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Abstract
Recent studies have shed some light on a com-
mon pitfall of Neural Machine Translation
(NMT) models, stemming from their strug-
gle to disambiguate polysemous words with-
out lapsing into their most frequently occurring
senses in the training corpus. In this paper, we
first provide a novel approach for automatically
creating high-precision sense-annotated paral-
lel corpora, and then put forward a specifically
tailored fine-tuning strategy for exploiting these
sense annotations during training without intro-
ducing any additional requirement at inference
time. The use of explicit senses proved to be
beneficial to reduce the disambiguation bias
of a baseline NMT model, while, at the same
time, leading our system to attain higher BLEU
scores than its vanilla counterpart in 3 language
pairs.

1 Introduction

Translating a sentence requires the underlying
meaning to be captured and then expressed in the
target language. Nonetheless, only little atten-
tion has been devoted to studying the actual ca-
pabilities of Neural Machine Translation (NMT)
approaches of modeling different senses of am-
biguous words, with recent work showing that sys-
tems tend to be biased towards the most frequent
meanings found within the training corpus (Emelin
et al., 2020). This phenomenon is hard to mea-
sure through classical evaluation metrics, such as
the BLEU score (Papineni et al., 2002), as they
often rely on word-matching heuristics that fail to
capture the disambiguation capabilities of the eval-
uated systems. Therefore, several efforts have been
recently devoted to shed some light and create test
beds (Rios Gonzales et al., 2017; Raganato et al.,
2019; Emelin et al., 2020; Campolungo et al., 2022)
to challenge NMT models. Results show that these
models still struggle to deal with highly polyse-
mous words, especially when used to express least
frequent senses.

For example, given the sentence “The energy
comes from a distant plant.”, both Google Trans-
late and DeepL disambiguate1 plant to its sense
of organism when translating into Italian, and pro-
duce the following incorrect sentence “L’energia
proviene da una pianta lontana.”, rather than
“L’energia proviene da un impianto lontano.”,
where impianto is the translation for the factory
meaning of plant. This suggests that, even when
adequate context is provided (energy should be
enough to correctly infer the right sense of plant),
state-of-the-art models might still be biased to-
wards the most frequent meanings found within
training data.

Some recent studies have explored how to lever-
age explicit sense information within NMT mod-
els (Rios Gonzales et al., 2017; Pu et al., 2018a;
Nguyen et al., 2018). Nevertheless, including such
information is not trivial for three main reasons:
i) sense-tagged parallel data is scarce; ii) Word
Sense Disambiguation (WSD) systems have not
been accurate enough until very recently (Blevins
and Zettlemoyer, 2020; Barba et al., 2021); and iii)
how explicit senses should be incorporated within
neural models is not straightforward.

In this paper, we first introduce a novel approach
to make up for the paucity of sense annotations in
parallel corpora, leveraging a multilingual WSD
system to tag parallel sentences and refine its pre-
dictions by means of cross-lingual word alignments
and information from a multilingual knowledge
base. Then, we fine-tune our baseline models
on our sense-tagged corpora via a specifically de-
signed loss function, allowing the injection of word-
level semantics into the architecture. We evaluate
our approach on standard and challenge test sets,
showing that it does indeed improve translation ac-
curacy and mitigates the most frequent sense bias.

To summarize, our contributions are manifold:

1At the time of writing: January 5th, 2022.
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1. We put forward a novel approach to produce
high-precision sense annotations for parallel
data, which we apply to three language pairs.

2. We propose a fine-tuning strategy that lets
us inject word-level explicit semantics into
Neural Machine Translation models, without
introducing any additional requirement at in-
ference time.

3. We show that employing explicit sense tags is
beneficial in order both to mitigate the sense
bias and to improve the translation quality
in terms of BLEU score on standard bench-
marks.

4. We present a case study on how a state-of-the-
art WSD system compares to an NMT model
on disambiguating words within a challenging
set for detecting sense bias in MT.

We make all the generated datasets, the code
of the model and for the experiments available
at https://github.com/sapienzanlp/
reducing-wsd-bias-in-nmt.

2 Related Work

Word Sense Disambiguation was first formulated
as a computational task by Weaver (1949) in the
context of Machine Translation. The two fields
then followed parallel paths, with more or less suc-
cessful attempts over the years to join them back to-
gether (Carpuat and Wu, 2005; Vickrey et al., 2005;
Carpuat and Wu, 2007). Indeed, while Carpuat
and Wu (2005) reported negative results when
trying to integrate the prediction of a supervised
WSD approach into a Statistical Machine Trans-
lation (SMT) model, the same authors, two years
later, successfully improved the performance of a
phrase-based SMT approach by leveraging a new
phrase-based WSD model (Carpuat and Wu, 2007).
More recently, Pu et al. (2018a) and Nguyen et al.
(2018) proposed systems that successfully leverage
sense information in NMT models, although they
introduced a heavy requirement, i.e., that of dis-
ambiguating the ambiguous words in the sentence
prior to generating a translation, which makes them
unfeasible in many real-world settings. Lately, con-
textualized word embeddings have been employed
to produce additional back-translated parallel train-
ing data via mining sense-specific target sentences,
in order to improve handling of infrequent senses
(Hangya et al., 2021).

Nevertheless, the proper treatment of lexical
ambiguity is still an open problem, with neural
models struggling to translate least frequent senses
and often relying on spurious correlations among
words (Emelin et al., 2020; Raganato et al., 2019;
Rios Gonzales et al., 2017). Thus, the disambigua-
tion bias topic has received renewed interest, and
several benchmarks have been introduced in the
most recent years with the goal of directly mea-
suring the extent to which neural architectures are
able to capture word semantics. One of the first of
this kind was ContraWSD (Rios Gonzales et al.,
2017). In this first attempt to evaluate WSD capa-
bilities of NMT models, the authors built an adver-
sarial test set where source sentences containing
an ambiguous word were associated with a cor-
rect translation and several incorrect alternatives.
These latter were built by replacing the reference
translation for the ambiguous word with the trans-
lation of one of its other possible meanings. The
task measured whether a model ranked the correct
translation higher, i.e., it assigned it a higher prob-
ability than the adversarial ones. This study pro-
vided evaluation data for two language pairs only,
i.e., German→English and German→French, and
within a few years it became outdated as modern
NMT models could easily attain high performances
(Emelin et al., 2019). Thus, MuCoW (Raganato
et al., 2019) took things a step further and lever-
aged BabelNet (Navigli and Ponzetto, 2012; Nav-
igli et al., 2021) – a large multilingual knowledge
base – and sense embeddings (Camacho-Collados
et al., 2016; Mancini et al., 2017) in order to au-
tomatically create adversarial translations for five
language pairs while also increasing the difficulty
of the task itself; however, the fully automatic na-
ture of these challenge sets made them noisy and
prone to containing irrelevant challenge samples.

More recently, Emelin et al. (2020) proposed
two challenge sets for the English→German pair,
one measuring the model sensitivity to most fre-
quent senses and the other estimating, through ad-
versarial injections, its susceptibility to changing
a correct sense to a wrong one. In contrast to pre-
vious studies, these challenge sets were based on
correlations among words in the training set and re-
lied on manually-refined sense clusters, providing
an excellent test bed for measuring semantic bias.

Finally, Campolungo et al. (2022) proposed
DIBIMT, the first fully manually annotated test
set for measuring the disambiguation bias of neural
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machine translation models, covering five language
combinations, namely, from English to German,
Spanish, Italian, Russian and Chinese. In their
work, the authors showed that open neural models
still exhibit strong semantic biases towards frequent
senses, confirming once again the suspicions about
this under-explored issue.

Despite all the effort made in putting forward
challenging sets of data to test WSD capabilities
of NMT models, to the best of our knowledge,
only a few approaches (Rios Gonzales et al., 2017;
Liu et al., 2018) have been proposed to mitigate
this issue, and none of these is effective with mod-
ern Transformer-based architectures. Furthermore,
while parallel corpora have been exploited to pro-
duce sense annotations in the past (Bonansinga
and Bond, 2016; Delli Bovi et al., 2017), they
were built by utilizing outdated disambiguation ap-
proaches that have recently been surpassed by more
advanced neural architectures. Indeed, the Word
Sense Disambiguation field has received much at-
tention in the last few years, with several supervised
approaches (Conia and Navigli, 2021; Blevins and
Zettlemoyer, 2020; Barba et al., 2021) and sense
embedding models (Loureiro and Jorge, 2019; Scar-
lini et al., 2020a,b; Wang et al., 2020) performing
close to the upper bound limit of the inter-annotator
agreement, which finally makes them feasible for
inclusion in other downstream tasks, e.g., Machine
Translation.

Thus, differently from previous studies in the
literature, we focus on closing the gap between
these two fields, i.e., Neural Machine Translation
and Word Sense Disambiguation, by putting the
recent advances in WSD at the service of NMT
models. We propose a novel approach, similar to
that introduced in Luan et al. (2020), for creating
high-quality sense-annotated parallel corpora, and
we use this semantic information to regularize an
NMT model, making it less biased and capable of
producing higher-quality translations.

3 Reducing the Disambiguation Bias in
NMT

Neural Machine Translation models are typically
trained end-to-end to produce a target translation
given a source sentence and, thus, they can only
rely on the input context to resolve the ambiguity
of polysemous words therein. Being pattern recog-
nition algorithms at heart, these models fall prey
to the inherent bias carried by the frequency of co-

occurrence of words within parallel sentences, and
thus tend to disambiguate words to the sense they
most frequently encountered during training, even
when the sentence does provide enough context to
identify the correct sense. At the same time, Word
Sense Disambiguation models, i.e., models special-
ized in associating a word in context with one of
the meanings within a given sense inventory, have
recently displayed remarkable results across differ-
ent benchmarks and languages (Bevilacqua et al.,
2021). The time may now therefore be ripe for
them to be successfully included into downstream
applications such as Neural Machine Translation.
However, data that would allow these two worlds
to be brought together, i.e., parallel corpora where
words are associated with semantic labels, are cur-
rently still produced automatically by leveraging
outdated approaches to WSD (Delli Bovi et al.,
2017).

In what follows, we first provide some prelim-
inary information about resources and tools that
we employ in our method (§ 3.1); then, we intro-
duce a new approach for automatically annotating
tokens within parallel sentences with sense annota-
tions, i.e., labels explicitly defining their meanings
(§ 3.2); finally, we propose a fine-tuning objective
for leveraging such annotations in order to mitigate
the sense bias while also improving the transla-
tion quality overall (§ 3.3). The intuition behind
our work is that fixed sense labels describing word
senses would help NMT models better encode the
underlying meaning of the input sentence, thus gen-
erating less biased and overall better translations.

3.1 Preliminaries

We draw sense labels from BabelNet (Navigli and
Ponzetto, 2012), a multilingual knowledge base
created by merging several semantic resources in
different languages such as WordNet (Miller et al.,
1990), Wikipedia, Wikidata, etc. BabelNet is struc-
tured in synsets, i.e., sets of synonymous senses
in different languages. For instance, the synset
of plantorganism contains the following lexicaliza-
tions: plantEN , piantaIT , PflanzeDE , among oth-
ers. Additionally, BabelNet provides lemma-to-
synsets mappings. For example, the English noun
plant belongs to the following nominal synsets: or-
ganism, industrial plant, actor in the audience and
something placed secretly.2 Since BabelNet con-

2Synsets bn:00035324n, bn:00046568n, bn:00062800n
and bn:00062801n respectively, from https://babelnet.org.
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tains millions of synsets, which may make the com-
putation too expensive, we restrict the vocabulary
to just those containing at least one English sense
from WordNet, as is also done in several other
works (Barba et al., 2020; Scarlini et al., 2020b;
Bevilacqua and Navigli, 2020).

3.2 Building a Sense-Annotated Parallel
Corpus

Let us assume that our running example sentence
“The energy comes from a distant plant.” appears
within a parallel corpus paired with the following
Italian translation: “L’energia viene da un impianto
lontano.”. As we said, by considering the English
sentence alone, the word plant could take several
meanings, among which organism and power plant.
However, among these, only one is shared with its
translation impianto, i.e., the power plant meaning.
Therefore, considering the cross-lingual alignment
of words may drastically reduce the set of valid
meanings, making the disambiguation task much
easier. Based on this intuition, given a parallel
corpus, we perform the following two steps:

1. Sense Scoring, where we employ a WSD sys-
tem to assign to each content word a distribu-
tion over its possible meanings;

2. Annotation Refinement, where we compute
cross-lingual word alignments to reduce lexi-
cal ambiguity and finally assign the most suit-
able sense to each content word.

Sense Scoring In this step, our goal is to assign
to every content word within a sentence a distribu-
tion over its possible senses in BabelNet. To this
end, given as input a sentence s3 from a parallel
corpus C, we first apply Part-of-Speech tagging
and lemmatization to it, then pass it through our
WSD system, which returns a distribution over its
possible meanings.

Formally, let wi be a content word in a sentence
s = [w1, . . . , wn], and σ(wi) the set of synsets as-
sociated with wi in BabelNet. The WSD system as-
signs a score c(S|wi, s) to each synset S ∈ σ(wi);
we denote the synset of wi with the highest confi-
dence as S∗

wi
. As a result, each content word in a

source or target sentence is associated with a sense
distribution. However, applying a WSD system
alone may not be sufficient to ensure high-quality

3s can be either a source or a target sentence.

annotations, as the application domain may be dif-
ferent from the one of its training set. Therefore,
in the next step we take advantage of the transla-
tion each sentence is paired with to refine sense
annotations.

Annotation Refinement We produce word-level
cross-lingual alignments between the source and
the target sentences of the parallel corpus: given
a pair of parallel sentences (s, t), we compute a
list of alignments A = {(ws

i , w
t
j)|ws

i ∈ s, wt
j ∈ t}.

Thus, given an aligned word pair P = (ws
i , w

t
j) ∈

A, let σ(P ) = σ(ws
i )∩σ(wt

j), i.e., the intersection
of synsets that the two words may denote accord-
ing to BabelNet: we discard annotations for any
word pair such that σ(P ) = ∅ ∨ |σ(ws

i )| < 2. In
other words, we retain all the aligned pairs (ws

i , w
t
j)

such that the source word is polysemous and the
intersection of their senses is non-empty, thus en-
suring higher annotation precision by leveraging
the parallelism of words.

Finally, we assign the same synset S∗ to both
words (ws

i , w
t
j) in P as follows:

S∗ = S∗
ws

i
= S∗

wt
j

= argmax
S∈σ(P )

(
c(S|ws

i , s)

Zs
+

c(S|wt
j , t)

Zt

)

Zs =
∑

S∈σ(P )

c(S|ws
i , s)

Zt =
∑

S∈σ(P )

c(S|wt
j , t)

that is, the synset with the highest combined confi-
dence score after normalizing over σ(P ), where Zs

and Zt represent the normalization factors of the
probability distributions associated with the synsets
of ws

i and wt
j , respectively.

3.3 Semantic Injection
Now that we can generate high-quality sense an-
notations, we describe our fine-tuning method to
inject word-level semantics into a Neural Machine
Translation model. Ideally, we want the model
to benefit from such annotations during training,
while not being dependent on them at inference
time. To satisfy both these desiderata, we adapt
the model’s vocabulary to handle synsets as well as
subwords, and propose a specific loss that exploits
the injected senses to improve the base model’s
handling of ambiguous words.
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Sense-enhanced
Pre-trained
NMT Model

The energy comes from a
distant plant      .

The energy comes from a
distant plant.

CE

CE

SCRKL
L'energia proviene da un

impianto lontano.

Figure 1: Semantic Consistency Regularization (SCR) fine-tuning. KL stands for Kullback-Leibler divergence; CE
stands for Cross Entropy.

Semantically Enhancing Sentences In order to
work with concepts, we need a way to represent
them. Let us consider once more the sentence “The
energy comes from a distant plant.”: we rewrite it
in order to also include the exact meaning for plant,
which we computed as described in § 3.2: “The
energy comes from a distant plant plantfactory”.

Formally, given a source sentence s and a word
wi annotated with sense S∗

wi
, we simply repre-

sent wi as its standard segmentation followed by
S∗
wi

, represented by its sense embedding4 passed
through a linear projection layer (as shown in Fig-
ure 2). Additionally, to enforce the connection be-
tween the tagged word and its sense annotation, we
set the position ids for the word and the sense em-
bedding to the same value, as if they were a single
token. This encoding scheme gracefully extends
to the whole sentence, yielding the sense-enhanced
input representation for a given sentence s.

Semantic Consistency Regularization We
hereby propose the Semantic Consistency Regular-
ization (SCR) objective, inspired by MVR (Wang
et al., 2021).

Formally, let x′ and x′′ be two encodings (plain
and sense-enhanced) of the same input sentence x
and let y be the target sentence, we define SCR as:

SCR(θ) =− log Pθ(y|x′)− log Pθ(y|x′′)
+DKL(Pθ(y|x′) || Pθ(y|x′′))

where θ is the set of trainable weights, DKL is the
unidirectional Kullback-Leibler divergence (Kull-
back and Leibler, 1951) and Pθ(y|x) represents an
output distribution (a visual representation of SCR
is reported in Figure 1).

With this formulation, SCR jointly uses the same
sentence with and without sense annotations as two
separate inputs: while we train the model to be

4Details are provided in § 4.

_The0 _spr1 ing1      1 _is2 _hot3

Vocabulary
Sense

Embedding

Projection

Transformer Model

Figure 2: Sense injection mechanism. Subscripts repre-
sent the position id associated with the subword.

able to translate both plain and sense-enhanced
sentences, by minimizing the divergence between
the output distributions we also force the model
to transfer the sense information from the sense-
enhanced input to the plain input, much like in
a self-distillation process. At the same time, we
still maintain the model’s capability of translating
without sense annotations, thus dropping their re-
quirement at inference time.

4 Experimental Setup

4.1 Our Model
We employ as underlying model the standard Trans-
former architecture (Vaswani et al., 2017), with 6
encoder and 6 decoder layers.5 Note that, while
SCR can be applied to any pre-trained model, we
retrain one from scratch because most of the other
models available online use part of our test data as

5We use randomly-initialized MarianMT models available
in HuggingFace’s transformers library (Wolf et al., 2020) for
easier comparability with their trained versions.
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their training data (see § 4.2). Additional details
about training configuration and hyperparameters
are provided in § A.3.

Fine-tuning with SCR Additionally, to jump-
start the model’s capabilities, we encode synsets
not as randomly initialized learnable vectors (e.g.,
by extending the vocabulary), but with frozen
pre-trained sense embeddings projected into the
model’s input space by means of a linear layer, the
only additional learnable component of the model
(Projection in Figure 2), which is dropped after
the fine-tuning stage. As pre-trained sense embed-
dings we use ARES (Scarlini et al., 2020b), since
they provide multilingual representations for each
synset in our vocabulary. We study the impact of
this choice in § 5.5. To perform token-level align-
ments, we use MultiMirror (Procopio et al., 2021).6

4.2 Datasets
We experiment on three distinct language pairs:
EN→DE, EN→ES and EN→FR. Following
(Emelin et al., 2020), we gather the data from
WMT14 for German and French and WMT13
for Spanish, considering only sentences coming
from either CommonCrawl, News Commentary
or Europarl, to maintain similar order of mag-
nitudes among language pairs (and to contain
pre-processing and training times). As valida-
tion sets, we employ newstest2014 for EN→DE,
newstest2013 for EN→FR and newstest2012 for
EN→ES. All datasets employed in this work are
freely available for research purposes.

Sense-Enhanced Datasets
We process each parallel sentence of the consid-
ered corpora with the procedure described in § 3.2,
taking into account only content words whose Part-
of-Speech tag is noun, as the challenge sets we
evaluate upon only target nominal words.7

For POS-tagging and lemmatization we use
Stanza (Qi et al., 2020). As disambiguation sys-
tem, we use EWISER (Bevilacqua and Navigli,
2020), a neural WSD model based on BERT (De-
vlin et al., 2019), which has attained state-of-the-art
performances on English as well as other languages.
EWISER has been trained on SemCor (Miller et al.,
1993) – the standard training set for WSD – and
the WordNet Gloss corpus (Langone et al., 2004)

6With a fallback strategy to fast-align (Dyer et al., 2013)
in case no alignment is produced.

7We filter out all nouns appearing in the stopwords list
provided by BabelNet.

– a semi-automatically annotated dataset featuring
sense definitions. Detailed statistics of the base and
parallel corpora produced are provided in § A.5.

Translation Test Set

We evaluate standard translation quality through
the newstest datasets available in the specific
WMT year (i.e., WMTXX corresponds to new-
stest20XX). The standard evaluation is carried out
by means of SacreBLEU (Post, 2018), with signa-
ture BLEU+case.mixed+numrefs.1
+smooth.exp+tok.13a+version.1.5.1.

Disambiguation Bias Challenge Sets

To measure the disambiguation bias of each model
we employ the challenge sets introduced by Emelin
et al. (2020), composed of sentences reserved from
the WMT14 English→German corpus. These chal-
lenge sets are based on sense clusters built by
automatically merging together BabelNet synsets,
which then are manually refined to ensure their cor-
rectness. Each sense cluster contains an English
polysemous word and a set of German monose-
mous terms, which uniquely identify a certain
meaning.

These clusters are used to create the following
two challenge sets: WSD Bias and Adversarial.
The former quantifies the intrinsic bias the model
learned during training, while the latter measures
how sensitive the model is to the insertion of terms
that are usually associated with another sense clus-
ter during training. Both challenge sets evaluate
in terms of accuracy of correct disambiguation. A
more detailed description of these datasets and their
evaluation process is provided in § A.1.

DIBIMT We also evaluate on the German and
Spanish portions of DIBIMT (Campolungo et al.,
2022), a recent fully-manually annotated disam-
biguation bias challenge set, where models are
asked to translate English sentences containing am-
biguous words, and their translations are checked
for either correct or incorrect translation equiva-
lents, which, in contrast to previous benchmarks,
are annotated manually and depend on the context
of the sentence instead of relying solely on the
sense of the source word.

4.3 Comparison Systems

We compare our sense-enhanced model with the
following architectures:
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1. OPUS (Tiedemann and Thottingal, 2020): a
strong bilingual model which uses the same
architecture and parameter count as ours, al-
though it was trained on order of magnitudes
more data;

2. MBart-50 (Tang et al., 2021): the English-to-
many version of the MBart-50 model;

3. Baseline: our base NMT models, trained on
the datasets described in § 4.2.

In what follows we refer to our model fine-tuned
with SCR as Baseline+SCR.

We note that, due to the way in which the WSD
Bias Challenge Sets were constructed (i.e., by using
sentences reserved from WMT14, see § 4.2), any
fair evaluation against OPUS and MBart-50 is to be
considered impossible, as such models have seen
the sentences in the challenge sets during training.
We therefore evaluate these two models only on
standard BLEU, and point out that the resulting
scores should only be regarded as references for
our models’ competence in the translation task.

5 Results

In what follows, first, we show that our model at-
tains BLEU scores in the same ballpark as state-of-
the-art approaches such as OPUS and MBart-50,
despite the large gap in terms of parameters or
training data. Then, we focus our evaluation on the
WSD Bias, and compare our full-fledged model
(Baseline+SCR) against its baseline variant.

5.1 General Translation Quality
In Table 1 we observe that the trained baselines are
more than competent in the translation task: indeed,
when considering average BLEU scores, they place
between OPUS, which is trained on much more
data but has the same parameter count, and MBart-
50 (Tang et al., 2021), which is ~8 times larger but
is capable of translating English to 50 languages.

In contrast to common debiasing techniques,
which often observe a degradation in performance
on standard benchmarks (Clark et al., 2019; He
et al., 2019), we report consistent BLEU improve-
ments on all language pairs, all of which are sta-
tistically significant at different p-values (Table 1),
providing empirical proof that the proposed method
does not hurt the model’s general translation capa-
bility, while at the same time it helps models gen-
erate less biased translations (as will be discussed
in the upcoming sections).

5.2 Disambiguation Bias

Results on the Disambiguation Bias Challenge Sets
(§ 4.2) are reported in Table 2, for both of which
we show improvements: on the WSD Bias Chal-
lenge Set, the bias is reduced, significantly, by more
than 1%; similarly, on the Adversarial Challenge
Set, we see a reduction of homographs mistakenly
disambiguated due to the injection of adversarial
adjectives of 0.27%. We attribute this lower impact
to the artificial nature of the adversarial sentences,
some of which, by manual inspection, display poor
grammatical fluency.

5.3 WSD Performance

We conduct an analysis of the performance of
EWISER on the English sentences of the WSD
Bias Challenge Set, to see how it fares in com-
parison with our NMT models. Unfortunately, as
the sense clusters are not directly associated with
BabelNet synsets, we reconstruct this association
automatically and manage to retrieve only 1847 of
the 3000 sentences in the challenge set.

Having retrieved BabelNet synsets for the tar-
get terms, we can apply EWISER and check
whether the disambiguated synset matches one of
the synsets retrieved for the sense cluster of the
challenge sentence. Let us consider our running
example, “The energy comes from a distant plant.”,
one last time: if EWISER disambiguates the term
plant to its sense of organism, we count it as a mis-
take, similarly to the case where our NMT model
translates it as pianta instead of impianto (i.e., its
sense of factory). With this in mind, we evalu-
ate EWISER, Baseline and Baseline+SCR on the
aforementioned subset of sentences; we report the
results of this evaluation in Table 2 (bottom).

The results indicate that, for this setting, both
NMT models actually perform quite a lot better
than a pre-trained disambiguation system. One
reason for this might be the different distributions
the models are trained on: by design, the chal-
lenge sentences follow a distribution similar to
the corpus used to train the NMT model, whereas
EWISER is trained on sentences coming from news
corpora from the 1960s and dictionary-like defini-
tions. Moreover, in theory, if we were to apply
the refinement process described in § 3.2 to disam-
biguate the challenge sentences, we would achieve
a perfect score, as the target German lemmas are
monosemous and thus the disambiguation is im-

810k bootstrap samples of 50% the test set’s size each.
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EN → DE EN → FR EN → ES

WMT14 WMT19 WMT14 WMT13

OPUS† 27.58 39.39 39.93 35.00
MBart-50‡ 25.60 35.80 36.12 29.50

Baseline 26.34 36.93 38.05 32.82
Baseline+SCR 27.26 37.74 38.48 33.18
Baseline+SCR−KL 26.13 36.45 37.85 33.15
Baseline+SCR−ARES 25.75 35.93 37.33 32.49
Baseline+SCR−AR 26.11 36.74 37.38 32.93
Baseline+SCRRAND 25.63 34.79 / /

Table 1: Standard evaluation results. Numbers represent SacreBLEU scores. Statistical significance is computed
according to Paired Bootstrap Resampling (Koehn, 2004) w.r.t. the row above. Underlined numbers represent
p < 0.02 and p < 0.001.8† represents systems that accessed more training data than us, but with the same parameter
count. ‡ represents systems that, beside access to a larger pool of data, also feature bigger underlying models.

plicitly solved. The results of using EWISER’s raw
annotations are discussed in § 5.5.

Finally, we choose not to perform a similar com-
parison on the Adversarial Challenge Set, as its
examples are designed to specifically target NMT
models via adversarial injections; we leave study-
ing their impact in WSD systems as future work.

MODEL WSD Bias ↓ Adversarial ↓
Baseline 12.27 4.48
Baseline+SCR 11.23 4.21
Baseline+SCR−KL 12.43 5.14
Baseline+SCR−ARES 12.53 4.75
Baseline+SCR−AR 13.07 4.93
Baseline+SCRRAND 12.56 5.04

EWISER 13.70 /
Baselinecf 11.86 /
Baseline+SCRcf 9.91 /

Table 2: Results on WSD Bias Challenge Sets. Num-
bers represent error rates (lower is better). Underlined
results represent statistical significance at p < 0.001,
compared to the row above, according to McNemar’s
test (McNemar, 1947).

5.4 System Examples

In Table 3, we report some examples of disam-
biguation corrected by our model according to the
WSD Bias Challenge Set. The baseline is translat-
ing the terms to their most frequent sense (column
Wrong sense), instead of the correct one (column
Target sense). Moreover, the third example shows
that this is not only a word matching task, as the
improved model is able choose the correct subword

and can capture the nuances of meaning in more
uncommon senses.

5.5 Ablation Study

Ablation on SCR To measure the importance of
the KL term in the loss, we fine-tune the model
without including it in the SCR objective (§ 3.3)
and report the results in Tables 1 and 2 (row
Baseline+SCR−KL). We observe that, without KL,
the model struggles to leverage the double inputs ef-
ficiently; indeed, its translation performance drops
around 1 BLEU point on average, while the error
rates increase by roughly 1% on both bias chal-
lenge sets. These results back our intuition that the
KL divergence helps to distill sense information
from the sense-enhanced inputs, and is indeed a
crucial component to our formulation.

Ablation on ARES We also test our system re-
placing the pre-trained sense embeddings provided
by ARES with randomly initialized learnable em-
beddings and report this result in Tables 1 and 2
(row Baseline+SCR−ARES). As expected, both
translation quality and disambiguation bias drop
consistently. Indeed, learning sense embeddings
from scratch is much harder than learning a map-
ping between a fixed space and a trainable one.

Ablation on Annotation Refinement We eval-
uate our sense Annotation Refinement process
(§ 3.2) by fine-tuning the model on the uncon-
strained sense annotations provided by EWISER
(Baseline+SCR−AR), i.e., by considering the
synset with the highest confidence on the source
word as the correct one, instead of S∗. In the bias

4831



Source sentence / Reference sentence / Baseline output / Enhanced output Target sense Wrong sense

S: [...] that both first words start with the same letter.
R: [...] dass beide Begriffe mit demselben Buchstaben beginnen.
B: [...] dass beide Wörter mit dem gleichen Brief beginnen.
E: [...] dass beide Wörter mit dem gleichen Buchstaben beginnen. alphabet symbol written message

S: At least since the fall of 2008, leading economies’ officials have agreed [...]
R: Spätestens seit Herbst 2008 stimmen die Vertreter führender [...]
B: Zumindest seit dem Fall 2008 haben sich die Beamten [...]
E: Zumindest seit dem Herbst 2008 haben sich die Beamten [...] season act of falling

S: The construction of the Deurganck dock lock is [...]
R: Der Bau der Schleuse am Deurganck-Dock ist [...]
B: der Bau der Deurganck-Hafensperre ist [...]
E: der Bau der Deurganck-Hafenschleuse ist [...] segment of a canal blockade

Table 3: Examples of sentences that were disambiguated correctly by our enhanced model but not by the baseline.
Ambiguous word is in blue, wrong translation is in red, correct translation is in green.

Model EN → DE EN → ES

OPUS† 27.99 36.66
MBart-50‡ 28.73 33.89

Baseline 24.00 26.44
Baseline+SCR 25.00 25.84

Table 4: Accuracy scores on DIBIMT. † and ‡ have the
same meaning as in Table 1. Higher is better.

evaluation (Table 2), the performances on both chal-
lenge sets drop significantly (p < 0.001), which is
in line with EWISER’s performance on this chal-
lenge set (§ 5.3). Furthermore, the BLEU scores
drop too, although not as significantly (Table 1),
but still always under-performing with respect to
Baseline+SCR.

Ablation on Sense Annotations Finally, we test
whether the sense annotations have an impact by
replacing them with random senses for the spe-
cific word, drawn from the sense vocabulary with
uniform probability, during the fine-tuning stage
(Baseline+SCRRAND).9 As expected, we observe
that randomly injecting senses is detrimental, with
important performance drops in both the standard
and the bias evaluation benchmarks.

5.6 Evaluation on DIBIMT

In Table 4 we report the results obtained on
DIBIMT (Campolungo et al., 2022). For the sake
of conciseness, we only report accuracy scores as
a proxy for the general disambiguation bias dis-

9Due to time constraints, we only perform this ablation on
the English→German model.

played by our models.
While on English→German we observe

an improvement of 1%, the performance on
English→Spanish decreases by around 0.6%. We
hypothesize that our English→Spanish model
might be undertrained, as its accuracy differs by
around 10% from OPUS, its direct comparison,
while on English→German the difference is only
of around 3%. We leave further investigation of
this issue, including training larger, more capable
models, as future work.

6 Conclusions

In this paper, we presented a fine-tuning strategy
that, by leveraging the explicit sense annotations
produced by a novel high-precision technique, ef-
fectively reduces the disambiguation bias of a base-
line Neural Machine Translation model while at
the same time also strengthening translation per-
formances, without introducing any requirement at
inference time.

Our analysis on a strong disambiguation system
showed that its ability to disambiguate polysemous
nouns is worse than that of a baseline NMT model,
at least in the studied out-of-domain setting.

We believe that this work paves the way for bet-
ter bias reduction techniques in MT, while also
fostering interest in the issue represented by the
disambiguation bias. As future work, we plan to
further study the ability of NMT models to perform
Word Sense Disambiguation and to strengthen re-
search at the intersection of these two fields, with a
view to building stronger and more reliable models.
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A Appendix

A.1 Bias Evaluation Challenge Sets

We here provide a more detailed description of the
datasets introduced by (Emelin et al., 2020). From
§ 4.2, recall that these challenge sets are based on
sense clusters built on BabelNet, where each sense
cluster contains an English polysemous word and a
set of German monosemous terms, which uniquely
identify a certain meaning.

We highlight that there is no direct link between
the sense clusters and the data produced by our
Annotation Refinement process, as the sense clus-
ters are i) heavily manually refined10 and ii) based
on the entire BabelNet4 inventory (16M concepts),
while EWISER only covers the subgraph of Ba-
belNet linked to WordNet (117k concepts), as is
common in the multilingual WSD setting. As such,
we do not consider the evaluation to be in any way
more favorable towards our system.

WSD Bias contains sentences whose targeted
English term is likely to be translated into a specific
different sense due to co-occurrences of words in
the sentence itself. For example, in the sentence
“a lot of money was spent to renovate the capital”
the word capital is likely to be translated into its
sense of amount of money due to the presence of
the words money and spent. A mistake is detected
if the term is translated into any of the German
words contained in the most likely sense cluster.
The goal of this task is to measure the intrinsic bias
the model learned during training.

Adversarial contains two sets of sentences, the
original sentence and its adversarial counterpart,
built by injecting an adjective that is likely to flip
the disambiguation performed by the NMT model
towards a specific sense. For example, given the
sentence “they met in the spring of 2020”, the
adversarial example would be “they met in the
hot spring of 2020”. The injection of hot leads
the model to translate spring into its sense of wa-
ter source as opposed to its correct sense of sea-
son. A mistake is detected every time the non-
adversarial sentence is translated into the correct

10As discussed in § 5.3, almost 40% of the challenge in-
stances could not be linked back to BabelNet synsets, further
confirming the impact of the manual refinement performed.

sense, whereas its adversarial counterpart is flipped
to the sense cluster the adjective points to. The goal
of this task is to measure how sensitive the model is
to the insertion of terms that are usually associated
with another sense cluster during training.

A.2 Training a Sense-Enhanced NMT Model
Our work is based on the assumption that providing
a neural model with sense annotations for ambigu-
ous words helps in disambiguating them. While
this is rather intuitive, and has been shown to be
the case in previous works (Nguyen et al., 2018;
Pu et al., 2018b), we test this hypothesis in our
setting by training an NMT model, from scratch,
with sense-enhanced sentences only (see § 3.3 for
details). We train a model comparable with the
Baseline (i.e., same architecture and hyperparame-
ters) on the English→German training set (§ 4.2),
and observe that it achieves higher BLEU scores
than the Baseline (which is trained on the same data
but with plain sentences). For instance, the sense-
enhanced model achieves a BLEU score of 27.22
on WMT14 and 36.79 on WMT19, with the first
being a statistically significant improvement. This
confirms, once again, that sense-enhanced NMT
models are on par or better than plain NMT models,
although they introduce the heavy requirement of
WSD at inference time, which our work aims at
dropping.

A.3 Reproducibility Details
Preprocessing Times The preprocessing of the
datasets needed to apply Annotation Refinement
(lemmatization, Part-of-Speech tagging and then
disambiguation through EWISER) required around
4 days in total on an RTX 2080 Ti (roughly 3M
sentences per day).

Training infrastructure and duration All our
experiments were carried out on either an NVIDIA
RTX 2080 Ti or a RTX 3090, depending on avail-
ability.

Model training required on average 4 days on
a 3090, 7 days on a 2080 Ti. Fine-tuning epochs
required around 10 hours each (on a 3090), with
most finishing due to early stopping before the end
of the second epoch.

Parameter counts We used HelsinkiNLP
MarianMT models available on Hugging-
Face Transformers (Wolf et al., 2020)
(e.g., for EN→DE, the model name is
Helsinki-NLP/opus-mt-en-de). For
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WSD Bias Adversarial

MODEL Correct ↑ %Error ↓ Correct ↑ %ErrorATTR ↓ %ErrorOTH ↓
Baseline 71.37 12.27 86.10 4.48 0.40
Baseline+SCR 73.27 11.23 87.36 4.21 0.34
Baseline+SCR−KL 70.37 12.43 85.30 5.13 0.40
Baseline+SCR−ARES 70.53 12.53 85.75 4.75 0.45
Baseline+SCR−AR 70.20 13.07 86.40 4.93 0.35
Baseline+SCRRAND 68.83 12.56 84.51 5.04 0.63

EWISER 68.54 13.70 / / /
Baselinecf 72.77 11.86 / / /
Baseline+SCRcf 75.58 9.91 / / /

Table 5: Full results on WSD Bias Challenge Sets. Numbers represent percentages.

instance, EN→DE has 74.4M parameters,
EN→ES has 77.9M, EN→FR has 75.1M.

For the fine-tuning stage we added ARES
(frozen), thus adding a number of parameters equal
to ARES’s size (1536) times the number of unique
synsets in the dataset (refer to Table 6 for approxi-
mate numbers). We also added a trainable projec-
tion layer of size 1536 ∗ 512 (512 is the Trans-
former’s hidden dimension), thus adding 786k
trainable parameters (which we drop after the fine-
tuning).

Model training hyperparameters Similarly to
(Emelin et al., 2020), we trained it on the entire
dataset for a max of 100,000 steps with approxi-
mately 24k tokens per batch, label smoothing at
0.1 and an inverse square root learning rate sched-
uler with 4000 warmup steps. As optimizer, we
used Adam (Kingma and Ba, 2015) with betas
(0.99, 0.98) and learning rate 7 · 10−4, additionally
employing an early stopping strategy with patience
5, monitoring the BLEU score on a validation set.
We produced translations at inference time using a
beam size of 5.

Fine-tuning hyperparameters For the fine-
tuning, we resumed training using the weights
of the baseline models, changed the learning to
1 · 10−5 and reduced the warmup to 1000 steps;
additionally, we evaluated the model every 10% of
the fine-tuning steps rather than after each epoch,
as we observed fast convergence during fine-tuning
and multiple epochs were superfluous.

A.4 Disambiguation Bias Results

Table 5 reports the same results displayed in the
paper, but includes the percentage of Correct trans-
lations for both challenge sets as well as the percent-
age of errors made from sentences that, after the
injection of the adversarial adjectives, were trans-
lated into a sense that was neither the correct one,
nor the one targeted by the adversarial injection
(i.e., other).

A.5 Data Statistics

CORPUS EN-DE EN-ES EN-FR

# sentences 4.13M 3.54M 5.09M
# tokens (src / tgt) 99.7M / 96.8M 94.7M / 98.7M 133M / 142M
# annotated sentences 2.97M 3.11M 4.25M
# annotations 6.5M 11.2M 13.6M
# EN terms vocab 634k 592k 808k
# EN terms covered 34.0k 40.0k 37.5k
# unique synsets 16.0k 20.5k 15.7k

Table 6: Training and fine-tuning produced data statis-
tics.

A.6 Limitations of this work

Our work focuses on reducing the disambiguation
biases picked up by NMT models during training.
We acknowledge some limitations in our work:

1. Due to limited computational budget and the
large number of resources required to train
and fine-tune NMT models from scratch, we
had to limit ourselves to one run per exper-
iment, though, despite this, the consistency
across languages seems to point to the empiri-
cal correctness of the claims.
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2. We evaluated the bias reduction explicitly only
on the English→German language pair. The
reason for this was twofold: first, the datasets
introduced by Emelin et al. (2020) only cover
said pair, and require the accompanying train-
ing data be used in order to fully exploit the
co-occurrences (and hence the biases) that the
model is evaluated upon; second, upon man-
ual inspection, we found that MuCoW (Ra-
ganato et al., 2019) contains many irrelevant
candidates in its translation suite, and is in
general very strongly affected by the noisy
nature of BabelNet.

3. Our pipeline is strictly tied to both the ac-
curacy of the multilingual WSD system em-
ployed and by the coverage of the underlying
sense inventory. While EWISER and Babel-
Net work reasonably well for high-resource
languages, the quality of the annotated corpus
might decrease for low-resource ones.
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