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Abstract

Frame semantic parsing is a fundamental
NLP task, which consists of three subtasks:
frame identification, argument identification
and role classification. Most previous stud-
ies tend to neglect relations between differ-
ent subtasks and arguments and pay little at-
tention to ontological frame knowledge de-
fined in FrameNet. In this paper, we pro-
pose a Knowledge-guided Incremental seman-
tic parser with Double-graph (KID). We first
introduce Frame Knowledge Graph (FKG), a
heterogeneous graph containing both frames
and FEs (Frame Elements) built on the frame
knowledge so that we can derive knowledge-
enhanced representations for frames and FEs.
Besides, we propose Frame Semantic Graph
(FSG) to represent frame semantic structures
extracted from the text with graph structures.
In this way, we can transform frame seman-
tic parsing into an incremental graph construc-
tion problem to strengthen interactions be-
tween subtasks and relations between argu-
ments. Our experiments show that KID out-
performs the previous state-of-the-art method
by up to 1.7 F1-score on two FrameNet datasets.
Our code is availavle at https://github.
com/PKUnlp-icler/KID.

1 Introduction

The frame semantic parsing task (Gildea and Juraf-
sky, 2002; Baker et al., 2007) aims to extract frame
semantic structures from sentences based on the
lexical resource FrameNet (Baker et al., 1998). As
shown in Figure 1, given a target in the sentence,
frame semantic parsing consists of three subtasks:
frame identification, argument identification and
role classification. Frame semantic parsing can
also contribute to downstream NLP tasks such as
machine reading comprehension (Guo et al., 2020),
relation extraction (Zhao et al., 2020) and dialogue
generation (Gupta et al., 2021).

∗Corresponding author

Figure 1: Given the target receive in this sentence, the
frame identification is to identify the frame Receiving
evoked by it; the argument identification is to find the
arguments (He, the book, ...) of this target; the role
classification is to assign frame elements (Recipient,
Theme, ...) as semantic roles to these arguments.

FrameNet is an English lexical database, which
defines more than one thousand hierarchically-
related frames to represent situations, objects or
events, and nearly 10 thousand FEs (Frame Ele-
ments) as frame-specific semantic roles with more
than 100,000 annotated exemplar sentences. In ad-
dition, FrameNet defines ontological frame knowl-
edge for each frame such as frame semantic re-
lations, FE mappings and frame/FE definitions.
The frame knowledge plays an important role in
frame semantic parsing. Most previous approaches
(Kshirsagar et al., 2015; Yang and Mitchell, 2017;
Peng et al., 2018) only use exemplar sentences and
ignore the ontological frame knowledge. Recent
researches (Jiang and Riloff, 2021; Su et al., 2021)
introduce frame semantic relations and frame def-
initions into the subtask frame identification. Dif-
ferent from previous work, we construct a hetero-
geneous graph named Frame Knowledge Graph
(FKG) based on frame knowledge to model multi-
ple semantic relations between frames and frames,
frames and FEs, as well as FEs and FEs. Further-
more, we apply FKG to all subtasks of frame se-
mantic parsing, which can fully inject frame knowl-
edge into frame semantic parsing. The knowledge-
enhanced representations of frames and FEs are
learned in a unified vector space and this can also
strengthen interactions between frame identifica-
tion and other subtasks.

Most previous systems neglect interactions be-
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Figure 2: An example of how frame knowledge contributes to frame semantic parsing. The frame semantic relations
and FE mappings guide inter-frame reasoning (from left sentence to right); and the FE definitions help with
intra-frame reasoning (Theme to Role and Role to Donor).

tween subtasks, they either focus on one or two
subtasks (Hermann et al., 2014; FitzGerald et al.,
2015; Marcheggiani and Titov, 2020) of frame se-
mantic parsing or treat all subtasks independently
(Das et al., 2014; Peng et al., 2018). Furthermore,
in argument identification and role classification,
previous approaches process each argument sepa-
rately with sequence labeling strategy (Yang and
Mitchell, 2017; Bastianelli et al., 2020) or span-
based graphical models (Täckström et al., 2015;
Peng et al., 2018). In this paper, we propose Frame
Semantic Graph (FSG) to represent frame semantic
structures and treat frame semantic parsing as a
process to construct this graph incrementally. With
graph structure, historical decisions of parsing can
guide the current decision of argument identifica-
tion and role classification, which highlights inter-
actions between subtasks and arguments.

Based on two graphs mentioned above, we
propose our framework KID (Knowledge-guided
Incremental semantic parser with Double-graph).
FKG provides a static knowledge background for
encoding frames and FEs while FSG represents
dynamic parsing results in frame semantic parsing
and highlights relations between arguments.

Overall, our contributions are listed as follow:

• We build FKG based on the ontological
frame knowledge in FrameNet. FKG incorpo-
rates frame semantic parsing with structured
frame knowledge, which can get knowledge-
enhanced representations of frames and FEs.

• We propose FSG to represent the frame se-
mantic structures. We treat frame semantic
parsing as a process to construct the graph in-
crementally. This graph focuses on the target-
argument and argument-argument relations.

We evaluate the performance of KID on two
FrameNet datasets: FN 1.5 and FN 1.7, the results
show that the KID achieves state-of-the-art on these
datasets by increasing up to 1.7 points on F1-score.
Our extensive experiments also verify the effective-
ness of these two graphs.

2 Ontological Frame Knowledge

Frame semantics relates linguistic semantics to
encyclopedic knowledge and advocates that one
cannot understand the semantic meaning of one
word without essential frame knowledge related to
the word (Fillmore and Baker, 2001). The frame
knowledge of a frame contains frame/FE defini-
tions, frame semantic relations and FE mappings.
FrameNet defines 8 kinds of frame semantic re-
lations such as Inheritance, Perspective_on and
Using; for any two related frames, the FrameNet
defines FE mappings between their FEs. For exam-
ple, the frame Receiving inherits from Getting and
the FE Donor of Receiving is mapped to the FE
Source of Getting. Each frame or FE has its own
definition and may mention other FEs.

We propose two ways of reasoning about frame
semantic parsing: inter-frame reasoning and intra-
frame reasoning in Figure 2. Frame knowledge
mentioned above can guide both ways of reasoning.
The frame semantic relation between Receiving
and Getting and FE mappings associated with it
allow us to learn from the left sentence when pars-
ing the right sentence because similar argument
spans of two sentences will have related FEs as
their roles. The FE definitions reflect dependen-
cies between arguments. The definition of Role
in frame Receiving mentions Theme and Donor,
which reflects dependencies between argument the
book and argument as a gift.
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3 Task Formulation

Given a sentence S = w0, . . . , wn−1 with a target
span t in S, the frame semantic parsing aims to
extract the frame semantic structure of t. Suppose
that there are k arguments of t in S: a0, . . . , ak−1,
subtasks can be formulated as follow:

• Frame identification: finding an f ∈ F
evoked by target t, where F denotes the set of
all frames in the FrameNet.

• Argument identification: finding the bound-
aries isτ and ieτ for each argument aτ =
wisτ , . . . , wieτ .

• Role classification: assigning an FE rτ ∈ Rf

to each aτ , where Rf denotes the set of all
FEs of frame f .

4 Method

KID encodes all frames and FEs to knowledge-
enhanced representations via frame knowledge
graph encoder (section 4.1). For a sentence with
a target, contextual representations of tokens are
derived from the sentence encoder (section 4.2).
Frame semantic parsing is regarded as a process
to build FSG incrementally from an initial target
node to complete FSG. Frame identification finds a
frame evoked by the target and combines the target
with its frame into the initial node of FSG (section
4.3.1). Argument identification (section 4.3.2) and
role classification (section 4.3.3) for each argument
is based on the current snapshot of partial FSG con-
sidering all historical decisions. Section 4.4 tells
how frame semantic graph decoder encodes partial
FSG to its representation and how it expands FSG
incrementally, which is also shown in Figure 4.

4.1 Frame Knowledge Graph Encoder
FKG is an undirected multi-relational heteroge-
neous graph, and Figure 3 shows a subgraph of
FKG. Its nodes contain both frames and FEs and
there are four kinds of relations in FKG: frame-FE,
frame-frame, inter-frame FE-FE and intra-frame
FE-FE relations. The following will show how we
extract these relations from frame knowledge:
Frame-FE: we connect a frame with its FEs so that
we can learn representations of frames and FEs in
a unified vector space to strengthen interactions
between frame identification and other subtasks.
Frame-frame and inter-frame FE-FE: these two
kinds of relations are frame semantic relations and

Figure 3: A subgraph of FKG. We only show intra-
frame and inter-frame FE-FE relations in the frame Re-
ceiving. Inside the solid rectangular box are a frame
and its FEs.

FE mappings respectively and here we ignore re-
lation types of frame semantic relations. They can
both guide inter-frame reasoning in Figure 2.
Intra-frame FE-FE: If the definition of an FE
mentions another FE in the same frame, they will
have intra-frame FE-FE relations with each other.
This relation can help with intra-frame reasoning
and strengthen interactions between arguments.

The frame knowledge graph encoder aims to get
knowledge-enhanced representations of nodes in
FKG via an RGCN (Schlichtkrull et al., 2018) mod-
ule. We use F to represent all frames in FrameNet
and Rf to represent all FEs of frame f . In ad-
dition, we use R =

⋃
f∈F Rf to represent all

FEs in the FrameNet. Let 0, . . . , |F| − 1 denote
all frames and |F|, . . . , |F| + |R| − 1 denote all
FEs. Moreover, we introduce a special dummy
node indexing |F|+ |R| into FKG. So the vectors
y0, . . . , yM ∈ Rdn denote the representations of all
nodes in FKG, where M = |F|+ |R|.

For each node i, we take a randomly initialized
embedding y

(0)
i ∈ Rdn as the input feature of the

RGCN module. Then we can get representations
of all frames and FEs:

y0, . . . , yM = RGCN
(
y
(0)
0 , . . . , y

(0)
M

)
(1)

The RGCN module models four kinds of rela-
tions: Frame-FE, intra-frame FE-FE, frame-frame
and inter-frame FE-FE. For better modeling inter-
frame relations between FEs, we also fuse name
information into representations of FEs. The FEs
whose names are the same will share the same em-
beddings, i.e. for i, j ≥ |F|, y(0)i = y

(0)
j if the

name of i is the same as j.
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Figure 4: Based on the representation gτ of partial Gτ , frame semantic graph decoder identifies new argument as a
gift with pointer networks, and label it with FE Role. Gτ will be updated to Gτ+1 with (as a gift, Role).

4.2 Sentence Encoder

The sentence encoder converts tokens of the sen-
tence S = w0, . . . , wn−1 to their representations
h0, . . . , hn−1 ∈ Rdh .

We use LSTM (Hochreiter and Schmidhuber,
1997) and GCN (Kipf and Welling, 2016) to model
both sequential structure and dependency structure:

α0, . . . , αn−1 = BiLSTM(e0, . . . , en−1) (2)

β0, . . . , βn−1 = GCN(α0, . . . , αn−1, T ) (3)

ei denotes the embedding of word wi. We get
contextual representations hi by adding βi to αi.
We follow previous studies (Marcheggiani and
Titov, 2020; Bastianelli et al., 2020) to use syn-
tax structures like dependency tree T of S here.

Furthermore, we use boundary information
(Wang and Chang, 2016; Cross and Huang, 2016;
Ouchi et al., 2018) to represent spans like s =
wi, . . . , wj based on token representations because
we need to embed spans into the vector space of
FKG in frame identification and role classification:

Q(i, j) = FFN ((hj − hi)⊕ (hj + hi)) (4)

The dimension of Q(i, j) is dn. The ⊕ denotes
concatenation operation and FFN denotes Feed For-
ward Network.

4.3 Frame Semantic Parsing

4.3.1 Frame Identification
A frame f ∈ F will be identified based on the
target t, representations of tokens h0, . . . , hn−1

and representations of frames y0, . . . , y|F|−1 with
a scoring module. The target t = wist

, . . . , wiet
will be embedded to the vector space of all frames
as γt ∈ Rdn . We can calculate dot product nor-
malized similarities between γt and all frames
YF = (y0, . . . , y|F|−1) ∈ Rdn×|F| to get the prob-
ability distribution of f . For short, we use πt to
denote Q(ist , i

e
t ):

γt = tanh (FFN(πt)) (5)

P (f |S, t) = softmax
(
Y ⊤
F · γt

)
(6)

4.3.2 Argument Identification
Based on gτ , the representation of current snapshot
of FSG Gτ , we need to find an argument aτ =
wisτ , . . . , wieτ . We use pointer networks (Vinyals
et al., 2015) to identify its start and end positions
isτ and ieτ separately via an attention mechanism,
which is more efficient than traditional span-based
model (Chen et al., 2021). Take isτ as example:

ρsτ = FFN (gτ ) (7)

P (isτ |S,Gτ ) = softmax
(
H⊤ · ρsτ

)
(8)

H = (h0, . . . , hn−1) ∈ Rdh×n represents the
output of the sentence encoder, and ρsτ ∈ Rdh is
used to find the start position of argument span aτ .

4.3.3 Role Classification
Based on gτ and aτ , we embed aτ into the vec-
tor space of FEs as γaτ ∈ Rdn . Similar to frame
identification, we calculate dot product normal-
ized similarities between γaτ and all FEs YR =
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(y|F|, . . . , y|F|+|R|) ∈ Rdn×(|R|+1) to get the con-
ditional probability distribution of r given aτ and
Gτ .

γaτ = FFN(πaτ ⊕ gτ ) (9)

P (rτ |S,Gτ , aτ ) = softmax
(
Y ⊤
R · γaτ

)
(10)

4.4 Frame Semantic Graph Decoder

We propose FSG to represent the frame semantic
structure of t in the sentence S and we treat the
frame semantic parsing as a process to construct
FSG incrementally. Intermediate results of FSG are
partial FSGs representing all historical decisions,
which highlights interactions between arguments.
Suppose that there are k arguments of target t:
a0, . . . , ak−1 with their roles r0, . . . , rk−1. For τ -
th snapshot of FSG Gτ , it contains τ+1 nodes: one
target node (t, f) and τ argument nodes (if exist)
(a0, r0), . . . , (aτ−1, rτ−1). The target node will be
connected with all argument nodes. The indices of
nodes in Gτ depend on the order in which they are
added into the graph, 0 denotes the target node and
1, . . . , τ denotes (a0, r0), . . . , (aτ−1, rτ−1).

We encode Gτ to its representation gτ :

gτ = Maxpooling (z0, . . . , zτ ) (11)

z0, . . . , zτ = GCN
(
z
(0)
0 , . . . , z(0)τ , Gτ

)
(12)

z
(0)
j =

{
πt ⊕ yif , j = 0

πaj ⊕ yirj , j = 1, . . . , τ
(13)

where if and irj denotes indices of f and rj in
FKG, and πaj = Q(isj , i

e
j). The GCN module is to

encode partial FSG.
Based on the representation gτ of each snapshot

Gτ , KID predicts boundary positions of argument
aτ and assign an FE rτ as its semantic role (section
4.3.2,4.3.3). The Gτ will be updated to Gτ+1 with
the new node (aτ , rτ ) until the rτ is the special
dummy node in FKG. Figure 4 shows how to find
a new node and add it into the FSG.

5 Training and Inference

5.1 Training

We train KID with all subtasks jointly by opti-
mizing the loss function L since representations
of frames and FEs are learned in a unified vector
space.

#exemplar #train #dev #test

FN 1.5 153952 17143 2333 4458
FN 1.7 192461 19875 2309 6722

Table 1: Number of instances in two datasets.

Lf = − logP (f = fgold|S, t) (14)

La
s/e = −

k−1∑

τ=0

logP (is/eτ = Is/eτ |S,Gτ ) (15)

Lr = −
k∑

τ=0

logP (rτ = rgoldτ |S,Gτ , aτ ) (16)

L = λ1Lf + λ2(La
s + La

e) + λ3Lr (17)

where fgold is the gold frame and Isτ , I
e
τ , r

gold
τ are

gold labels of argument aτ . rgoldk is “Dummy”,
indicating the end of the parsing. We force our
model to identify arguments in a left-to-right order,
i.e. a0 is the leftmost argument in S. We use gold
frame in the initial node of FSG: G0 = (t, fgold)
while other nodes are predicted autoregressively:
Gτ+1 = Gτ + (âτ , r̂τ ), r̂τ ∈ Rfgold .

5.2 Inference

KID predicts frame and all arguments with their
roles in a sequential way. We use probabilities
above with some constraints: 1. We use lexicon fil-
tering strategy: for a target t, we can use the lemma
ℓt of it to find a subset of frames Fℓt ⊂ F so that
we can reduce the searching space; 2. Similarly, we
take Rf̂ instead of R as the set of candidate FEs; 3.
In argument identification, we will mask spans that
are already selected as arguments, and ieτ should be
no less than isτ .

6 Experiment

6.1 Datasets

We evaluate KID on two FrameNet datasets: FN
1.5 and FN 1.7.1 FN 1.7 is an extension version
of FN 1.5, including more fine-grained frames and
more instances. FN 1.5 defines 1019 frames and
9634 FEs while FN 1.7 defines 1221 frames and
11428 FEs. We use the same splits of datasets as
Peng et al. (2018), and we also follow Kshirsagar
et al. (2015); Yang and Mitchell (2017); Peng et al.

1https://framenet.icsi.berkeley.edu/
fndrupal/about
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Model Frame Id Arg Id (gold frame) Full structure
Accuracy Precision Recall F1-score Precision Recall F1-score

SEMAFOR (2014) 83.6 65.6 53.8 59.1 - - -
Hermann et al. (2014) 88.4 - - - 74.3 66.0 69.9
SEMAFOR (HI) (2015) - 67.2 54.8 60.4 - - -
Täckström et al. (2015) - - - - 75.4 65.8 70.3
FitzGerald et al. (2015) - - - - 74.8 65.5 69.9
open-SESAME (2017) 86.9 69.4 60.5 64.6 71.0 67.8 69.4
KID (GloVe) 89.5 64.6 68.2 66.4 73.8 76.8 75.3

SEMAFOR (HI + exemplar) (2015) - 66.0 60.4 63.1 - - -
Yang and Mitchell (2017) 88.2 70.2 60.2 65.5 77.3 71.2 74.1
Swayamdipta et al. (2018) - 67.8 66.2 67.0 - - -
Peng et al. (2018) 89.2 - - - 79.2 71.7 75.3
Marcheggiani and Titov (2020) - 69.8 68.8 69.3 - - -
Chen et al. (2021) 89.4 - - - 75.1 76.9 76.0
KID (GloVe + exemplar) 90.0 66.8 73.7 70.1 75.5 80.1 77.7

Bastianelli et al. (2020) (JL) 90.1 74.6 74.4 74.5 - - -
Chen et al. (2021) (BERT) 90.5 - - - 78.2 82.4 80.2
Jiang and Riloff (2021) 91.3 - - - - - -
Su et al. (2021) 92.1 - - - - - -
KID (BERT) 91.7 71.7 79.0 75.2 79.3 84.2 81.7

Table 2: Empirical results on the test set of FN 1.5. All models are single-task, non-ensemble. The upper block lists
models trained without exemplar instances, the lower block lists models with pretrained language models. KID
outperforms other models under all conditions except Su et al. (2021). We also train our model with multiple runs
and report the statistical analysis with a significance testing in appendix C.

(2018); Chen et al. (2021) to include exemplar in-
stances as training instances. As Kshirsagar et al.
(2015) states that there exists a domain gap between
exemplar instances and original training instances,
we follow Chen et al. (2021) to use exemplar in-
stances as pre-training instances and further train
our model in original training instances. Table 1
shows the numbers of instances in two datasets.

6.2 Empirical Results

We compare KID with previous models (see ap-
pendix C) on FN 1.5 and FN 1.7. We focus on
three metrics: frame acc, arg F1 and full structure
F1.2 Full structure F1 shows the performance of
models on extracting full frame semantic structures
from text, frame acc denotes accuracy of frame
identification and arg F1 evaluates the results of
argument identification and role classification with
gold frames. All metrics are evaluated in test set.

Table 2 shows results on FN 1.5. For a fair
comparison, we divide models into three parts:
the first part of models do not use exemplar in-
stances as training data; the second part of mod-
els use exemplar instances without any pretrained
language models; the third part of models use pre-
trained language models. KID (GloVe) uses GloVe

2https://www.cs.cmu.edu/~ark/SEMAFOR/
eval/

(Pennington et al., 2014) as word embeddings and
KID (BERT) fine-tunes pretrained language model
BERT (Devlin et al., 2019) to encode word repre-
sentations. KID achieves state-of-the-art of these
metrics under almost all circumstances, and we also
train our model with multiple runs, which shows
KID (GloVe + exemplar) and KID (BERT) outper-
forms previous state-of-the-art models by 1.4 and
1.3 full structure F1-score averagely. There is an
exception that our model with BERT does not out-
perform Su et al. (2021) on frame identification
accuracy and we find that the number of train, val-
idation and test instances reported by them are a
little bit smaller than ours. Results on FN 1.7 and
statistical analysis of our model with multiple runs
are listed in appendix C.

It is worth noting that KID achieves much higher
recall than other models. We attribute this to the
incremental strategy of building FSG. By construct-
ing FSG incrementally, KID can capture relations
between arguments and identify arguments that are
hard to find in other models.

6.3 Ablation Study
To prove the effectiveness of double-graph archi-
tecture, we conduct further experiments with KID

on FN 1.5. Table 3 shows ablation study on double-
graph architecture. w/o FSG uses LSTM instead
of our frame semantic graph decoder. It takes a
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Model Full structure F1 Arg F1

KID (GloVe) 75.28 66.35
w/o FSG 74.43 64.99
w/o FKG 74.60 64.96
w/o double-graph 73.34 63.41

KID (BERT w/o exemplar) 79.44 71.59
w/o FSG 78.84 70.63
w/o FKG 79.29 70.86
w/o double-graph 77.77 68.77

Table 3: Ablation study on double-graph architecture.
w/o denotes “without”. w/o FSG uses LSTM as its
decoder and w/o FKG does not use RGCN to encode
frames and FEs. We also test the influence of double-
graph architecture for KID (BERT).

Model Full structure F1 Arg F1

KID (GloVe) 75.28 66.35
w/o frame-FE 74.84 65.70
w/o frame-frame 74.97 66.06
w/o intra-frame FE-FE 75.10 66.60
w/o inter-frame FE-FE 75.13 65.87

FI w/o FKG 75.00 65.61
w/o FKG 74.60 64.96

Table 4: Ablation study on structures of FKG. We re-
move each kind of relations of FKG and all get a drop
of full structure F1. FI w/o FKG denotes not using FKG
in frame identification (FI). w/o FKG uses input vectors
of frame knowledge encoder directly.

sequence of arguments and their roles that have al-
ready been identified as input to predict the next ar-
gument. FSG performs better than LSTM because
it captures target-argument and argument-argument
relations and can model long-distance dependen-
cies. w/o FKG directly uses input vectors of frame
knowledge graph encoder, and results also show
that knowledge-enhanced representations are bet-
ter than randomly initialized embeddings. We also
test the influence of double-graph structure with
pre-trained language models, the results shows the
double-graph structure is still effective and useful
even with the pre-trained language models.

FKG is a multi-relational heterogeneous graph.
The ablation study on structures of FKG is shown
in Table 4. In addition, we evaluate the perfor-
mance of FI w/o FKG, which identifies frames
with a simple linear classification layer instead of
FKG, and the results prove that FKG strengthens
interactions between frame identification and role
classification.

In addition, we explore the effectiveness of name
information of FEs. Whether the name informa-
tion is used in previous work is unclear and some

Model Full structure F1 Arg F1

KID (GloVe) 75.28 66.35
w/o FKG 74.60 64.96
w/o name information 74.46 64.86
w/o both 73.53 64.01

Table 5: Ablation study on name information. Sharing
embeddings for FEs whose names are the same are quite
useful. The performance will drop a lot if we remove
both name information and FKG, which reveals the
importance of FKG.

Model K

0 4 16 32 full

KID (GloVe) 56.26 63.28 65.32 65.95 70.32
w/o FKG 0.00 50.70 56.40 57.59 63.94

∆ 56.26 12.58 8.92 8.36 6.38

Table 6: Experiments on confirming transfer learning
ability of FKG. K denotes the number of instances of
each frame in training set. Full means adding all in-
stances of these frames except those including target get
in train and development sets. Lack of labeled instances
has much less impact on Arg F1 performance of KID
with FKG, which confirms our assumption.

BIO-based approaches like Marcheggiani and Titov
(2020) are likely to use name information by re-
garding FEs with the same name as the same label
in role classification. To the best of our knowledge,
we are the first one to study the effectiveness of
name information. As shown in Table 5, the names
of FEs provide rich information for frame semantic
parsing and shared embedding strategy can make
good use of the name information. Further ablation
study of FKG is conducted under the circumstance
without name information, the performance will
drop 0.9 points if we remove FKG too, showing
that knowledge-enhanced representations are im-
portant no matter whether we share embeddings
for FEs with the same names or not.

6.4 Transfer learning ability of FKG

As we have discussed in Figure 2, if frame B is
related to frame A, a sentence with frame A can
contribute to parsing another sentence with frame
B by inter-frame reasoning. Frame-frame and inter-
frame FE-FE relations of FKG can guide KID to
learn experience from other frames.

To confirm that FKG has ability of transfer learn-
ing, we design zero (few)-shot learning experi-
ments on FN 1.7. Target word get can evoke multi-
ple frames in FrameNet, and we choose instances
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including target get with three frames (Arriving,
Getting and Transition_to_state) as test instances.
We remove all instances with target get from train
and development instances, and can selectively add
few (or zero) instances including other targets with
these three frames into train and development sets.
We then compare the performance of KID with
KID w/o FKG under zero-shot and few-shot cir-
cumstances. If FKG has ability of transfer learning,
KID with FKG can learn experience from other
related frames like Receiving and its performance
will not be influenced so much by the sparsity of
labels.

Table 6 shows the results of our experiments.
K = 0 indicates zero-shot learning while K =
{4, 16, 32} indicates few-shot learning. KID with-
out FKG performs much worse in zero-shot learn-
ing. As the number of instances that can be seen
in training grows up, the performance of KID with
FKG gets a steady increase while the performance
of KID without FKG increases rapidly. Results
verify our assumption that even with few train in-
stances FKG can guide inter-frame reasoning with
its structure and allow models to learn experience
from other seen frames.

7 Related Work

Frame semantic parsing has caught wide attention
since it was released on SemEval 2007 (Baker et al.,
2007). The task is to extract frame structures de-
fined in FrameNet (Baker et al., 1998) from text.
From then on, a large amount of systems are ap-
plied on this task, ranging from traditional machine
learning classifiers (Johansson and Nugues, 2007;
Das et al., 2010) to fancy neural models like re-
current neural networks (Yang and Mitchell, 2017;
Swayamdipta et al., 2017) and graph neural net-
works (Marcheggiani and Titov, 2020; Bastianelli
et al., 2020).

A lot of previous systems neglect interactions
between subtasks and relations between arguments.
They either focus on one or two subtasks (Hermann
et al., 2014; FitzGerald et al., 2015; Marcheggiani
and Titov, 2020) of frame semantic parsing or treat
all subtasks independently (Das et al., 2014; Peng
et al., 2018). Täckström et al. (2015) propose an ef-
ficient global graphical model, so they can enumer-
ate all possible argument spans and treat the assign-
ment as the Integer Linear Programming problem.
Later systems like FitzGerald et al. (2015); Peng
et al. (2018) follow this method. Swayamdipta

et al. (2017); Bastianelli et al. (2020) use sequence-
labeling strategy, and Yang and Mitchell (2017) in-
tegrate these two methods with a joint model. Only
few approaches like Chen et al. (2021) model inter-
actions between subtasks, which use the encoder-
decoder architecture to predict arguments and roles
sequentially. However, the sequence modeling of
Chen et al. (2021) does not consider structure infor-
mation and is not good at capturing long-distance
dependencies. We use graph modeling to enhance
structure information and strengthen interactions
between target and argument, argument and argu-
ment.

Only a few systems utilize linguistic knowledge
in FrameNet. Kshirsagar et al. (2015) use FE map-
pings to share information in FEs. In frame identi-
fication, Jiang and Riloff (2021) encode definitions
of frames and Su et al. (2021) use frame identi-
fication and frame semantic relations. However,
they do not utilize ontological frame knowledge
in all subtasks while we construct a heterogeneous
graph containing both frames and FEs. Besides,
our model does not need extra encoders to encode
definitions, which reduces parameters of the model.

Some systems also treat constituency parsing or
other semantic parsing tasks like AMR as a graph
construction problem. Yang and Deng (2020) use
GCN to encode intermediate constituency tree to
generate a new action on the tree. Cai and Lam
(2020) construct AMR graphs with the Transformer
(Vaswani et al., 2017) architecture.

8 Conclusion

In this paper, we incorporate knowledge into frame
semantic parsing by constructing Frame Knowl-
edge Graph. FKG provides knowledge-enhanced
representations of frames and FEs and can guide
intra-frame and inter-frame reasoning. We also
propose frame semantic graph to represent frame
semantic structures. We regard frame semantic
parsing as an incremental graph construction prob-
lem. The process to construct FSG is structure-
aware and can utilize relations between arguments.
Our framework Knowledge-guided Incremental se-
mantic parser with Double-graph (KID) achieves
state-of-the-art on FrameNet benchmarks. How-
ever, how to utilize linguistic knowledge better is
still to be resolved. Future work can focus on better
modeling of ontological frame knowledge, which
will be useful for frame semantic parsing and trans-
fer learning in frame semantic parsing.
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A Model Details

A.1 Graph Convolutional Network
Graph convolution is introduced in Kipf and
Welling (2016). A GCN layer is defined as fol-
low:

f(H(l), G) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(18)

where H(l) denotes hidden representations of nodes
in l-th layer, σ is the non-linear activation function
(e.g. ReLU) and W is the weight matrix. D̃ and Ã
are separately the degree and adjacency matrices
for the graph G. From a node-level perspective, a
GCN layer can be also formalized as follow:

h
(l+1)
i = σ


 ∑

j∈N(i)

1

cji
h
(l)
j W (l)


 (19)

where N(i) is the set of neighbors of node i, and
cji =

√
|N(j)|

√
|N(i)|.

By stacking L different GCN layers, we get final
GCN module GCN(H(0), G).

A.2 Relational Graph Convolutional Network
Type information of graph edges is ignored in GCN,
and RGCN (Schlichtkrull et al., 2018) is proposed
to model relational data from which we can benefit
to model the multi-relational graph FKG. Different
edge types use different weights and only edges
of the same relation type r are associated with the
same projection weight Wr. From a node’s view:

h
(l+1)
i = σ


h

(l)
i W

(l)
0 +

∑

r∈R

∑

j∈Nr
i

1

ci,r
h
(l)
j W (l)

r




(20)
where N r

i denotes the set of neighbor indices of
node i under relation r ∈ R and ci,r is a normaliza-
tion constant i.e.|N r

i |.
In KID, we use tanh as activation function of

RGCN for normalization because we need to cal-
culate normalized dot product similarities between
frames/FEs and target/arguments.

A.3 Encoding Dependency Tree
We follow previous studies (Marcheggiani and
Titov, 2020; Bastianelli et al., 2020) to use syn-
tax structures like dependency tree T of S in KID

Hyper-parameter Value

batch size 32
learning rate 6e-5/1e-4
lr decay 0.6 per 30 epochs
optimizer Adam
pretrain epochs 10/20/30/40/50
epoch 100
activation function ReLU
FFN Layers 2
LSTM Layers 2
GCN Layers 1/2
dh, dn 512, 256
λ1, λ2, λ3 0.1, 0.3, 0.3

Table 7: Hyper-parameter settings of KID (GloVe).

because syntax structure is proved beneficial to se-
mantic parsing. We use Stanza (Qi et al., 2020),
an open-source python NLP toolkit to parse de-
pendency syntactic structure for instances, and
depGCN (Marcheggiani and Titov, 2017) to en-
code the syntactic structure. We simplify depGCN
by ignoring directions and labels of edges in de-
pendency tree, which means if token i is head or
dependent of token j, we will have AT

ij = AT
ji = 1

in adjacency matrix AT of T .
In addition, if we use BERT as encoder, the to-

kens are sub-word level and the adjacency matrix
will be a little bit different. Specifically, if token
i is the sub-word of some word u, token j is the
sub-word of some word v and u is head or depen-
dent word of v, we will have AT

ij = AT
ji = 1 in

adjacency matrix AT .

B Hyper-parameter Setting

For replicability of our work, we list hyper-
parameter settings of KID (GloVe) and KID

(BERT) in Table 7 and 8. We use the development
set to manually tune the optimal hyper-parameters
based on Full structure F1. The values of hyper-
parameters finally selected are in bold. Token em-
beddings we use in KID (GloVe) are the same as
Chen et al. (2021), including word, lemma and
POS tag embeddings with a binary type embedding
to distinguish whether a token is a target or not.

C Experiment Details

C.1 Models

We compare KID with following baselines:
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Hyper-parameter Value

bert version bert-base-uncased
batch size 16
learning rate 6e-6/1e-5
optimizer BertAdam
pretrain epochs 10/20/30/40/50
epoch 100
activation function ReLU
FFN Layers 2
LSTM Layers 2
GCN Layers 2
dh, dn 512, 256
λ1, λ2, λ3 0.1, 0.3, 0.3

Table 8: Hyper-parameter settings of KID (BERT).

SEMAFOR: a widely-used open-resource statisti-
cal model proposed by Das et al. (2010, 2014).
SEMAFOR (HI): an improved version of SE-
MAFOR using exemplar instances and hierarchy
features (FE mappings) proposed by Kshirsagar
et al. (2015)
Hermann et al. (2014): a neural network-
based model learning representations of words and
frames.
Täckström et al. (2015): identifying arguments
with a global graphical model.
FitzGerald et al. (2015): an extension of Täck-
ström et al. (2015) learning neural representations
of frames and FEs.
open-SESAME: a syntax-free open-resource se-
mantic parser proposed by Swayamdipta et al.
(2017).
Swayamdipta et al. (2018): an extension version
of open-SESAME with multi-task and exemplar
instances.
Yang and Mitchell (2017): a joint model integrat-
ing both sequential and relational models.
Peng et al. (2018): a joint model using latent
structure variables.
Chen et al. (2021): a joint encoder-decoder model
predicting arguments and roles sequentially.
Marcheggiani and Titov (2020): a GCN-based
model over constituency trees.
Bastianelli et al. (2020) (JL): a GCN-based model
encoding syntactic constituency path. JL denotes
joint learning on all subtasks of frame semantic
parsing.
Kalyanpur et al. (2020): a T5-based model
treating frame semantic parsing as a sequence-to-

Model Precision Recall F1-score

Peng et al. (2018) 78.0 72.1 75.0
KID (GloVe) 77.0 79.8 78.4

KID (BERT) 81.1 83.3 82.2

Table 9: Full structure F1 on FN 1.7.

Model Frame Acc.

Peng et al. (2018) 88.6
KID (GloVe) 89.5

Jiang and Riloff (2021) 92.1
Su et al. (2021) 92.4
KID (BERT) 91.7

Table 10: Frame Acc. on FN 1.7.

sequence generation task.
Jiang and Riloff (2021): a sentence-pair bert-
based model using frame definitions.
Su et al. (2021): a BERT-based model for frame
identification using both frame identification and
frame semantic relations.

C.2 Empirical Results on FN 1.7
Table 9, 10, 11 list our results with comparing mod-
els. KID outperforms previous state-of-the-art ex-
cept Su et al. (2021). FN 1.7 is the up-to-date
extension version of FN 1.5 containing more fine-
grained frames and FEs. However, there are only
few models reporting their results on FN 1.7 and we
hope that future work on frame semantic parsing
can be more focused on FN 1.7.

C.3 Time Costs of FKG
The FKG is built over the full FrameNet containing
more than 10,000 nodes while the intra-frame and
inter-frame relations make the graph larger. Since
we need to encode the full FKG when parsing a sin-
gle sentence, it’s necessary to explore the time costs
of FKG. Results are shown in Table 12 and we can
find the time encoding FKG is approximately 20%
in the whole runtime and may slightly hurt the effi-
ciency of our models. However, in inference time,

Model Precision Recall F1-score

open-SESAME (2017) 62 55 58
KID (GloVe) 69.2 73.3 71.2

Kalyanpur et al. (2020) 71 73 72
KID (BERT) 74.1 77.3 75.6

Table 11: Arg F1 on FN 1.7. Results of other models
are obtained from Kalyanpur et al. (2020).
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Model Time cost (%)

KID (GloVe) 27.17
KID (BERT) 18.85

Table 12: Time cost of FKG. We list the proportion of
time encoding FKG in whole runtime. Encoding FKG
may slightly hurt the efficiency of models but is not the
bottleneck of our models.

the representations of nodes in FKG are fixed and
we can load the representations offline to reduce
the inference time.

C.4 Statistical Analysis of KID on FN 1.5
For evaluating solidity of our model, we train KID

with five random seeds. The average performances
with deviation and results of significance testing
are listed in Table 13. The significance testing is to
show whether our model significantly outperforms
previous state-of-the-art, and we do not conduct
significance testing for KID (BERT) because we do
not outperform Su et al. (2021) on frame accuracy.
All p-values are less than 0.05 and even some p-
values are less than 1e-3, which proves the solidity
of our model.
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Model Metrics seed Avg. ± Dev. p-value
s1 s2 s3 s4 s5

KID (GloVe)
Frame Acc. 89.14 88.90 89.12 89.48 88.55 89.04 ± 0.34 0.007
Arg F1 65.65 66.30 65.87 66.35 65.74 65.98 ± 0.32 *
Full structure F1 74.76 75.34 74.94 75.28 74.57 74.98 ± 0.33 *

KID (GloVe + exemplar)
Frame Acc. 89.74 89.56 89.75 89.90 89.93 89.78 ± 0.15 0.002
Arg F1 69.63 69.85 69.48 70.08 69.25 69.66 ± 0.32 0.033
Full structure F1 77.27 77.41 77.36 77.73 77.32 77.42 ± 0.18 *

KID (BERT)
Frame Acc. 91.81 91.92 91.81 91.74 91.63 91.78 ± 0.11 -
Arg F1 74.76 74.55 74.98 75.17 74.60 74.81 ± 0.26 0.028
Full structure F1 81.50 81.44 81.61 81.68 81.38 81.52 ± 0.13 *

Table 13: Statistical analysis of multiple runs on FN 1.5. We train our model with five different random seeds
s1 − s5 and the results with seed s4 are reported in Table 2. We both report the average performance with deviation
and the results of significance testing, where * denotes the p-value is less than 1e-3.
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