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Abstract

Dialogue state tracking (DST) aims to predict
the current dialogue state given the dialogue his-
tory. Existing methods generally exploit the ut-
terances of all dialogue turns to assign value for
each slot. This could lead to suboptimal results
due to the information introduced from irrele-
vant utterances in the dialogue history, which
may be useless and can even cause confusion.
To address this problem, we propose LUNA, a
SLot-TUrN Alignment enhanced approach. It
first explicitly aligns each slot with its most rel-
evant utterance, then further predicts the corre-
sponding value based on this aligned utterance
instead of all dialogue utterances. Furthermore,
we design a slot ranking auxiliary task to learn
the temporal correlation among slots which
could facilitate the alignment. Comprehensive
experiments are conducted on multi-domain
task-oriented dialogue datasets, i.e., MultiWOZ
2.0, MultiWOZ 2.1, and MultiWOZ 2.2. The
results show that LUNA achieves new state-of-
the-art results on these datasets.1

1 Introduction

Dialogue State Tracking (DST) refers to the task of
estimating the dialogue state (i.e., user’s intents) at
every dialogue turn, where the state is represented
in forms of a set of slot-value pairs (Williams et al.,
2016; Eric et al., 2019). DST is crucial to the suc-
cess of a task-oriented dialogue system as the dia-
logue policy relies on the estimated dialogue state
to choose actions. Traditional DST approaches
assume that all candidate slot-value pairs are pre-
defined in an ontology (Mrkšić et al., 2017; Zhong
et al., 2018; Lee et al., 2019). Then, they scores
all possible pairs and selecting the value with the
highest score as the predicted value of a slot.

∗Equal contribution.
†Corresponding author: baojunwei001@gmail.com

1Our code is available at https://github.com/
nlper27149/LUNA-dst

Sys: There are lots to choose from. What type of cuisine
are you looking for?

User: I do not care. It needs to be on the south side and
moderately priced.

State: restaurant-area=south; pricerange=moderate

Sys: There are 2 options, pizza hut cherry hinton and
restaurant alimentum. Can I book you for those ?

User: Yes please. I also need a hotel with at least 3 stars
and free parking near by the restaurant.

State: hotel-parking=yes; hotel-stars =3

Sys: I am sorry, there is no guest house that meets those
criteria, either. Would you like to try a different
rating, or a different area?

User: Sure, what about in the city centre?
State: hotel-area =centre; hotel-type=guest house⊗

: hotel-area=south; hotel-type=guest house

Table 1: An example of DST. “User" and “Sys" means
user query and system response respectively. “State"
is the golden label of dialogue state. “

⊗
" denotes the

predicted states of some existing models and the state
marked red is the incorrect prediction.

DST encounters many challenging phenomena
unique to dialogue, such as co-references and el-
lipsis. Consequently, most of existing DST ap-
proaches exploit all dialogue utterances in history
to assign value for each slot (Shan et al., 2020;
Chen et al., 2020a; Quan and Xiong, 2020; Hu
et al., 2020; Chen et al., 2020b). However, this
could lead to the incorrect value assignment due
to the ambiguous contents introduced from some
irrelevant utterances with the current slot. As the
example shown in Table 1, the models estimate a
slot value “south" for the slot “hotel-area" at turn-3
yet its corresponding golden label is “centre". The
reason is that both “south" and “centre" are the
potential slot values to the area-related slot (i.e.,
“restaurant-area" and “hotel-area") in the ontol-
ogy. Actually, the domain of the utterance at turn-1
is “restaurant" that is irrelevant to the slot “hotel-
area".

To address the problem aforementioned, we pro-
pose LUNA, a SLot-TUrN Alignment enhanced
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approach, which divides DST into two sub-tasks:
(1) explicitly aligns each slot with its most rele-
vant utterance, (2) assigns the slot value according
to the aligned utterance. For example, when pre-
dicting the slot value of “hotel-area", LUNA first
aligns it with the relevant utterance (i.e., turn-3)
and then only uses the representations of this ut-
terance to match slot value. Concretely, LUNA
consists of four parts: an utterance encoder, a slot
encoder, a value encoder, and an alignment module
between the first two encoders. The core of LUNA
is the alignment module directed at accurate align-
ment, otherwise there may be a risk of the failure
of the second sub-task. Correspondingly, the align-
ment module equipped in LUNA is performed by
an iteratively bi-directional feature fusion network
based on the attention mechanism. Some previ-
ous works have explored the feature fusion of the
two encoders, but they are all uni-directional (Shan
et al., 2020; Chen et al., 2020b; Ye et al., 2021), e.g.,
turn-to-slot or slot-to-turn. Compared with them,
the bi-directional way can build a mutual relevance
between two encoders and thus more effective for
our alignment-oriented objective.

Additionally, we design a ranking-based auxil-
iary task to supervise LUNA to learn the slot order
along with the conversational flow, which could
facilitate the alignment. For example, the order of
the slots in Table 1 is:
(1) “restaurant-area" (2) “pricerange" (3) “hotel-parking"

(4) “hotel-stars" (5) “hotel-area" (6) “hotel-type"

Among the above slots, the most difficult-aligned
slot is “hotel-area" which confronts the confusion
from the utterances at turn-1 (containing “south")
and turn-3 (containing “center"). But the remain-
ing five slots are easy-aligned, such as “hotel-stars".
If the model combines two information: (1) “hotel-
stars" is aligned with the utterance at turn-2, (2) the
conversation order of “hotel-area" is after “hotel-
stars", it can easily inference that “hotel-area"
should be aligned with the utterance at turn-3. No-
tably, our proposed auxiliary task enables LUNA
to learn the semantic correlations as well as the
temporal correlations among slots. Whereas, ex-
isting DST approaches only attempt to model the
semantic correlations (Ye et al., 2021; Zhu et al.,
2020; Chen et al., 2020b).

Comprehensive experiments are conducted and
the results show that LUNA achieves state-of-the-
art (SOTA) on three of the most actively stud-
ied datasets: MultiWOZ 2.0 (Budzianowski et al.,
2018), MultiWOZ 2.1 (Eric et al., 2019), and Mul-

tiWOZ 2.2 (Zang et al., 2020) with joint accuracy
of 55.31%, 57.62%, and 56.13%. The results out-
perform the previous SOTA by +0.97%, +1.26%,
and +4.43%, respectively. Furthermore, a series of
subsequent ablation studies demonstrate the effec-
tiveness of each module in our model. Our main
contributions are summarized as follows:

(1) We propose a DST approach LUNA which
mitigates the problem of incorrect value assignment
through explicitly aligning each slot with its most
relevant utterance.

(2) We propose an auxiliary task to facilitate
the alignment which is firstly introduced in DST
to take the temporal correlations among slots into
account.

(3) Empirical experiments are conducted to show
that LUNA achieves SOTA results with significant
improvements.

2 Related Work

DST is a necessary component in task-oriented dia-
logue systems and a large amount of work has been
proposed to achieve better performance. All these
methods can be broadly divided into two categories:
classification (Xu and Hu, 2018; Zhong et al., 2018;
Ren et al., 2018; Xie et al., 2018) and generation
(Wu et al., 2019; Hosseini-Asl et al., 2020; Kim
et al., 2020). The classification method requires
that all possible slot-value pairs are given in a pre-
defined ontology. Then, the pair with the highest
score is the final prediction. Conversely, the genera-
tion way does not rely on manual definition, which
generates dialogue states from utterances using the
seq2seq fashion. This work is mainly related to the
classification method.

Recently, transformer-based pre-trained mod-
els, such as BERT (Devlin et al., 2019), have
achieved remarkable results in a range of natural
language processing tasks. Thereupon, the research
of DST has been shifted to building new models
on top of the powerful pre-trained language mod-
els. SUMBT (Lee et al., 2019) is the first model to
employ BERT to model the relationships between
slots and dialogue utterances through a slot-word
attention mechanism. CHAN (Shan et al., 2020)
presents a hierarchical attention network which
uses slot-word attention and slot-turn attention to
enhance the representations of slots. All the meth-
ods mentioned above predict the value of each slot
separately and ignore the correlations among slots.
SST (Chen et al., 2020b) incorporates graph at-
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tention networks into DST and proposes schema
graphs which contain slot relations in edges. STAR
(Ye et al., 2021) provides a slot self-attention mech-
anism to learn mutual guidance among slots and
enhance the ability to deduce appropriate slot val-
ues from related slots. Recently, BORT (Sun et al.,
2022) proposes a reconstruction mechanism which
enhances the performance of DST.

To the best of our knowledge, we are the first
to reveal that exploiting all dialogue utterances to
assign value may cause suboptimal results and the
first to learn the temporal correlations among slots.

3 Methodologies

Suppose that there is a conversation composed
of T utterances, X = {(Q1, R1), ..., (QT , RT )},
and a predefined slot set S = {S1, ..., SJ}, where
Qt denotes the user query at t-th utterance, Rt

is the corresponding system response and J is
the total number of slots. DST aims to predict
states at each turn with given utterances up-to-now
(Q≤t, R≤t), and presents them as slot-value pairs,
Bt = {(S1, V

t
1 ), ..., (SJ , V

t
J )}, where Sj is the j-th

slot in S , and V t
j is the value with respect to Sj for

the t-th turn. Since the datasets are collected from
multi domains, following previous works (Hu et al.,
2020; Kim et al., 2020), we concatenate domain
names and slot names as domain specific slots.

To tackle this task, we propose the LUNA model.
As depicted in Figure 1, this model consists of three
encoders and an alignment network. In this section,
we will elaborate each module of this model.

3.1 Encoders
Inspired by the success of the pre-trained model in
the community of the NLP, we adopt the BERT (De-
vlin et al., 2019) to implement the context encoder.

3.1.1 Utterance Encoder
Given the t-th utterance (Qt, Rt) and its history
(Q≤t, R≤t), we first concatenate them into a single
sequence: Xt = Q1⊕R1⊕· · ·⊕Qt⊕Rt. Following
the form of the input of the BERT, we then surround
the sequence with two special tokens [CLS] and
[SEP]. Given that not all of the slots can be aligned
to a specific utterance, we further add an extra
token [BLANK] as a placeholder. All of the slots
that are not mentioned in the dialogue are aligned
to [BLANK]. Finally, the input of the utterance
encoder can be denoted as follows:

Xt = [CLS]⊕Xt ⊕ [SEP]⊕ [BLANK]. (1)

After obtaining Xt, we feed it into the BERT to
learn semantic representations:

Ht = BERTfinetune(Xt), (2)

where Ht = [ht
1,h

t
2, ...,h

t
|Xt|], ht

j ∈ Rd. Ad-
ditionally, we add a learned embedding to every
token indicating which turn it belongs to. Thus,
for a given token in Xt, its input representation
is constructed by summing the corresponding to-
ken, position, segment, and turn embeddings. In
order to make the BERT more adapt to this task,
we fine tune the parameters of the BERT during the
training stage.

3.1.2 Slot and Value Encoders
Following previous works (Shan et al., 2020; Ye
et al., 2021), we leverage another BERT to encode
slots and their candidate values. Formally, given
a slot Sj or a value V t

j , we first tokenize it into a
sequence and then concatenate it with the special
token [CLS] to build the input for the slot or value
encoder. After that, we exploit the BERT to encode
the concatenation as follows:

hsj = BERTfixed(Sj), (3)

hvtj
= BERTfixed(V t

j ). (4)

We regard the representation of [CLS] as that of the
whole slot or value. Specially, since the quantity of
the sub-vocabulary related to slots and values are
small, we freeze the parameters of BERT in slot
and value encoders during the training stage.

3.2 Alignment Module

As mentioned above, DST model usually adopts all
of previous utterances as the history to enhance the
representation of the current utterance. Although
this mechanism enriches the semantic representa-
tion, it introduces some noisy and causes confusion
for value prediction to a specific slot. To allevi-
ate this issue, the proposed LUNA model adopts
iteratively bi-directional feature fusion layers, turn-
to-slot and slot-to-turn, to align slots to utterances
and provide more relevant utterance for value pre-
diction.

3.2.1 Turn-to-Slot Alignment
In this work, we regard utterances and slots as two
sequences and aims to align them with each other.
To this end, we first employ a multi-head atten-
tion mechanism (Vaswani et al., 2017) to assist
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Figure 1: The architecture of LUNA. Note that the workflow in this figure is specifically for the first slot S1.

the slots extracting relevant information from utter-
ances based on the outputs of the utterance and slot
encoders:

hsj ,t = MultiHead(hsj ,Ht,Ht), (5)

where MultiHead(·, ·, ·) denotes the multi-head at-
tention mechanism. Through this operation, we
obtain utterance-aware slot representations.

After that, we adopt N stacked layers to learn
the correlation among slots, and each layer consists
of a multi-head self-attention mechanism and a
position-wise feed-forward network. We denote
this module as Slot SA. Formally, the n-th layer is
computed as follows:

H̄n
s = MultiHead(Ĥ

n−1
s , Ĥ

n−1
s , Ĥ

n−1
s ), (6)

Ĥ
n
s = FNN(ReLU(FNN(H̄n

s )) (7)

where Ĥ
1
s = [hs1,t, ...,hsJ ,t].

3.2.2 Slot-to-Turn Alignment
For utterances, after obtaining the output of the ut-
terance encoder Ht, we first slice it into t segments,
U = [U1, ...,Ut] and each segment corresponds to
an utterance. We then exploit a hierarchical atten-
tion mechanism to model the slot-to-turn alignment.
The hierarchical attention mechanism contains two
layers. The first layer models the preliminary align-
ment between an utterance and a slot and we denote
it as Single Slot-to-Turn. The other one focuses
on the refined alignment through incorporating all

slots information and we represent it as Overall
Slot-to-Turn.

As shown in Figure 1, the Single Slot-to-Turn
is responsible for extracting token-level informa-
tion related to a specific slot from each utterance.
Take the j-th slot Sj as an example. Given its rep-
resentation hsj , we use it to extract most relevant
information from each utterance (e.g., i-th utter-
ance) via the multi-head attention mechanism:

Ūi = MultiHead(hsj ,Ui,Ui), (8)

where Ūi is a d-dimension vector and we regard it
as slot Sj aware representation for i-th utterance.
Similarly, we obtain slot Sj aware representations
for all utterances Ū = [Ū1, ..., Ūt] with the same
operation.

After that, the Overall Slot-to-Turn layer further
aligns utterances with slots. Different with existing
work (Ye et al., 2021) of encoding the states of the
previous turn Bt−1 as an information supplement,
we first introduce previous alignment information
into each utterance by adding alignment embed-
ding:

Ûi = Ūi + AE(i), (9)

where AE is embedding matrix indicating whether
the slot Sj aligns utterance Ui or not at last turn.
Then we utilize another multi-head attention mod-
ule to update utterance representations based on
slots information as follows:

Ũi = MultiHead(Ûi, Ĥ
N
s , ĤN

s ). (10)
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To aggregate context dependency among ut-
terances, we further introduce a multi-head self-
attention mechanism to learn the context aware
representation for each utterance:

D = MultiHead(Ũ, Ũ, Ũ), (11)

where Ũ = [Ũ1, ..., Ũt], D = [D1, ...,Dt]. D is
adopt to predict the alignment distribution over
turns for Sj as follows:

p(·|Sj) = softmax(WoD + bo), (12)

where Wo ∈ Rd and bo are trainable parameters.
We employ the cross-entropy as the objective func-
tion of the alignment and it can be formulated as:

Lalign = −
J∑

j=1

log p((Q∗j , R
∗
j )|Sj), (13)

where (Q∗j , R
∗
j ) is ground-truth utterance aligned

to slot Sj .

3.2.3 Auxiliary Ranking Task

The output of the Slot SA, Ĥ
N
s = [ĥ

N
s1 , ..., ĥ

N
sJ

],
only contains the information of the semantic cor-
relations among slots. To facilitate the alignment,
the model needs the assistance of the temporal cor-
relations among slots. However, slots are naturally
disordered or sorted in lexicographic order. There-
fore, we design an auxiliary task to guide the model
to learn the temporal information of slots. Partic-
ularly, we propose an ordering algorithm to deter-
mine the slots order with respect to the dialogue
utterances, as shown in Algorithm 1. This task
aims to minimize the order differences between the
disordered slots and our defined-ordered slots and
we utilize the ListMLE (Xia et al., 2008) as the
objective function. ListMLE is a standard ranking
loss and it is computed based on a defined list and
a ground-truth list. To compute the loss, we learn a
score for each slot (e.g., Sj) as follows:

fsj = Sigmod(Wsĥ
N
sj + bs), (14)

where Ws and bs are trainable parameters. Given
the ground-truth order of slots o = [o1, ..., oJ ] and
the corresponding slot list is [So1 , ..., SoJ ], the loss
function can be formulated as follows:

p(j|Soj ) =
exp(fsoj )

∑J
l=j exp(fsol )

, (15)

Lorder = − log(

J∏

j=1

p(j|Soj )). (16)

Algorithm 1 Slots Ordering Algorithm
Input: L: Label slots for a conversation, T : the
number of turns in this conversation
Initialize: S : A list of sorted slots

1: for t ∈ [1, T ] do
2: Find the label slots Lt = [lt,1, ..., lt,n] of

t-th turn;
3: Sort Lt by slots’ lexicographic order;
4: for l in Lt do
5: Add l to S;
6: end for
7: end for
8: Define the list of remaining not-aligned slots

is Lblank;
9: Sort Lblank by slots’ lexicographic order;

10: for l in Lblank do
11: Add l to S;
12: end for

3.3 Value Prediction
Above sections describe the method of aligning
slots with utterances. We then predict the value for
a specific slot based on the most relevant utterance
instead of all of the utterances.

Formally, given a slot Sj , we first select the most
relevant utterance (Q∗j , R

∗
j ) as follows:

(Q∗j , R
∗
j ) = arg max({p((Qi, Ri)|Sj)}ti=1).

(17)

Then we feed its representation D∗ ∈ D into a
linear layer which is followed by a layer normal-
ization:

O∗ = LayerNorm(Linear(D∗)). (18)

Following Ren et al. (2018), we adopt the L2-
norm to compute the distance between a slot and
a candidate value. Thereby, the value prediction
probability distribution can be formulated as fol-
lows:

p(V t
j |(Q≤t,R≤t), Sj) =

exp(−‖O∗ − hvtj‖2)∑
V t
k∈V t exp(−‖O∗ − htvk‖2)

,
(19)

where V t is the set of candidate value of slot Sj

for the t-th utterance. Finally, the loss function can
be defined as:

Lvalue = −
J∑

j=1

log(p(V t
j |(Q≤t, R≤t), Sj)).

(20)
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Model MultiWOZ 2.0 MultiWOZ 2.1 MultiWOZ 2.2 Trainable Parameters
Joint Slot Joint Slot Joint Slot

Generation models
SOM-DST (Kim et al., 2020) 51.38 - 52.57 - - - 113M
TRADE (Wu et al., 2019) 48.60 96.92 45.60 - 45.40† - -
TripPy (Heck et al., 2020) 53.51 - 55.32 - 53.52 - 110M
TripPy w/o LM 45.64† - 44.80† - - - -
Seq2Seq-DU (Feng et al., 2021) - - 56.10 - 54.40 - 220M
SimpleTOD (Hosseini-Asl et al., 2020) 51.37 - 51.89 - - - -

Classification models
DS-DST (Zhang et al., 2020) - - 51.31 97.35 51.70 - -
DST-Picklist (Zhang et al., 2020) 54.39 - 53.30 97.40 - - -
CHAN (Shan et al., 2020) 53.06 - 53.38 - - - 133M
SST (Chen et al., 2020b) 51.17 - 55.23 - - - -
STAR (Ye et al., 2021) 54.34 - 56.36 97.51 - - 135M

LUNA 55.31 97.35 57.62 97.96 56.13 97.68 142M

With Data Augmentation

TripPy+ConvBERT (Mehri et al., 2020) - - 58.70 - - - -
TripPy+CoCoAug (Li et al., 2020) - - 60.53 - - - -
TripPy+SaCLog (Dai et al., 2021) - - 60.61 - - - -

Table 2: Joint accuracy (%) and slot accuracy (%) on the test sets. “LM" denotes label map in TripPy. † indicates
the reproduced results using the source codes and remaining results reported in the literature.

3.4 Optimization
We adopt the multi-task learning to jointly optimize
the alignment loss, value prediction loss and the
auxiliary task loss. The total loss is defined as
follows:

Ljoint = Lorder + Lalign + Lvalue
4 Experimental Setup

4.1 Datasets and Metrics
We evaluate our approach on three gradually
refined task-oriented dialogue datasets: Multi-
WOZ 2.0 (Budzianowski et al., 2018), MultiWOZ
2.1 (Eric et al., 2019), and the latest MultiWOZ
2.2 (Zang et al., 2020), containing over 10,000
dialogues, 7 domains, and 35 domain-slot pairs.
MultiWOZ 2.1 modifies about 32% of the state an-
notations in MultiWOZ 2.0. MultiWOZ 2.2 is the
latest and a further refined version of MultiWOZ
2.1, which solves the inconsistency of state updates
and some problems of ontology.

We use joint accuracy and slot accuracy as our
evaluation metrics. Joint accuracy is the proportion
of dialogue turns where the value of each slot is
correctly predicted. Slot accuracy only considers
individual slot-level accuracy. The ground-truth
of slot value is set to none if the slot has not been
mentioned in dialogue.

4.2 Training
Same as the previous work (Shan et al., 2020; Ye
et al., 2021), we use BERT-base-uncased model as

the encoders of LUNA where only the utterance
encoder is fine-tuned and the parameters of the
other two encoders are fixed. BERT-base has 12
layers of 784 hidden units and 12 self-attention
heads. The number of attention heads in multi-head
attention in our alignment module is set to 4. The
number of layers in slot self-attention and turn self-
attention is set to 4 and 2 respectively. During the
training process, we use Adam optimizer (Kingma
and Ba, 2015) and set the warmup proportion to
0.1. Considering that the encoder is a pre-trained
BERT model while the other parts in our model
needs to be trained from scratch, we use different
learning rates for those parts. Specifically, the peak
learning rate is set to 3e-5 for the utterance encoder
and 1e-4 for the remaining parts. The maximum
input sequence length in BERT is set to 512. For
MultiWOZ 2.0, MultiWOZ 2.1, and MultiWOZ
2.2, we apply the same hyperparameter settings.

5 Experiment Results

5.1 Main Results

Table 2 shows the joint accuracy and the slot ac-
curacy of our model and other baselines on the
test sets of MultiWOZ 2.0, 2.1, and 2.2, where
some models are not tested on the 2.2 version since
it was released shortly. As shown in the table,
among the models without data augmentation, our
model LUNA achieves state-of-the-art performance
on these datasets with joint accuracy of 55.31%,
57.62%, and 56.13%, which has a measurable im-
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provement (0.97%, 1.26%, and 4.43%) over the
previous best results, illustrating the effectiveness
of slot-turn alignment in DST task.

It can be observed that the three data augmented
methods reach higher than 58% joint accuracy on
MultiWOZ 2.1. We believe that these data aug-
mentation skills are versatile. If they can improve
the results of TripPy that lags behind our model,
we reasonably speculate that these skills can also
improve the effect of LUNA. Besides, all these
models are based upon TripPy, which employs a
label map as extra supervision. The label map is
a dictionary of synonyms, which is used during
the testing phase. For example, the official label
of the slot “hotel-area” in ontology is “centre”.
But label map regards all its synonyms, such as

“center”, are also the ground truth. We think that
this manner severely reduces the difficulty of the
DST task. As shown in Table 2, the performance of
TripPy degrades dramatically when the label map
is removed. By contrast, our model does not rely
on any extra information and is more generalized.

Additionally, Table 2 lists the number of train-
able parameters of some baselines and our model,
which illustrates that our alignment module con-
taining multiple self-attention does not introduce
large model parameters. Compared with the base-
lines, the size of our model is comparable.
Accuracy at Every Turn. In practice, the dialogue
states of longer dialogues tend to be more difficult
to be correctly predicted as the model needs to con-
sider more dialogue history. In this section, we fur-
ther analyze the relationship between the depth of
conversation and the prediction accuracy. The joint
accuracy at every turn of TripPy, STAR, and LUNA
on MultiWOZ 2.1 test set is shown in Figure 2. It
presents that the scores of LUNA and STAR are ba-
sically the same when the number of conversation
turns is less than 3. While as the conversation turns
increases from 3, the superiority of LUNA gradu-

ally becomes obvious. This is because that both
TripPy and STAR exploit all dialogue utterances
to assign value for each slot. This may introduce
more useless information that causes confusion to
the current slots. Whereas, LUNA only uses the
most relevant utterance to assign slot value, which
avoids interference by useless information.

5.2 Ablation on Alignment Module
To explore the effectiveness of each part in our pro-
posed alignment module, we conduct an ablation
study of these parts on the test set of MultiWOZ
2.1, as shown in Table 3.

Model Align Acc Joint Acc.

LUNA 97.50 57.62
- Alignment module – 53.46 (-4.16)
- Overall slot-to-turn alignment 95.23 (-2.27) 54.70 (-2.92)
- Auxiliary task 96.30 (-1.20) 55.29 (-2.33)

Table 3: The ablation study of the alignment module on
the MultiWOZ 2.1. Alignment accuracy (%) is defined
as the ratio of dialogue for which the utterance turn of
each slot is correctly aligned.

First, we remove the whole alignment module
and only use the representations of slots obtained
by token-slot attention Eq.5 to match the value. The
results show that model performance has dropped
a lot (4.16 joint accuracy), proving that there are
many useless tokens in the conversation history,
which interfere the prediction accuracy of slot
value. Next, we remove the layer of overall slot-to-
turn alignment. We can see that this also severely
damages the model performance on both alignment
accuracy and joint accuracy. This illustrates that it
is not enough to only use the information of a single
slot for the alignment. The model needs to com-
prehensively consider all slots information, such
as semantic correlations and temporal correlations
among slots to accurately align slots and dialogue
turns. Finally, we remove the auxiliary ranking task
and the results decrease by 1.20 on alignment ac-
curacy and 2.33 on joint accuracy. This proves that
the temporal correlation among slots is important in
our model which could facilitate the alignment, as
we explained in the section of Introduction. More
intuitive explanations will be given in the next sec-
tion through an example of visualization.
Hard or Soft Alignment. From Table 3, although
our hard alignment is highly accurate (Acc 97.50),
we should further explore whether it can be re-
placed by a soft alignment to avoid the risk of error
propagation. Whereupon, we design a soft align-
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Figure 3: Visualization of LUNA on an example from MultiWOZ 2.1, which is a process of predicting the value
to slot “restaurant-food” at turn-4. “R-" in figure denotes “restaurant-". The golden value of “restaurant-food” is
“Indian" and the confusion value is “Corsica". (a) is the distribution of Token-Slot Attention calculated by Eq.5
where the columns are the four heads in multi-head attention. (b) is the softmax distribution of alignment over turns
calculated by Eq.12. (c)(d) are the distributions of Slot-Turn Attention calculated by Eq.10 where (d) is the version
after removing ranking loss.

Embedding Trained w/o Ranking Embedding Trained w/ Ranking

Figure 4: Visualization of slot embedding using t-sne.
Each point represents the slot aligned to the correspond-
ing turn. We plot 100 slot embeddings for each turn.

ment that is a weighted sum of all turns with the
alignment distribution over the turns as weights
(Eq. 12). The experimental results show that com-
pared with hard alignment, the Joint accuracy of
soft alignment on MultiWOZ 2.1 drops to 57.53
(-0.09). The reason is that the soft alignment en-
counters the problem of noises introduced from
irrelevant utterances. In other words, risk of error
propagation and noise-avoiding are a trade-off. The
experimental results show that the benefits of our
proposed hard alignment outweigh the risk.

5.3 Visualization

Figure 3 gives an example to visualize the process
of predicting the value to slot “restaurant-food”.
In this example, the golden slot value is “Indian"
and “Corsica" is the confusion value. As shown
in sub-figure (a), the slot assigns high attention
weight in all heads to both “Indian" and “Corsica" ,
because as of this step, it cannot determine which
one is the correct value. At the last step, after

the bi-directional fusion in our proposed alignment
module, the model successfully assigns turn-3 a
larger alignment score than turn-1, as shown in sub-
figure (b). In other words, the model has realized
that the utterance of turn-3 (containing “Indian") is
more important than turn-1 (containing “Corsica").
This can avoid the confusion caused by “Corsica".

We next analyze sub-figures (c) and (d). As
we can see, all turns focus on the slot “restaurant-
food” as they incorporates its single slot informa-
tion through Eq.8. For the column of turn-3, if
the model is supervised with the auxiliary rank-
ing task, it will also consider the information of
“restaurant-book day” and “restaurant-book time”.
Sub-figure (b) indicates that these two slots are
easy-aligned (with turn-4). Meanwhile, the model
learns that the order of the three slots is [“restaurant-
food”, “restaurant-book day”, “restaurant-book
time”]. Thereby, the alignment of “restaurant-food”
and turn-3 becomes easier.

Figure 4 displays the 2-d visualization of slot
embeddings obtained by Eq. 7. It can be seen that
without ranking loss, the slot representations are
irregular and borderless. Under the supervision of
the ranking loss, the model can learn the boundaries
between the slots aligned with different turns.

6 Conclusion

In this work, we reveal the problem in DST that
exploiting all dialogue utterances to assign value
to slots may cause suboptimal results. To allevi-
ate it, we propose LUNA, a slot-turn alignment
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enhanced approach. and design a ranking-based
auxiliary task to supervise LUNA to learn the tem-
poral correlations among slots. Comprehensive
experiments are conducted on MultiWOZ 2.0, 2.1,
and 2.2 and the results show that LUNA achieves
new state-of-the-art results. Moreover, the visual-
ization demonstrates the interpretability of LUNA.

7 Acknowledge

We would like to thank the anonymous review-
ers for their useful feedback. This work is sup-
ported by the National Key Research and De-
velopment Program of China under Grant No.
2020AAA0108600.

References
Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang

Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
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