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Abstract

The past several years have witnessed Vari-
ational Auto-Encoder’s superiority in various
text generation tasks. However, due to the se-
quential nature of the text, auto-regressive de-
coders tend to ignore latent variables and then
reduce to simple language models, known as
the KL vanishing problem, which would fur-
ther deteriorate when VAE is combined with
Transformer-based structures. To ameliorate
this problem, we propose DELLA, a novel
variational Transformer framework. DELLA
learns a series of layer-wise latent variables
with each inferred from those of lower layers
and tightly coupled with the hidden states by
low-rank tensor product. In this way, DELLA
forces these posterior latent variables to be
fused deeply with the whole computation path
and hence incorporate more information. We
theoretically demonstrate that our method can
be regarded as entangling latent variables to
avoid posterior information decrease through
layers, enabling DELLA to get higher non-
zero KL values even without any annealing or
thresholding tricks. Experiments on four un-
conditional and three conditional generation
tasks show that DELLA could better alleviate
KL vanishing and improve both quality and di-
versity compared to several strong baselines.

1 Introduction

Variational Autoencoder (VAE) (Kingma and
Welling, 2014; Rezende et al., 2014) has proven to
be successful in generating various kinds of text,
such as stylistic text (Hu et al., 2017; John et al.,
2019), dialogue (Zhao et al., 2017), story (Yu et al.,
2020) and poetry (Yi et al., 2020). The sequen-
tial nature of the text leads to typically used auto-
regressive decoders in VAE for language genera-
tion. However, such strong decoders tend to evade
the difficulty of learning meaningful latent codes
by heavily relying on previously generated words
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Figure 1: Existing paradigms of Transformer VAE.

and hence ignore latent variables (Bowman et al.,
2016), known as KL vanishing or posterior col-
lapse. This problem causes two drawbacks: (a) the
posterior distribution quickly turns into the prior
one (usually standard Gaussian), falling to build
expressive latent representations; (b) the decoder
reduces to a naive language model, resulting in
monotonous generated text (Fu et al., 2019).

To ameliorate this problem, researchers have de-
signed various techniques. Among them, three
broadly used methods include weakening de-
coders (Bowman et al., 2016; Semeniuta et al.,
2017; Zhao et al., 2017), KL annealing (Bow-
man et al., 2016; Fu et al., 2019) and KL thresh-
old (Kingma et al., 2016; Higgins et al., 2017; Li
et al., 2019). Nonetheless, the weakening of de-
coders restrains models’ language modelling capa-
bility; annealing hyperparameters are hard to tune;
KL threshold introduces a non-smooth objective
with some optimization difficulties.

In the era of RNN, VAE can be easily incor-
porated by using the latent variable as the initial
decoder state, while how to combine VAE with re-
cently prevalent Transformer (Vaswani et al., 2017)
architectures, which have made a breakthrough in
text generation, still remains an open challenge.
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As shown in Fig.1, existing methods of inte-
grating Transformer into VAE fall into three main
paradigms: (a) directly adding latent variables to
input token embeddings (abbr. Embedding) (Li
et al., 2020a); (b) using latent variables as a sepa-
rate memory token vector to be attended by self-
attention in each layer (abbr. Memory) (Fang
et al., 2021); (c) combining latent variables with
the last-layer decoder states before output softmax
(abbr. Softmax) (Wang and Wan, 2019). However,
paradigm (a) brings noise for self-attention. In
paradigm (b), memory vectors tend to be ignored
by attention, even exacerbating KL vanishing. In
paradigm (c), latent variables couldn’t deeply in-
terfere with the whole computation path. Sec.3.3
presents more detailed analyses.

To better incorporate Transformer into VAE and
theoretically ameliorate the KL vanishing prob-
lem, we propose DELLA1, a novel variational trans-
former framework. DELLA learns a series of layer-
wise latent variables in a Transformer encoder, and
each is inferred from those of lower layers and then
tightly coupled with the hidden states in the corre-
sponding decoder layer by low-rank tensor product.
Our method theoretically stimulates the entangle-
ment of latent variables and hence allows propa-
gation of undiminished latent information through
layers. As a result, DELLA forces posterior latent
variables to be deeply fused with the entire compu-
tation path and encode richer information of input
text, achieving higher KL values even without any
annealing or threshold training tricks.

In summary, our contributions are as follow:
(i) We are the first to propose layer-wise in-
ferred latent variables in Transformer-based ar-
chitecture to mitigate KL vanishing; We (ii) in-
novatively inject latent variables using low-rank
tensor product, (iii) provide a theoretical valid-
ity of our method and (iv) demonstrate its effec-
tiveness on four unconditional and three condi-
tional generation tasks. Our codes are available
at https://github.com/OpenVLG/DELLA.git.

2 Related Work

Thanks to the representation capacity of latent
space, VAE has been widely adopted for both im-
age generation (van den Oord et al., 2017; Vahdat
and Kautz, 2020) and text generation (Bowman
et al., 2016; Hu et al., 2017). In the early stage,
VAE was combined with RNN decoders for gener-

1 DELLA: DEeply Fused Layer-wise LAtent Variables

ating a broad range of text, varying from dialogue
(Serban et al., 2016), image caption (Wang et al.,
2017), text summarization (Gupta et al., 2017) to
story (Yu et al., 2020) and poetry (Yi et al., 2020).
In this case, latent variables are usually utilized as
either the initial decoder state (Li et al., 2018) or
input at each time step (Gupta et al., 2017).

In spite of extensive applications, VAE suffered
from KL vanishing in the scenario of text genera-
tion (Bowman et al., 2016). Several lines of tech-
niques have been proposed to alleviate this prob-
lem. The first line is to avoid a too fast decrease of
the KL divergence by re-weighting. KL annealing
(Bowman et al., 2016) linearly increased the weight
of KL term from 0 to 1 during the warm-up period.
Fu et al. (2019) further proposed cyclical anneal-
ing, which repeats the warm-up process multiple
times. The second line guarantees a positive lower
bound of the KL term. KL thresholding (Kingma
et al., 2016) achieved a fixed minimum by combin-
ing a hinge loss, while BN-VAE (Zhu et al., 2020)
learned more flexible ones via batch normalization.
δ-VAE (Razavi et al., 2019) chose to restrain the
family of posterior distributions. The third line
aims to constraint decoders to force a more infor-
mative latent variable. Wang et al. (2017) intro-
duced an auxiliary BOW (bag-of-words) loss. He
et al. (2019) added additional training loops for the
encoder. Yang et al. (2017) adopted dilated CNN as
decoder, and Dieng et al. (2019) added skip connec-
tions to the decoder. Although the above methods
mitigate KL vanishing to some extent, it is still
challenging for either tuning or optimization.

In these years, the powerful Transformer has
been integrated with VAE to benefit diverse tasks,
including text classification (Gururangan et al.,
2019), story generation (Wang and Wan, 2019;
Fang et al., 2021) and dialogue generation (Lin
et al., 2020). Optimus (Li et al., 2020a) further
bridged the pre-trained BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) with VAE for
pre-training. Most existing works inject latent vari-
ables into the Transformer decoder by the three
paradigms, Embedding (Li et al., 2020a), Mem-
ory (Li et al., 2020a; Fang et al., 2021) and Soft-
max(Wang and Wan, 2019), as discussed in Sec. 1,
while these methods shallowly fuse the latent vari-
ables with hidden states. To achieve deeper fusion
and ameliorate KL vanishing, we propose DELLA.

The most relevant architecture to our model is
hierarchical VAE (Sønderby et al., 2016; Klushyn
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et al., 2019; Vahdat and Kautz, 2020; Child, 2020),
which is mainly designed for image generation and
not suitable for text. For text generation, hierarchi-
cal latent variables are either independent of each
other (Serban et al., 2016), or corresponding to dif-
ferent text granularities (sentence or word level),
while our DELLA learns conditionally inferred and
layer-wise latent variables based on Transformer.

3 Preliminaries

3.1 Transformer
Transformer (Vaswani et al., 2017) represents
an input sequence x = {x1, . . . , xi, . . . , xn} as
contextualized distributed hidden states h =
{h1, . . . , hi, . . . , hn} by a series of stacked layers,
and states in the l-th layer, h(l), are calculated with
scaled dot-product attention:

Attention(Q,K, V ) = softmax

(
QTK√

d

)
V T ,

(1)
where Q,K, V stand for Query, Key, Value, re-
spectively, which are projected from outputs of the
previous layer: Q = W qh(l−1), K = W kh(l−1),
V = W vh(l−1). d is the dimension of hidden
states. In practice, multiple groups of states are
calculated with different attention parameters and
then concatenated, known as multi-head attention.

3.2 VAE
As a kind of generative model, VAE estimates the
intractable data distribution p(x) by deriving and
maximizing its lower bound as:

log p(x) ≥ LELBO(x;θ,φ) =

Eqφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z)),
(2)

where z is the latent variable and p(z) is the prior
distribution of latent variable which is commonly
assumed as standard Gaussian; the posterior dis-
tribution p(z|x) is approximated by an inference
network (encoder) qφ(z|x); pθ(x|z) is a generator
(decoder) to generate text x from the latent variable
z; θ and φ are corresponding parameters.

The whole lower bound in Eq.(2), called Ev-
idence Lower BOund (ELBO), consists of two
terms: the reconstruction loss,

LE = −Eqφ(z|x) [log pθ(x|z)] , (3)

which helps reconstruct the input given the poste-
rior latent variable z, and the KL divergence,

LR = KL (qφ(z|x)‖p(z)) . (4)

In practice, VAE is considered as a regularized
Auto-encoder, and a hyper-parameter β is intro-
duced to control the strength of KL, βLR, usually
used in KL annealing methods (Fu et al., 2019).

3.3 Incorporate Transformer into VAE
For Transformer encoder, the posterior z is mapped
from the text representation, which can be the pool-
ing of all hidden states in the last layer (Fang et al.,
2021), or state of a special token (Li et al., 2020a),
e.g., [CLS]. Then z is injected into Transformer
decoder by the paradigms discussed in Sec. 1.

Now we take a further step and investigate why
intrinsically these three paradigms, namely Embed-
ding, Memory and Softmax, would perform poorly.

Embedding: Define ei, ej as two token em-
beddings and αi,j as the attention weight of i-th
and j-th tokens. From Eq.(1), we have αi,j =
(W qei)

T (W kej) = eTi (W
q)TW kej , which is

further abbreviated as 〈ei, ej〉. Such Embedding
paradigm directly adds z to token embeddings as:

α′i,j =
[
W q(ei + z)

]T [
W k(ej + z)

]

= 〈ei, ej〉+ 〈ei, z〉+ 〈z, ej〉+ 〈z, z〉,
(5)

where we can find that a redundant term, 〈z, z〉, is
introduced, bringing extra noise for attention mech-
anism. Moreover, information in z could diminish
with propagation through layers (Fig. 2), aggravat-
ing KL vanishing.

Memory: This paradigm treats z as an addi-
tional memory token and places it at the beginning
of x to be attended by other tokens via attention.
Nevertheless, as mentioned in Sec. 1, the powerful
Transformer decoder may only rely on preceding
decoded tokens. Consequently, with no explicit
constraints (e.g., auxiliary loss), such a memory
token is more likely to be ignored by self-attention
(Fig. 6 & 7), even exacerbating KL vanishing.

Softmax: This paradigm first adds z to the last-
layer hidden states h, and then projects z+h into a
logit vector p ∈ Rv over the vocabulary, where v is
vocab size. In this method, latent variables do not
interact with hidden states until the last layer, which
erodes the effect of latent variables (see Fig. 2).

4 Methodology

As demonstrated in Sec. 3, existing three paradigms
make latent variables gradually diminish through
layers, be ignored by self-attention or inadequately
interact with hidden states, which would not miti-
gate but even worsen the KL vanishing problem.
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To deeply fuse latent variables with the whole
computation path of Transformer, we propose
DELLA to learn a series of layer-wise posterior
latent variables which are conditionally inferred in
encoder, and injected into hidden states in decoder
by low-rank tensor product. We present layer-wise
latent variables in Sec. 4.1, describe the tensor
product fusion in Sec. 4.2, give the theoretical veri-
fication of DELLA’s effectiveness for ameliorating
KL vanishing in Sec. 4.3, and then extend DELLA

to Conditional VAE (CVAE) in Sec. 4.4.

4.1 Layer-wise Latent Variables

Different from previous work where only one la-
tent variable z is calculated and shared by (Li et al.,
2020a) or projected to (Fang et al., 2021) decoder
layers, we involve a series of latent variables z =
{z1, z2, . . . ,zL}, where L is the number of Trans-
former layers. Then we reformulate the prior and
posterior distributions as p(z) =

∏L
l=1 p(zl|z<l),

q(z|x) =
∏L

l=1 q(zl|z<l,x), respectively, with
each zl still following Gaussian distribution. Then
we rewrite LR in Eq.(4) similar to Vahdat and
Kautz (2020):

LR = KL(q(z|x)||p(z))

=

L∑

l=1

Eq(z<l|x) [KL(q(zl|x, z<l)||p(zl|z<l))] .

(6)
When l = 1, p(z1|z<1) = p(z1) is the standard

Gaussian distribution, q(z1|x, z<1) = q(z1|x).
We give detailed derivations in Appendix B.1.

These latent variables zl are calculated (inferred)
layer by layer using representations of the corre-
sponding layer. Concretely, in l-th layer, we use the
hidden state of the first token in text x, as its l-th-
layer representation, denoted as x(l) ∈ Rd, where
d is hidden size. Then we represent latent variables
in lower layers as z<l and obtain it by:

z<l = tanh(W
(l)
hhz<l−1 +W

(l)
ih zl−1), (7)

whereWhh,Wih ∈ Rp×p, so z<l ∈ Rp and p is the
dimension of latent variable. z0 and z<0 are set as
zero vector. We calculate the mean and variance
vectors of p(zl|z<l) and q(zl|z<l,x) by:

(
µp

log(σ2
p)

)
=W (l)

p z<l,

(
µq

log(σ2
q)

)
=W (l)

q

(
z<l

x(l)

)
,

(8)

whereW p ∈ Rp×2p,W p ∈ Rp×2p.
The latent variable zl is sampled from the pos-

terior distribution q(zl|z<l,x) = N (µq,σ
2
qI)

for training, and from the prior one q(zl|z<l) =
N (µp,σ

2
pI) for testing. Since hidden states in

each layer belong to different vector spaces, the
parameters to calculate each z<l, e.g., W (l)

p and
W

(l)
q , do not share throughout different layers.

4.2 Low-rank Tensor Product
We inject the latent variable zl, which is obtained
based on l-th encoder layer, into the correspond-
ing l-th decoder layer. Instead of simply using zl
as a memory token as discussed in Sec. 3.3, we
resort to low-rank tensor product, which has been
successfully utilized for fusing multimodal repre-
sentations (Liu et al., 2018), to deeply fuse latent
variables with hidden states in the decoder.

In detail, we conduct low-rank tensor product on
zl and xi’s l-th-layer value vector v(l)i as:

ṽ
(l)
i = (

r∑

j=1

W (l,j)
v v

(l)
i ) ◦ (

r∑

j=1

W (l,j)
z zl), (9)

where r is a hyper-parameter, ◦ means element-
wise multiplication,W v ∈ Rd×d.W z ∈ Rp×d are
learnable parameters which are shared across all
positions (i) but not shared with layers (l), con-
sidering distinct vector spaces in different layers,
as mentioned in Sec. 4.1. Then the fused Value
Ṽ (l) = {ṽ(l)1 , . . . , ṽ(l)n } is used in Eq.(1)

In this way, layer-wise zl is conditionally in-
ferred from latent variables in previous encoder
layers, together with l-th-layer text representation,
and then explicitly fused with the corresponding de-
coder layer, yielding a deeper intervention through-
out the whole computation path of Transformer.

4.3 Why Could DELLA Work Well?
To theoretically interpret the advantage of layer-
wise latent variables which contributes most to
DELLA (Table 4), we give the following theorem:

Theorem 1 For an observation x and a se-
quence of latent variables z1, z2, . . . zL, satis-
fying p(z) =

∏L
l=1 p(zl|z<l), and q(z|x) =∏L

l=1 q(zl|z<l,x), then the expectation of the KL
term, Ep(x)[LR] is an upper bound of:

−
L−1∑

i=2

I(zL; . . . ; zi|zi−1)− I(zL; . . . ; z1|x),

(10)
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where I is the interaction information2.

See Appendix B.2 for proof. Based on Theorem 1,
minimizing LR approximatively means maximiz-
ing each interaction information term in Eq.(10),
which forces the entanglement of all latent varibles
z1; . . . ; zL given the observation x, alleviating the
diminishing of information encoded in latent vari-
ables when propagating through layers.

4.4 Extension to CVAE
DELLA could also be applied to CVAE for condi-
tional generation tasks like storytelling. Given an
observation x and its condition c, we can optimize:

log p(x|c) ≥ Eqφ(z|x,c)[log pθ(x|z, c)] (11)

−KL(qφ(z|x, c)||p(z|c)),

and then replace the prior distribution q(zl|x, z<l)
and posterior distribution p(zl|z<l) in Eq.(6) with
q(zl|x, c, z<l) and p(zl|z<l, c), respectively.

In this case, we encode the condition c with
the same encoder. Similarly, we can obtain the
representation of c at l-th layer, denoted as c(l) ∈
Rd, and then calculate the mean and log variance
of p(zl|z<l, c) and q(zl|z<l,x, c) by:

(
µp

log(σ2
p)

)
= Ŵ

(l)
p

(
z<l

c(l)

)
,

(
µq

log(σ2
q)

)
= Ŵ

(l)
q



z<l

x(l)

c(l)


 ,

(12)

where Ŵ
(l)
p ∈ R(p+d)×2p, Ŵ

(l)
q R(p+2d)×2p.

5 Experiment

5.1 Dataset
We consider four datasets for language modelling
and unconditional generation, including the Yelp,
and Yahoo (Yang et al., 2017; He et al., 2019), Penn
Treebank (PTB) (Marcus et al., 1993), and SNLI
(Bowman et al., 2015), and three datasets for con-
ditional generation tasks, including summarization
generation with CNN/DailyMail (CNN/DM) (See
et al., 2017), story generation with WritingPrompts
(WP) (Fan et al., 2018) and paraphrase generation
with Quora 3. Detailed data statistics are listed in
Table 7. Due to the limited computation capability,
we use 165,157 samples in CNN/DM and 22,2614
in WP with the max length of 900 for training.

2https://en.wikipedia.org/wiki/Interaction_information
3https://quoradata.quora.com/First-Quora-Dataset-

Release-Question-Pairs

5.2 Implementation Details

We use pretrained language models as the backbone
and fine-tune them on each task mentioned above
with our DELLA as in (Li et al., 2020a). For uncon-
ditional generation and story generation, encoder
and decoder shared the same parameters initialized
with 12-layer GPT-2 (Radford et al., 2019). For
summarization and paraphrase generation, parame-
ters are not shared and initialized with BART-base
(Lewis et al., 2020). We set the dimension of latent
variable as 32 for all VAE-based models and use
cyclical annealing for training, following (Li et al.,
2020a). More details are given in Appendix A.1.

5.3 Baseline

We make a comprehensive comparison with strong
Transformer-based baselines. We do not consider
RNN-based models that are inferior to Transformer
for text generation as shown in (Li et al., 2020a).

Finetuned Pretrained Models. To manifest the
suitability of DELLA for different pretrained lan-
guage models, we compare it with fine-tuned GPT2
on unconditional generation and story generation,
and with fine-tuned BART-base on summarization
generation and paraphrase generation.

Optimus (Li et al., 2020a): a large-scale VAE
model which takes a pre-trained BERT as encoder
and pretrained GPT-2 as decoder. This model is
first pretrained as a VAE, which simultaneously uti-
lizes the two paradigms, Embedding and Memory
as introduced in Sec. 3.3, for injecting latent vari-
ables, with both KL annealing and KL threshold
tricks, and then fine-tuned on downstream tasks.

Transformer-based VAE. Besides Optimus, we
also compre the three paradigms, namely Embed-
ding (Li et al., 2020a), Memory (Fang et al., 2021)
and Softmax (Wang and Wan, 2019), and incorpo-
rate each paradigm into the same pre-trained model
as DELLA on each dataset for fair comparison.

5.4 Metrics

For unconditional generation tasks, we consider
three types of metrics. (a) Representation Learn-
ing Capability: we report PPL, ELBO, KL, mu-
tual information (MI) (Alemi et al., 2016) and acti-
vate units (AU) (Burda et al., 2016). These metrics
measure VAE’s ability to mitigate KL vanishing
and learn meaningful representations. Different
from traditional language models like GPT-2, VAE-
based models could not produce exact PPL due to
randomness, so we use importance-weighted sam-
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Model
Representation Learning Generation Quality Generation Diversity

PPL↓ ELBO↓ KL↑ MI↑ AU↑ BLEU↑ CND↓ MAUVE↑ SB↓ Dist↑ JS ↓
Dataset: Yelp

GPT-2 22.13 - - - - 56.92 0.68 0.12 65.90 17.96 0.51
Optimus 22.79 344.10 15.09 7.67 - - - - - - -
Embed 19.98 327.28 4.77 4.14 6 56.34 0.31 0.42 65.27 15.59 0.44

Memory 19.95 326.60 5.70 5.30 11 57.37 0.27 0.46 63.90 16.91 0.39
Softmax 20.14 328.13 7.50 6.29 13 56.83 0.30 0.45 64.26 16.51 0.40
DELLA 12.35 239.83 29.47 10.78 23 57.15 0.13 0.55 60.02 17.63 0.43

Dataset: Yahoo

GPT-2 24.17 - - - - 44.25 0.55 0.15 54.06 21.07 0.28
Optimus 23.11 293.34 17.45 8.85 - - - - - - -
Embed 22.18 286.85 3.63 3.03 3 42.27 0.45 0.31 54.15 20.80 0.32

Memory 22.03 285.47 4.87 4.62 18 45.20 0.46 0.37 54.59 21.87 0.33
Softmax 22.35 287.44 6.35 5.52 19 44.28 0.44 0.34 54.49 21.65 0.32
DELLA 11.49 201.34 27.84 12.31 21 44.67 0.19 0.38 48.53 21.88 0.31

Table 1: Evaluation results for language modelling and unconditional generation. Results of Optimus are directly
copied from the original paper with λ = 0.5. SB means Self-BLEU.

ples to estimate PPL, following He et al. (2019).
We set the threshold in AU to 0.2 to further distin-
guish different models. (b) Generation Quality:
we report BLEU (Papineni et al., 2002), CND (Li
et al., 2020b) and MAUVE (Pillutla et al., 2021).
CND and MAUVE measure the divergence be-
tween human-authored text and the generated one.
(c) Generation Diversity: we report Self-BLEU
(Zhu et al., 2018), Dist (Li et al., 2016) and JS (Jac-
card similarity) (Wang and Wan, 2018) to assess
the diversity and novelty of generated text.

For conditional generation tasks, we report
BLEU, Rouge-1, Rouge-2, Rouge-L (Lin and
Hovy, 2002), and BERTScore (Zhang et al., 2020)
to evaluate the quality of generated texts, as well
as the same diversity metrics used in unconditional
generation. We also report KL and AU value to
present representation learning capability. More
details of metrics are provided in Appendix A.3.

5.5 Results

5.5.1 Unconditional Generation
We present results on Yelp and Yahoo in Table 1
and leave the those on PTB and SNLI in the Ap-
pendix A.5 due to space limitations. We also show
the learning curves of ELBO and KL in Fig. 5.

As shown in Table 1, DELLA achieves notably
improvement on almost all the metrics, especially
superior on representation learning metrics. Much
higher KL, MI and AU, and a big gap in PPL ob-
tained by DELLA indicate the latent variables en-
code more meaningful text information and won’t
diminish when propagating through Transformer

layers, which strongly supports our motivation that
fusing latent variables with hidden states more
deeply could effectively alleviate the KL vanishing
problem. Such results also empirically verify the
theoretical advantage of our model (Theorem 1),
demonstrating entangled layer-wise latent variables
can preserve more encoded knowledge for decoder.
We will show that z can involve more information
when injected into more layers in Sec. 5.8.

Besides, DELLA also gets good performance
(comparable BLEU and much better CND and
MAUVE) on generation quality. With more in-
formative latent variables, DELLA could achieve
a better ELBO and hence further boost the learn-
ing of data distribution p(x) in Eq.(2), leading to
satisfactory quality of generated texts.

Generally, DELLA also outperforms baseline
models on generation diversity. The reason is two-
fold: randomly sampled latent variables z should
bring diversity, while the VAE-based baselines tend
to ignore z as mentioned before, losing some ran-
domness. In contrast, latent variables are deeply
fused in DELLA, maintaining enough randomness.
Besides, each latent variable is sampled in corre-
sponding layer, and thus such a sampling process
accumulates and enhances randomness, further ben-
efiting diversity while keeping good quality.

5.5.2 Conditional Generation

We report the results of WP and CNN/DM in Ta-
ble 2, and leave those of Quora in Appendix A.5.
As we can see, DELLA performs better on most
quality metrics, but gets a little worse on diversity
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Model
Quality Diversity

KL↑ AU↑
BLEU↑ Rouge-1↑ Rouge-2↑ Rouge-L↑ BERTScore↑ SB↓ Dist↑ JS ↓

Dataset: WritingPrompts

GPT-2 27.89 27.72 7.96 14.30 78.12 53.78 22.99 0.51 - -
Embed 39.67 36.17 7.96 15.78 81.64 64.55 14.31 0.73 2.35 3

Memory 40.79 36.13 8.04 16.16 81.68 67.56 12.90 0.80 0.07 0
Softmax 41.04 36.14 8.12 16.30 81.75 67.02 13.08 0.78 0.32 0
DELLA 41.39 35.46 8.78 17.20 81.77 56.28 20.91 0.60 28.14 8

Dataset: CNN/DM

Bart-base 48.74 41.33 19.82 29.63 87.75 29.94 43.68 0.10 - -
Embed 44.10 40.43 19.41 29.43 87.60 29.60 44.04 0.10 0.0 0

Memory 46.02 41.18 19.74 29.64 87.78 29.79 43.92 0.11 0.0 0
Softmax 44.40 40.94 19.63 29.61 87.00 29.64 44.11 0.10 0.0 0
DELLA 49.18 41.27 19.85 29.84 88.09 29.07 44.24 0.09 0.91 1

Table 2: Evaluation results for conditional generation.

Dataset: WritingPrompts

Model Fluency Coherence Novelty

GPT2 1.83 2.12 2.50
Embed 2.16 2.33 2.67

Memory 2.45 2.28 2.78
Softmax 2.48 2.42 2.85
DELLA 2.51 2.38 2.89

Dataset: CNN/DM

Model Informativeness Coherence Novelty

Bart-base 3.12 4.32 3.52
Embed 2.88 4.08 3.50

Memory 2.95 4.23 3.48
Softmax 2.91 4.33 3.50
DELLA 3.05 4.33 3.56

Table 3: Human evaluation results on conditional gen-
eration. The scores range from 1 (worst) to 5 (best).
The p-value is 0.002 and Kappa score is 0.64 which
indicates acceptable inter-annotator agreement.

compared to GPT-2. This is because GPT-2 may
produce some ill-formed contents which ‘improve’
diversity by cheating the metrics but also lead to
much worse quality (lower BLEU and Rouge).
Even so, on both WP and CNN/DM, DELLA still
beats all previous VAE paradigms in diversity, man-
ifesting the effectiveness of our DELLA.

In addition, all baselines methods suffer from
severer KL vanishing problems on conditional gen-
eration tasks than on the unconditional ones. This
is because the given condition text could aggravate
the reliance of these models on preceding gener-
ated tokens and the condition, and therefore bypass
latent variables. By contrast, DELLA could learn
more informative z and hence keep a relatively
higher KL value even given the condition text.

Model PPL↓ ELBO↓ KL↑ MI ↑ AU↑
DELLA 12.35 239.83 29.47 10.78 23
-LTP 12.68 249.32 28.52 9.77 21
-LW 19.88 324.45 20.12 7.23 18

Separate 14.17 286.30 28.82 9.88 16
l = 1 KL 12.55 266.97 0.15 0.15 0
l = 12 KL 12.48 263.38 0.73 0.61 0

Embed(384) 20.11 327.29 0.55 0.38 0
Memory(384) 20.09 326.24 0.46 0.25 0
Softmax(384) 20.15 330.24 5.04 7.15 0

Table 4: Ablation study on Yelp dataset. LTP: low-rank
tensor product. LW: layer-wise latent variables. Sep-
arate: latent variables in each layer are independent.
l = 1 or 4 KL means we only compute KL loss on
z1 or zL, respectively. 384 means the dimension of
latent variable used in baseline are 12× 32 = 384.

5.6 Human Evaluation
To better verify the effectiveness of DELLA, we
also conduct human evaluation on the two condi-
tional generation tasks. For each model, we gen-
erated 30 samples on each task, and invite 5 com-
petent annotators to score these samples in terms
of three criteria, Fluency, Coherence and Novelty
for story generation, and Informativeness, Coher-
ence and Novelty for summarization generation.

As shown in Table 3, DELLA obtains satisfactory
performance in quality, and is consistently superior
to all baselines on diversity and novelty. See Ap-
pendix A.4 for more detailed evaluation protocols.

5.7 Ablation Study
Table 4 shows the results of ablation study on Yelp.
We can find both tensor product and the layer-wise
latent variables benefit the learning of informative
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Figure 2: PPL, ELBO end KL on Yelp with different numbers of latent variables. The values start layer i and end
layer j means latent variables are produces and utilized only from i-th layer to the last layer, or from the first layer
to j-th layer of the encoder respectively.

Model PPL↓ ELBO↓ KL↑ MI ↑ AU↑
Embed 22.21 339.12 0.03 0.03 0
+BOW 19.98 326.51 2.75 2.48 4
+Annealing 19.98 327.28 4.77 4.14 6
+Annealing + BOW 20.59 332.44 19.51 9.12 28
+Annealing + BN 21.14 338.59 21.09 8.98 25

Memory 22.16 338.68 0.00 0.01 0
+BOW 19.87 326.00 3.89 3.59 8
+Annealing 19.95 326.60 5.70 5.30 11
+Annealing + BOW 20.41 331.09 18.76 9.14 28
+Annealing + BN 20.25 331.59 18.11 9.07 24

Softmax 22.43 333.93 0.47 0.3 0
+BOW 20.53 331.89 10.16 5.57 28
+Annealing 20.14 328.13 7.50 6.29 13
+Annealing + BOW 21.14 335.48 17.51 8.46 28
+Annealing + BN 20.95 337.10 21.25 9.15 25

DELLA 17.18 312.45 9.39 5.32 6
+BOW 13.98 289.94 11.59 9.25 8
+Annealing 12.35 239.83 29.47 10.78 23
+Annealing+BOW 12.82 249.98 32.79 11.26 26

Backbone: GPT-2 medium (24 layers)

Embed 18.33 317.44 2.13 1.44 3
Mem 18.30 317.24 4.47 4.26 10
Softmax 18.47 318.80 5.80 5.03 12
DELLA 11.01 230.96 17.09 23.69 27

Table 5: Results on Yelp for transformer-bsaed VAE
with BOW loss, KL annealing and batch normalization
tricks, and use 24-layer GPT2-medium as backbone.
Here we fix γ in batch normlization as 1.

latent variables, while the latter contributes the
most to DELLA. To further verify the performance
gain originating from Theorem 1 instead of simply
increasing the number or the dimension of latent
variables, we conduct two groups of experiments.

First, we remove the conditional dependence be-
tween layer-wise latent variables by independently
sampling each zl in both training and testing. We
can see that removing dependence causes a sig-
nificant performance drop. Besides, we keep the
dependence between zl but optimize only one of
the KL terms in Eq.(6), and find all representation

capability metrics deteriorate, especially KL, MI
and AU. Such results effectively demonstrate the
necessity of using and optimizing the conditional
inference of layer-wise latent variables, supporting
our theoretical interpretation of DELLA.

Second, we enlarge the dimension of zl used in
the three paradigms to 384 (12× 32), equal to the
total latent dimension used in DELLA. The results
show that simply increasing the dimension of latent
variables brings a more sparse latent space, even
exacerbating the KL vanishing problem.

5.8 Analysis

Training Tricks To reveal the robustness of our
model, we evaluate the influence of three com-
monly used training tricks to relieve KL vanish-
ing, i.e., BOW (bag-of-words) loss (Wang et al.,
2017), batch normalization (Zhu et al., 2020) and
KL annealing (Fu et al., 2019), to the performance
of DELLA and the three paradigms. As shown in
Table 5, previous methods suffer KL vanishing seri-
ously without annealing or BOW loss, getting KL,
MI and AU almost 0. Though not good as using
annealing, DELLA still maintains acceptable per-
formance and mitigates KL vanishing even without
any training tricks. Bow and batch normalization
dramatically prevent low KL divergence, but ob-
struct the optimization and thus cause higher PPL.

Number of Latent Variables We observe the
change of PPL, KL and ELBO with different num-
bers of latent variables. We conduct two groups of
experiments where we produce and utilize layer-
wise latent variables starting from and ending at
different layers. As shown in Fig. 2, incorporating
more latent variables could continuously improve
performance, consistent to our claim in Sec. 4.
With the same number of latent variables, start-
ing from a higher layer is better than ending at a
lower layer, which indicates that latent variables
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Sentence 1: Two girls are playing baseball on the beach
0.1: Two girls are playing basketball on the beach.
0.3: Two girls are playing music in the park.
0.5: Two girls are singing on the beach.
0.7: Crowds of people are dancing in the park
0.9: Lots of people are dancing in the park
Sentence 2: Many people are dancing in front of building

Sentence 1: A man is taking beautiful photos by the river
0.1: A man is taking photos by the beautiful river
0.3: A man is taking pictures by the river
0.5: A man is enjoying the picnic by the river
0.7: A goat is enjoying the day by the river
0.9: A goat is enjoying the day on the farm
Sentence 2: A goat is enjoying the sun on the farm

Figure 3: Interpolating latent space. The sentence
in each row is generated with a latent variable inter-
polated from those of sentence 1 and sentence 2.

Prompt: After receiving perfect score on your final exam, your
school is asking you to give a speech on the subject of the exam.
Little does anyone know you guessed every single answer.

Memory: The room was silent except for me. I could hear some
whispering behind us as we continued to pace about campus, but
there was no need. We knew better than that any moment that
would come, and at least if they were around, we wouldn't have
to be so paranoid.

DELLA: "Hey mister!" I just got back from work and the whole
class was already ready for question. So go ahead I took the
stage. The teacher smiled encouragingly. Standing up in the
front of desk, I started talking about all sorts of things about
answering test question.

Figure 4: Generation examples of Memory and DELLA
based on the prompt from test set of WritingPrompts.

10000 20000 30000 40000 50000
Training Steps

200

250

300

350

400

Re
co
ns
tru

ct
io
n 
Lo
ss

Model
Embed
Memory
Softmax
DELLA

10000 20000 30000 40000 50000
Training Steps

0

20

40

60

80

100

KL
 D

iv
er

ge
nc

e

Model
Embed
Memory
Softmax
DELLA

Figure 5: Reconstruction loss and KL Divergence
throughout training process.

generated from higher layers encode more help-
ful information compared to those from lower lay-
ers, manifesting disadvantages of the two previous
paradigms, Softmax (starting from the last layer)
and Embedding (ending at the first layer).

Model size We compare the performance of
DELLA and three paradigms with 24-layer GPT2-
medium as backbone. As shown in Table 5, with
the increasing of model size, DELLA consistently
achieves better performance than baselines.

5.9 Case Study

VAE captures text representations in a smooth la-
tent space. We take two sentences x1 and x2 and

sample two posterior latent variables z(1) and z(2)

from p(z(1)|x1) and p(z(2)|x2), and get interpo-
lated latent variables with z = τz(1)+(1− τ)z(2).
We generate multiple sentences with a continuously
changed τ from 0 to 1. As shown in Fig. 3, sen-
tences generated from interpolated z mix the se-
mantics of the two initial sentences and smoothly
change from x1 to x2, showing DELLA’s ability of
learning a flexible latent space.

Fig. 4 shows the generation examples of DELLA

and one of baseline, Memory, given the same
prompt WritingPrompts. We observe that the gen-
erated text of Memory is irrelevant to the prompt,
while DELLA generates coherent and vivid text.

6 Conclusion

In this paper, we propose a novel variational Trans-
former framework DELLA. Our framework learns
a series of layer-wise latent variables with iterative
dependence. These latent variables are condition-
ally inferred and injected into corresponding de-
coder layers by low-rank tensor product for deeper
fusion. The experiments on both unconditional and
conditional generation tasks demonstrate DELLA’s
ability to significantly mitigate KL vanishing and
improve generated text’s quality and diversity. In
the future, we plan to explore further the potential
of DELLA in larger pretrained language models.
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A Experiment Details

A.1 Implementation Details

We load pretrained model GPT-2 (Radford et al.,
2019) as initial parameters for unconditional gener-
ation and story generation, and pretrained BART-
base (Lewis et al., 2020) for summarization and
paraphrasing generation tasks. For the summa-
rization and paraphrasing generation, we keep
the encoder-decoder attention block. No encoder-
decoder attention is used in unconditional gener-
ation and story generation tasks. The number of
layers and dimensions of hidden states in DELLA

is consistent with the configurations of correspond-
ing pretrained models (GPT-2 has 12 layers and
Bart-base has 6-layer encoder and 6-layer decoder.
The hidden size of both is 768). We use the state
of a special token to obtain the representation in
the encoder. We utilize cyclical annealing tricks to
train DELLA and other VAE baselines. Specifically,
two epochs are one annealing period. In one period,
β (the weight of KL term in ELBO) keeps 1e-5 in
the first half, then linearly increases to 1 in the next
quarter, then keeps at 1 for the last quarter. We se-
lect batch size over {16, 32} and learning rate over
{5e-5, 7e-5}. We use beam search for DELLA and
top-k sampling for compared baseline models for
the unconditional generation and story generation.
For the summarization and paraphrasing genera-
tion, we use beam search in all the models.

We implement DELLA and other VAE baselines
based on Huggingface Transformers (Wolf et al.,
2020) library of v4.10.0 and use NVIDIA GeForce
RTX 3090 to train our model. The total number of
training GPU hours on different datasets is in Table
6. The number of parameters for our model is
193,353,984 in the unconditional generation setting
and 195,180,114 in the conditional generation one.
All experimental results are trained and tested in a
single run.

Dataset Training Time

Yelp 20h
Yahoo 20h
PTB 6h
SNLI 12h
CNN/DM 40h
WP 170h
Quora 5h

Table 6: GPU hours of training DELLA with RTX3090

Dataset # Train # Dev # Test Avarage Length

Yelp 100k 10k 10k 96
Yahoo 100k 10k 10k 79
PTB 42k 3k 3k 21
SNLI 100k 10k 10k 10

CNN/DM 287k 13k 11k S: 790 T: 61
WP 272k 15k 15k S: 28 T: 674
Quora 134k 5k 10k S: 10 T: 10

Table 7: Statistics of datasets. We present the size of
train/dev/test sets and the average length for 7 datasets.
S means source text and T means target text.

A.2 Datasets Details

The detailed dataset statistics are in Table 7. For
the licenses of the datasets we use, CNN/DM and
WritingPrompts use MIT License, while SNLI uses
CC BY-SA 4.0. Meanwhile, PTB, Quora, and Yelp
use their own license: LDC User Agreement, Yelp
Data Agreement, and Quora’s Terms of Service,
respectively. All of these licenses and agreements
allow their data for academic use. Unfortunately,
we did not find the license for the Yahoo Dataset.

A.3 Metrics Details

Here we provide more details of the metrics used
in our experiments.

Perplexity (PPL). PPL = p(x)−1/n is com-
monly used to evaluate the performance of lan-
guage models, where n is number of tokens x con-
tains. For VAE-based model, we can only obtain
the lower bound of log p(x). We consider k latent
variables z1, z2, . . . , zk sampled from the posterior
distribution q(zi|x). Based on the fact that average
importance weights are an unbiased estimator of
log p(x) (Burda et al., 2016) and Jensen’s Inequal-
ity, we have:

Lk = E

[
log

1

k

k∑

i=1

p(x, zi)

q(zi|x)

]
(13)

≤ logE

[
1

k

k∑

i=1

p(x, zi)

q(zi|x)

]
= log p(x).

We use Lk to estimate log p(x) and calculate PPL.
ELBO. The ELBO is the sum of reconstruction

loss and KL divergence.
KL. The KL divergence of the posterior and

prior distribution.
Mutual Information(MI) (Alemi et al., 2016).
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Mutual Information I(x, z) is defined as:

Iq(x, z) (14)

=Ep(x)Eq(z|x) log q(z|x)− Eq(z) log q(z)

where q(z) = Ep(x)q(z|x) is called the aggregated
posterior.

Activate Units(AU) (Burda et al., 2016). AU
is the active units in latent varibles, defined as
Az = Covx(Ez∼q(z|x)[z]) > δ, where δ is a thresh-
old, commonly set as 0.01. However, we find that
with δ = 0.01, all VAE models in our experiments
have full active unit. So we increase the threshold
to 0.2 to distinguish the performance of different
models on this metric. Please note that DELLA in-
corporates latent variables in all layers, and hence
we calculate AU for the latent variable in each layer
and then report the average.

BLEU (Papineni et al., 2002). BLEU measures
the n-gram overlap of generated sequences and
the reference ones. For unconditional setting, we
regard all samples in the test set as references to
each generated example.

CND (Li et al., 2020b). CND approximates the
divergence of the empirical reference distribution
and generated text distribution in n-gram spaces.

MAUVE (Pillutla et al., 2021). MAUVE mea-
sures the gap between reference text and generated
text using divergence frontiers.

Self-BLEU (Zhu et al., 2018). Self-Bleu calcu-
lates the BLEU score on the generated samples,
which averages the BLEU score of each generated
sequence calculated with other generated ones as
references. This metric measures the diversity of
a set of generated sequences. Higher Self-BLEU
means these generated sequences are more distin-
guishable from each other.

Dist (Li et al., 2016). Dist measures the propor-
tion of distinct n-grams on generated samples.

Jaccard Similarity(JS) (Wang and Wan, 2018).
JS calculates the average n-gram Jaccard similarity
between every two generated sequences.

Rouge (Lin and Hovy, 2002). Rouge computes
n-gram overlap of generated examples with given
target samples. We use rouge-score v0.0.4 to evalu-
ate the rouge score of our model and the baselines.

BERTScore (Zhang et al., 2020). BERTScore
uses pre-trained BERT (Devlin et al., 2019) to ob-
tain the vector representations of generated and
reference text and calculates their cosine similar-
ity. We use bert-score v0.3.10 to calculate the
BERTScore of our model and the baselines.

A.4 Human Evaluation Details

Due to the relatively long length of generated text,
we randomly sample 30 examples in the test set
of WP and CNN/DM as input to DELLA and other
compared baseline models to generate the target.
We invite five graduate students proficient in En-
glish to score the generated text. The criteria for
story generation include fluency, coherence, and
novelty, and the criteria for summarization gen-
eration include informativeness, consistency, and
novelty. Specifically, fluency measures whether
the generated sentences are syntactically fluent;
coherence measures whether the generated text is
logically structured and consistent with the input
text; novelty measures whether the content is novel
and attractive; informativeness measures to what
extent the generated summarization summarizes
the general idea of the article.

When conducting the human evaluation, we in-
formed the participants as follows:

• The following contents are generated by the
automatic models. Some of them may be of-
fensive or contain improper arguments. Please
be conscious of these risks and evaluate these
contents equitably and adequately.

• The evaluation you provide will be used only
for academic use and will never be used com-
mercially.

Every evaluator will sign their signature below
these warnings to confirm that they have read those
words. After finishing the annotation, they will re-
ceive $25. This amount is determined by the time
of the whole annotation process and the estimation
of average hourly income. The ethics review board
for data collection protocol is not essential in our
country, so we did not conduct this review for our
data collection protocol.

A.5 Additional Experimental Result

Table 8 and Table 9 report the results on PTB, SNLI
and Quora dataset.

A.6 Case Study Details

We take two sentences x1 and x2

and sample two groups of latent vari-
ables z(1) = {z(1)1 , z

(1)
2 , . . . ,z

(1)
L } and

z(2) = {z(2)1 , z
(2)
2 , . . . ,z

(2)
L } from posterior distri-

butions p(z(1)|x1) and p(z(2)|x2). We obtain the
weighted latent variables ẑ = {ẑ1, ẑ2, . . . , ẑL} by
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taking weighted sum at each corresponding ele-
ment in two groups, i.e. ẑi = τ∗z(1)i +(1−τ)∗z(2)i .
The mixed sentence x̂ is generated conditioned on
p(x̂|ẑ) by the decoder.

A.7 Potential Risks and Limitations of our
work

Due to the unclean corpus (especially in the WP
dataset) we use where slang repeatedly appears,
the model training on this corpus may also output
some rude expressions during generation. Also, the
text generated in the unconditional generation task
is not controllable, which may contain some bias
or politically sensitive expression. Besides, since
our model significantly improves the quality and di-
versity of generated, it can produce more plausible
texts like news, which could be possibly utilized to
create fake news or disinformation. However, on
the other hand, our model could benefit fairness in
language generation. Previous text generation mod-
els tend to produce biases like gender or nationality
biases, which means only the majority would be
appropriately described while the minority may be
ignored. These biases are mainly caused by the
biased training corpus. With the same data, our
model can improve the diversity of generated text,
which is also potential for mitigating these biased.
We will try to develop debiased language gener-
ation systems in future work to avoid these risks
harming society.

While DELLA shows good performance on text
generation, it has one limitation: training efficiency.
DELLA brings more parameters compared with
three baseline methods. Training efficiency needs
to be considered if we further explore the perfor-
mance of DELLA on the large pretrained model.
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Model
Representation Learning Generation Quality Generation Diversity

PPL↓ ELBO↓ KL↑ MI↑ AU↑ BLEU↑ CND↓ MAUVE↑ SB↓ Dist↑ JS ↓
Dataset: PTB

GPT-2 25.80 - - - - 27.91 1.12 0.73 41.55 37.79 0.30
Optimus 22.79 344.10 15.09 7.67 - - - - - - -
Embed 19.98 327.28 4.77 4.14 6 28.04 1.38 0.69 41.32 34.46 0.33

Memory 24.41 90.25 1.22 1.17 4 21.31 1.21 0.58 26.58 38.28 0.08
Softmax 24.04 90.63 2.13 1.89 21 28.59 1.39 0.72 42.15 33.91 0.30
DELLA 10.28 58.43 12.46 12.35 22 28.15 0.63 0.68 24.87 41.84 0.17

Dataset: SNLI

GPT-2 20.19 - - - - 63.57 1.95 0.71 75.34 19.11 0.58
Optimus 16.67 38.50 16.35 8.89 - - - - - - -
Embed 13.79 32.97 3.24 3.16 20 59.26 0.98 0.72 65.59 20.89 0.44

Memory 13.78 32.62 2.13 2.08 10 62.80 1.24 0.67 54.59 21.87 0.33
Softmax 14.21 33.18 2.70 2.65 16 60.51 1.94 0.71 71.84 18.59 0.57
DELLA 5.13 10.23 5.86 16.58 23 62.94 0.85 0.69 36.85 32.61 0.21

Table 8: Additional results for language model and unconditional generation task. The results of Optimus are
copied from original paper with λ = 0.5.

Model BLEU↑ Rouge-1↑ Rouge-2↑ Rouge-L↑ Bertscore↑ KL↑
Bart-base 64.34 63.27 39.83 60.28 94.72 -
Embed 63.94 63.12 39.42 60.22 94.66 0.0
Mem 63.78 62.86 39.18 59.96 94.65 0.0
Softmax 64.30 63.25 39.92 60.39 94.71 0.0
DELLA 64.40 63.80 40.58 61.03 94.84 3.88

Table 9: Results on Quora dataset. Because the sentences in Quora are quite short and constrained, the results of
the three diversity metrics on all baselines are almost the same. So we omit them here.
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B Additional Proof

B.1 Derivation of KL Divergence of Layer-Wise Latent Variables
KL divergence of layer-wise latent variables

KL(q(z|x)||p(z))

=

∫
q(z|x) log q(z|x)

p(z)
dz

=

∫ L∏

l=1

q(zl|x, z<l) log

∏L
l=1 q(zl|x, z<l)∏L
l=1 p(zl|z<l)

dz1 dz2 . . . dzL

=
L∑

i=1

∫ L∏

l=1

q(zl|x, z<l) log
q(zl|x, z<l)

p(zl|z<l)
dz1 dz2 . . . dzL

=

L∑

l=1

∫
q(z<l|x)q(zl|x, z<l) log

q(zl|x, z<l)

p(zl|z<l)
dz1 dz2 . . . dzl

=
L∑

l=1

Eq(z<l|x)KL(q(zl|x, z<l)||p(zl|z<l))

(15)

B.2 Proof of Theorem 1
First, we consider on term in the summation and can obtain:

Ep(x)Eq(z<l|x)[KL(q(z|x, z<l)||p(zl|z<l))]

=

∫
q(x)q(z<l|x)q(zl|x, z<l) log

q(zl|x, zl)
p(zl|z<l)

dx dzl dz<l

=

∫
q(x, zl, z<l) log

q(zl|x, zl)
p(zl|z<l)

dxdzl dz<l

=

∫
q(x, zl, z<l) log

( q(z,x|z<l)

q(x|z<l)q(zl|z<l)

q(zl|z<l)

p(zl|z<l)

)
dx dzl dz<l

=

∫
q(z<l)q(x, zl|z<l) log

q(z,x|z<l)

q(x|z<l)q(zl|z<l)
dxdzl dz<l+

∫
q(x|zl, z<l)q(zl|z<l)q(z<l) log

q(zl|z<l)

p(zl|z<l)
dx dzl dz<l

=

∫
q(x, zl|z<l) log

q(z,x|z<l)

q(x|z<l)q(zl|z<l)
dxdzl+

∫
q(zl|z<l)q(z<l) log

q(zl|z<l)

p(zl|z<l)
dzl dz<l

=H(zl|z<l)−H(zl|z<l,x) + Eq(z<l)KL(q(zl|z<l||p(zl|z<l))

≥H(zl|z<l)−H(zl|z<l,x)

(16)

where H is the Shannon entropy. Then, the summation has a lower bound:

L∑

i=1

Ep(x)Eq(z<l|x)[KL(q(z|x, z<l)||p(zl|z<l))]

≥
L∑

i=1

H(zl|z<l)−H(zl|z<l,x)

=H(z1, . . . ,zL)−H(z1, . . . ,zL|x)
=I(x; z1, . . . ,zL)

(17)
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where I is mutual information. Next, we prove the following inequality with induction:

I(x; z1, . . . ,zL) ≥ I(x; z1; . . . ; zL) (18)

When L = 2, we proof I(x; z1, z2) ≥ I(x; z1; z2). Actually, we have the following facts:

I(x; z1, z2)

=H(x) +H(z1, z2)−H(x, z1, z2)
(19)

I(x; z1; z2)

=H(x) +H(z1) +H(z2) +H(x, z1, z2)

−H(z1, z2)−H(x, z1)−H(x, z2)

(20)

Based on the facts above, we have:

I(x; z1, z2) ≥ I(x; z1; z2) (21)

⇔ 2H(z1, z2) +H(x, z1) +H(x, z2) ≥ H(z1) +H(z2) + 2H(x, z1, z2) (22)

It’s true because we have:
H(z1, z2) +H(x, z1)

=H(z2|z1) +H(x|z1) + 2H(z1)

≥H(x, z2|z1) + 2H(z1)

=H(x, z1, z2) +H(z1)

(23)

Similarly, the following inequality also holds true:

H(z1, z2) +H(x, z2) ≥ H(x, z1, z2) +H(z2) (24)

Therefore, making sum to Eq.(23) and Eq.(24), we conclude that I(x; z1, z2) ≥ I(x; z1; z2). Hence, we
finish the proof of the L = 2 case.

When L = k, suppose I(x; z1, . . . ,zk) ≥ I(x; z1; . . . ; zk), we consider L = k + 1. In this case,
based on the inductive assumption, we have:

I(x; z1, . . . ,zk+1) ≥ I(x; z1, . . . ,zk) ≥ I(x; z1; . . . ; zk) ≥ I(x; z1; . . . ; zk+1) (25)

Hence, the case of L = k + 1 also holds true. Therefore, we conclude that I(x; z1, . . . ,zL) ≥
I(x; z1; . . . ; zL).

Now, we consider the interaction information and can obtain:

I(x; z1; . . . ; zL)

=I(zL, zL−1)−
L−1∑

i=2

I(zL; . . . ; zi|zi−1)− I(zL; . . . ; z1|x)

≥
L−1∑

i=2

I(zL; . . . ; zi|zi−1)− I(zL; . . . ; z1|x)

(26)

Finally, based on Eq.(16), (17), (25), (26), we can conclude:

Ep(x)[LR] =
L∑

i=1

Ep(x)Eq(z<l|x)[KL(q(z|x, z<l)||p(zl|z<l))]

≥ I(x; z1, . . . ,zL)
≥ I(x; z1; . . . ; zL)

≥
L−1∑

i=2

I(zL; . . . ; zi|zi−1)− I(zL; . . . ; z1|x)

(27)
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Figure 7: Attention weight of Memory paradigm for layer 6 to layer 11.
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