
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5907 - 5917

July 10-15, 2022 ©2022 Association for Computational Linguistics

Non-Autoregressive Chinese ASR Error Correction with Phonological
Training

Zheng Fang1,2, Ruiqing Zhang3∗, Zhongjun He3, Hua Wu3, Yanan Cao1,2

1Institute of Information Engineering, Chinese Academy of Sciences
2School of Cyber Security, University of Chinese Academy of Sciences

3Baidu Inc. No. 10, Shangdi 10th Street, Beijing, 100085, China
1,2{fangzheng, caoyanan}@iie.ac.cn

3{zhangruiqing01, hezhongjun, wu_hua}@baidu.com

Abstract

Automatic Speech Recognition (ASR) is an
efficient and widely used input method that
transcribes speech signals into text. As the er-
rors introduced by ASR systems will impair
the performance of downstream tasks, we intro-
duce a post-processing error correction method,
PhVEC, to correct errors in text space. For
the errors in ASR result, existing works mainly
focus on fixed-length corrections, modifying
each wrong token to a correct one (one-to-one
correction), but rarely consider the variable-
length correction (one-to-many or many-to-one
correction). In this paper, we propose an ef-
ficient non-autoregressive (NAR) method for
Chinese ASR error correction for both cases.
Instead of conventionally predicting the sen-
tence length in NAR methods, we propose a
novel approach that uses phonological tokens to
extend the source sentence for variable-length
correction, enabling our model to generate pho-
netically similar corrections. Experimental re-
sults on datasets of different domains show that
our method achieves significant improvement
in word error rate reduction and speeds up the
inference by 6.2 times compared with the au-
toregressive model.

1 Introduction

Errors introduced by automatic speech recognition
(ASR) usually affect the performance of down-
stream tasks such as phonetic search, speech trans-
lation, etc. In recent years, ASR error correction
techniques have been proposed (Anantaram et al.,
2018; Mani et al., 2020; Zhao et al., 2021; Leng
et al., 2021) to refine the ASR output and correct
errors in text space. Without loss of generality, we
study Chinese ASR error correction in this paper.

Given the ASR result of an utterance, the goal
of error correction is to generate a sentence with
the wrongly recognized words corrected. Thus the

∗ This work was conducted at Baidu. Corresponding
author: Ruiqing Zhang.

ASR error correction can be modeled as a machine
translation problem under conventional autoregres-
sive sequence-to-sequence (Seq2Seq) framework
(Guo et al., 2019; Hrinchuk et al., 2020; Mani et al.,
2020). However, the autoregressive models suffer
from inefficient decoding since the generation of
each target token depends on previously generated
characters (Figure 1 (a)). Furthermore, without
considering the phonetic similarities, the method is
prone to generate corrections with totally different
pronunciation, as for the example, the error char-
acter (“表”, biao) should be corrected into (“不
要”, bu yao) but the Seq2Seq model ignores phono-
logical features and corrects it to a phonetically
different correction (“不许”, bu xu).

To speed up prediction, recent studies propose to
take non-autoregressive (NAR) methods (Gu et al.,
2018; Ren et al., 2020) for error correction, which
generates target tokens in parallel. Most NAR ap-
proaches make fixed-length predictions that gen-
erate same-length output as the source input by
directly tagging on the source text (Zhang et al.,
2020). Some works further leverage phonological
features to correct the ASR errors caused by sim-
ilar pronounced characters (Zhang et al., 2021a;
Cheng et al., 2020). Such methods have made
great improvements in correcting simple errors, but
cannot handle samples with different lengths of
source and target, referred to as variable-length er-
ror correction. See Figure 1 (b) for illustration. The
method successfully finds out the erroneous charac-
ter (“表”, biao), and substitutes it with its phonolog-
ical feature “biao” for error correction. However,
it eventually generates a wrong correction (“标”,
biao) under the constraint of fixed length predic-
tion.

To overcome above constraint while preserving
efficient prediction, NAR solutions for variable-
length prediction are proposed (Leng et al., 2021;
Gu et al., 2019). They first build a length predictor
to estimate fertility, i.e., the number of target tokens

5907

Encoder

[BOS] 𝑦1 𝑦2 𝑦3 𝑦4

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5
你 不 许 难 过

Decoder

(a). Seq2Seq (b). Tagging with Phonetics

𝑦1 𝑦2 𝑦3 𝑦4
你 标 难 过

𝑥1
′ 𝑥2

′ 𝑥3
′ 𝑥4

′

你 biao 难 过

(c). NAR with Length Predictor

Encoder

𝑦1 𝑦2 𝑦3 𝑦4
宝 宝 难 过

𝑥1
′ 𝑥2

′ 𝑥3
′ 𝑥4

′

表 表 难 过

Length Predictor

0 2 1 1

DecoderError Corrector

(d). Phonology based NAR

(Our proposed)

Error Detector

𝑥1
′ 𝑥2

′ 𝑥3
′ 𝑥4

′ 𝑥5
′ 𝑥6

′ 𝑥7
′ 𝑥8

′

你 表 b i a o 难 过

K C K KK C K K

Error Detector

ො𝑦1 ො𝑦2 ො𝑦3 ො𝑦4 ො𝑦5 ො𝑦6 ො𝑦7 ො𝑦8

Error Corrector

𝜖

𝑥1 𝑥2 𝑥3 𝑥4
你 表 难 过

𝑥1 𝑥2 𝑥3 𝑥4
你 表 难 过

你 不 不 要 要 难 过𝜖𝑌

𝑌

𝑋𝑐𝑜𝑟

biao

bu xu

biao

biao

biao

bao bao

biao

bu yao

ni

你 不 要 难 过

𝑥1 𝑥2 𝑥3 𝑥4
你 表 难 过

𝑥1 𝑥2 𝑥3 𝑥4
你 表 难 过

Figure 1: An example of Chinese ASR Error Correction. The source speech “ni bu yao nan guo ” (“Don’t be sad”)
is incorrectly recognized to “ni biao nan guo ” (“Your watch is sad”). (a) The Seq2Seq model generates a fluent but
incorrect sentence because it neglects the phonetic similarity. (b) The sequence tagging model with phonological
features correctly detects the character with error (“K” means keep unchanged and “C” means to be correct), but
because it only supports equal-length prediction, it fails to generate a fluent correction with equal length as the input.
(c) The NAR model with a length predictor incorrectly predicts the number of target tokens corresponding to the
source character “ni” as 0, which should be 1. Accordingly, it removes the character and generates an incorrect
result. (d) The proposed PhVEC first detects problematic tokens, then leverages their phonological features to
generate a variable-length intermediate result, and outputs the final result by reducing the repeated characters.

aligned to each source token, then up-sampling
or dropping some source tokens accordingly for
parallel correction. However, the method is fragile
because incorrect length prediction will distort the
meaning of the sentence and may directly lead to
false prediction. See Figure 1 (c) for example, the
length predictor produces a wrong alignment (0 2
1 1), indicating that the decoder will drop the first
source character and generate two target characters
for the second source character. According to the
alignment, the intermediate result turns to be a
meaningless sentence (“表表难过”, means “watch
watch sad”) and leads to a wrong correction.

To address the issues mentioned above, we
propose a novel NAR model named PhVEC
(Phonology-based Variable-length Error Correc-
tion). The model incorporates the phonological fea-
tures of error characters to enable variable-length
prediction. Concretely, PhVEC contains a detec-
tion network and a correction network based on a
pre-trained language model (Devlin et al., 2019;
Sun et al., 2020). The detection network predicts
the correctness of each token, and the correction
network generates correction result. Instead of us-
ing a length predictor to predict the fertility for
each source token, we insert the phonological to-
kens (Chinese Pinyin1) to the source sequence as
placeholders after each detected erroneous charac-
ter. During prediction, each source token (either

1In this paper, we ignore the tone of pinyin, and the pinyin
of each Chinese character can be represented by one to six
English letters.

the character token or pinyin token) can generate
zero or one target token. With the guidance of
the phonological token, the model will generate
characters with similar pronunciations. As Figure
1 (d) shows, the pinyin token “b” produces target
character (“不”, bu) with the same consonant let-
ter, and “a o” produces target character (“要”, yao)
with the same vowel letter. We delete the repeated
characters in the final sequence.

We evaluate our methods on multiple datasets
with varying degrees of ASR word error rates. Ex-
perimental results show that our PhVEC obtains
significant improvement (over 10% word error rate
reduction) on standard benchmarks compared with
existing NAR-based ASR error correction meth-
ods at comparable speed. Even compared with the
AR baseline Transformer and BART (Lewis et al.,
2020) models, PhVEC can still have an 8.55% and
2.39% word error rate reduction while keeping a
6.2x speed-up.

2 Method

Chinese ASR error correction can be formalized
as the following task. Given a speech recognition
sequence X = (x1, x2, ..., xn) of n Chinese char-
acters, the goal is to correct it into another sequence
ofm characters Y = (y1, y2, ..., ym). Note that the
target sequence length m does not have to be equal
to the source sequence length n. There exist three
types of ASR errors in transforming from X to Y :
substitution, deletion, and insertion.

As illustrated in Figure 1(d), our proposed ASR

5908

error correction model is composed of an error de-
tector and an error corrector, both perform a NAR
tagging. The error detector takes X as input to
predict the correctness of each token. The error
corrector takes the combination of the source to-
kens and the phonological features of problematic
tokens as input for correction. During error cor-
rection, each token of the extended input can be
tagged to a Chinese character or a blank token “ε”,
so that the model can support variable-length cor-
rection. Since different pinyin letters may generate
the same character, we eliminate continuous repeti-
tive characters in the final result. In this paper, we
use Chinese pinyin as the phonological feature. The
learning of PhVEC is conducted end-to-end, with
the error detector and corrector optimized jointly.

2.1 Error Detection Network
The goal of the error detector is to check whether
a character xi (1 ≤ i ≤ n) is correct or not. We
model this task as sequence labeling. We build a
sequential binary classifier and use class 1 and 0 to
label the problematic characters and correct charac-
ters, respectively. The ground-truth detection label
C = (c1, c2, ..., cn) is pre-calculated by matching
X and Y with edit distance, in which ci ∈ {0, 1}.
The prediction result of the error detector is repre-
sented by a sequence C ′ = (c′1, c

′
2, ..., c

′
n), and we

use pi to denote the probability of token xi being
predicted to class 1, which can be formalized as
follows:

pi = p(c′i = 1|X) = softmax(fdec(E(ew)))
(1)

where ew = (ex1 , ex2 , ..., exn) is the token embed-
ding of X , E is a Transformer-based encoder and
fdec is a fully-connected layer that maps the sen-
tence representation to a binary sequence. To train
the model, we adopt the following cross entropy
loss function:

Ldec = −
1

n

∑

i

[ci ln pi + (1− ci) ln(1− pi)]

(2)

2.2 Error Correction Network
After identifying the errors, we introduce the pinyin
features of the incorrect characters and feed them
into the correction network. Concretely, we use
the tool PyPinyin2 to generate pinyin for each er-
roneous Chinese character and insert pinyin to-
kens after the problematic token. The original

2https://github.com/mozillazg/python-pinyin

你 表 难 啊 过

你 不 要 难 过

𝑋

𝑌

b i a o

b u

a

你 表 难 过

你 难 过

𝑋!"#

𝑌#

b i a o 啊 a

不 不 要 要𝜖 𝜖 𝜖

y a o

Figure 2: An illustration of generating Xcor and Ŷ
from the training sample (X,Y). We first label pinyin
for incorrect characters in X and their counterparts in
Y (bottom of the Figure). Then align the pinyin token
according to the LCS algorithm (dashed arrows). Xcor

is obtained by inserting pinyin tokens after the incorrect
characters in X . Finally, Ŷ is generated according to
the alignment. For NULL alignments, such as “i”, we
align a special token “ε”.

sentence X = (x1, x2, ..., xn) is thus rewritten as
Xcor = (x′1, x

′
2, ..., x

′
t), where t ≥ n, and t− n is

the number of pinyin tokens.
Given Xcor, the error corrector performs se-

quence labeling to predict the correction result
Y ′ = (y′1, y

′
2, ..., y

′
t) as follows:

p(y′i = Vj |Xcor) = softmax(fcrtE(ecor)) (3)

where p(y′i = Vj |Xcor) is the conditional prob-
ability that x′i is corrected to Vj , the token with
index j in the vocabulary V . ecor is the token em-
bedding of Xcor and fcrt is a fully-connected layer
that maps the hidden states of source tokens to their
predicted logit vector of length |V|. Note that, the
parameters of the token embedding, the encoder E
and the correction network fcrt are initialized by
pre-trained language models (Devlin et al., 2019;
Sun et al., 2020). We share the pre-training model
parameters in the error detector and corrector to
encode the Chinese characters and pinyin tokens in
a shared space, which not only reduces the model
size, but also makes the model yield better semantic
representation.

The learning objective of the error corrector is
to correct Xcor to the golden correction Y . How-
ever, it is not an easy task because the lengths of
Xcor and Y may not be the same. Therefore, we
rewrite Y to Ŷ = (ŷ1, ŷ2, ..., ŷt) which has the
same length as Xcor. Concretely, Ŷ is constructed
from Y with some tokens repeated and inserted ac-
cording to pronunciation alignment. We compare
the pinyin of the incorrect tokens of X with their

5909

新的政策涉及千家万户Golden Y

新的政策sheji千家万huPinyin Replacement

新的政策sheji千家万fuPinyin Pertubation

新的政策设计千家万付Simulated X

Substitution Error

北京企业将迁入雄安新区

北京企业将迁入xiongan新区

北京企业将迁入xiong(u)an新区

北京企业将迁入宣新区

Deletion Error

徐翔行业概念股名单

徐xiang行业概念股名单

徐xi(y)ang行业概念股名单

徐夕阳行业概念股名单

Insertion Error

she ji fu xuan xi yang

Figure 3: The process of generating training samples. The characters marked in red from bottom to top represent
the correct Chinese characters, the pinyin corresponding to the correct Chinese characters, the simulated pinyin
disturbance, and the simulated error characters corresponding to the noisy pinyin, respectively.

correct counterparts of Y , and align according to
the longest common substring (LCS) algorithm, as
illustrated by the dashed arrows in the bottom of
Figure 2. Then we rewrite Y to Ŷ according to the
alignment.

The loss of the error corrector can be defined as
follows:

Lcor = −
t∑

i=1

log(p(y′i = ŷi|Xcor)) (4)

Our proposed pinyin alignment provides an ex-
plicit clue for the model to learn the correlation be-
tween pinyin and Chinese characters. As an alterna-
tive, we can also learn the alignment through Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006), which is widely used for variable-
length alignments, such as in ASR (Audhkhasi
et al., 2019), handwriting recognition (Bluche et al.,
2014), etc. But we don’t use CTC in our model
because we assume that aligning according to the
phonological features is reliable for ASR error cor-
rection, which will reduce the learning difficulty
compared with learning a global alignment. We
confirm our assumption in experiments.

2.3 Joint Learning and Inference
For each training sample (X,Y), we construct its
golden detection result C and correction target Ŷ
first, then jointly optimize the two modules as fol-
lows:

L = λ · Ldec + (1− λ) · Lcor (5)

where λ is a trade-off parameter.
During the inference stage, we first detect the

problematic characters and insert their pinyin into
the original sentence, then predict the correction
sequence Y ′ by maximizing the probability of
p(y′i|Xcor) for each i. The final correction result

is generated by removing the blank tokens ε and
merging adjacent duplicate characters from the pre-
diction of the error corrector, as shown at the top
of Figure 1(d). Note that such post-processing is
conducted only at locations where Xcor is modi-
fied relative to X , while the characters predicted as
correct by the error detector are kept unchanged in
the final prediction.

3 Training Data Generation

We follow the common practice in error correction
(Zhang et al., 2020; Takahashi et al., 2020; Leng
et al., 2021) to synthesize the training corpus with
simulated ASR errors. The simulated ASR results
are generated by replacing the Chinese characters
or words of clean sentences into problematic ones.
Specifically, we generate the noisy text in three
steps: (i) sampling some candidate characters and
replace them with pinyin. (ii) adding noise to the
original pinyin and generate new valid ones (iii)
producing new Chinese characters or words based
on the updated pinyin.

In the first step, the candidate words are obtained
from a confusion set (Wang et al., 2019) that con-
tains words prone to be mis-recognized. In the
second step, we design three strategies of pinyin
perturbation for simulating substitution errors, dele-
tion errors and insertion errors, as shown in Figure
3. Note that when generating deletion and insertion
errors, some random letters may be inserted to con-
struct valid pinyin sequence. In the last step, we
replace the noisy pinyin with corresponding word
candidates, and select the sentence ranked highest
by a n-gram language model as the final simulated
ASR result.

5910

4 Experiments

We carry out experiments on two Chinese ASR
error correction datasets. We use word error rate
(WER) and word error reduction rate (WERR) to
evaluate our error correction performance.

4.1 Data Settings

We first train an ASR model on AISHELL-1 (Bu
et al., 2017). The training set contains 150 hours of
Mandarin speech, along with corresponding tran-
scripts, mainly including news in Finance, Tech-
nology, Sports, etc. The trained ASR model then
transcribes the speech to generate the paired data
for evaluation, as listed in Table 1. AISHELL-1
dev and test sets contain 15 hours of speech, cor-
responding to 21K sentence pairs. MAGICDATA3

contains 43 hours of Mandarin speech, including
interactive Q&A, daily instructions, etc.

The training set of ASR error correction is con-
structed from 3 million web-crawled sentences,
along with their noisy version with simulated er-
rors. For the methods that only support fixed-length
correction, the pseudo ASR input is generated with
similar-pronounced substitution errors only. For
the training data of methods that support variable-
length correction, we sample 2.7 million samples
from the fixed-length training data and generate
simulated insertion and deletion errors for the re-
maining 0.3M sentences.

4.2 Training Details

Consistent with previous work (Leng et al., 2021),
we use the ESPnet (Watanabe et al., 2018) toolkit
to train an ASR model on AISHELL-1 training set.
Conformer architecture (Gulati et al., 2020) and
SpecAugment (Park et al., 2019) are also used to
improve the ASR performance. For the ASR error
correction network, we take “chinese-bert-wwm"
(Cui et al., 2019) as a pre-trained model to initialize
the encoders of our PhVEC and other pretraining-
based methods. We set the learning rate to 5e-5
and the probability of dropout to 0.1. The loss
balancing parameter λ in joint learning is set to 0.5,
and the AdamW (Loshchilov and Hutter, 2019) is
utilized as optimizer. More details can be found in
the Appendix A.

3https://openslr.org/68/

Dataset AISHELL-1 MAGICDATA

Dev 14,329 6,756

Test 7,176 15,131

Avg Length 14.42 9.78

Type News Command

Table 1: Statistical results on experimental test datasets.

4.3 Baselines

We compare our PhVEC with the autoregres-
sive Transformer (Vaswani et al., 2017), BART4

(Lewis et al., 2020) and recent state-of-the-art non-
autoregressive methods as follows: Levenshtein
Transformer (LevT) (Gu et al., 2019) supports
variable-length correction by iteratively perform-
ing deletion, insertion and substitution under NAR
framework. FastCorrect (Leng et al., 2021) im-
plements variable-length correction with a length
predictor that estimates the number of target to-
kens each source token should be converted to,
then repeating/droping the source tokens to gen-
erate a variable length sequence as the input of
error correction. MLM-phonetics (Zhang et al.,
2021a) implements a fixed-length error correction
by pre-training a language model with phonologi-
cal features integrated. BERT directly fine-tunes
the standard masked language model to generate
fixed-length corrections. BERT+CTC implements
variable-length error correction with a CTC layer
built on top of BERT, which upsamples each source
token twice and learns the source-target alignments
automatically with a CTC loss.

4.4 Overall Results

The comparison results on two benchmark datasets
are shown in Table 2. We observe that:

• Our proposed PhVEC outperforms all the
other methods on the evaluation datasets.
It achieves about 20% WERR for the four
datasets with varying levels of ASR perfor-
mance. PhVEC greatly exceeds the two exist-
ing methods supporting variable-length cor-
rection, LevT, and FastCorrect, and become
the first method that surpasses the autoregres-
sive Transformer and BART models, with the
WERR improved by 8.55% and 2.39% on av-
erage, respectively.

4https://huggingface.co/fnlp/bart-base-chinese

5911

Method

AISHELL-1 MAGICDATA Latency(ms/sent)

Dev TEST Dev TEST TEST

WER↓ (WERR↑) WER↓ (WERR↑) WER↓ (WERR↑) WER↓ (WERR↑) GPU

No correction 4.46 (-) 4.83 (-) 13.82 (-) 13.51 (-) -

Transformer 3.80 (14.80%) 4.08 (15.53%) 12.09 (12.52%) 12.19 (9.77%) 149.5 (1×)

BART 3.62 (18.83%) 3.81 (21.12%) 11.36 (17.80%) 11.33 (16.14%) 180.9 (0.8×)

LevT (Max iter=1) 4.37 (2.02%) 4.73 (2.07%) 13.81 (0.07%) 13.91 (-2.96%) 54.0 (2.8×)

FastCorrect 3.89 (12.78%) 4.16 (13.87%) - - 21.2 (7.1×)

BERT 3.71 (16.82%) 3.98 (17.60%) 11.67 (15.56%) 11.79 (12.73%) 14.1 (10.6×)

BERT + CTC 3.78 (15.25%) 4.01 (16.98%) 12.13 (12.23%) 12.11 (10.36%) 14.5 (10.3×)

MLM-phonetics 3.64 (18.39%) 3.90 (19.25%) 11.59 (16.14%) 11.68 (13.55%) 23.7 (6.3×)

PhVEC (Ours) 3.52 (21.08%) 3.62 (25.05%) 11.19 (19.03%) 11.04 (18.28%) 24.1 (6.2×)

Table 2: Performance comparison of our method and other baselines on development set and test set. WER denotes
word error rate (%), and WERR is word error reduction rate. We also test the inference speed of the correction
models on NVIDIA V100 GPU and the test batch size is set to 1 sentence to match the online serving environment.

• Both PhVEC and MLM-phonetics introduce
phonological features into the model but
PhVEC performs better. We attribute this im-
provement to two aspects: one is its effec-
tive solution to variable-length errors, and the
other is the effective use of pinyin splitting
strategy. Different from Zhang et al. (2021a),
we use pinyin features in letter granularity,
instead of treating each pinyin as one token.
This facilitates flexible insertion and enhances
the correlation between similar pronounced
characters and their corresponding phonologi-
cal features.

• Pre-training significantly promotes correction
performance. For the autoregressive mod-
els, the pre-trained BART has lower WER
compared to the vanilla Transformer model.
Moreover, the fine-tuned BERT achieves com-
parable performance with Transformer, in-
dicating that strong language modeling will
greatly facilitate NAR methods for error cor-
rection. Among the pretraining-based meth-
ods, PhVEC still performs the best, demon-
strating the effectiveness of leveraging pinyin
tokens for variable-length correction.

• Adding the CTC layer does not bring obvious
advantages for error correction. In particular,
BERT+CTC is inferior to BERT, and prones
to generate incorrect alignments for the fixed-
length correction samples. This might be be-
cause, for ASR error correction, the alignment

between most words of the source and tar-
get is definite. BERT+CTC upsamples each
source token twice and dictates the model to
learn the alignment, which actually increases
the difficulty of learning. It is worth not-
ing that BERT+ CTC outperforms BERT on
the variable-length error correction samples,
which will be introduced later in Table 3.

• PhVEC accelerates to 6.2 times that of Trans-
former, and further reduces the WER by 8-
10%. Even compared with the BART model,
we still have 2-3% WER reduction and speed
up the inference by 7.5 times, which proves
the efficiency and effectiveness of PhVEC.
Moreover, we want to emphasize that the orig-
inal FastCorrect used NVIDIA V100 and P40
GPU to test the model delay respectively. To
ensure the consistency of the results, we reim-
plement all baseline methods and test the in-
ference speed on NVIDIA V100 GPU.

It is also notable that the training data of our
method PhVEC includes 3M sentence pairs, which
is consistent with that of Transformer, BART,
LevT, BERT, and BERT+CTC, but FastCorrect and
MLM-phonetics use additional 400M and 300M
pairs sentences for pre-training, respectively.

4.5 Analyses

We further analyze the performance of our model
on variable-length datasets and conduct ablation

5912

[CLS] 你 表 b i a o 难 啊 a 过 [SEP]

[CLS]
你
不
不

[UNK]
要
要
难

[UNK]
[UNK]

过
[SEP]

w/o PhVEC w/ PhVEC

(a). BERT-tSNE (b). PhVEC-tSNE (c). PhVEC-attention

Figure 4: (a) and (b) are t-SNE visualization of pinyin letter and Chinese character embeddings, which correspond
to BERT and PhVEC models respectively. (c) is the self-attention of the 3rd encoder layer of the error corrector.
The horizontal axis represents Xcor, the input of the error corrector, and the vertical tokens are the model output, in
which [UNK] is for the blank token ε.

Method AISHELL-1 MAGICDATA

No correction 15.02 (-) 21.38 (-)

Transformer 13.90 (7.5%) 20.68 (3.3%)

BART 12.08 (19.6%) 17.30 (19.1%)

LevT 14.34 (4.5%) 23.11 (-8.1%)

BERT 14.59 (2.9%) 20.08 (6.1%)

BERT+CTC 12.98 (13.6%) 19.67 (8.0%)

MLM-phonetics 14.48 (3.6%) 20.12 (5.9%)

PhVEC (Ours) 11.34 (24.5%) 16.06 (24.9%)

Table 3: The WER↓(WERR↑) evaluated on subsets that
containing only the variable-length correction samples.
The number of such samples in AISHELL-1 and MAG-
ICDATA is 163 and 1490, respectively.

studies to dissect the factors affecting the effective-
ness of our method.

4.5.1 Variable-length scenario
To evaluate the effectiveness of our model in deal-
ing with variable-length errors, we extract the sam-
ples containing insertion and deletion errors from
the test sets of AISHELL-1 and MAGICDATA,
and evaluate the above methods on this subset. As
shown in Table 3, PhVEC shows significant ad-
vantages over other methods, achieving over 20%
WERR on both datasets. Both fined-tuned BERT
and MLM-phonetics perform weakly because of
the inherent fixed-length limitation of their gener-
ation. The CTC layer brings significant improve-
ment to BERT by enabling it with variable-length
prediction, but there is still a large gap between its
performance and that of PhVEC. The correction
generated by LevT is not stable, even degrades the
WERR by 8.1% WERR in the MAGICDATA sub-
set. This might be because its length prediction

Strategy Example AISHELL-1 MAGICDATA

No correction [表] 4.83 (-) 13.51 (-)

OneToken [表][biao] 4.08 (15.5%) 12.11 (10.4%)

Initial&Final [表][b][iao] 3.91 (19.0%) 11.68 (13.5%)

Letters-only [b][i][a][o] 3.85 (20.3%) 11.59 (14.2%)

Letters (Ours) [表][b][i][a][o] 3.62 (25.1%) 11.04 (18.3%)

Table 4: The WER↓(WERR↑) of different phonologi-
cal features evaluated on the AISHELL-1 and MAGIC-
DATA test sets.

result is inaccurate. The average length difference
between the input and the golden correction is only
1.08, while the average length gap between the pre-
diction of LevT and the golden correction is 1.42.
This indicates that the prediction of LevT will pro-
duce more length differences than the original ASR
input, resulting in its performance degradation.

4.5.2 Different manners of leveraging
phonological features

In our model, we split the pinyin of each Chi-
nese character into tokens letter by letter and add
them after each detected problematic character, e.g.,
rewrite the detected error character “[表]” (biao)
to 5 tokens [表][b][i][a][o] in the intermediate
variable-length result. Here we explore the im-
pact of leveraging pinyin with different strategies:
1) OneToken: taking the pinyin of each character
as one token as in Zhang et al. (2021a); 2) Ini-
tial&Final: divide each pinyin into an initial ([b])
and a final ([iao]), according to the phonological
portion of Chinese; 3) Letters-only: remove the
original problematic character from the rewritten
sentence and use its pinyin for substitution. The
first two settings focus on different pinyin granular-

5913

ities, and the third one wants to check whether the
original characters detected as errors are useful for
error correction.

Table 4 shows that: (1) Compared with Letters,
both OneToken and Initial&Final degrades the per-
formance. This is because the granularity of the
phonological features used in the two methods are
coarser than that of Letters, which reduces the prob-
ability of aligning each phonological feature to
more Chinese characters. (2) The Letters-only per-
forms inferior to Letters, demonstrating the effec-
tiveness of keeping the original characters in Xcor.
This might be because, some wrong detection re-
sults tag “C” to some correct words. Removing
these original words when adding pinyin tokens
makes the model almost impossible to recover the
correct ones. This always happens to rare words in
some named entities.

4.5.3 Characters Embedding and Alignment
To qualitatively examine whether PhVEC learns
meaningful representations, we dive into the
learned embedding and encoder for visualization.
We first investigate whether the model learns the
relationship between pinyin letters and Chinese
characters. Concretely, we visualize the learned
embedding of pinyin letter and Chinese character
in a two-dimensional space by applying the t-SNE
algorithm (van der Maaten and Hinton, 2008). Fig-
ure 4b shows that the embedding of Chinese char-
acters and their corresponding pinyin letters get
closer after training with PhVEC. Then we visu-
alize the self-attention of the encoder in the error
corrector. Figure 4c shows that the corrected words
in the output pay much attention to their corre-
sponding pinyin tokens, for example, “不(bu)" is
highly aligned to “b”, and “要 (yao)" paid much
attention to “a” and “o”, which indicates that the
phonological features provide an obvious prompt
for error correction.

5 Related Work

5.1 Chinese Spelling Error Correction (CSC)

As a close related area to ASR error correction,
CSC has been widely explored in recent years.
Zhang et al. (2020) proposes a soft-masked BERT
model that first predicts the error probability of
each character, and then uses the probabilities to
perform a soft-masked word embedding for correc-
tion. As a remedy of soft-masked BERT, Zhang
et al. (2021a) incorporates phonological knowl-

edge into pre-training and proposes to fuse phono-
logical feature in error correction. Cheng et al.
(2020) builds a Graph Convolution Network on
top of BERT, which reflects the phonological sim-
ilarity among Chinese tokens. However, these
methods are designed to produce corrections of the
same length as the input, but incapable of handling
variable-length correction that includes errors of
substitution, deletion and insertion.

5.2 Autoregressive (AR) Error Correction

To correct variable-length errors, a large num-
ber of Seq2Seq AR models have been proposed.
Zhang et al. (2019) uses a Transformer-based
model for Chinese ASR error correction. Wang
et al. (2019) incorporates a copy mechanism into
Seq2Seq framework to copy the corrections di-
rectly from a prepared confusion set for the er-
roneous words. With the popularity of pre-training,
Zhao et al. (2021) uses a pre-trained BART (Lewis
et al., 2020) to initialize the correction network.
Although these AR models are able to deal with
various types of errors in ASR, they can not sat-
isfy the latency requirements for online services,
especially for some real-time scenarios like simul-
taneous translation (Zhang et al., 2021b).

5.3 Non-Autoregressive (NAR) Error
Correction

NAR models are designed for fast generation speed
compared with their AR counterpart by producing
all tokens in a target sequence in parallel, which is
widely explored in machine translation (Gu et al.,
2019; Xu and Carpuat, 2021), ASR (Fan et al.,
2021), TTS (Ren et al., 2019) etc. Recently, some
studies (Gu et al., 2019; Leng et al., 2021) propose
to apply NAR models to variable-length ASR error
correction based on a length predictor, which first
estimates the length of the target correction, then
rewrites the input sentence by dropping or repeat-
ing some tokens according to the length estimated,
finally performs a sequence labeling on the rewrit-
ten sentence to achieve correction. However, it is
difficult to predict the target length of an incorrect
sentence directly, even for humans, while the accu-
racy of length prediction is closely related to the
performance of error correction.

6 Conclusion

In this paper, we propose a non-autoregressive Chi-
nese ASR error correction network with phonolog-

5914

ical training. Our method first detects the problem-
atic characters, then adds the phonological features
of them to adjust the input length, thus generat-
ing a variable-length sequence for error correction.
The phonological features enable our model to pro-
duce similar-pronounced corrections, and support
variable-length correction in a non-autoregressive
mode. Experiments show that our method is su-
perior to the autoregressive method while main-
taining a 6.2x speed-up. As a future work, we
plan to extend PhVEC to other languages and use
corresponding phonological tokens to correct the
variable length errors caused by pronunciation.

Acknowledgements

This research is supported by the National Key
Research and Development Program of China
(NO.2017YFC0820700) and National Natural Sci-
ence Foundation of China (No.61902394). We
thank all authors for their contributions and all
anonymous reviewers for their constructive com-
ments.

References
C. Anantaram, Amit Sangroya, Mrinal Rawat, and Aish-

warya Chhabra. 2018. Repairing ASR output by
artificial development and ontology based learning.
In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI
2018, pages 5799–5801. ijcai.org.

Kartik Audhkhasi, George Saon, Zoltán Tüske, Brian
Kingsbury, and Michael Picheny. 2019. Forget a
bit to learn better: Soft forgetting for ctc-based au-
tomatic speech recognition. In Interspeech 2019,
20th Annual Conference of the International Speech
Communication Association, Graz, Austria, 15-19
September 2019, pages 2618–2622. ISCA.

Théodore Bluche, Hermann Ney, and Christopher Ker-
morvant. 2014. A comparison of sequence-trained
deep neural networks and recurrent neural networks
optical modeling for handwriting recognition. In
Statistical Language and Speech Processing - Sec-
ond International Conference, SLSP 2014, volume
8791 of Lecture Notes in Computer Science, pages
199–210. Springer.

Hui Bu, Jiayu Du, Xingyu Na, Bengu Wu, and Hao
Zheng. 2017. Aishell-1: An open-source mandarin
speech corpus and a speech recognition baseline. In
Oriental COCOSDA 2017, page Submitted.

Xingyi Cheng, Weidi Xu, Kunlong Chen, Shaohua
Jiang, Feng Wang, Taifeng Wang, Wei Chu, and Yuan
Qi. 2020. Spellgcn: Incorporating phonological and
visual similarities into language models for chinese

spelling check. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, pages 871–881. Association for
Computational Linguistics.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing
Yang, Shijin Wang, and Guoping Hu. 2019. Pre-
training with whole word masking for chinese BERT.
CoRR, abs/1906.08101.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, pages 4171–4186.
Association for Computational Linguistics.

Ruchao Fan, Wei Chu, Peng Chang, Jing Xiao, and
Abeer Alwan. 2021. An improved single step
non-autoregressive transformer for automatic speech
recognition. CoRR, abs/2106.09885.

Alex Graves, Santiago Fernández, Faustino J. Gomez,
and Jürgen Schmidhuber. 2006. Connectionist tem-
poral classification: labelling unsegmented sequence
data with recurrent neural networks. In Machine
Learning, Proceedings of the Twenty-Third Interna-
tional Conference (ICML 2006), volume 148 of ACM
International Conference Proceeding Series, pages
369–376. ACM.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2018. Non-autoregressive
neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018.
OpenReview.net.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019.
Levenshtein transformer. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, pages 11179–11189.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and Ruom-
ing Pang. 2020. Conformer: Convolution-augmented
transformer for speech recognition. In Interspeech
2020, 21st Annual Conference of the International
Speech Communication Association, pages 5036–
5040. ISCA.

Jinxi Guo, Tara N. Sainath, and Ron J. Weiss. 2019.
A spelling correction model for end-to-end speech
recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing, ICASSP
2019, Brighton, United Kingdom, May 12-17, 2019,
pages 5651–5655. IEEE.

Oleksii Hrinchuk, Mariya Popova, and Boris Ginsburg.
2020. Correction of automatic speech recognition
with transformer sequence-to-sequence model. In
2020 IEEE International Conference on Acoustics,

5915

Speech and Signal Processing, ICASSP 2020, pages
7074–7078. IEEE.

Yichong Leng, Xu Tan, Linchen Zhu, Jin Xu, Renqian
Luo, Linquan Liu, Tao Qin, Xiang-Yang Li, Ed Lin,
and Tie-Yan Liu. 2021. Fastcorrect: Fast error correc-
tion with edit alignment for automatic speech recog-
nition. In 35th Conference on Neural Information
Processing Systems, NeurIPS 2021.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, pages 7871–7880.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019.
OpenReview.net.

Anirudh Mani, Shruti Palaskar, Nimshi Venkat Meripo,
Sandeep Konam, and Florian Metze. 2020. ASR er-
ror correction and domain adaptation using machine
translation. In 2020 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP
2020, Barcelona, Spain, May 4-8, 2020, pages 6344–
6348. IEEE.

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.
2019. Specaugment: A simple data augmentation
method for automatic speech recognition. In Inter-
speech 2019, 20th Annual Conference of the Inter-
national Speech Communication Association, pages
2613–2617. ISCA.

Yi Ren, Jinglin Liu, Xu Tan, Zhou Zhao, Sheng
Zhao, and Tie-Yan Liu. 2020. A study of non-
autoregressive model for sequence generation. arXiv
preprint arXiv:2004.10454.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2019. Fastspeech: Fast,
robust and controllable text to speech. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, pages 3165–3174.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie 2.0: A
continual pre-training framework for language under-
standing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8968–8975.

Yujin Takahashi, Satoru Katsumata, and Mamoru Ko-
machi. 2020. Grammatical error correction using
pseudo learner corpus considering learner’s error ten-
dency. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics: Stu-
dent Research Workshop, ACL 2020, Online, July
5-10, 2020, pages 27–32. Association for Computa-
tional Linguistics.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579–2605.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pages 5998–
6008.

Dingmin Wang, Yi Tay, and Li Zhong. 2019.
Confusionset-guided pointer networks for chinese
spelling check. In Proceedings of the 57th Confer-
ence of the Association for Computational Linguis-
tics, ACL 2019, pages 5780–5785. Association for
Computational Linguistics.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wiesner,
Nanxin Chen, Adithya Renduchintala, and Tsubasa
Ochiai. 2018. Espnet: End-to-end speech processing
toolkit. In Interspeech 2018, 19th Annual Conference
of the International Speech Communication Associa-
tion, Hyderabad, India, 2-6 September 2018, pages
2207–2211. ISCA.

Weijia Xu and Marine Carpuat. 2021. EDITOR: an
edit-based transformer with repositioning for neu-
ral machine translation with soft lexical constraints.
Trans. Assoc. Comput. Linguistics, 9:311–328.

Ruiqing Zhang, Chao Pang, Chuanqiang Zhang, Shuo-
huan Wang, Zhongjun He, Yu Sun, Hua Wu, and
Haifeng Wang. 2021a. Correcting chinese spelling
errors with phonetic pre-training. In Findings
of the Association for Computational Linguistics:
ACL/IJCNLP 2021, pages 2250–2261. Association
for Computational Linguistics.

Ruiqing Zhang, Xiyang Wang, Chuanqiang Zhang,
Zhongjun He, Hua Wu, Zhi Li, Haifeng Wang, Ying
Chen, and Qinfei Li. 2021b. BSTC: A large-scale
Chinese-English speech translation dataset. In Pro-
ceedings of the Second Workshop on Automatic Si-
multaneous Translation.

Shaohua Zhang, Haoran Huang, Jicong Liu, and Hang
Li. 2020. Spelling error correction with soft-masked
BERT. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 882–890. Asso-
ciation for Computational Linguistics.

Shiliang Zhang, Ming Lei, and Zhijie Yan. 2019. In-
vestigation of transformer based spelling correction
model for ctc-based end-to-end mandarin speech
recognition. In Interspeech 2019, 20th Annual Con-
ference of the International Speech Communication
Association, Graz, Austria, 15-19 September 2019,
pages 2180–2184. ISCA.

5916

Yun Zhao, Xuerui Yang, Jinchao Wang, Yongyu Gao,
Chao Yan, and Yuanfu Zhou. 2021. BART based
semantic correction for mandarin automatic speech
recognition system. CoRR, abs/2104.05507.

A Experimental Details

A.1 Structure and parameters of ASR model
The ASR model is an end-to-end encoder-attention-
decoder model with a 12-layer conformer encoder
and a 6-layer conformer decoder, which is trained
with cross-entropy loss on decoder output and an
auxiliary CTC loss on encoder output. For the
hyper-parameters of the ASR model, we take the
beam search decoding with beam size to be 10,
conformer kernel size to be 15, ctc weight to be
0.6, lm weight to be 0.3.

A.2 Balance the objective of detection and
correction

We explore the impact of the weighting strategy
that balances the two objectives in fine-tuning. Ta-
ble 5 presents the results of PhVEC in different
values of hyper-parameter λ. Specifically, a larger
λ value means a higher weight on error detection,
and the highest F1 score is obtained when λ is 0.5.

λ
AISHELL-1 MAGICDATA

Dev(WER↓) TEST(WER↓) Dev(WER↓) TEST(WER↓)
0.2 3.61 3.75 11.42 11.37

0.5 3.52 3.62 11.19 11.04

0.8 3.74 3.83 11.55 11.47

Table 5: Impact of Different Values of λ.

5917

