

no

10. correct s2t, missed-detect

9. incorrect s2t, missed-detect

11. correct s2t, false-detect

12. incorrect s2t, false-detect

1: Remove corresponding tuples from the 
GT and predicted lists
2: Evaluated based on word overlap
between the two phrases, after filtering out
function words
3: Checked using a threshold on the 
character edit distance between GT and 
predicted phrase. For a particular pair to 
classify as misspelling, edit distance should 
be less than 0.4.

Condition A: GT entity phrase correctly 
decoded?
Condition B: Predicted entity phrase 
correctly decoded?
Condition C: Does the predicted tag match?

s2t : speech-to-text conversion

Figure 8: Illustration of algorithm for obtaining error category types for each (entity phrase, entity tag) tuple in
ground-truth and predicted outputs.

737


