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Abstract

Pretrained language models (PLMs) have
made remarkable progress in text generation
tasks via fine-tuning. While, it is challenging
to fine-tune PLMs in a data-scarce situation.
Therefore, it is non-trivial to develop a general
and lightweight model that can adapt to various
text generation tasks based on PLMs. To
fulfill this purpose, the recent prompt-based
learning offers a potential solution. In this
paper, we improve this technique and propose
a novel prompt-based method (PTG) for text
generation in a transferable setting. First, PTG
learns a set of source prompts for various
source generation tasks and then transfers
these prompts as target prompts to perform
target generation tasks. To consider both
task- and instance-level information, we
design an adaptive attention mechanism
to derive the target prompts. For each data
instance, PTG learns a specific target prompt by
attending to highly relevant source prompts. In
extensive experiments, PTG yields competitive
or better results than fine-tuning methods.
We release our source prompts as an open
resource, where users can add or reuse them
to improve new text generation tasks for
future research. Code and data can be avail-
able at https://github.com/RUCAIBox/

Transfer-Prompts-for-Text-Generation.

1 Introduction

In natural language processing (NLP), text genera-
tion is an important research topic that aims to au-
tomatically produce understandable text in human
language from input data (Li et al., 2022). In recent
decades, various approaches have been widely ap-
plied to a variety of text generation tasks (Li et al.,
2019; Gehring et al., 2017; Li et al., 2021a), espe-
cially the emergence of pretrained language models
(PLMs) (Li et al., 2021c). By involving large-scale
parameters pretrained on massive general corpora,
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PLMs such as GPT-3 (Brown et al., 2020) have
achieved substantial progress in text generation.
Through the fine-tuning paradigm, PLMs can adapt
to various text generation tasks by directly adjust-
ing the model parameters with labelled datasets.

However, in real-world scenarios, we are in-
evitably confronted with tasks having only limited
labelled data (e.g., new domains). It is often diffi-
cult to fine-tune text generation models in a data-
scarce situation (Chen et al., 2020; Li et al., 2021b).
Although the input and output formats are differ-
ent for various text generation tasks, these tasks
essentially adopt similar learning and generation
mechanism (e.g., Seq2Seq (Sutskever et al., 2014)).
Furthermore, the success of PLMs sheds light on
the possibility of developing general or transferable
text generation models. For example, Radford et al.
(2019) framed generation tasks as language mod-
eling by predicting the next token given previous
tokens. Based on these studies, we aim to devise a
general and lightweight text generation approach
that can effectively adapt to various new tasks and
datasets, based on PLMs.

To fulfill this purpose, the recently proposed
prompt-based learning offers a potential techni-
cal solution (Liu et al., 2021b). In this paradigm, a
text generation task can be solved with the help of
a prompt containing task-specific information. For
example, T5 (Raffel et al., 2020) framed summa-
rization and question answering into a text-to-text
format by utilizing prompts “summarize:” and
“answer the question:”. Based on learned
or manually designed prompts, PLMs can be lever-
aged to perform existing or new generation tasks
without being tuned (Brown et al., 2020; Li and
Liang, 2021), which provides a unified approach to
utilizing PLMs for various generation tasks. Fur-
thermore, to quickly adapt PLMs to new NLU tasks,
several works directly used a soft prompt learned
from source NLU tasks to initialize the prompt for
a target NLU task (Vu et al., 2021; Su et al., 2021).
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Inspired by these studies, we aim to apply prompt-
based methods to data-scarce text generation tasks
in a transferable setting.

Despite promising, there are still two major chal-
lenges for transferring prompts in text generation.
Firstly, it has been found that prompts are highly
task-specific (Gao et al., 2020), and it is difficult
to effectively transfer or reuse existing prompts for
new tasks. Second, for a single task, even a well-
learned prompt may not be suitable for all the data
instances from a large population (Scao and Rush,
2021), and hence it is non-trivial to design effec-
tive transferring strategy considering both task- and
instance-level characteristics.

To address the above issues, we propose PTG:
Prompt Transfer for Text Generation, a novel
prompt-based transfer learning approach for text
generation. PTG is built upon a transfer learning
setting. Specifically, we learn source prompts from
a number of representative source generation tasks
and then transfer these prompts as target prompts
to perform target generation tasks. The core idea
is that these learned source prompts serve as repre-
sentation bases (i.e., value vectors in self-attention
mechanism). For each data instance from a new
task, we learn a specific target prompt by attending
to highly relevant source prompts. To support such
an approach, we construct a multi-key memory
network storing both source prompts and prompt
clusters for key-value prompt finding, and then de-
sign an adaptive attention mechanism considering
both task- and instance-level information to derive
the target prompt. Instead of using a fixed prompt
for a new task, our approach is able to effectively
learn the most suitable prompt representation from
source prompts for a specific data instance. Such an
adaptive mechanism considers the specific instance-
level features, making our approach more flexible
to transfer to new text generation tasks.

To the best of our knowledge, we are the first to
introduce the idea of prompting in transfer learning
to address text generation tasks. For evaluation,
we test PTG on 14 datasets from three sets of text
generation tasks: i) compression to express salient
information in concise text such as summarization;
ii) transduction to transform text while preserving
content precisely such as style transfer; and iii)
creation to produce new content from input context
such as story generation. In both fully-supervised
and few-shot experiments, PTG yields competitive
or better results than fine-tuning PLMs.

Besides performance benefits, more importantly,
we release our source prompts to serve as an open-
source prompt library. Researchers can train new
task prompts added to our library and reuse these
learned prompts to improve unseen text genera-
tion tasks. Our library can further act as an analy-
sis tool, such as analyzing what factors influence
prompts’ transferability across generation tasks and
interpreting the task similarity by measuring the
corresponding prompt similarity.

2 Related Work

Prompt-based Language Models. Prompt-based
learning is a way of leveraging PLMs by prepend-
ing task-specific instructions to the task input when
feeding into PLMs. Early approaches mainly uti-
lized hand-crafted prompts to adapt to different gen-
eration tasks (Brown et al., 2020; Raffel et al., 2020;
Zou et al., 2021). However, manually designed
prompts are not flexible and cannot be applied
to more kinds of new tasks. Thus, recent works
have focused on automating the learning of discrete
prompts (Shin et al., 2020; Gao et al., 2020). How-
ever, learning prompts over discrete space is hard to
optimize and likely to be sub-optimal. To address
these problems, many works proposed to optimize
continuous prompts (Liu et al., 2021c; Li and Liang,
2021), which are more flexible to many kinds of
tasks. Among these studies, prefix-tuning (Li and
Liang, 2021) prepended a sequence of vectors to
the input for text generation tasks. By contrast, we
utilize soft prompts to investigate transfer learning
for text generation and demonstrate that generation
tasks can often help each other via prompt transfer.

Transferability of Natural Language Processing.
We are also closely related to existing works on
transfer learning in NLP tasks (Jeong et al., 2020;
Wiese et al., 2017; Liu et al., 2019). Prior studies
have shown that cross-task transfer can address the
data scarcity issue (Wiese et al., 2017), enhance the
ability to complex reasoning and inference (Jeong
et al., 2020), or learn effective word representa-
tions (Liu et al., 2019). Efforts to transfer prompts
for addressing NLU tasks have also been devel-
oped (Vu et al., 2021; Su et al., 2021). As a repre-
sentative work, Vu et al. (2021) used the learned
prompt to directly initialize the prompt for a target
task while not considering the specific input. Our
work focuses on challenging text generation tasks
by utilizing prompts to extract implicit task-related
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knowledge and considering specific model inputs
for the most helpful knowledge transfer.

3 Preliminary

3.1 Problem Formulation

Generally, the objective of text generation is to
model the conditional probability Pr(y|x), where
x = ⟨w1, . . . , wn⟩ and y = ⟨z1, . . . , zm⟩ denote
the input text and output text respectively and con-
sist of sequences of tokens from a vocabulary V .

Prompting is a technique for injecting extra task
information to PLMs as a condition during the gen-
eration of output text (Brown et al., 2020). Typ-
ically, prompting is conducted by prepending a
series of tokens (discrete prompts) or continuous
vectors (continuous prompts) to the input x. In our
paper, we adopt continuous prompts. Specifically,
given a series of n input tokens, x = ⟨w1, . . . , wn⟩,
we first utilize PLM to embed the tokens, forming
a matrix Ex ∈ Rn×e, where e is the dimension of
the embedding space. Then, our continuous prompt
p is represented as a parameter matrix Ep ∈ Rl×e,
where l is the number of prompt vectors. The
prompt p is then prepended to the embedded in-
put forming a single matrix [Ep;Ex] ∈ R(l+n)×e

which is encoded by PLMs as an ordinary sequence,
such that the model maximizes the likelihood of
the ground-truth y, i.e., Pr(y|[p;x]).

3.2 Prompt-based Transfer Learning

In a general transfer learning framework, we define
a set of source generation tasks S = {S1, . . . ,ST },
where the t-th task St = {(xti, yti)}nt

i=1 contains nt

tuples of the input text xti ∈ X and its correspond-
ing output text yti ∈ Y . For a target generation
task T , the goal of transfer learning is to use the
previously learned task-specific knowledge of the
source tasks S to help improve the performance
of a learned model fθ (parameterized by θ) in the
target task T .

In this paper, we consider a new transfer learn-
ing setting based on prompting. Specifically, the
parameters of the underlying PLM are frozen, and
the text generation tasks have to be fulfilled by
prepending prompts (continuous vectors) to input
as described in Section 3.1. Formally, we will learn
an independent source prompt pt for each source
generation task St based on a shared frozen PLM
by maximizing the likelihood Pr(yti |[pt;xti]). Our
core idea is to transfer these learned source prompts
to a new (target) text generation task, such that the
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Figure 1: Overview of our proposed model PTG.

target generation task can be performed in zero or
few shot settings.

4 Approach

Our proposed method, Prompt Transfer for Text
Generation (PTG), is depicted in Figure 1. Our
approach first learns a number of source prompts
for various representative source generation tasks,
and then derive the prompt for the target generation
task with a novel adaptive attention mechanism.
Next we will describe each part in detail.

4.1 Learning Transferable Source Prompts

To extract task-related knowledge from source gen-
eration tasks, we learn a set of source prompts and
store them in a source prompt pool. The motiva-
tions for introducing the prompt pool are twofold.
First, we expect to identify the similarity between
source generation tasks. Second, the pool stores
task-specific prompts for every source task, which
can be shared by all target tasks.

Constructing Source Prompt Pool. For each
source generation task St, we aim to learn a source
prompt pt given its training data {(xti, yti)}nt

i=1. Fol-
lowing the learning steps in Section 3.1, we learn
an independent source prompt pt for each source
task St based on a shared frozen PLM, i.e., BART.
These source prompts are stored in a prompt pool
P = {p1, . . . , pt, . . . , pT }, where T is the total
number of source text generation tasks.

To construct the source prompt pool, a key point
lies in the selection of source text generation tasks.
According to the literature (Deng et al., 2021), text
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generation tasks can be categorized as performing
compression, transduction, or creation based on
changes in conveyed information from input to out-
put. Moreover, recent studies have shown that few
but diverse source tasks/domains also lead to re-
markable transfer learning performance (Friedman
et al., 2021; Zhuang et al., 2021). Therefore, we
select six text generation tasks (including 14 public
datasets) within the three types of generation tasks
for learning their corresponding source prompts.

Clustering Source Prompts. As described above,
the source tasks are diverse in the prompt pool. It
is challenging for PLMs to effectively transfer or
reuse existing prompts for new tasks. Thus, to iden-
tify the similarity between source tasks (prompts),
we construct a source prompt pool for more effec-
tive cross-task knowledge transfer. In particular,
via spectral clustering algorithm (Ding et al., 2001),
we group these source prompts into several prompt
clusters. Under this algorithm, each prompt pt is
regarded as a node in a weighted undirected graph
G. The similarity degree (weight) between node
(prompt) pi and pj is computed via the position-
agnostic Euclidean distances (Su et al., 2021):

wi,j =
1

1 + 1
l2
∑l

k1=1

∑l
k2=1 ||pi,k1 − pj,k2 ||

,

(1)
where pi,k1 , pj,k2 denote the k1-th and k2-th vector
of prompt pi and pj , respectively. We then adopt
the min-max cut strategy (Ding et al., 2001) to par-
tition the graph G into several subgraphs represent-
ing different prompt clusters C = {C1, . . . , Cm},
where m is the total number of clusters. When
transferring the source prompts, it will be better to
identify the suitable prompt cluster and select the
most relevant source prompt. By contrast, previous
works considered each source prompt equally and
ignore the differences between different tasks (Vu
et al., 2021; Su et al., 2021).

Multi-Key Memory Network. With source
prompts encoding task-related knowledge, the sec-
ond motivation is to share them with every target
generation task. To facilitate the prompt trans-
fer from source tasks to target tasks, we build a
multi-key memory network to store these clustered
prompts. Specifically, for a source prompt pt from
the prompt cluster Cz , i.e., pt ∈ Cz , it is associ-
ated with a learnable cluster key kc

z and a learnable
prompt key kp

t , as follows:

P̃ = {Cz : ⟨kc
z,k

p
t , pt⟩}mz=1, (2)

where kc
z,k

p
t ∈ Rd, and d is the key embedding

size. In our memory network, these learned source
prompts serve as representation bases, i.e., value
vectors, which can be transferred to target genera-
tion tasks through key-value prompt finding.

4.2 Transferring Instance Adaptive Prompts
Previous works (Li and Liang, 2021; Vu et al.,
2021) usually consider only the task information
but ignore the specific input data when deriving
prompts. However, for a single task, even a well-
learned prompt may not be suitable for all the data
instances (Scao and Rush, 2021), and thus it is
non-trivial to design effective transferring strategy
considering both task- and instance-level character-
istics. In our model, we design an adaptive atten-
tion mechanism to incorporate the instance feature
for constructing the target prompt.

Adaptive Attention Mechanism. Specifically, for
an instance (x, y) of the target task T , we use both
task-level and instance-level queries to adaptively
lookup and select the source prompts for transfer-
ring the previously learned task-related knowledge.
The task-level query aims to select the overall infor-
mation related to the specific target task, which is
defined as a learnable task query vector qtask ∈ Rd.
However, the source prompts in the pool are diverse
but limited, thus the task-level prompt may not well
adapt to all the data instances of the target gener-
ation task. Therefore, we design an instance-level
query to learn the target prompt by attending to
the highly relevant source prompts to help improve
the model performance in specific instances. The
instance-level query is computed as the input en-
coding qins ∈ Rd through a frozen PLM such as
BERT (Devlin et al., 2019):

qins = Average(BERT(x)), (3)

where we average the top-layer representations of
every input tokens encoded by BERT.

For a source prompt pt ∈ Cz , we use qtask and
qins to lookup its corresponding cluster key and
source key respectively, following multi-head atten-
tion (Vaswani et al., 2017). Thus, the final match-
ing score between the instance x and prompt pt is
calculated as:

st = softmax(λ · qtask⊤kc
z + (1− λ) · qins⊤kp

t ),
(4)

where λ is a hyper-parameter. Finally, according
to the weight score, the selected source prompt is
computed as: p̃ =

∑T
t=1 st · pt.

3509



Compared to other prompt-based transfer learn-
ing methods that used only a fixed prompt for a
new task (Vu et al., 2021; Li and Liang, 2021), our
adaptive attention mechanism is able to effectively
learn the most suitable prompt representation from
source prompts for a specific data instance. Such
a mechanism makes our model more flexible to
transfer to new text generation tasks.

Prompt-based Text Generation. Based on the
above adaptive attention mechanism, we retrieve
the prompt p̃ encoding the most useful and relevant
knowledge to help the model perform the specific
generation instances. As described in Section 3.1,
we prepend the prompt p̃ to the input embedding of
x, which then flows through a generative PLM such
as BART (Lewis et al., 2020) for generating text.
The generative PLM is optimized via maximum
likelihood estimation (MLE) as:

LMLE(θ) = E(x,y)∼(X ,Y) log Pr(y|[p̃;x]). (5)

During the learning process of the target task, the
retrieved prompt p̃ is adaptive to different instances
and is frozen because it encodes the previously
learned task-related knowledge.

4.3 Model Discussion

For prompt-based transfer learning in text genera-
tion, the key point lies in how to effectively transfer
or reuse existing prompts (encoding task-specific
knowledge) for new generation tasks considering
both task- and instance-level characteristics.

To achieve this goal, we first learn a set of source
prompts encoding task-specific knowledge from a
number of representative source text generation
tasks (Section 4.1). These source prompts serve
as representation bases, i.e., value vectors in the
multi-key memory network. Moreover, we design
an adaptive attention mechanism considering both
task- and instance-level information for construct-
ing the target prompt (Section 4.2). Each data
instance from a new generation task can learn a
specific prompt by attending to the most highly
relevant source prompts.

Compared with typical transfer learning meth-
ods, our model utilizes a lightweight technique,
i.e., prompting, to learn task-specific knowledge
from source tasks. Our pretrained source prompts
can help PLMs perform more effective and useful
knowledge transfer.

5 Experiments

In this section, we first set up the experiments, and
then report the results and analysis.

5.1 Experimental Setup

Datasets. We select 14 public datasets divided into
three types of text generation tasks: i) compression
to express salient information in concise text includ-
ing summarization (CNN/Daily Mail (See et al.,
2017), XSum (Narayan et al., 2018), MSNews (Liu
et al., 2021a), Multi-News (Fabbri et al., 2019),
NEWSROOM (Grusky et al., 2018)) and ques-
tion generation (SQuAD (Rajpurkar et al., 2016));
ii) transduction to transform text while preserv-
ing content precisely including style transfer (Wiki
Neutrality (Pant et al., 2020)) and text paraphrase
(Quora (Wang et al., 2017)); and iii) creation to
produce new content from input context including
dialog (PersonaChat (Zhang et al., 2018), Topi-
calChat (Gopalakrishnan et al., 2019), DailyDia-
log (Li et al., 2017), DSTC7-AVSD (Alamri et al.,
2019), MultiWOZ (Budzianowski et al., 2018))
and story generation (WritingPrompts (Fan et al.,
2018)). Dataset statistics are in Appendix A.

Baselines. We compare our proposed PTG to the
following baselines:

• GPT-2 (Radford et al., 2019), BART (Lewis
et al., 2020), and T5 (Raffel et al., 2020): These
are three representative PLMs for text generation,
where all pretrained parameters are fine-tuned on
each target task dataset separately. We adopt the
LARGE version of these PLMs.

• PREFIXTUNING (Li and Liang, 2021): It is the
recent state-of-the-art prompt-based PLM for text
generation by concatenating a sequence of vectors
and the input, which keeps PLM parameters frozen
but optimizes a set of continuous prefix vectors.

• SPOT (Vu et al., 2021): It also adopts a prompt-
based transfer learning method which first trains a
prompt on source tasks and then uses the resulting
prompt to initialize the prompt for a target task.

• MULTI-TASK MODELTUNING: This strong
multi-task baseline first fine-tunes BART on the
same source tasks used for PTG and then fine-tunes
on each target task dataset individually.

We conduct all methods in the same setting to
obtain their results without special tricks such as la-
bel smoothing. Compared with other baselines, our
model is extremely lightweight, i.e., when solving
target generation tasks, we freeze the transferred
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Target Task SUMMARIZATION (CNN/Daily Mail) DIALOG (PersonaChat)

#Metrics ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 Distinct-1 Distinct-2

GPT-2LARGE 30.30 7.66 26.40 36.07 22.64 1.57 8.54
BARTLARGE 41.37 21.16 38.36 40.48 26.48 1.42 7.60
T5LARGE 40.47 20.30 37.57 42.23 27.36 1.39 7.63
PREFIXTUNING 41.79 20.69 38.50 41.87 27.28 1.33 7.20
SPOT 39.38 17.24 36.71 39.74 26.52 1.33 7.81
MT MODELTUNING 41.43 21.17 38.40 40.47 26.49 1.45 7.83
PTG 42.40 21.35 39.14 45.46 29.52 1.46 8.34

Table 1: Cross-task transferability performance comparisons of different methods in fully-supervised setting. Bold
and underline fonts denote the best and the second best methods (the same as below).

Target Dataset CNN/DAILY MAIL PERSONACHAT

#Metrics ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 Distinct-1 Distinct-2

GPT-2LARGE 30.30 7.66 26.40 36.07 22.64 1.57 8.54
BARTLARGE 41.37 21.16 38.36 40.48 26.48 1.42 7.60
T5LARGE 40.47 20.30 37.57 42.23 27.36 1.39 7.63
PREFIXTUNING 41.79 20.69 38.50 41.87 27.28 1.33 7.20
SPOT 39.85 18.21 36.33 40.39 26.34 1.32 7.60
MT MODELTUNING 41.71 21.41 38.67 42.53 27.83 1.39 7.86
PTG 42.68 21.63 39.45 45.47 29.52 1.43 8.34

Target Dataset XSUM DAILYDIALOG

#Metrics ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 Distinct-1 Distinct-2

GPT-2LARGE 28.28 9.17 22.29 29.14 18.01 5.78 21.52
BARTLARGE 43.93 20.78 35.94 32.62 21.77 5.16 25.08
T5LARGE 41.01 17.84 32.60 31.54 20.08 5.70 29.25
PREFIXTUNING 42.87 19.98 34.82 34.00 21.63 4.31 19.95
SPOT 41.43 17.56 31.33 30.22 20.11 4.91 25.56
MT MODELTUNING 43.75 20.70 35.66 34.41 23.08 5.46 27.23
PTG 44.21 20.99 36.00 42.72 28.75 5.36 29.48

Table 2: Cross-dataset transferability performance comparisons of different methods in fully-supervised setting.

target prompt and parameters of the backbone PLM
but only tune the multi-head attention parameters
in adaptive attention mechanism (Eq. 4).

In particular, we adopt BART-LARGE to learn
a set of source prompts. The length of prompt is
set to 200 and the learning rate is set to 1× 10−3.
For the target generation task, we utilize BART-
LARGE as the generation backbone and frozen
BERT-LARGE to obtain the instance-level query
qins. The dimension d is set to 1024, which is the
same as the embedding size e of the BERT/BART-
LARGE. The multi-head attention in adaptive atten-
tion mechanism has 16 heads. During fine-tuning,
the learning rate of BART is set to 3 × 10−5 and
the learning rate of cluster key kc, prompt key kp,
task key qtask and multi-head attention is set to
1× 10−3. The value of λ is set to 0.5 based on the
performance in validation set. The training details
of baselines can be found in Appendix B.

Evaluation Metrics. For performance comparison,
we adopt three automatic evaluation metrics widely
used by previous works, i.e., BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004) and Distinct (Li et al.,
2016). Specifically, BLEU-n measures the ratios
of the co-occurrences of n-grams between the gen-
erated and real text; ROUGE-n measures the text
quality by counting the overlapping n-grams be-
tween the generated and real text; and Distinct-n
measures the degree of diversity by calculating the
number of distinct n-grams in generated text.

5.2 Fully-Supervised Setting
Table 1 and Table 2 present the fully-supervised re-
sults of cross-task and cross-dataset transferability,
respectively, for our model and baselines. In fully-
supervised setting, we use all training instances of
the target task to train our model.

For the cross-task experiment, we consider two
pairs of source and target tasks transfer: 1) the tar-
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Target Task SUMMARIZATION (R-1/R-2/R-L) DIALOG (B-1/B-2/D-1/D-2)

#Instances 50 100 200 500 50 100 200 500

GPT-2LARGE 19.8/ 3.1/17.5 20.6/ 3.9/18.4 26.1/ 6.1/23.3 29.2/ 7.3/26.0 27.7/10.4/2.2/10.9 27.6/10.4/2.2/11.4 29.3/11.1/2.1/11.5 31.4/12.0/1.9/10.7
BARTLARGE 37.5/16.9/34.4 38.8/17.9/35.6 39.3/18.4/36.1 39.9/19.0/36.7 22.7/ 9.0/1.3/ 5.4 30.0/11.9/1.3/ 5.2 32.4/12.8/1.3/ 5.7 31.7/12.6/1.3/ 5.6
T5LARGE 39.1/18.3/36.2 39.9/18.5/36.8 40.0/18.7/37.0 39.6/19.2/36.7 41.7/15.5/0.9/ 6.6 42.1/15.7/0.8/ 5.4 43.1/16.3/0.7/ 4.6 45.1/17.4/0.8/ 4.4
PREFIXT 32.2/12.4/28.5 32.3/12.5/28.5 34.0/13.7/30.9 37.5/16.3/34.7 39.6/23.9/0.6/ 3.4 39.7/24.0/0.5/ 3.1 36.4/22.4/0.8/ 3.7 25.7/16.1/1.1/ 4.1
SPOT 31.3/11.8/27.5 31.9/11.8/27.5 33.6/12.6/29.3 36.5/16.0/33.6 38.3/22.1/0.5/ 3.0 38.2/22.0/0.5/ 3.0 39.0/23.2/0.8/ 4.1 41.1/23.5/1.0/ 4.5
MODELT 36.2/15.6/32.8 37.8/16.6/34.4 38.6/17.3/35.2 39.3/17.9/35.8 24.9/ 9.9/1.5/ 6.6 24.8/ 9.8/1.6/ 6.6 27.8/11.0/1.6/ 7.1 28.9/11.4/1.7/ 7.8
PTG 37.8/16.7/34.5 39.0/17.5/35.6 39.3/17.7/36.2 40.1/19.1/36.8 37.3/22.6/1.1/ 6.2 39.9/21.2/1.1/ 5.3 37.7/23.6/1.1/ 4.9 37.7/24.2/1.4/ 6.3

Table 3: Cross-task transferability performance comparisons of different methods in few-shot setting. B-n, R-n,
D-n, and MODELT are short for BLEU, ROUGE, Distinct and MULTI-TASK MODELTUNING (the same as below).

Target Data CNN/DAILY MAIL (R-1/R-2/R-L) PERSONACHAT (B-1/B-2/D-1/D-2)

#Instances 50 100 200 500 50 100 200 500

GPT-2LARGE 19.8/ 3.1/17.5 20.6/ 3.9/18.4 26.1/ 6.1/23.3 29.2/ 7.3/26.0 27.7/10.4/2.2/10.9 27.6/10.4/2.2/11.4 29.3/11.1/2.1/11.5 31.4/12.0/1.9/10.7
BARTLARGE 37.5/16.9/34.4 38.8/17.9/35.6 39.3/18.1/36.1 39.9/19.0/36.7 22.7/ 9.0/1.3/ 5.4 30.0/11.9/1.3/ 5.2 32.4/12.8/1.3/ 5.7 31.7/12.6/1.3/ 5.6
T5LARGE 39.1/18.3/36.2 37.9/18.5/36.8 39.0/18.7/36.0 39.6/19.2/36.7 31.7/15.5/0.9/ 6.6 32.1/15.7/0.8/ 5.4 33.1/16.3/0.7/ 4.6 35.1/17.4/0.8/ 4.4
PREFIXT 32.2/12.4/28.5 32.3/12.5/28.5 34.0/13.7/30.9 37.5/16.3/34.7 39.6/23.9/0.6/ 3.4 39.7/24.0/0.5/ 3.1 36.4/22.4/0.8/ 3.7 25.7/16.1/1.1/ 4.1
SPOT 31.9/11.5/26.8 31.9/11.4/26.8 33.0/12.8/29.3 36.6/15.5/33.2 37.6/22.0/0.5/ 3.1 37.6/22.2/0.5/ 3.2 35.0/20.2/0.7/ 3.2 21.2/15.6/1.0/ 3.8
MODELT 37.7/17.0/34.5 38.8/17.9/35.6 39.3/18.2/36.0 40.5/19.0/36.1 32.0/13.1/2.4/12.4 34.2/13.9/2.2/11.9 35.9/14.7/2.1/11.7 35.5/14.7/2.0/10.8
PTG 37.9/16.5/34.5 38.7/17.5/35.8 39.5/18.3/36.2 39.9/18.7/36.6 34.6/21.5/1.1/ 4.5 36.9/19.3/1.0/ 5.5 38.6/24.1/1.0/ 4.4 36.7/23.0/1.2/ 5.5

Target Data XSUM (R-1/R-2/R-L) DAILYDIALOG (B-1/B-2/D-1/D-2)

#Instances 50 100 200 500 50 100 200 500

GPT-2LARGE 12.2/ 1.5/ 9.8 11.3/ 1.1/ 9.1 11.1/ 1.1/ 8.9 12.9/ 1.7/10.2 18.5/ 7.0/5.9/23.3 19.3/ 7.3/5.6/22.8 20.9/ 7.9/5.4/22.0 22.0/ 8.3/5.5/ 2.9
BARTLARGE 33.2/10.3/25.2 32.8/11.0/26.6 34.5/11.6/25.5 36.4/13.2/28.2 22.0/ 8.5/3.5/15.6 22.2/ 8.5/3.3/14.5 24.8/ 9.6/3.4/14.9 24.3/ 9.4/3.8/11.4
T5LARGE 23.2/ 5.0/16.6 23.4/ 5.3/17.1 26.0/ 7.1/19.5 30.8/10.3/24.2 30.6/14.8/2.5/14.9 41.0/15.0/2.4/14.1 30.9/15.1/2.8/15.4 30.6/15.1/3.2/17.7
PREFIXT 25.0/ 8.3/17.9 25.0/ 8.2/17.9 25.1/ 8.2/18.1 27.5/ 9.8/19.7 38.1/22.6/2.8/14.1 38.4/22.8/2.5/12.0 35.2/21.0/2.5/11.6 21.8/13.5/3.8/16.1
SPOT 23.4/ 6.6/16.6 23.4/ 6.5/16.6 23.5/ 6.8/17.0 25.5/ 7.5/18.6 35.5/20.6/2.5/13.2 35.7/20.8/2.3/12.8 33.6/18.9/2.2/11.9 25.0/13.2/3.7/16.1
MODELT 35.6/13.1/27.8 35.7/13.3/28.0 36.0/13.6/28.4 36.1/13.8/28.5 28.2/11.1/5.4/24.3 30.4/11.8/5.2/23.9 29.8/11.8/4.9/23.0 29.5/11.7/4.7/22.3
PTG 33.6/10.9/25.4 33.8/11.2/25.9 34.7/12.0/26.8 36.8/13.6/27.7 31.8/19.4/2.5/11.6 30.9/18.9/2.8/12.8 31.5/19.3/2.9/13.9 31.0/19.0/3.1/14.9

Table 4: Cross-dataset transferability performance comparisons of different methods in few-shot setting.

get task is summarization (CNN/Daily Mail), and
the source tasks are the mixture of other five tasks;
and 2) the target task is dialog (PersonChat), and
the source tasks are other five tasks. For the cross-
dataset experiment, we consider datasets within
summarization and dialog. For summarization,
the target dataset is CNN/Daily Mail or XSum,
and the source datasets are the mixture of other
four summarization datasets. For dialog, the tar-
get dataset is PersonaChat or DailyDialog, and the
source datasets are other four dialog datasets.

First, by transferring prompts from source tasks
to the target task, PTG outperforms GPT-2, BART,
T5 and PREFIXTUNING. The results suggest that
prompt transfer in PTG provides an effective means
of improving the performance of typical fine-tuning
and prompt methods since our method utilizes the
knowledge learned from source tasks.

Second, PTG performs better than the prompt-
based transfer method, SPOT. While transferring
prompts, SPOT considers each source task equally
and ignored the specific instance information. And
SPOT only learns a common prompt for source
tasks to directly initialize the target prompt. By

constrast, PTG clusters diverse source prompts and
uses an adaptive attention mechanism considering
both task- and instance-level characteristics.

Finally, PTG produces competitive performance
or even exceeds the strong MULTI-TASK MODEL-
TUNING. Different from most NLU tasks sharing
some common knowledge to understand the seman-
tics and syntax of surface words, text generation
tasks need to generate diverse text based on differ-
ent input data, thus having large task boundaries.
Thus, in cross-task transfer, simply tuning PLMs
on a mixture of tasks without considering the task
similarity leads to a performance decrease. While,
our prompt-based transfer learning approach can
still achieve the best performance, showing that
PTG improves stability across tasks and datasets.

5.3 Few-Shot Setting

In few-shot setting, we only sample a handful of
training instances of the target task to train our
model. Specificlly, we subsample the target task
dataset to obtain small training datasets of size {50,
100, 200, 500}. For each size, we sample 5 dif-
ferent datasets and average over 2 training random
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Target Task SUMMARIZATION (CNN/Daily Mail) DIALOG (PersonaChat)

Model ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 Distinct-1 Distinct-2

PTG w/o Prompt Pool 41.46 20.40 38.40 39.70 24.45 0.77 4.00
PTG w/o Prompt Cluster 42.10 21.15 38.86 44.63 29.20 1.34 7.78
PTG w/o Multi-Key Memory 42.12 21.14 38.85 44.67 29.34 1.42 8.23
PTG w/o Instance-level Query 42.16 21.22 38.93 44.74 29.28 1.36 7.80
PTG 42.40 21.35 39.14 45.46 29.52 1.46 8.43

Table 5: Ablation analysis on cross-task transferability experiments.

seeds. Thus, we average over 10 models for each
few-shot setting. In few-shot setting, we adopt the
same cross-task and cross-dataset experiments with
the fully-supervised setting. Table 3 and 4 shows
the few-shot results of our model and baselines.

We can clearly see that PTG achieves competi-
tive (underline fonts) or better performance (bold
fonts) than the strong baseline (i.e., MULTI-TASK

MODELTUNING) in most low-data regimes, but the
gap narrows as the training dataset size increases.
In addition, our model outperforms most of vanilla
PLMs in most cases. The reason behind this might
be that large PLMs can easily suffer from over-
fitting during few-shot learning due to their mas-
sive parameters (Gao et al., 2020). While, in our
framework, we adopt a lightweight technique, i.e.,
prompting, to learn source prompts, which can pro-
vide the previously learned knowledge in source
tasks to PLMs and serve as a better starting point
when solving the target tasks.

5.4 Effectiveness of Core Designs

We further conduct ablation studies to demonstrate
the effectiveness of the core designs of PTG.

Source Prompt Pool. To confirm the importance
of the prompt pool, we design a counterpart of our
method with only training a sharing prompt for all
source tasks. From Table 5 (row 1), we can see that
PTG significantly outperforms its counterpart with
a single prompt, suggesting that the prompt pool
encodes task-specific knowledge well.

Source Prompt Cluster. We remove the step of
grouping source prompts into different clusters and
directly lookup source prompts based on queries
(see in Table 5 row 2). The decrease in performance
demonstrates that when tasks are diverse, clustering
task prompts can identify the similarity between
source tasks, thus promoting effective knowledge
transfer.

Multi-Key Memory Network. We remove the
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Figure 2: Similarity analysis of 14 datasets within our
six generation tasks.

learnable key vector associated with prompts and
directly transfer the mean of the source prompts
to the target task. From Table 5 (row 4), we can
see this results in a significant drop, demonstrat-
ing the importance of introducing learnable keys
to dynamically select prompts through query-key
matching.

Instance-level Query. The instance-level query
is used in adaptive attention mechanism. When
we remove it (Table 5 row 3), we only use the
task-level query to select source prompts. The de-
clined performance demonstrates that incorporat-
ing the instance-level features can indeed help to
transfer the most helpful knowledge to the specific
instances in target tasks.

5.5 Task Similarity Analysis

Figure 2 shows a clustered heatmap of cosine simi-
larities between the source prompts of the 14 public
datasets within our six text generation tasks using
the position-agnostic Euclidean distances defined
by Eq. 1. We can clearly observe that our learned
14 source prompts are roughly grouped into three
clusters. Similar tasks and datasets are grouped
together into clusters in this heatmap, and these
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clusters capture many intuitive task relationships.
Specifically, these three clusters mainly focus on
compression, transduction, and creation tasks re-
spectively. For example, story generation (Writ-
ingPrompts) and dialog (PersonaChat) are grouped
together into the third cluster. This observation
further verifies our conclusion that text generation
tasks can help each other within our approach by
learning task-specific prompts and then transferring
them to the target task. The results also suggest
that our method can serve as an effective means of
predicting task transferability.

6 Conclusion

This paper presented a prompt-based transfer learn-
ing approach for text generation. We learn a set
of prompts from a number of representative source
generation tasks and then transfer these prompts
as target prompts to perform the target generation
tasks. In our model, we design an adaptive attention
mechanism considering both task- and instance-
level information to construct the target prompts.
Experiments in fully-supervised and few-shot set-
tings demonstrate the effectiveness of our prompt-
based transfer learning model. In future work, we
will consider incorporating more kinds of text gen-
eration tasks.

7 Ethical Concerns

Text generation techniques has been applied to a
wide range of meaningful applications for society,
such as game narrative generation, news report gen-
eration, and weather report generation. However,
this technique may be potentially utilized for harm-
ful applications. Our work improves the quality of
generated text compared with traditional methods.
Thus, the high-quality text generated by our work
makes it difficult to distinguish synthetic text from
human-written text, such as fake news and stories.
Here we are primarily concerned with two potential
ethical issues: the possibility of deliberate misuse
of our methodology and the issue of bias.

First, it is somewhat challenging to anticipate
the harmful usages of our method since they of-
ten involve repurposing our model in a totally dif-
ferent setting or for an unexpected purpose than
we planned. To alleviate this issue, we can ask
for the assistance of classic security risk assess-
ment frameworks such as detecting threats. Sec-
ond, biases in training data may cause our model
to generate stereotyped or prejudiced texts. This

is a worry since the model bias has the potential
to hurt some persons in relevant groups in unfore-
seen ways. To avoid prejudice, it may be useful
to develop a common vocabulary that connects the
normative, technological, and empirical difficulties
of bias reduction for our model.
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Appendix

We provide some experiment-related information
as supplementary materials. The appendix is orga-
nized into three sections:

• Statistics of each dataset are presented in Ap-
pendix A;

• Training settings of baselines and our model
PTG are presented in Appendix B.

A Statistics of Datasets

The detailed information of the dataset for each
task is listed in Table 6, including summarization
(CNN/Daily Mail, XSum, MSNews, Multi-News
and NEWSROOM), question generation (SQuAD),
style transfer (Wiki Neutrality), text paraphrase
(Quora), dialog (PersonaChat, TopicalChat, Daily-
Dialog, DSTC7-AVSD and MultiWOZ) and story
generation (WritingPrompts). These datasets are
utilized under MIT license.

B Configuration of Models

The learning rate of other baselines is set to 3 ×
10−5, which is the same as our backbone BART.
The other settings of baselines and our model are
set the same for fair comparison. And we do not
utilize special tricks such as label smoothing, warm-
up learning rate and length penalty. We apply the
Adam optimizer and set β1 = 0.9, β2 = 0.98,
ϵ = 1× 10−6. We set the accumulated batch size
of each model to 96 using accumulated gradients.
Furthermore, we use the model with the best per-
formance on validation set for generation. During
inference, we apply the beam search method with
a beam size of 5 and a no repeat ngram size of 3.
We train our models using NVIDIA A100 GPUs
and PyTorch 1.9.0 upon Ubuntu 20.04.2 LTS.
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Dataset #Train #Valid #Test #Input #Output

CNN/Daily Mail 287113 13368 11490 790.2 58.4
Xsum 204017 11327 11333 358.8 21.1
MSNews 136082 7496 7562 311.6 24.8
Multi-News 44972 5622 5622 2291.9 263.1
NEWSROOM 995040 108837 108862 658.5 26.7
SQuAD 75722 10570 11877 148.3 11.6
Wiki Neutrality 145197 18149 18150 29.1 27.3
Quora 119410 14927 14926 9.8 9.9
PersonaChat 122499 14602 14056 122.1 11.9
TopicalChat 179750 11142 11221 216.6 20.3
DailyDialog 76052 7069 6740 68.4 13.9
DSTC7-AVSD 145521 33953 11780 90.7 9.5
MultiWOZ 105115 13748 13744 110.7 13.2
WritingPrompts 67765 3952 3784 25.7 232.3

Table 6: Statistics of our datasets after preprocessing. #Train, #Valid and #Test denote the number of examples in
training, valid and test datasets, respectively. #Input and #Output denote the average number of tokens in the input
text and output text.
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