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Abstract

Academic research is an exploratory activity
to discover new solutions to problems. By this
nature, academic research works perform litera-
ture reviews to distinguish their novelties from
prior work. In natural language processing, this
literature review is usually conducted under the
“Related Work” section. The task of related
work generation aims to automatically generate
the related work section given the rest of the
research paper and a list of papers to cite. Prior
work on this task has focused on the sentence as
the basic unit of generation, neglecting the fact
that related work sections consist of variable
length text fragments derived from different
information sources. As a first step toward a
linguistically-motivated related work genera-
tion framework, we present a Citation Oriented
Related Work Annotation (CORWA) dataset
that labels different types of citation text frag-
ments from different information sources. We
train a strong baseline model that automatically
tags the CORWA labels on massive unlabeled
related work section texts. We further suggest
a novel framework for human-in-the-loop, iter-
ative, abstractive related work generation.

1 Introduction

Academic research is an exploratory activity to
solve problems that have never been solved before.
By this nature, each academic research work must
sit at the frontier of its field and present novel contri-
butions that have not been addressed by prior work;
in order to convince readers of the novelty of the
current work, the authors must compare against the
prior work. While the format may vary among dif-
ferent fields, in natural language processing (NLP),
this literature review is usually conducted under
the “Related Work” section. Since each paper must
review the relevant prior work in its field, which
is shared among papers on the same topic or task,
many related work sections in a given field can
be similar in both content and format. Therefore,

Figure 1: An example of CORWA labels displayed using
the BRAT interface (Stenetorp et al., 2012).

it is a natural motivation to develop a system for
generating related work sections automatically.

The task of automatic related work generation
is that of generating the related work section of a
target paper given the rest of the target paper and a
set of papers to cite. Prior works (Hoang and Kan,
2010; Hu and Wan, 2014; Chen and Zhuge, 2019;
Wang et al., 2019; Xing et al., 2020; Ge et al., 2021;
Luu et al., 2021; Chen et al., 2021) mostly simplify
related work generation as a general summariza-
tion task, generating related work sections using
sentence-level models. This approach ignores the
nature of the related work section, which consists of
variable-length text fragments derived from differ-
ent information sources. These text fragments refer
to different cited papers, and they range in length
from a few words to multiple sentences. There are
also non-citation, supporting sentences that serve
various discursive roles, such as introducing new
topics, transitioning between topics, or reflecting
on the current work. We argue it is necessary to dis-
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tinguish these heterogeneous text fragments, rather
than treating related work sections as concatena-
tions of homogeneous sentences.

In addition to the heterogeneous information
sources for related work section sentences, the writ-
ing styles of these sentences also vary. Khoo et al.
(2011) classify literature reviews to be integrative
or descriptive, depending on whether they focus on
high-level ideas or provide more detailed informa-
tion on specific studies. However, this document-
level classification scheme was intended as a de-
scriptive, information science study of related work
sections, and it has not been previously used in
automatic related work generation.

Inspired by these observations, as a first step
towards linguistically-motivated related work gen-
eration, we present a Citation Oriented Related
Work Annotation (CORWA) dataset of related work
sections from NLP papers. We distinguish text
fragments from different information sources by
tagging each sentence with discourse labels and
identifying the spans of tokens belonging to each
citation. We further distinguish citations that give
detailed explanations of cited papers and those that
illustrate high-level concepts.

Our main contributions are as follows: (1) We
collect a CORWA dataset that decomposes the re-
lated work section with three inter-related annota-
tion tasks — discourse tagging, citation span detec-
tion, and citation type recognition — and demon-
strate the significance of CORWA with analyses
from multiple perspectives (§3). (2) We propose a
strong baseline model that automatically tags the
CORWA annotation scheme on massive unlabeled
related work section texts (§4). (3) We show that
citation spans are a better target than citation sen-
tences with two example tasks (§5). (4) We discuss
a novel framework for human-in-the-loop, iterative,
abstractive related work generation (§6).

2 Related Work

Extractive Related Work Generation. Early re-
lated work generation systems employed the ex-
tractive summarization approach. Hoang and Kan
(2010) pioneered the task, developing rules to se-
lect sentences following a topic hierarchy tree that
was assumed to be given as input. Hu and Wan
(2014) grouped sentences into topic-biased clus-
ters with PLSA, modeled sentence importance with
SVR, and applied a global optimization framework
to select sentences. Chen and Zhuge (2019) se-

lected sentences from papers that co-cited the same
cited papers as the target paper in order to cover a
minimum Steiner tree constructed from the paper’s
keywords. Wang et al. (2019) extracted Cited Text
Spans (CTS), the matched text spans in the cited
paper that are most related to a given citation. How-
ever, these extractive approaches aim to maximally
cover the citation texts with the extracted sentences,
thus mostly ignoring the reference type citations
that are concise and abstractive (§3.1.3).

Abstractive Related Work Generation. Re-
cently, Xing et al. (2020) extend the pointer-
generator (See et al., 2017) to take two text inputs,
allowing them to recover a masked citation sen-
tence given its neighboring context sentences. Ge
et al. (2021) encode the citation context, cited pa-
per’s abstract, and citation network and train their
model with multiple objectives: sentence salience
score regression of the cited paper’s abstract, func-
tional role classification of the citation sentence,
and citation sentence generation. Chen et al. (2021)
propose a relation-aware, multi-document encoder
to generate a related work paragraph given a set
of cited papers. Luu et al. (2021) fine-tune GPT2
(Radford et al., 2019) on scientific texts and ex-
plore several techniques for representing docu-
ments, such as using extracted named entities.

All of the works described above focus on the
generation aspect, while neglecting dataset collec-
tion; their datasets are mostly extracted automati-
cally. Moreover, the datasets are not reused, though
they are publicly available, because these works
all use slightly different problem definitions, and
thus the models are not directly comparable (Li
and Ouyang, 2022). In this work, we focus on
collecting a dataset that is widely applicable to var-
ious related work generation settings, rather than
proposing another incomparable approach.

3 CORWA Dataset

In this work, we limit our scope to publications
from the NLP domain for ease of automatically ex-
tracting the related work section; existing work on
related work generation has also focused on NLP
in the past. We build our dataset on top of the NLP
partition of the S2ORC dataset (Lo et al., 2020),
a large-scale corpus of scientific papers derived
from LATEX source code and PDF files. We extract
the related work section by matching the section
titles. Because not all papers cited in the extracted
related work sections are available in S2ORC, we
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prioritize annotating related work sections where
the majority of their cited papers are available.

3.1 Annotation Scheme

Our CORWA dataset decomposes the related work
section with three inter-related annotation tasks:
discourse tagging, citation span detection, and cita-
tion type recognition.

3.1.1 Discourse Tagging
Each sentence in a related work section has a spe-
cific role and information source. Some may be
general topic or transition sentences; some summa-
rize one or multiple prior works in detail, while oth-
ers describe the general relationship among prior
works at a high level. Our discourse tagging task
tags the role of each related work sentence with
one of six labels: {single_summ, multi_summ, nar-
rative_cite, reflection, transition, other}.

Single Document Summarization. Sin-
gle_summ refers to sentences that summarize one
single cited work in detail. Most typically, this
includes sentences with explicit citation marks, as
when a work is mentioned for the first time. We
also include the following cases: (1) follow-up
sentences without explicit citation marks that de-
scribe the same paper as a preceding single_summ
sentence, and (2) sentences containing multiple
citations that heavily focus on one of those works.

Multi-Document Summarization. Multi_summ
refers to sentences that summarize multiple prior
works of equal importance. As with single_summ,
we include the case of follow-up sentences without
explicit citation marks that continue describing the
same group of prior works discussed in a preceding
multi_summ sentence.

Narrative Citation. In contrast to single_summ
and multi_summ, narrative citation (narrative_cite)
refers to citation sentences that do not summarize
specific cited works in detail, but rather convey
high-level observations from the authors of the cur-
rent work. Narrative_cite sentences may contain
general statements about the field or task, or the au-
thors’ comments on or comparisons of prior works.

Reflection. In addition to describing prior works,
authors discuss how they relate to the current
work, highlighting the authors’ novel contributions.
These reflection sentences focus on the current
work, instead of prior works.

Transition. Non-citation sentences in related
work sections serve as topic introductions or tran-
sitions from one topic to another. We label these
supplemental sentences that do not belong to any
of the above cases as transition sentences.

Other. The related work sections in our dataset
are extracted automatically using heuristics based
on section titles, and there are occasionally some
errors in section boundary detection; we label those
sentences that are not actually part of the related
work section as other.

3.1.2 Citation Span Detection

In order to understand sentences that describe prior
work, it is crucial to recognize the token-level map-
ping between the citation text and the cited paper(s).
Our citation span detection task identifies the span
of text whose information is directly derived from a
specific cited paper. For example, if a cited paper is
explained with a summary, its citation span covers
the entire summary, which may range from part of
a sentence to a few consecutive sentences; if a cited
paper is mentioned with an explicit citation, but is
not described or discussed at all, then the citation
span is just the citation mark.

In constructing the dataset, we find that a single
citation rarely spans across paragraph boundaries
without a new explicit citation mark, so we require
our spans to be bounded by paragraph boundaries.

3.1.3 Citation Type Recognition

Our citation type recognition task indicates whether
a cited work is discussed in detail or used to illus-
trate a high-level concept. We label these types of
citations as dominant and reference, respectively.

Dominant. These citations are discussed in de-
tail, usually via summarization of their content, and
are often longer than reference citations.

Reference. These citations are not discussed in
detail. They frequently appear in narrative_cite
sentences, but may also appear in single_summ and
multi_summ sentences when they are not the main
focus of the sentence, and thus it is not sufficient
to depend on the sentence-level discourse tags to
distinguish them. For example, in Figure 1, line
5, the pointer-generator network (See et al., 2017)
is cited for reference as part of a longer dominant
citation span. Reference citations tend to be more
abstractive than dominant citations.
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Disc. Label (d) n(d) p(d) p(d |D) p(d |R) p(D | d) p(R | d) p(D, d) p(R, d)
single_summ 4255 30.8% 80.8% 1.1% 98.5% 1.5% 36.9% 0.6%
transition 3371 24.4% 0 0.2% 12.5% 87.5% 0 0.1%
narrative_cite 2540 18.4% 0.4% 90.2% 0.4% 99.6% 0.2% 48.9%
reflection 2489 18.0% 0.1% 6.1% 1.5% 98.5% 0.1% 3.3%
multi_summ 671 4.8% 18.7% 2.5% 86.4% 13.6% 8.5% 1.3%
other 510 3.7% 0 0 0 100.0% 0 0

Table 1: Distributions of discourse labels and citation spans in CORWA dataset. d: Discourse labels. D/R:
Dominant/reference type citation span. n(D) = 3565, n(R) = 4228. 2927 paragraphs in total.

3.2 Annotation Process and Agreement

Two graduate students from our university’s Com-
puter Science Department1, manually annotated
927 related work sections. They first annotated 23
related work sections from scratch, after which we
incrementally trained a transformer-based tagging
model (Vaswani et al., 2017) (§4) to assist the an-
notation process, asking the annotators to correct
the model’s predictions, rather than performing
manual annotation from scratch. We split the 362
annotated related work sections from papers pub-
lished in 2019 and later as our test set and all 565
earlier papers as the training set.

Since each related work section is labeled by a
single annotator, we calculate agreement by sam-
pling 50 related work sections from the test set and
asking the other annotator to re-annotate them from
scratch2. We obtain strong agreement on all tasks
(Cohen’s κ of 0.824, 0.965 and 0.878 for discourse
tagging, citation type recognition, and citation span
detection, respectively; citation type recognition
and citation span detection are converted to token-
level labels for agreement calculation).

The automated, correction-based annotation pro-
cess is much faster than annotating from scratch
and allows us to collect a much larger annotated
dataset. As a trade-off, the annotations may be bi-
ased by the model’s predictions if the annotators
fail to notice any incorrect predictions. This may
explain why our model performance reported in
§4.2 is higher than the inter-annotator agreement.

3.3 Analysis of CORWA

The tasks of discourse tagging, citation span detec-
tion, and citation type recognition, capture distinct
but overlapping perspectives of information.

3.3.1 Relations among CORWA Subtasks
We investigate the relationships among the
CORWA subtasks by calculating the co-occurrence

1One of them later became the second author of this paper.
2The disagreements are adjudicated by the first author.
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Figure 2: Histogram of the length of dominant and
reference-type citation spans, excluding citation marks.
The dashed vertical lines are the means of dominant and
reference span lengths, 34.5 and 8.2, respectively.

distributions of discourse labels and citation span
types. A citation span is considered dominant if it
contains any dominant citations, and reference oth-
erwise. Figure 2 shows that dominant-type spans
(average of 34.5 tokens) are significantly longer
than reference-type spans (average of 8.2 tokens).

Table 1 shows the count of each discourse label,
the conditional probability and the joint probability
of discourse labels and citation span types. Sin-
gle_summ with dominant span, multi_summ with
dominant span, and narrative_cite with reference
span are the most frequent combinations . These
observations make intuitive sense, since dominant-
type spans describe cited papers in detail, often
taking the form of a summary, while reference-type
spans are highly abstracted, making them more
likely to be mixed into narrative-type sentences
that discuss high-level ideas, often encompassing
multiple cited papers. This difference is analogous
to informative versus indicative summaries, where
the former serves as a surrogate for the document,
and the latter characterizes what the document is
about (Kan et al., 2001).

3.3.2 Related Work Writing Styles
Integrative or Descriptive? As Khoo et al.
(2011) note, authors may describe the same cited
paper in two different styles: descriptive, which ex-
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Figure 3: Parallel plot of the proportion of summariza-
tion and narrative sentences in each paragraph. Para-
graphs with neither type of sentences are excluded.

plicitly summarizes the cited paper, or integrative,
which describes and comments on the cited paper
in a narrative form. We examine the ratio of summa-
rization (both single_summ and multi_summ) and
narrative sentences (narrative_cite) in related work
paragraphs (Figure 3). The CORWA discourse la-
bels capture writing style differences among papers:
34.6% of related work section paragraphs only con-
tain summarization sentences, resembling Khoo et
al.’s descriptive literature review, while 32.1% of
paragraphs contain only narrative sentences, re-
sembling an integrative literature review. Interest-
ingly, 33.3% of paragraphs mix both styles and are
neither purely descriptive nor purely integrative.

Frequent Discourse Label Subsequences. Sci-
entific discourse is used by paper authors to pro-
mote their ideas (Li et al., 2021a). We analyze the
patterns of CORWA discourse labels to uncover
how authors promote their ideas using a mix of
sentence types. We apply the rule-based PrefixS-
pan (Han et al., 2001) and Gap-Bide (Li and Wang,
2008) algorithms to extract frequent discourse la-
bel subsequences. We identify six typical subse-
quences, shown in Supplementary Tables 7 and 8.
For example, the pattern of single_summ followed
by reflection compares the cited paper to the cur-
rent work, usually without directly criticizing the
cited paper, while single_summ followed by tran-
sition is the more impersonal pattern for criticism
of a cited paper, where authors tend to avoid direct
comparison with the current work.

4 Joint Related Work Tagger

To help propagate our CORWA annotations to mas-
sive unlabeled related work sections, we build a
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ℎ!"# ℎ$$ ℎ$% ℎ$& ℎ!"#… ℎ%$ ℎ%% ℎ%&… ℎ'$ ℎ'% ℎ'&ℎ!"# ………

𝐵𝑂𝑆 𝑤$$ 𝑤$% 𝑤$&… 𝐵𝑂𝑆 𝑤%$ 𝑤%% 𝑤%&… 𝐵𝑂𝑆 𝑤'$ 𝑤'% 𝑤'&…

𝐶𝑇$$

𝐶𝑆$$

𝐶𝑇$%

𝐶𝑆$%

𝐶𝑇$&

𝐶𝑆$&

Sent Att

𝐷𝑖𝑠𝑐$

𝐶𝑇%$

𝐶𝑆%$

𝐶𝑇%%

𝐶𝑆%%

𝐶𝑇%&

𝐶𝑆%&

Sent Att

𝐷𝑖𝑠𝑐%

𝐶𝑇'$

𝐶𝑆'$

𝐶𝑇'%

𝐶𝑆'%

𝐶𝑇'&

𝐶𝑆'&

Sent Att

𝐷𝑖𝑠𝑐'

……

……

……

Figure 4: The architecture of our joint related work tag-
ger, which performs discourse tagging (Disc), citation
type recognition (CT), and citation span detection (CS).

joint related work tagger baseline3 that is trained
on the three annotation tasks, discourse tagging, ci-
tation span detection, and citation type recognition,
via multi-task learning (Caruana, 1997).

4.1 Model Design

Figure 4 shows the model architecture of our joint
related work tagger. We encode related work sec-
tions using a transformer-encoder (Vaswani et al.,
2017) paragraph by paragraph, as we enforce the
independence of paragraphs in CORWA citation
span annotations. We decode citation span labels
and citation type labels token by token, while our
discourse tagging task uses the paragraph-level
sentence tagging mechanism proposed by Li et al.
(2021b). Because the three sub-tasks of CORWA
are inter-related, we use multi-task learning to
jointly train the tagger by sharing the encoder
across tasks.

4.1.1 Paragraph Encoder
We experiment with several pre-trained
transformer-encoders (Devlin et al., 2019;
Beltagy et al., 2019; Liu et al., 2019; Beltagy et al.,
2020), and eventually focus on SciBERT (Beltagy
et al., 2019), which is a variant of the BERT model
(Devlin et al., 2019) that is trained on a scientific
corpus with domain-specific tokenization schemes,
including NLP papers.

4.1.2 Task-specific Decoders
Citation Span Detection & Citation Type Recog-
nition. We use the BIO2 tagging scheme (Sang
and Veenstra, 1999) for the citation span detection
and citation type recognition tasks; we use B, I,
O for citation span detection and five labels — B-
Dominant, I-Dominant, B-Reference, I-Reference,

3https://github.com/jacklxc/CORWA
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Model Disc CT CS
SciBERT 0.898 0.959 0.930
+ Distant Dataset 0.908 0.963 0.933

Table 2: Test set micro-F1 scores of the SciBERT-based
joint related work tagger, with and without training on
distantly labeled data, on the discourse tagging (Disc),
citation type recognition (CT), and citation span detec-
tion (CS) tasks.

Parameter Name Value
Encoder Learning Rate 10−5

Decoder Learning Rate 5× 10−6

Dropout 0
Epoch 15
Batch Size 1
Steps per Update 10
γd 1
γt 3
γs 1.75

Table 3: Hyper-parameters of our best joint related work
tagger (SciBERT + Distant Dataset).

and O — for citation type recognition. We use
a two-layer feed-forward network to decode the
encoded paragraph-level token embeddings to the
output sequence of BIO2 tags.

Discourse Tagging. We apply Li et al. (2021b)’s
paragraph-level sentence tagging approach for the
discourse labels: a simple attention mechanism is
used to aggregate token embeddings, sentence by
sentence, into sentence encodings, before decoding
the sentence encodings into discourse labels using
a two-layer multi-layer feed-forward network.

4.1.3 Multi-task Learning
We use cross-entropy loss on all three CORWA sub-
tasks. We balance the relative importance of the
sub-tasks by taking a weighted sum of the sub-task
losses of discourse tagging, citation span detection,
and citation type recognition {Ld, Ls, Lt}:

L = γdLd + γsLs + γtLt (1)

where {γd, γs, γt} are tuned hyper-parameters;
their values are given in Table 3.

4.2 Experiments

We perform five-fold cross-validation to tune the
model hyper-parameters. Table 2 shows the strong
performance of the model4. We use the joint re-
lated work tagger to automatically label the unanno-
tated 11,465 related work sections remaining in the

4Supplementary Table 6 shows the full cross-validation
and test performances.
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Figure 5: Histogram of top-1 ROUGE recall scores of
retrieved sentences from cited papers using different
queries. The dashed vertical lines are the means of
reference sentence (0.220), dominant sentence (0.293),
dominant span (0.316), and reference spans (0.449).

S2ORC NLP partition and then use this distantly-
supervised data to further boost the model’s per-
formance. For the citation span detection and ci-
tation type recognition tasks, we use a token-level
F1 score. Our final, distantly-supervised joint re-
lated work tagger achieves more than 0.9 test F1
on all three tasks, indicating the high quality of
the model’s predictions. This model can be used
to propagate our labels on the unannotated related
work sections to create a very large training set for
future work.

5 Spans as an Alternative to Sentences

We argue that the citation spans annotated in
CORWA are a better alternative to the citation sen-
tences that have previously been used for the tasks
of ROUGE-based retrieval and citation text genera-
tion.

5.1 Queries for Relevant Sentence Retrieval
Citations focus on a small portion of the content
in cited papers, and this focus is not explicitly
recorded in the citation network. A popular ap-
proach for determining relevant sentences retrieves
sentences from the cited papers by comparing the
similarity between the gold citation sentence and
candidate sentences in the cited paper (Cao et al.,
2015; Yasunaga et al., 2017, 2019; Ge et al., 2021).
Figure 5 compares the distribution of the top-1 av-
erage of ROUGE-1 and ROUGE-2 recall scores
(Lin, 2004) of retrieved sentences from cited papers
using citation spans with those using citation sen-
tences5. There is no significant difference between
the average ROUGE scores of dominant spans and
sentences containing dominant citations, which is

5Only papers included in S2ORC dataset are considered.
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Figure 6: Histogram of the ratio of between the lengths
of dominant and reference type citation spans and the
corresponding citation sentences. None of the reference
spans are longer than one sentence. 27.7%, 46.6%, and
25.7% of dominant spans are shorter than, equal to, or
longer than one sentence, respectively.

reasonable because dominant spans are often full
sentences anyway. In contrast, the average score
of reference spans is significantly higher than that
of sentences containing reference-type citations;
reference spans are shorter and contain highly con-
centrated key information derived from their cited
papers. Thus, using CORWA citation spans as
queries for ROUGE-based cited sentence retrieval
is superior for reference-type citations and compa-
rable for dominant-type citations.

5.2 Span-based Related Work Generation
Existing neural network-based, abstractive related
work generation systems generate citation sen-
tences given the surrounding context sentences
(Xing et al., 2020; Ge et al., 2021; Luu et al., 2021)
or generate entire paragraphs containing multiple
citations (Chen et al., 2021). These task settings
neglect the fact that the citation text corresponding
to a cited paper is not necessarily in the form of a
sentence, but could be a portion of a sentence or a
block of multiple sentences. Our span-based anno-
tation scheme identifies the citation tokens that are
directly derived from the cited papers.

As Figure 6 shows, reference spans are not full
sentences, while dominant spans can cover multi-
ple sentences. For reference-type citations, using
a full sentence as the generation target includes
potentially unrelated tokens outside the citation
span that do not refer to the cited paper. For domi-
nant-type citations, using a single sentence as the
generation target can result in 1) information loss
when not all sentences describing the cited paper
are included in the target, and the model never
learns to generate them, or 2) information leak
when sentences that actually describe the cited pa-

per are used as context sentences instead of target
sentences. Thus, we propose a span-level citation
text generation task and present a pilot study using
a Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020) baseline model.

5.2.1 Experimental Setting
The common Transformer-based language models
(Devlin et al., 2019; Liu et al., 2019; Lewis et al.,
2020; Raffel et al., 2020) have a limited input win-
dow size (typically 512 or 1024 tokens), which
presents a major challenge for tasks like related
work generation that use multiple long documents
as inputs. LED (Beltagy et al., 2020) addresses
this challenge by using a local self-attention mech-
anism, rather than global self-attention, handling
in input context windows of up to 16k tokens. We
present an LED-based baseline model for the cita-
tion span generation task.

We first pretrain the LED-base model on the
masked language modeling (MLM) task (Devlin
et al., 2019) using related work sections from
S2ORC papers in the computer science domain,
as well as on the cross-document language model-
ing (CDLM) task (Caciularu et al., 2021), which
aligns masked citation sentences with their context
sentences and the full text of their cited papers. We
further pretrain the LED encoder with the three
CORWA sub-tasks (Supplementary Table 6). All
pretraining strictly excludes the texts from test set.

For the citation span generation task, we input
the concatenation of {the target paper’s introduc-
tion (following Luu et al. (2021)), the partial related
work paragraph excluding the target citation span,
and the concatenation of {explicit citation mark,
title, and abstract} of each cited paper in the target
span6}; the generation target is the ground truth ci-
tation span from CORWA. We provide the explicit
citation mark (e.g. Devlin et al., 2018) because it
is simple to extract but cannot be inferred from the
paper text alone. Just as a human reader may re-
member the content of the frequently cited papers
or the research topics of frequently cited authors,
so the citation mark tokens may carry information
about the cited paper and its authors.

In addition to the CORWA training set, we use
the distantly supervised labels predicted by our
joint related work tagger (§4.2) for training. We use
the default hyper-parameters of the Huggingface
LED implementation (Wolf et al., 2020).

6We indicate whether the target span is dominant or refer-

5432



Dominant Reference
Models R-1 R-2 R-L R-1 R-2 R-L
LED-base w/o pretrain 0.220 0.060 0.183 0.228 0.091 0.223
LED-base Span 0.230 0.062 0.186 0.244 0.107 0.240
LED-base Sentence 0.244 0.075 0.202 0.193 0.050 0.151

Table 4: Performance of citation span/sentence generation using LED-base (Beltagy et al., 2020). Citation marks
are excluded from the scores since they are trivial to generate and bring up the scores unintentionally. Note that the
performance of span/sentence generations are NOT directly comparable due to different generation targets.

Flu. Rel. Coh. Overall
Dominant
Gold Span 4.61 3.53 4.17 3.64
Span 4.92 4.07 4.20 3.99
Sentence 4.83 4.03 4.17 4.02
Reference
Gold Span 4.87 4.04 4.18 4.00
Span 4.68 4.24 4.26 3.96
Sentence 4.86 3.64 4.09 3.70

Table 5: Average fluency, relevance, coherence and
overall scores, rated by human judges.

5.2.2 Experimental Results
As Table 4 shows, the ROUGE scores of our
LED-base models for citation span/sentence gen-
eration are similar to previous sentence-level ci-
tation text generation models (Xing et al., 2020;
Ge et al., 2021), and our pretraining improves the
citation span generation performance. Compared
to sentence-level generation, span-level generation
has lower scores for dominant citations, but higher
scores for reference citations. However, because
the span- and sentence-level tasks have different
generation targets, their scores cannot be directly
compared.

We perform a human evaluation following the
setting of Xing et al. (2020); Ge et al. (2021). We
sample 15 instances each for dominant and ref-
erence citations and compare their corresponding
span- and sentence-based generation outputs, as
well as the gold spans from the original related
work sections. Each citation text is rated by three
NLP graduate students who are fluent in English
on a 1 (very poor) to 5 (excellent) point scale, with
respect to four aspects: fluency (whether a citation
span/sentence is fluent), relevance (whether a cita-
tion span/sentence is relevant to the cited paper(s)),
coherence (whether a citation span/sentence is co-
herent within its context), and overall quality.

Table 5 shows human evaluation results, with
moderate inter-annotator agreement (Kendall’s τ
of 0.298, 0.205, and 0.172 among three annotators).
All citation texts are judged to be highly fluent.

Interestingly, in previous studies (Xing et al.,

ence type, as well as the type of each citation in the span.

2020; Ge et al., 2021) the scores of gold sentences
are higher than those of generated texts, but our
gold spans have a significantly lower relevance
scores than the generated spans. This is likely be-
cause the gold spans contain information derived
from the body sections of the cited papers, which
are not provided to either the models or to the hu-
man judges. As a result, some gold spans appear
to be irrelevant to the human judges, echoing our
earlier finding in §5.1 that citation spans contain
more focused information. This observation also
suggests that gold citation spans are not necessarily
the best target for all task settings.

We also see that, while dominant sentences and
spans receive similar scores, the reference sen-
tences have lower relevance scores than the spans.
This result makes sense because reference citation
spans are short and focused, so the full sentences
include tokens unrelated to the cited paper(s). Over-
all, the generated spans are rated slightly higher
than the generated sentences by the human judges,
confirming that span-level citation text generation
is preferable to sentence-level generation.

6 Toward Full Related Work Generation

Existing extractive related work generation systems
(Hoang and Kan, 2010; Hu and Wan, 2014; Chen
and Zhuge, 2019; Wang et al., 2019) select sen-
tences from the target paper and/or the cited papers,
which can be concatenated to form a full related
work section; neural network-based, abstractive
related work generation systems generate individ-
ual citation sentences (Xing et al., 2020; Ge et al.,
2021; Luu et al., 2021) or paragraphs (Chen et al.,
2021). However, none of these prior works address
the ordering of the extracted/generated sentences or
the grouping of sentences into paragraphs, nor are
they able to produce rhetorical sentences to smooth
the transitions between citations. No prior work
bridges the gap from generating individual citation
texts to generating a full related work section.

We suggest a bottom-up, iterative approach to
generate full related work sections. The process
would begin with generating citation spans under
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the settings proposed in §5.2. Then, multiple gener-
ated citation spans would be aggregated and rewrit-
ten into citation text blocks in either the summa-
rization or narrative style. These blocks would be
further aggregated and rewritten into paragraphs by
generating transition and reflection sentences.

Generating and rewriting in this pipeline fashion
has the following benefits: (1) It mitigates the prac-
tical issue of computational resource limitations,
given that state-of-the-art models do not perform
well on long text generation. (2) The auxiliary in-
puts, such as citation functions or discourse tags,
may vary for each stage of generation. (3) As a
practical system to assist researchers, it is crucial to
allow user involvement in the iterative generation
process. Due to the large search space, consisting
of multiple valid related work section candidates
with different writing styles, it is extremely chal-
lenging to precisely generate a satisfying text with a
one-shot, end-to-end system. A human-in-the-loop
approach allows the user to significantly prune the
search space and simultaneously reduces the error-
propagation issue caused by the pipeline design.

7 Other Related Tasks

7.1 Scientific Document Understanding

Besides summarization, scientific document under-
standing also plays an important role in related
work generation.

Citation Analysis. Citations are the core of re-
lated work sections. There has been a line of re-
search on citation analysis, including citation func-
tion (Teufel et al., 2006; Dong and Schäfer, 2011;
Jurgens et al., 2018; Tuarob et al., 2019), citation
intent (Cohan et al., 2019; Lauscher et al., 2021),
citation sentiment (Athar, 2011; Athar and Teufel,
2012; Ravi et al., 2018; Vyas et al., 2020), etc.
These studies annotate citations with different la-
beling schemes to study the various usages and
purposes of citations.

Discourse Analysis. Scientific discourse analy-
sis studies the rhetorical components of clauses,
sentences, or text spans that are not limited to ci-
tations, uncovering how authors persuade expert
readers with their claims. There is a significant
amount of prior work proposing discourse schemes
and developing models for discourse tagging for
scientific articles (Teufel and Moens, 1999, 2002;
Hirohata et al., 2008; Liakata, 2010; Liakata et al.,
2012; Guo et al., 2010; De Waard and Maat, 2012;

Burns et al., 2016; Dernoncourt and Lee, 2017;
Huang et al., 2020; Li et al., 2021a).

Our CORWA discourse tagging task focuses on
distinguishing the source of the information in each
related work sentence, which is complementary to
the discourse tagging work listed above.

7.2 Cited Text Span
AbuRa’ed et al. (2020) extend Hoang and Kan
(2010)’s RWSData dataset by annotating the Cited
Text Span (CTS) (Wang et al., 2019). They an-
notate the specific sentences in cited papers that
each citation in the target paper is based on. For
each cited paper, they further collect a set of papers
that co-cite this cited paper. Jaidka et al. (2018,
2019) propose the CL-Scisumm shared task, which
includes identifying the CTS in reference papers
for each citation instance. This shared task pro-
vides a valuable dataset for the precise generation
of citation texts from a CTS, in contrast to most
recent work, which uses the cited paper’s abstract
or introduction.

7.3 Studies of Literature Reviews
From an information studies perspective, Khoo
et al. (2011) largely classify literature reviews into
two styles: integrative and descriptive. Descrip-
tive literature reviews summarize individual studies
and provide detailed information on each, such as
methods, results, and interpretation; integrative lit-
erature reviews provide fewer details of individual
studies, instead focusing on synthesizing ideas and
results extracted from these papers. Jaidka et al.
(2010, 2011, 2013) analyze the properties of these
two types of literature reviews.

8 Conclusion

We present the CORWA dataset of three inter-
related annotation tasks: discourse tagging, citation
span detection, and citation type recognition. We
demonstrate the significance of CORWA with anal-
yses from multiple perspectives, such as writing
style and discourse patterns. We propose a strong
baseline model that can automatically propagate
the CORWA annotation scheme to massive unla-
beled related work sections. Furthermore, we show
that citation spans are a better alternative to citation
sentences for both the relevant sentence retrieval
and citation generation tasks. Finally, we discuss
a novel framework for human-in-the-loop iterative
abstractive related work generation.
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A Appendix

A.1 Training Configurations
For the joint related work tagger training, we use
GeForce GTX 1080 11 GB GPUs. The training
process lasts 2.5 hours on a single GPU using Hug-
gingface’s (Wolf et al., 2020) SciBERT, BERT-base
or Roberta-base as the paragraph encoders, and it
lasts 6.5 hours using LED-base encoder. We train
the models for 15 epochs. It takes approximately
one week to run the hyper-parameter search using
five-fold cross-validation for all language models,
using 8 GPUs in total.

For training the citation span generation model,
we use Tesla V100s-PCIE-32GB GPUs. The train-
ing process lasts for 2 days on a single GPU. We
run the training for a maximum of 3 epochs with
early stopping based on the validation loss.

A.2 Ethical Considerations
We present a new dataset that is derived from the
S2ORC dataset (Lo et al., 2020), which is released
under CC BY-NC 2.0 license. The Huggingface
models (Wolf et al., 2020) we develop upon are
released under Apache License 2.0.

Our annotators were compensated for their work
at a rate of double the minimum wage in our local
area.
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Five-fold cross-validation scores Test-set scores
Models Disc CT CS Disc CT CS
SciBERT (Beltagy et al., 2019) 0.900 (0.0099) 0.961 (0.0038) 0.926 (0.0059) 0.898 0.959 0.930
Roberta-base (Liu et al., 2019) 0.886 (0.0050) 0.956 (0.0036) 0.922 (0.0048) 0.885 0.956 0.929
BERT-base (Devlin et al., 2019) 0.879 (0.0070) 0.954 (0.0055) 0.910 (0.0064) 0.875 0.952 0.915
LED-base (Pretrained) 0.872 (0.0253) 0.948 (0.0117) 0.905 (0.0088) 0.869 0.910 0.907
LED-base (Beltagy et al., 2020) 0.865 (0.0090) 0.922 (0.0128) 0.907 (0.0074) 0.842 0.874 0.909

Table 6: Micro-F1 scores for the joint related work tagger using different language models as the encoder. The
tasks are discourse tagging (Disc), citation type recognition (CT), and citation span detection (CS). Five-fold
cross-validation scores are reported as the mean (standard deviation) across all folds. The pretraining of LED is
explained in §5.2.1.

Discourse Subsequence
transition, narrative_cite, single_summ
Functionalities
Introducing an approach and providing background knowledge.
Examples
1. Joint POS tagging with parsing is not a new idea.
2. In PCFG-based parsing (Collins, 1999; Charniak, 2000; Petrov et al., 2006), POS tagging is
considered as a natural step of parsing by employing lexical rules.
3. For transition-based parsing, Hatori et al. (2011) proposed to integrate POS tagging with
dependency parsing.
Discourse Subsequence
single_summ, reflection
Functionalities
Comparing the prior work to the current work.
Examples
1. Haghighi et al. (2009) confirm and extend these results, showing BLEU improvement for
a hierarchical phrase-based MT system on a small Chinese corpus.
2. As opposed to ITG, we use a linguistically motivated phrase-structure tree to drive our search
and inform our model.
Discourse Subsequence
reflection, single_summ
Functionalities
Supporting the current work with a previous work.
Examples
1. Our baseline semi-supervised model can be viewed as an extension of these approaches to a
reading comprehension setting.
2. Dai et al. (2015) also explore initialization from a language model, but find that the
recurrent autoencoder is superior, which is why we do not consider language models in this work.
Discourse Subsequence
transition, narrative_cite, transition
Functionalities
Topic sentence, narration of prior work followed by critique.
Examples
1. Traditional work on relation classification can be categorized into feature-based methods
and kernel-based methods.
2. The former relies on a large number of human-designed features (Zhou et al., 2005; Jiang and
Zhai, 2007; Li and Ji, 2014) while the latter leverages various kernels to implicitly explore a much
larger feature space (Bunescu and Mooney, 2005; Nguyen et al., 2009 ).
3. However, both methods suffer from error propagation problems and poor generalization abilities
on unseen words.

Table 7: Frequent discourse label subsequences detected by applying PrefixSpan (Han et al., 2001) and Gap-Bide
algorithm (Li and Wang, 2008).
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Discourse Subsequence
single_summ, single_summ, transition
Functionalities
Commenting previous works summarized.
Examples
1. Walker et al. (2012) extract rules representing characters from their annotated movie
subtitle corpora.
2. Miyazaki et al. (2015) propose a method of converting utterances using rewriting rules
automatically derived from a Twitter corpus.
3. These approaches have a fundamental problem to need some manual annotations, which is a
main issue to be solved in this work.
Discourse Subsequence
narrative_cite, transition, single_summ
Functionalities
Criticizing the previously cited work and citing an improved work.
Examples
1. There have also been several classical studies based on nonneural approaches to headline
generation (Woodsend et al., 2010; Alfonseca et al., 2013; Colmenares et al., 2015) ,
but they basically addressed sentence compression after extracting important linguistic
units such as phrases.
2. In other words, their methods can still yield erroneous output, although they would be more
controllable than neural models.
3. One exception is the work of Alotaiby (2011) , where fixed-sized substrings were considered
for headline generation.
Discourse Subsequence
narrative_cite, transition, single_summ
Functionalities
Describing an idea following by a comment and then citations implementing the idea.
Examples
1. One of the classes of errors in the Helping Our Own (HOO) 2011 shared task (Dale and
Kilgarriff, 2011) was punctuation.
2. Comma errors are the most frequent kind of punctuation error made by learners.
3. Israel et al. (2012) present a model for detecting these kinds of errors in learner texts.

Table 8: Frequent discourse label subsequences detected by applying PrefixSpan (Han et al., 2001) and Gap-Bide
algorithm (Li and Wang, 2008), continued.
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