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Abstract

Aspect-based Sentiment Analysis (ABSA)
aims to predict the sentiment polarity towards a
particular aspect in a sentence. Recently, graph
neural networks based on dependency tree con-
vey rich structural information which is proven
to be utility for ABSA. However, how to ef-
fectively harness the semantic and syntactic
structure information from the dependency tree
remains a challenging research question. In this
paper, we propose a novel Syntactic and Seman-
tic Enhanced Graph Convolutional Network
(SSEGCN) model for ABSA task. Specifically,
we propose an aspect-aware attention mech-
anism combined with self-attention to obtain
attention score matrices of a sentence, which
can not only learn the aspect-related semantic
correlations, but also learn the global semantics
of the sentence. In order to obtain comprehen-
sive syntactic structure information, we con-
struct syntactic mask matrices of the sentence
according to the different syntactic distances
between words. Furthermore, to combine syn-
tactic structure and semantic information, we
equip the attention score matrices by syntactic
mask matrices. Finally, we enhance the node
representations with graph convolutional net-
work over attention score matrices for ABSA.
Experimental results on benchmark datasets il-
lustrate that our proposed model outperforms
state-of-the-art methods.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) aims
to determine the sentiment polarity of a given as-
pect term in a sentence, where sentiment polarity
includes positive, negative and neutral. For exam-
ple, in Figure 1, ABSA determines the sentiment
towards the aspects “food” and “service”. For
aspect term “food”, the sentiment polarity is neg-
ative, but “service” is positive. That is, we need
to discriminate sentiment polarities according to
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Figure 1: An example sentence with its dependency tree
where aspect terms (highlighted in red) are connected
with other words based on their syntactic dependencies.

different aspects. The main idea of most works is
to model the dependency relation between aspects
and their associated opinion words.

Prior studies exploit attention mechanism (Wang
et al., 2016; Chen et al., 2017; Ma et al., 2017; Liu
et al., 2018; Hu et al., 2018; Wang et al., 2018;
Huang et al., 2018; Fan et al., 2018) to model
the correlations between aspect term and the con-
text. However, attention mechanism is vulnerable
to noise in sentences, i.e., the irrelevant words.

Recent works on ABSA leverage Graph Neural
Networks (GNNs) over the dependency tree of a
sentence to exploit syntactic structure (Sun et al.,
2019; Zhang et al., 2019; Liang et al., 2020; Wang
et al., 2020; Zhao et al., 2020; Li et al., 2021; Tian
et al., 2021). In these works, Zhang et al. (2019)
employ Graph Convolutional Network (GCN) to in-
tegrate the syntactic information. Sun et al. (2019)
propose a GCN model to enhance the feature rep-
resentations of aspects learned by a Bi-directional
Long Short Term Memory (Bi-LSTM). However,
these two studies treat all the neighbor nodes of the
current node in the graph equally, and are limited
in lacking of efficient mechanisms to distinguish
the importance of neighbor nodes. Accordingly,
noisy nodes may cause the model to misjudge the
sentiment polarity. To tackle this problem, Huang
and Carley (2019) design a target-dependent graph
attention network that updates each node repre-
sentation by utilizing multi-head attention. The
attention mechanism is used to consider semantic
correlation of each neighbor node, but it is a lo-
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cal attention by only calculating the importance of
neighboring nodes and neglects the global informa-
tion of the sentence. Following this line, Chen et al.
(2020) and Li et al. (2021) combine a syntactic
structure graph with a latent semantic graph but the
two graphs are constructed independently.

Notablely, existing GCN-based approaches do
not fully leverage syntactic structure, where only
the information of the neighbor nodes is consid-
ered. Moreover, some hard cases obscurely express
sentiment of aspect term, there is no direct syntac-
tic relationship between aspect term and opinion
words. How to capture the information of second-
order nodes, third-order nodes and even the global
syntactic structure in one shot is still a challenge.
Recently, most methods apply multi-layer GCNs
to derive the expression of opinion words which
brings potential noise. For instance, consider the
dependency tree as depicted in Figure 1, a depen-
dency connection exists between the aspect “food”
and the opinion word “good”. However, the “good”
refers to another aspect “service”. For aspect term

“food”, the representation of word “not” is obtained
by utilizing two-layer GCN. At the same time,
noisy word “not” is also obtained for aspect term

“service”. As a result, simply considering the syntac-
tic structure of dependency tree might be unsatis-
factory. It is necessary to harness the aspect-related
semantic information for different aspect terms.

In this paper, we propose a novel Syntactic and
Semantic Enhanced Graph Convolutional Network
(SSEGCN) model for integrating the syntactic and
semantic information of a sentence to solve the
above issues. Firstly, SSEGCN captures the con-
textualized word representations with sentence en-
coder. Secondly, to model particular semantic cor-
relations for different aspect terms, we propose an
aspect-aware attention mechanism to combine with
self-attention. The aspect-aware attention learns
aspect-related semantic information, while self-
attention learns global semantic of the sentence.
We take the obtained attention scores as the ini-
tial adjacency matrices for GCN. Besides, to fully
utilize syntactic structure to complement semantic
information, rather than just syntactic first-order
neighbor node information, we construct the syn-
tactic mask matrices calculated by the different dis-
tances between words in the syntactic dependency
structure of the sentence to learn structure infor-
mation from local to global. Then, we combine
adjacency matrices with syntactic mask matrices

to enhance the conventional GCN. Finally, a multi-
layer graph convolution operation is implemented
to obtain aspect-specific features for aspect term
sentiment classification. We evaluate our approach
on three benchmark datasets. The results show
that our model is more effective than a range of
baselines and achieves new state-of-the-art perfor-
mance.

Our contributions are summarized as follows:

• We propose a SSEGCN model that effectively
integrates syntactic structure and semantic corre-
lation for ABSA task.

• We propose an aspect-aware attention mech-
anism combined with self-attention to learn
the aspect-related semantic correlations and the
global semantic of the sentence. Meanwhile, we
construct syntactic mask matrices to complement
with semantic information.

• Experimental results on three benchmark datasets
show that the SSEGCN model achieves the state-
of-the-art performance. The code and datasets
involved in this paper are provided on Github1.

2 Related Work

Aspect-based sentiment analysis is a fine-grained
sentiment analysis task and generally treated as
a classification problem. Earlier methods (Jiang
et al., 2011; Kiritchenko et al., 2014) manually de-
fined some syntactic rules to predict the sentiment
polarity of aspect term.

Most recent researches solve aspect-based sen-
timent analysis by utilizing attention-based neural
network to model semantic correlation between
context and aspect term (Wang et al., 2016; Chen
et al., 2017; Ma et al., 2017; Liu et al., 2018; Hu
et al., 2018; Wang et al., 2018; Huang et al., 2018;
Fan et al., 2018). Among them, (Wang et al., 2016)
utilized attention mechanism to concentrate on dif-
ferent parts of a sentence to generate an attention
vector for aspect sentiment classification. Chen
et al. (2017) proposed a multi-layer attention net-
work to infer the sentiment polarity for the aspect.
Ma et al. (2017) introduced an interactive attention
mechanism to generate the representations for as-
pects and contexts separately. Wang et al. (2018)
designed a hierarchical aspect-specific attention
model for aspect sentiment classification. Hu et al.
(2018) employed a constrained attention network

1https://github.com/zhangzheng1997/
SSEGCN-ABSA
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with both orthogonal regularization and sparse reg-
ularization.

Another trend explicitly leverages dependency
tree. Syntactical information can establish rela-
tion connections between aspect and correspond-
ing opinion words, GCN based on dependency tree
have achieved impressive performance in ABSA.
(Zhang et al., 2019; Sun et al., 2019) stacked a
GCN layer to extract rich representations over de-
pendency tree. Liang et al. (2020) build aspect-
focused and inter-aspect graphs to learn aspect-
specific sentiment features. Zhang and Qian (2020)
constructed a global lexical graph to capture the
word co-occurrence relation and combined a global
lexical graph and a syntactic graph. Liang et al.
(2021) constructed a sentiment enhancement graph
by integrating the sentiment knowledge from Sen-
ticNet to consider the affective information be-
tween opinion words and aspect term. Tian et al.
(2021) utilized dependency types and distinguished
different relations in the dependency tree. However,
these approaches generally ignore the effective fu-
sion of syntactic structure and semantic correlation
to obtain richer information.

3 Proposed SSEGCN

Figure 2 gives an overview of SSEGCN. In this
section, we describe the SSEGCN model which
is mainly composed of three components: the In-
put and Encoding Layer, the Attention Layer, the
Syntax-Mask Layer and the GCN Layer. Next,
components of SSEGCN will be introduced sepa-
rately in the rest of the sections.

3.1 Input and Encoding Layer

Given a sentence-aspect pair (s, a), where s =
{w1, w2, ..., wn}. a = {a1, a2, ..., am} is an as-
pect and also a sub-sequence of the sentence s.
We utilize BiLSTM or BERT (Devlin et al., 2019)
as sentence encoder to extract hidden contextual
representations. We first map each word into a
low-dimensional real-value vector with embedding
matrix E ∈ R|V |×de , where |V | is the size of
vocabulary and de denotes the dimensionality of
word embeddings. Thus, the sentence s has corre-
sponding word embeddings x = {x1, x2, ..., xn}.
With the word embeddings of the sentence, BiL-
STM is leveraged to produce hidden state vectors
H = {h1, h2, ..., hn}, where hi ∈ R2d. H con-
tains the sub-sequence ha = {ha1 , ha2 , ..., ham}
corresponding to the aspect term representation.

Take H as initial nodes representation in SSEGCN.
For the BERT encoder, we adopt “[CLS] sentence
[SEP] aspect [SEP]” as input.

3.2 Attention Layer

Attention mechanism is a common way to capture
the interactions between the aspect and context
words (Fan et al., 2018). In this subsection, we
combine aspect-aware attention and self-attention
for better semantic features. Figure 2 shows mul-
tiple attention adjacency matrices. Here, we con-
struct p matrices and the p is a hyper-parameter.

3.2.1 Aspect-aware Attention
Unlike sentence level sentiment classification task,
aspect-based sentiment classification aims at judg-
ing sentiments of one specific aspect term in its
context sentence, and thus calls for modeling par-
ticular semantic correlation based on different as-
pect terms. We propose the aspect-aware attention
mechanism, which regards aspect term as query
to attention calculation for learning aspect-related
features:

Ai
asp = tanh

(
HaW

a ×
(
KW k

)T
+ b

)
(1)

where K is equal to H produced by encoding
layer. W a ∈ Rd×d and W k ∈ Rd×d are learnable
weights. We apply mean pooling on the ha and then
copy it n times to obtain Ha ∈ Rn×d as aspect rep-
resentation. Note that we use p-head aspect-aware
attention to obtain attention score matrices for a
sentence, Ai

asp indicates that it is obtained through
the i-th attention head.

3.2.2 Self-Attention
Similarly, here Aself can be constructed by utiliz-
ing p-head self-attention (Vaswani et al., 2017)
that captures the interaction between two arbitrary
words of a single sentence. The calculation in-
volves a query and a key:

Ai
self =

QWQ ×
(
KWK

)T
√
d

(2)

where Q and K are both equal to H produced by
encoding layer. WQ ∈ Rd×d and WK ∈ Rd×d are
learnable weights. Then, we integrate aspect-aware
attention score with self-attention score:

Ai = Ai
asp +Ai

self (3)
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Figure 2: The overall architecture of SSEGCN.

where Ai ∈ Rn×n is used as the input for the com-
putation of the later Syntax-Mask Layer. For each
Ai, it represents a fully connected graph.

3.3 Syntax-Mask Layer
In this section, we first introduce the syntactic
mask matrix, and then mask each fully connected
graph in terms of different syntactic distances. We
treat the syntactic dependency tree as an undirected
graph, and each token as a node. Then, we define
the distance between node vi and vj as d(vi, vj).
Since there are multiple paths between nodes on the
syntactic dependency tree, we define the distance
of the shortest path as D:

D(i, j) = min d(vi, vj) (4)

In the previous part, the p-head attention mecha-
nism can obtain p adjacency matrices. Therefore,
we set the number of syntactic mask matrices based
on different syntactic distances as the same as the
number of attention heads. When syntactic dis-
tance is relatively small, our model can learn local
information; on the contrary, if syntactic distance
is relatively large, global structure information will
be considered. The calculation of syntactic mask
matrix Mk with threshold k can be formulated as:

Mk
ij =

{
0, D(i, j) ≤ k

−∞, otherwise
(5)

where k ∈ [1, p]. To obtain global information
and local feature, attention scopes are restricted by
different syntactic distances.

M = {M1, ...,Mk, ...,Mp} (6)

Ai
mask = softmax

(
Ai +M i

)
(7)

Similarly, syntactic mask matrix based on the
distance i is denoted as Ai

mask ∈ Rn×n.

3.4 GCN Layer

Since we have p different syntactic mask matri-
ces, p graph convolution operations over Amask ∈
Rp×n×n are required. If we denote hl−1 as the in-
put state and hl as the output state of the l-th layer,
h0 is the output of sentence encoding layer. Each
node in the l-th GCN layer is updated according to
the hidden representations of its neighborhoods:

hli = σ

(
n∑

j=1

AijW
lhl−1

j + bl

)
(8)

where W l is a linear transformation weight, bl is
a bias term, and σ is a nonlinear function. The
final output representation of the l-layer GCN is
H l = {hl1, hl2, ..., hln}.

After aggregating node representation from each
layer of SSEGCN, we obtain the final feature rep-
resentation. We mask the non-aspect words of the
output representation learned by the GCN layer to
obtain aspect term representation. Moreover, an
average pooling to retain most of the information
in the aspect term representation hla.

hla = f(hla1 , h
l
a2 , ..., h

l
am) (9)

where f(·) is a mean-pooling function applied over
the enhanced aspect representation by GCN layer.
Then, we feed hla into a linear layer, followed by a
softmax function to yield a probability distribution
over polarity decision space:

p(a) = softmax
(
Wph

l
a + bp

)
(10)

where Wp and bp are the learnable weight and bias.
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3.5 Training

Finally, the standard cross-entropy loss is used as
our objective function:

L(θ) = −
∑

(s,a)∈D

∑

c∈C
log p(a) (11)

where D contains all the sentence-aspect pairs and
a represents the aspect appearing in sentence s. θ
represents all the trainable parameters and C is the
collection of sentiment polarities.

4 Experiments

4.1 Datasets

We conduct experiments on three benchmark
datasets for aspect-based sentiment analysis, in-
cluding Restaurant and Laptop reviews from Se-
mEval 2014 Task 4 (Pontiki et al., 2014) and Twit-
ter (twitter posts) from Dong et al. (2014). Each
aspect is labeled by one of the three sentiment polar-
ities: positive, neutral and negative. The statistics
for three datasets are reported in Table 1.

4.2 Implementation Details

For our experiments, we initialize word embed-
dings with 300-dimensional Glove vectors pro-
vided by Pennington et al. (2014). Additionally,
we use 30-dimensional Part-of-Speech (POS) em-
beddings and 30-dimensional position embeddings
which is the relative position of each word with
respect to the aspect term in the sentence. Then,
word embeddings, POS embeddings and position
embeddings are concatenated as input word repre-
sentations. All sentences are parsed by the Stanford
parser2. The batch size of all model is set as 16 and
the number of GCN layers is 2. Besides, dropout
function is applied to the input word representa-
tions of the BiLSTM and the dropout rate is set
as 0.3. Our model is trained using the Adam opti-
mizer with a learning rate of 0.002 to optimize the
parameters. For SSEGCN+BERT, we employ the
bert-base-uncased3 English version.

4.3 Baseline Comparisons

To comprehensively evaluate the performance of
our model, we compare with state-of-the-art base-
lines:

2https://stanfordnlp.github.io/
CoreNLP/

3https://github.com/huggingface/
transformers

Dataset Division # Positive # Negative # Neutral

Rest14
Train 2164 807 637
Test 727 196 196

Laptop
Train 976 851 455
Test 337 128 167

Twitter
Train 1507 1528 3016
Test 172 169 336

Table 1: Statistics for the three experimental datasets.

1) IAN (Ma et al., 2017) interactively learns the
relationship between aspect and their context.
2) RAM (Chen et al., 2017) proposes a recurrent
attention memory network to learn the sentence
representation.
3) TNet (Li et al., 2018) employs a CNN model to
extract salient features from target-specific embed-
dings by transformed BiLSTM embeddings.
4) ASGCN (Zhang et al., 2019) proposes to build
GCN to learn syntactical information and word
dependencies for ABSA.
5) CDT (Sun et al., 2019) utilizes a convolution
over a dependency tree model to learn the represen-
tations of sentence features.
6) TD-GAT (Huang and Carley, 2019) proposes
a target-dependent graph attention network for as-
pect level sentiment classification, which explicitly
utilizes the dependency relationship among words.
7) BiGCN (Zhang and Qian, 2020) builds a concept
hierarchy on both the syntactic and lexical graphs
for sentiment prediction.
8) kumaGCN (Chen et al., 2020) combines infor-
mation from a dependency graph and a latent graph
to learn syntactic features.
9) R-GAT (Wang et al., 2020) proposes a relational
graph attention network to encode the new tree
reshaped by an ordinary dependency parse tree.
10) DGEDT (Tang et al., 2020) proposes a depen-
dency graph enhanced dual-transformer network
by jointly considering the flat representations from
Transformer and graph-based representations from
the dependency graph.
11) DualGCN (Li et al., 2021) designs a SynGCN
module and a SemGCN module with orthogonal
and differential regularizers.
12) BERT (Devlin et al., 2019) is the vanilla BERT
model, which adopts “[CLS] sentence [SEP] as-
pect [SEP]” as input.
13) R-GAT+BERT (Wang et al., 2020) is the R-
GAT model based on pre-trained BERT.
14) DGEDT+BERT (Li et al., 2021) is the DGEDT
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model based on pre-trained BERT.
15) BERT4GCN (Zhang and Qian, 2020) inte-
grates the grammatical sequential features from
the PLM of BERT and the syntactic knowledge
from dependency graphs.
16) T-GCN (Tian et al., 2021) utilizes dependency
types to distinguish different relations in the graph
and uses attentive layer ensemble to learn the con-
textual information from different GCN layers.

4.4 Main Results
To demonstrate the effectiveness of SSEGCN, we
compare our model with previous works using ac-
curacy and macro-averaged F1 as evaluation met-
rics, and report results in Table 2. Experimental
results show that our SSEGCN model achieves
best performance on the three datasets. In par-
ticular, GCN-based models take into account the
syntactic structure of a sentence and capture long-
term syntactic dependencies between the aspect
word and the opinion word, hence outperform all
attention-based methods. In GCN-based models,
our SSEGCN learns structure information from
local to global and considers aspect-related seman-
tic information, and performs significantly better
than the previous GCN-based models (i.e., CDT,
TD-GAT, BiGCN, KuamGCN, R-GAT, DGEDT
and DualGCN) that verifies the effectiveness of
fusing syntactic and semantic information. On the
other hand, we can observe that the basic BERT has
been significantly better than most ABSA models.
Combining our SSEGCN with BERT, the results
show that the effectiveness of this powerful model
is further improved, justifying that SSEGCN learns
more syntactic and semantic knowledge can em-
power ABSA.

4.5 Ablation Study
As illustrated in Table 3 , we further conduct an
ablation study to examine the effectiveness of dif-
ferent modules in SSEGCN. The basic SSEGCN
is regarded as a baseline model. First, we observe
that removal of self-attention degrades the perfor-
mance, verifying that global semantics of the sen-
tence is necessary for ABSA. We can also notice
that model without aspect-aware attention performs
unsatisfactory, which indicates that the model lacks
of the ability to capture aspect-related semantics,
resulting in 1.70%, 1.58% and 1.47% reductions in
accuracy on Restaurant, Laptop and Twitter, respec-
tively. It indicates that aspect-aware attention is es-
sential to capture the correlated semantic informa-

tion between aspect and contextual words. Second,
removing syntactic mask matrix leads to dropping
0.90%, 1.42% and 0.88% in accuracy on Restau-
rant, Laptop and Twitter respectively, which indi-
cates that syntactic mask matrix can assist GCNs
to learn better syntactic structure information in
original dependency trees. In addition, the removal
of syntactic mask matrix and aspect-aware atten-
tion leads to a significant performance drop, which
further indicates that these two components play
crucial roles in SSEGCN for ABSA task. In sum-
mary, the ablation experimental results show that
each component contributes to our entire model.

4.6 Case Study
To examine whether SSEGCN is able to capture
syntax and semantic information for improving
ABSA, we conduct case study with a few of sample
sentences. Particularly, we compare SSEGCN with
ATAE-LSTM, IAN and CDT in Table 4 which
contain their predictions and the corresponding
truth labels on these sentences. The notations P,
N and O in the table represent positive, negative
and neutral sentiment, respectively. The first sam-
ple “great food but the service was dreadful!” has
two aspects (“food” and “service”) with contrast
sentiment polarities, which may interfere with the
prediction of the attention models. The second
sample “Biggest complaint is Windows 8.” has the
interfering word “Biggest”, which may neutralize
the polarity of the word “complaint”. In the third
sample, the key point is capturing the negated se-
mantics which is most methods tend to ignore and
easily make wrong predictions. The last two exam-
ples have no explicit sentiment expression. For the
sentence “Not as fact as I would have expect for an
i5”, CDT does not obtain the representation of the
keyword “not” from a syntactic point of view and
thus produces wrong prediction. Thus, the ability
to learn integral semantics of a sentence is a signifi-
cant factor for ABSA task. Our SSEGCN correctly
predicts all the samples, and the results suggest
that SSEGCN effectively combines syntactic struc-
ture and semantic information. Additionally, when
dealing with complex sentences with implicit senti-
ment expressions, our SSEGCN can achieve better
performance.

4.7 Visualization
To further demonstrate how our SSEGCN improves
ABSA task, we use the two test examples in Figure
3 to visualize attention scores. For the sentence
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Models Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

IAN (Ma et al., 2017) 78.60 - 72.10 - - -
RAM (Chen et al., 2017) 80.23 70.80 74.49 71.35 69.36 67.30
TNet (Li et al., 2018) 80.69 71.27 76.54 71.75 74.90 73.60
ASGCN (Zhang et al., 2019) 80.77 72.02 75.55 71.05 72.15 70.40
CDT (Sun et al., 2019) 82.30 74.02 77.19 72.99 74.66 73.66
TD-GAT (Huang and Carley, 2019) 81.2 - 74.0 - - -
BiGCN (Zhang and Qian, 2020) 81.97 73.48 74.59 71.84 74.16 73.35
kumaGCN (Chen et al., 2020) 81.43 73.64 76.12 72.42 72.45 70.77
R-GAT (Wang et al., 2020) 83.30 76.08 77.42 73.76 75.57 73.82
DGEDT (Tang et al., 2020) 83.90 75.10 76.80 72.30 74.80 73.40
DualGCN (Li et al., 2021) 84.27 78.08 78.48 74.74 75.92 74.29

Our SSEGCN 84.72 77.51 79.43 76.49 76.51 75.32

BERT (Devlin et al., 2019) 85.97 80.09 79.91 76.00 75.92 75.18
R-GAT+BERT (Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88
DGEDT+BERT (Tang et al., 2020) 86.30 80.00 79.80 75.60 77.90 75.40
BERT4GCN (Xiao et al., 2021) 84.75 77.11 77.49 73.01 74.73 73.76
T-GCN+BERT (Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25
Our SSEGCN+BERT 87.31 81.09 81.01 77.96 77.40 76.02

Table 2: Experimental results comparison on three publicly available datasets.

Models Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

SSEGCN 84.72 77.51 79.43 76.49 76.51 75.32
w/o self-attention 82.93 75.25 78.32 74.73 75.32 73.22
w/o aspect-aware attention 83.02 75.51 77.85 75.16 75.04 73.29
w/o syntactic mask matrix 83.82 75.60 78.01 74.33 75.63 74.34
w/o aspect-aware attention and syntactic mask matrix 82.75 75.02 77.37 73.35 74.89 72.40

Table 3: Experimental results of ablation study.

“The staff should be a bit more friendly.”, our model
correctly identifies the sentiment of aspect term

“staff” as negative. Our SSEGCN model consid-
ers the semantics of the sentence and reduce the
attention weight on the word “friendly” through
syntactic distance mask and aspect-aware atten-
tion. For the harder example of multiple aspects
with different sentiment polarities, our model also
performs well. For sentence “great food but the
service was dreadful!”, our model considers the
aspect-related semantic correlations by introduc-
ing aspect-aware attention and combining syntactic
mask matrices. Thus, SSEGCN can accurately find
the opinion words corresponding to each aspect
term.

4.8 Effect of SSEGCN Layers

In this section, we investigate the effect of the layer
number ranging from 1 to 5 on the Restaurant and
Laptop datasets. As shown in Figure 4, experimen-
tal results show that our model achieves the best
performance with 2 layers. First, if the number

of GCN layer is set to 1, SSEGCN can only learn
local node information with syntactic distance of 1.
Second, node representation will be over-smooth
and obtain more redundancy information when the
number of GCN layers is large, thus making model
in poor performance.

4.9 Effect of Syntax-Mask

In this section, we further analyze the effect of the
multiple different syntactic mask matrices on the
performance of SSEGCN in Restaurant and Lap-
top datasets. We conduct different numbers of the
syntactic mask matrices from 1 to 7 and the results
are demonstrated in Figure 5. We observe that the
proposed SSEGCN shows an upward trend with
the increase of the number when the number of
syntactic mask matrices is less than 5. One main
reason may be that SSEGCN can learn structure
information from local to global when the syntac-
tic distance becomes larger and SSEGCN achieves
remarkable results on five syntactic mask matri-
ces. However, increasing the number of syntactic
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Aspect Sentence ATAE-LSTM IAN CDT SSEGCN Label

{food, service} Great food but the service was dreadful! (N,N) (N,N) (P,N) (P,N) (P,N)

{Windows 8} Biggest complaint is Windows 8. (O) (O) (N) (N) (N)

{settings} The settings are not user-friendly either. (N) (P) (N) (N) (N)

{i5} Not as fact as I would have expect for an i5 (P) (P) (O) (N) (N)

{Tequila} If you are a Tequila fan you will not be disappointed. (N) (N) (N) (P) (P)

Table 4: Case study of our SSEGCN model compared with state-of-the-art baselines.

(a) The attention score of self-attention.

(b) The attention score of aspect-aware attention.

(c) The attention score of attention layer with syntax-mask layer.

Figure 3: Two visualized examples on how aspect-aware attention and syntactic mask matrix contribute to the
attention layer.

Figure 4: Effect of the number of SSEGCN layers.

mask matrices from 5 to 7 leads to the performance
degradation of SSEGCN. When the syntactic dis-
tance is greater than five, multiple syntactic mask
matrices are fully connected matrices, and leads to

Figure 5: Effect of the number of syntactic mask matri-
ces.

the introduction of noise and decline of the model
performance.
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5 Conclusion

In this paper, we propose a SSEGCN architecture
which integrates semantic information along with
the syntactic structure for ABSA task. Specifically,
we first design an aspect-aware attention mech-
anism, which is responsible for learning aspect-
related semantic information. Then, we combine
it with the self-attention to compose the attention
layer. Furthermore, we construct syntactic mask
matrices of a sentence according to the different
syntactic distances that learn local to global struc-
ture information. Consequently, we combine atten-
tion score matrices with syntactic mask matrices
to fuse the semantic and syntactic information. Ex-
perimental results demonstrate the effectiveness of
our approach on three public datasets.
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