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Abstract
Interactive summarization is a task that facil-
itates user-guided exploration of information
within a document set. While one would like
to employ state of the art neural models to im-
prove the quality of interactive summarization,
many such technologies cannot ingest the full
document set or cannot operate at sufficient
speed for interactivity. To that end, we propose
two novel deep reinforcement learning models
for the task that address, respectively, the sub-
task of summarizing salient information that
adheres to user queries, and the subtask of list-
ing suggested queries to assist users throughout
their exploration.1 In particular, our models
allow encoding the interactive session state and
history to refrain from redundancy. Together,
these models compose a state of the art solu-
tion that addresses all of the task requirements.
We compare our solution to a recent interac-
tive summarization system, and show through
an experimental study involving real users that
our models are able to improve informativeness
while preserving positive user experience.

1 Introduction

Integrating human interaction into NLP tasks has
been gaining the interest of the NLP community.
Human-machine cooperation can improve the gen-
eral quality of results, as well as provide a higher
sense of control for the targeted consumer. We
focus on the task of interactive summarization
(INTSUMM: Shapira et al., 2021b) which enables
information exploration within a document set on
a topic, by means of user-guided summarization.
As illustrated in Figure 1, a user can incrementally
expand on a summary by submitting requests to the
system, in order to expose the information of inter-
est within the topic. A proper exploration session
demands access to all information within the docu-
ment set, and fast reaction time for smooth human

∗ This work was conducted prior to joining Amazon.
1Code and trained models at: https://github.com/

OriShapira/InterExp_DeepRL
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Figure 1: An INTSUMM system, ingesting a large doc-
ument set. A user interactively submits queries in or-
der to expand on the information. The system is re-
quired to process the full document set for compre-
hensive exploration, respond quickly, and expose non-
redundant salient information that also complies to the
input queries. See real example in Figure 5.

engagement (Anderson, 2020; Attig et al., 2017).
In addition, presented information must consider
the session history to refrain from repetitiveness.

While it is worthwhile to apply recent NLP ad-
vances that excel at extracting salient and query-
biased information, those advances usually come
at a cost of rather small input size limits or heavy
computation time. Indeed, all previous interactive
summarization systems we know of either apply
traditional methods or are inadequate for real-time
processing due to high latency (§2). Our goal is to
overcome these obstacles, and leverage advanced
methods to improve information exposure while
keeping latency acceptable for interaction.

As depicted in Figure 1, an INTSUMM system
provides an initial generic summary as an overview
of the topic, after which a user can iteratively is-
sue queries to the system for summary expansions
on subtopics of interest. To support querying, the
system offers a list of suggested queries, hinting at
information concealed within the document set.

We address the INTSUMM task components
through two subtasks: (1) generating the initial
summary and query responses, and (2) generating
lists of suggested queries. For each of the sub-
tasks we propose a deep reinforcement learning
(RL) algorithm that addresses the respective sub-
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task requirements. To enable comprehensive topic
exploration, our models speedily process the full
document set, as inspired by Mao et al. (2020). Ad-
ditionally, they are able to peek at session history
to comply to the current state of the interaction.
The model for the query-assisted summarization
subtask, MSumm, incorporates the query sequence
by (1) encoding a query into the contextual sen-
tence representations, (2) attending the represen-
tations using a new query-biased variant of the
maximal marginal relevance (MMR: Carbonell and
Goldstein, 1998) function, and (3) a dual reward
mechanism for policy optimization (Pasunuru and
Bansal, 2018) which we adapt to consider both ref-
erence summaries and the query (§3). The model
for the suggested queries list generation subtask,
MSugg, works at the phrase level, as opposed to the
sentence level, to enable extraction of important
phrases that serve as suggested queries. Similarly
to MSumm, the model learns importance with con-
sideration to session history, but without an input
query – as its role is to suggest such a query (§4).

The models are trained on the DUC2 2007 multi-
document summarization (MDS) news-domain
dataset, with adaptions for our task setting. For
testing, we follow the INTSUMM evaluation frame-
work of Shapira et al. (2021b) to run simulations,
collect real user sessions, and assess the results,
using DUC 2006. In principle, summary informa-
tiveness, i.e. general salience, could potentially
come at the expense of query responsiveness, but
importantly, our results show that our RL-based so-
lution is able to significantly improve information
exposure over the baseline of Shapira et al. (2021b),
without compromising user experience (§5).

2 Background and Related Work

Interactive summarization facilitates user-guided
information navigation within document sets. The
task suffered from a lack of a methodological eval-
uation, until Shapira et al. (2021b) formalized the
INTSUMM task with a framework consisting of a
benchmark, evaluation metrics, a session collection
process and baseline systems. This framework, that
we leverage, enables comparison and analysis of
systems, allowing principled research on the task
and accelerated development of algorithms.

To the best of our knowledge, all previous works
on INTSUMM have either applied more traditional
text-processing methods or require costly prepro-

2https://duc.nist.gov/

cessing of inputs to facilitate seamless interaction.
Leuski et al. (2003) used surface-form features
for processing content, and Baumel et al. (2014)
adapted classic MDS algorithms like LexRank
(Erkan and Radev, 2004) and KLSum (Haghighi
and Vanderwende, 2009). Christensen et al. (2014)
optimized discourse graphs and Shapira et al.
(2017) relied on a knowledge representation, both
expensively pre-generating hierarchical summaries
that limit expansions to pre-prepared information
selections. Hirsch et al. (2021) applied advanced
coreference resolution algorithms that take several
hours for preprocessing a document set.

The two INTSUMM baseline systems of Shapira
et al. (2021b) use sentence clustering or TextRank
(Mihalcea and Tarau, 2004) for summarization, sen-
tence similarity heuristics for query-responses, and
n-gram frequency or TextRank for suggested query
extraction. Moreover, their query-response gen-
erators strictly consider a given query, ignoring
history or global informativeness. Our proposed
algorithms significantly improve information expo-
sure over the latter baselines, using advanced deep
RL methods, working in real time. We next review
some recent techniques in MDS, query-focused
summarization and multi-document keyphrase ex-
traction, all of which relate to the INTSUMM task
and our choice of algorithms.

The subtask of query-assisted summarization.
Non-interactive MDS has been researched exten-
sively, with few recent neural-based methods that
can handle relatively large inputs. For example,
Wang et al. (2020) use graph neural networks
to globally score sentence salience, Xiao et al.
(2021) summarize using Longformers (Beltagy
et al., 2020), and Pasunuru et al. (2021b) combine
a Longformer with BART (Lewis et al., 2020) and
incorporate graphical representation of information.
Mao et al. (2020) apply deep RL for autoregressive
sentence selection, and, in contrast to most other
neural methods, can ingest the full document set.

In the query-focused summarization (QFS) task
summaries are biased on a query. To accommo-
date a query, Xie et al. (2020) use conditional self-
attention to enforce dependency of the query on
source words. Pasunuru et al. (2021a) and Kulka-
rni et al. (2021) hierarchically encode a query with
the documents. These and other QFS methods
require large training sets, and limit the allowed
input size (Baumel et al., 2018; Laskar et al., 2020).
Relatedly, incremental update summarization (Mc-
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Creadie et al., 2014; Lin et al., 2017) marks query-
relevant information as reported texts stream in,
avoiding repeating information marked earlier. In-
teractivity is not a constraining factor here, yielding
solutions with relatively high computation time.

With respect to the above related work, we de-
velop a model inspired by Mao et al. (2020), which
is closest to our requirements. To facilitate an inter-
active setting, our model (1) enables query+history
injection, (2) supports full input processing, neces-
sary for complete information availability during
exploration, (3) has low latency at inference time,
and (4) requires a relatively small training set.

The subtask of suggested-queries list genera-
tion. Extracting suggested queries on a document
set most resembles the multi-document keyphrase
extraction (MDKE) task since it aims to identify
salient keyphrases (Shapira et al., 2021a). MDKE
was mostly addressed using traditional heuristics
or graph-centrality algorithms applied over the doc-
uments (e.g. Mihalcea and Tarau, 2004; Florescu
and Caragea, 2017). In contrast to MDKE, the sug-
gested queries extraction subtask is a new paradigm
that updates “keyphrases” with respect to session
history. While previous methods for keyphrase
extraction could potentially be adapted for our dy-
namic setting, we choose to focus in this work on a
deep RL architecture for suggested queries that res-
onates our model for query-assisted summarization
and allows sharing insights between the models.

3 Query-Assisted Summarization Model

The subtask of query-assisted summarization cov-
ers two main components of the INTSUMM task:
the generators of an initial summary and of query-
responses. The initial summary concisely specifies
some central issues from the input topic (not biased
on a query) to initiate the user’s understanding of
the topic and to motivate further exploration. Then,
for each user submitted query, the query-response
generator non-redundantly expands on the previ-
ously presented information with topically salient
responses that are also biased around the query. We
next formally define the subtask and then describe
our RL model for it.

3.1 Subtask Formulation
The input to the query-assisted summarization sub-
task is tuple (D, q,Ein,m), such that: D is a docu-
ment set on a topic where the j-th sentence in the
concatenation of D’s documents is denoted sj ; q

is a query, and can be empty (denoted _) for an
unbiased generic summary; Ein = {ein

1 , ..., e
in
k } is

a sequence of sentences from D termed the history,
containing texts previously output in the session;
and m is the number of sentences to output. The
output is sentence sequence Eout = {eout

1 , ..., eout
m }

from D (extractive summarization). When in-
putting (D, _, {},m), the output is a generic sum-
mary of m sentences, that can serve as the initial
summary; and when q and Ein are not empty, the
output is an expansion on Ein in response to q,
containing new salient information biased on q.
D is paired with a set of generic reference sum-

maries R, which is used for training or as a part of
the evaluation effort.

3.2 Model Architecture

Our query-assisted summarization model, MSumm,
is autoregressive, outputting the requested number
of summary sentences one-by-one. At time step
t, a sentence eout

t is output according to the cur-
rent query and an encoding of the summary-so-far
Et = {ein

1 , ..., e
in
k , e

out
1 , ..., eout

t−1} to prevent infor-
mation repetition. At inference time, MSumm out-
puts the summary sentences with the given query
and history (possibly empty). At train time, we
emulate a session by invoking MSumm with a se-
quence of differing queries, Q = {q1, q2, ..., qm},
for which to generate the corresponding sequence
of output sentences. I.e., output sentence eout

t is
biased on query qt and the summary-so-far Et at
time step t. We next describe the architecture3 of
MSumm, also illustrated in Figure 2.

Sentence encoding. The first step of the model is
hierarchically encoding the sentences of the docu-
ment set D to obtain contextualized representation
cj for sentence sj ∀j. A CNN (Kim, 2014) en-
codes sj on the sentence level and then a bi-LSTM
(Huang et al., 2015) forms representation cj on the
document level, given the CNN encodings.

Query encoding. Additionally, at each time step
t we prepare sentence+query representations ctj =
cj ⊕ CNN(qt), i.e., obtained by concatenating a
sentence representation and the CNN-encoding of
the current query. This sentence+query represen-

3In general, the implementation choices weighed in the
speed at which the full input document set can be processed.
In comparison to other techniques (some of which are more
recent), these choices gave as good or better results at lower
latency. Alternative architectural choices and their behavior
are discussed in Appendix B.
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Figure 2: The MSumm query-assisted summarization model architecture. Contextual sentence embeddings are con-
catenated to the current query embedding. The sentence+query representation is softly attended with a transformed
query-focused MMR score, and a sentence selection distribution is obtained with a two-hop attention mechanism,
considering a summary-so-far representation. A dual-reward mechanism, using the reference summaries and query,
optimizes a policy to train the model for summary content quality and sentence-to-query resemblance. At inference
time, an initial summary is generated with empty Ein and qt-s, while for an expansion they are not empty.

tation influences the relevance of a sentence with
respect to the current input query.

Query-MMR score weighting. MMR has been
shown to be effective in MDS, where information
repeats across documents. It aims to select a salient
sentence for a summary, that is non-redundant to
previous summary sentences. We extend standard
MMR so that the importance of the sentence is in
regards to both the document set and the query.
Formally, the query-focused MMR function defines
a score mt

j for each sj at time step t as follows:

mt
j = λ · BISIM(sj ,D, qt)

− (1− λ) · maxe∈EtSIM(sj , e) (1)

BISIM(sj ,D, qt) = β · SIM(sj ,D⊕)

+ (1− β) · SIM(sj , qt) (2)

where λ ∈ [0, 1] balances salience and redundancy
and β ∈ [0, 1] balances a sentence’s salience within
its document set and its resemblance to the current
query. SIM(x, y) measures the similarity of texts
x and y, and D⊕ is a fully concatenated version of
document set D. Following findings of Mao et al.
(2020), SIM computes cosine similarity between
the two compared texts’ TF-IDF vectors. Redun-
dancy to previous sentences is computed as the
highest similarity-score against any of the previous
sentences. We set λ = 0.6 (following Lebanoff
et al., 2018) and β = 0.5 (see Appendix B.3).

The query-focused MMR scores are incorpo-
rated into MSumm by softly attending on the sen-
tence representations with their respective trans-
lated query-focused MMR scores:

µt = softmax(MLP(mt)) (3)

ĉtj = µt
jc

t
j (4)

State representation. At time t, a representa-
tion zt of the summary-so-far is computed by ap-
plying an LSTM encoder on {cidx(ein

1 )
, ..., cidx(ein

k )
,

cidx(eout
1 ), ..., cidx(eout

t−1)
}, i.e., on the plain sentence

representations of Et, where idx(e) is the index
of sentence e. Then, a state representation gt con-
siders zt and all sentence representations with the
glimpse operation (Vinyals et al., 2016):

atj = v1 tanh(W 1ĉ
t
j +W 2 zt) (5)

αt = softmax(at) (6)

gt =
∑

j

αt
j W 1ĉ

t
j (7)

where v1, W 1 and W 2 are model parameters, and
at represents the vector composed of atj .

Finally, a sentence sj at time t is assigned a
selection probability softmax(pt)j such that:

ptj =

{
v2 tanh(W 3ĉ

t
j +W 4 gt) if sj /∈ Et

−∞ otherwise
(8)

where v2, W 3 and W 4 are model parameters.

Reinforcement learning. As MSumm’s goal
is to incrementally generate a query-assisted
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summary, it should strive to optimize (1) non-
redundant salient-sentence extraction and (2) query-
to-sentence similarity, that can be appraised with
ROUGE (Lin, 2004) and text-similarity metrics,
respectively. A policy gradient-based RL approach
(Williams, 1992) allows optimizing on such non-
differentiable metrics. Specifically, we adopt the
Advantage Actor Critic method (Mnih et al., 2016)
for policy learning, and a dual-reward procedure
(Pasunuru and Bansal, 2018) to alternate between
the summary and query-similarity rewards.

At time step t, for selected sentence eout
t (based

on softmax(pt)), reward rt is computed and
weighted into MSumm’s loss function. The re-
ward function alternates, from one train batch
to the next, between ROUGE∆(e

out
t ,Et,R) and

QSIM(eout
t , qt). The former computes the ROUGE

difference before adding et to Et and after:

ROUGE∆(eout
t ,Et,R) =

ROUGE((Et ∪ eout
t )⊕,R)− ROUGE(E⊕

t ,R) (9)

A larger ROUGE∆ value implies that et concisely
adds more information onto Et, with respect to
topic reference summaries R. We use ROUGE-1
F1 as the ROUGE function here. The query-
similarity reward function

QSIM(eout
t , qt) =

avg(SEMSIM(eout
t , qt), LEXSIM(eout

t , qt)) (10)

computes an average of semantic and lexical sim-
ilarities between the selected sentence and corre-
sponding query. SEMSIM computes the cosine sim-
ilarity between the average of word embeddings
(spaCy: Honnibal and Montani, 2021) of eout

t and
that of qt. For lexical similarity,

LEXSIM(eout
t , qt) =

avg(Rp
1(e

out
t , qt), R

p
2(e

out
t , qt), R

p
L(e

out
t , qt)) (11)

is the average of ROUGE-1, 2 and L precision
scores between sentence and query. By alternat-
ing between the two rewards, we train a sentence-
selection policy in MSumm to balance summary
informativeness and adherence to queries.

Overall system. Our MSumm model adopts its
base architecture from Mao et al. (2020) (for
generic MDS). Chiefly, we modify their model for
handling an input query-sequence and a sentence

history, and employ a different summarization re-
ward function. The query is incorporated in the
sentence representation, in the new query-focused
MMR function and in the dual-reward mechanism.

3.3 Model Training

Pre-training. To provide a warm start for train-
ing MSumm, a reduced version of MSumm is first
pre-trained for generic extractive single-document
summarization using the large-scale CNN/Daily
Mail corpus (Hermann et al., 2015), as proposed
by Chen and Bansal (2018). The reduced model
pre-trains the full model for contextual sentence
representation and for salient-sentence selection in
the single-document generic setting. See Appendix
B.1 for precise technical details.

Training data. After pre-training the reduced
version of MSumm, we train the full model using
the DUC 2007 MDS dataset, with modifications for
our query-assisted MDS task. The dataset includes
45 topics (split into 35/10 train/val), each contain-
ing 25 documents and 4 reference summaries.

For each topic, we generate an “oracle” extrac-
tive summary by greedily aggregating 10 sentences
from D, that maximizes the ROUGE∆-1 recall
against R. Then for each sentence, we extract
a bi- or trigram that is most lexically-unique to the
sentence, in comparison to all other sentences in D.
This yields a sequence of 10 “queries” that could
easily render the corresponding oracle summary.
The intuition for this approach is that it would teach
MSumm that it is worthwhile to consider a given
query when selecting a sentence that is informa-
tive with respect to the reference summaries. This
further assists in fulfilling the dual requirements
of selecting a globally informative sentence that
also adheres to the query.4 Appendix B.3 discusses
usage of different query types for training.

Validation metric. As the interactive session pro-
gresses, a recall curve emerges, that maps the
ROUGE recall score (here ROUGE-1) versus the
expanding summary token-length. Once the ses-
sion halts, the area under the curve indicates the
efficacy of the session for information exposure.
A higher value implies faster unveiling of salient

4Seemingly, the most natural approach would be to train
the model with queries from real sessions (collected using a
different system). However, a session’s queries are dependent
on outputs previously produced by the used system. Hence,
these do not benefit the training process more than a synthe-
sized sequence of queries.
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information. Normalizing by the final summary
length allows approximate comparability between
different length sessions. We hence use the aver-
age (over topics) length-normalized area under the
recall curve for validating the training progress.

4 Suggested Queries Extraction Model

4.1 Subtask Formulation

We now consider the second subtask of INTSUMM:
generating lists of suggested queries. The list is
regenerated after every interaction, to yield queries
that focus on sub-topics that were not yet explored.

Reusing the notations of MSumm in §3, we de-
fine a model, MSugg, for suggested queries list
generation, that receives an input tuple (D,Ein,m)
(notice that a query is not needed here). Here, the j-
th phrase in D is denoted ρj , when the documents
in D are concatenated, and accordingly, history
Ein is a list of phrases extracted from the session’s
current accumulated summary. m is the number
of suggested queries to output. The model outputs
phrase sequence Eout = {eout

1 , eout
2 , ..., eout

m } from
D, accounting for history Ein. As in MSumm’s
setting, D is paired with a set of generic reference
summaries R.

4.2 Model Architecture

We adopt and adjust the architecture in §3.2 for this
subtask. Similar to MSumm, MSugg selects input
units one-by-one considering a history, with the
main difference being the absence of query injec-
tion. Additionally, inputs and outputs are processed
on the phrase- rather than the sentence level.

Phrase and state representation. For the given
document set, all noun phrases are extracted using a
standard part-of-speech regular expression method
(Mihalcea and Tarau, 2004; Wan and Xiao, 2008).

We obtain document-level contextual phrase em-
beddings, cj for phrase ρj , with the CNN and bi-
LSTM networks, and softly attend the embeddings
with a standard MMR score:

mt
j = λ · SIM(ρj ,D⊕)

− (1− λ) · maxe∈EtSIM(ρj , e) (12)

The MMR-based phrase representations then
pass through the glimpse attention procedure,
which culminates in the phrase probability distribu-
tion for selecting the next output phrase.

Reinforcement learning. The policy in MSugg is
trained with a single reward function that measures
how prominent the selected phrase is within the
reference summaries, and how different it is from
previously seen phrases. Formally, at time step t,
the reward rt of selected phrase eout

t is:

rt = PF(eout
t ,R)− γ1 · PFMAX(eout

t ,Ein,R)

− γ2 · PFMAX(eout
t ,Et \Ein,R) (13)

PF(eout
t ,R) = avg

r∈R(avg
w∈eout

t

TF(w, r)) (14)

PFMAX(eout
t ,L,R) = maxe∈LPF(eout

t ∩e,R)
(15)

where TF(w, r) is the relative frequency of word w
in reference summary r. Namely, PF computes the
average term frequency of a phrase over its words
and across the reference summaries, as an estimate
of the phrase importance within the topic. PFMAX

computes the highest PF against a list of phrases,
which is used to lower the reward of a phrase that is
redundant to phrases used earlier. Different weights
are given to the PFMAX against the input history
(γ1) and that of the phrases output so far (γ2).

4.3 Model Training
Similarly to MSumm, we first pre-train the base
model to get a warm start on embedding formation
and salience detection. The reduced architecture of
MSumm and MSugg for pre-training are identical.

We use the same DUC 2007 training data, with
document sets and reference summaries, and ad-
ditionally prepare three “histories” per topic: one
empty and two non-empty. An empty history mim-
ics generating a session’s initial list of suggested
queries, while a non-empty history trains the model
to consider previously known information. Train-
ing with two non-empty histories per topic prepares
a model for varying informational states. These are
curated from a generic summary (from a trained
MSumm model) that is truncated at two random
sentence-lengths between 1 and 12. Overall, the
model is trained on three versions of each topic,
each time with a different history.

Similarly to MSumm, validation is guided by
the average normalized area under the recall curve.
Here, the accumulating rt scores from Equation 13
are used as the recall of the expanding suggested
queries list. I.e., a higher reward means better sug-
gested queries are output earlier. The AUC is nor-
malized with the total token-length of all suggested
queries to mitigate for lengthy phrase extractions.
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5 Experiments

We ran several experiments for the assessment
of our MSumm and MSugg models, applying the
INTSUMM evaluation framework of Shapira et al.
(2021b). The goals of the experiments are to com-
pare varying configurations of our models and to
evaluate against an INTSUMM baseline system.
The experiments include both simulations and in-
teractive sessions with human users.

5.1 Compared Algorithms

The MSumm model architecture (§3.2) has several
configurable components: encoding the query into
sentences, considering the query in the MMR func-
tion (both at train and inference time), and the dual
reward mechanism. We compared several varia-
tions of these using simulations, presented in §5.2.

In addition, we compare, both via simulations
(§5.2) and real sessions (§5.3), against the (better-
performing) baseline system in (Shapira et al.,
2021b), named S2. S2’s initial summary algorithm
is TextRank, and the query-response generator ex-
tracts sentences via lexical+semantic similarity to
the query, somewhat resembling QSIM in Equation
10, fully neglecting the summary-so-far, in contrast
to MSumm. S2’s suggested queries list contains
TextRank’s top salient topic phrases. Since these
too do not account for the summary-so-far, they
are computed at the session beginning and are not
updated along the session, in contrast to MSugg.

5.2 Simulated Experiments

The INTSUMM task involves human users by defi-
nition. Nevertheless, running on simulated query
lists and session histories is pertinent for efficient
system evaluation and comparison of methods.

To simulate the query-assisted summarization
algorithms, we utilize the real sessions recorded
by Shapira et al. (2021b): 3-4 user sessions on 20
topics from DUC 2006 collected with S2. In our
simulation, each summary-so-far from a recorded
session is fed as input to the system together
with the following recorded user query. We then
measure Rrecall

1∆ (difference of ROUGE-1 recall in-
curred by the query response compared with the
input summary-so-far). Additionally, we use RF1

1

(ROUGE-1 F1) for initial summary informative-
ness. Both are measured w.r.t. the reference sum-
maries, normalized by the output length, and aver-
aged per session recording, and then over all ses-
sions and topics, to get an overall system infor-

mativeness score. We also measure system query-
responsiveness using the QSIM metric.

Table 1 presents a representative partial ablation
of the MSumm model. All variants were config-
ured to output sentences of up to 30 tokens, initial
summaries are 75 tokens, and query responses are
2 sentences. Configurations i-iv use the query in
training, while v and vi do not. Each configuration
is measured for informativeness (columns marked
with †), and for query-responsiveness (QSIM col-
umn). Out of configurations i-iv, config. i, where
we employ all mechanisms for query inclusion,
yields the best overall scores in both informative-
ness and query-responsiveness, despite the inher-
ent tradeoff between the two. In the second set of
configurations (v-vi), we observe that ignoring the
query at train time substantially degrades query-
responsiveness, and this is expectedly further exac-
erbated when also ignoring the query at inference
time. However, disregarding the query gives more
informative expansions with respect to reference
summaries, since the model was trained only to
optimize content informativeness, and is less likely
to sidetrack to the query-related information.

Compared to S2 (last row), our model sig-
nificantly improves informativeness. Query-
responsiveness is better in the S2 baseline since
its query-response generator simply invokes a func-
tion similar to QSIM, but for the price of lower
informativeness. Still, this does not lead to inferior
overall user experience, see § 5.3.

5.3 Real Session Collection and Evaluation

We collect real user sessions via controlled crowd-
sourcing (which provides high quality work, see
Appendix D) with the use of an INTSUMM web
application5 running either our MSumm+MSugg

models or the S2 baseline algorithms, enabling a
comparative assessment of the two systems. No-
tably, our algorithms have the low latency required
for the interactive setting (Attig et al., 2017), i.e.,
responding almost immediately.6

Using the DUC 2006 INTSUMM test set, we pre-
pared two complementing user sets of 20 topics,
each with 10 of the topics to be run on our system
and the other 10 on the baseline. We apply the eval-
uation metrics of Shapira et al. (2021b): (1) The

5Minimally modified from (Shapira et al., 2021b) to sup-
port updating the suggested queries list after each interaction.

6MSumm generates summaries in under a second and
MSugg prepares the list of suggested queries in a few sec-
onds. See Appendix E.2 for more details.
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MSumm Model Configuration Simulation Results († = informativeness metric, R1 = ROUGE-1)

# Query in
Encoding

Query in
MMR

Query in
Reward (Dual)

Query in MMR
at Inference

† Initial Summ
Norm RF1

1 (×10−3)
Initial Summ
Token-Length

† Expansion
Norm Rrecall

1∆ (×10−3)
Expansion
Token-Len.

QSIM Query
Responsiveness

i. yes yes yes yes 3.09 (±0.11) 86.7 (5.6) 0.913 (±0.055) 49.7 (2.7) 0.488 (±0.021)
ii. yes yes no yes 3.04 (±0.12) 87.4 (8.3) 0.897 (±0.054) 49.4 (2.7) 0.482 (±0.022)
iii. yes no no yes 3.00 (±0.14) 88.0 (8.7) 0.892 (±0.058) 50.1 (2.9) 0.479 (±0.020)
iv. no yes yes yes 2.98 (±0.17) 85.1 (6.5) 0.892 (±0.057) 51.3 (2.8) 0.462 (±0.025)
v. no no no yes 3.05 (±0.12) 85.4 (8.1) 0.955 (±0.046) 51.8 (2.9) 0.423 (±0.027)
vi. no no no no 3.05 (±0.12) 85.4 (8.1) 0.988 (±0.056) 52.8 (4.0) 0.311 (±0.023)

S2 Baseline (Shapira et al., 2021b) 2.75 (±0.20) 85.1 (21.8) 0.799 (±0.040) 49.1 (2.8) 0.601 (±0.021)

Table 1: Simulation results on previously collected sessions, yielding a partial ablation of our MSumm model, and
the results on the baseline system which was originally used to collect those sessions. Intervals at 95% confidence.

Metric Ours S2 Baseline
Rr

1 AUC @ [106, 250] 43.42 (±1.54) 40.01 (±1.52)
RF1

1 @ initial 0.256 (±.011) 0.231 (±0.014)
RF1

1 @ 250 0.396 (±.015) 0.378 (±.015)
QSIM query-resp. 0.471 (±.028) 0.623 (±.023)
Manual query-resp. 3.96 (±0.19) 4.03 (±0.23)
Manual UMUX-Lite 78.9 (±2.5) 78.6 (±3.4)

Table 2: Average scores of our system (configuration
v) and baseline system S2 on actual user sessions. Our
system exposes topical information better, while the user
experience is very good despite the slight degradation
in query-responsiveness. Intervals at 95% confidence.

area under the sessions’ ROUGE recall curves, in
a common word-length interval across all sessions
and topics, which demonstrates how fast salient in-
formation is exposed in sessions. (2) ROUGE F1 at
the initial summary and at 250 tokens, that indicate
how effectively the interactive system can gener-
ate summaries at pre-specified, comparable lengths.
(3) Manually assigned query-responsiveness score
(1 to 5 scale), which expresses how well users think
the system responded to their requests. And (4)
manual UMUX-Lite (Lewis et al., 2013) score for
system usability (effectiveness and ease of use),
where 68 is considered “acceptable” and 80.3 is
considered “excellent”. We also measure automatic
query-responsiveness with QSIM.7

We conducted two such comparative collec-
tion and assessment experiments, either employing
MSumm configuration v or i, namely the best of the
two configuration sets. In both cases, the MSugg

model used was set with γ1 = 0.5 and γ2 = 0.9
after some hyperparameter tuning (Appendix B.4).
The first experiment (with configuration v) is de-
scribed here, and the other in Appendix E.1.

We hired 6 qualified workers using the controlled
crowdsourcing procedure, and collected 2-3 ses-
sions per topic per system (111 total sessions). In

7While QSIM is a reasonable automatic measure for esti-
mation of query-responsiveness, it is left for future work to
assess its true reliability for such use.

the sessions, users explore their given topic by sub-
mitting queries with a common generic informa-
tional goal in mind (Appendix D).

Overall system assessment. Table 2, presenting
average scores over the collected sessions, shows
that our system is significantly more effective for
exposing salient information, as depicted in the
first three rows. Users indicate a slight degradation
in query-responsiveness of our system, consistent
with QSIM scores (row 4-5). Note that the observed
difference in QSIM scores, between simulations
and user sessions, partly stems from the fact that
they were computed over different sets of queries.
The varying queries issued by the users in user
sessions form a less stable query responsiveness
comparison than the one in Table 1, where QSIM

scores are computed using consistent queries for all
systems. Despite the gap in QSIM scores between
our system and S2 in Table 2, the overall usability
scores are slightly better (last row). This may sug-
gest that users appreciate the informativeness of
the produced summary even when they are aware
that the summary is less biased on their queries;
thus our system improves informativeness while
still providing a favorable user experience.

Assessment of suggested queries functionality.
We analyzed the types of queries users submitted
throughout their sessions, to assess the utility of up-
dating suggested queries, with MSugg, as opposed
to a static list of suggestions, with S2. To that
end, we tallied suggested query clicks and query
submissions via other modes, binning the tallies
to three sequential temporal segments within their
respective sessions (Appendix E.3). We found that,
on average, the usage of suggested query clicks in-
creased by ~13% when nearing the end of a session
with MSugg, and conversely decreased by ~24%
with S2. While the decrease in use of the static
list is expected, since appealing queries are likely
exhausted earlier in a session, it is encouraging to
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witness the usefulness of updated queries as the
session progresses. This behavior suggests that
the updated list contains suggested queries that are
indeed engaging for learning more about the topic.

6 Conclusion

Interactive summarization for information explo-
ration is a task that requires compliance to user
requests and session history, while comprehen-
sively handling a large input document set. These
requirements pose a challenge for advanced text
processing methods due to the need for fast reac-
tion time. We present novel deep reinforcement
learning based algorithms that answer to the task
requirements, improving salient information expo-
sure while satisfying user queries and keeping user
experience positive.

We note that while MSumm is designed for the
INTSUMM task, it may potentially be serviceable
for standard MDS, QFS, update summarization and
combinations thereof. This can be accommodated
by a proper choice of input, e.g., QFS can be ad-
dressed by giving MSumm as input a query, an
empty history and target summary length. In fu-
ture work, we may study the performance of our
solutions for such tasks, as well as strive to fur-
ther improve their performance on both ends of the
INTSUMM task – selecting topically salient infor-
mation and responding to user queries.
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A Ethical Considerations

Datasets. The DUC 2006 and 2007 datasets were
obtained according to the DUC website (duc.
nist.gov) requirements. It was not possible for
others to reconstruct the document sets and refer-
ence summaries of the dataset from the crowdsourc-
ing tasks.

The datasets are composed of new articles
mainly from the late 1990s from large news out-
lets, compiled by NIST. All data exposed by our
systems are directly extracted from those articles.
For extraction, we do not intentionally add in any
rules for ignoring or boosting certain information
due to an opinion.

Crowdsourcing. Due to the need for English
speaking workers, a location filter was set on
the Amazon Mechanical Turk (https://www.
mturk.com) tasks for the US, UK and Australia.
All tasks paid according to a $10 per hour wage,
according to the estimated required time of each
task. The payment was either paid per assignment,
or as a combination with a bonus.

Compute resources. Our MSumm and
MSugg models required between 2 and 20
hours of training (usually around 4 hours),
depending on the configuration. We trained on
one NVIDIA GeForce GTX 1080 Ti GPU with
11GB memory. The pretrained base model was
trained once and reused in all subsequent training.
Outputting at inference time is computationally
cheap: MSumm runs upto about 1 second, but
mostly in a few hundred milliseconds, and
MSugg runs upto about 7 seconds, but mostly in
under 4 seconds. Training with a batch size of 8
used about 3GB GPU memory for MSumm, and
about 9GB memory for MSugg (since there are
many more input units per document set, i.e., all
noun phrases versus sentences).

B Implementation Details

B.1 Pre-training Technicalities

To provide a warm start for training MSumm and
MSugg, a reduced version of the models, which is
the same for both, is first pre-trained for generic
extractive single-document summarization using
the CNN/Daily Mail corpus (Hermann et al., 2015)
with about 287k samples, as proposed by Chen
and Bansal (2018). In this reduced model, ĉtj is
replaced by cj in Equations 5, 7 and 8. Further-

more, there is a single reward function for learn-
ing the policy, computed per selected sentence eout

t

as ROUGE-L F1 w.r.t. the (single) reference sum-
mary’s sentence at index t. The reduced model
pre-trains the full model for contextual sentence
representation and for salient-sentence selection in
the single-document generic setting. This allows
training MSumm and MSugg with a relatively small
dataset for their final purposes.

B.2 Training Technicalities
Following (Mao et al., 2020), the pre-trained base
model is the rnn-ext + RL model from Chen and
Bansal (2018), and is trained like in Lebanoff
et al. (2018). Both MSumm and MSugg are further
trained on our adjusted DUC 2007 data using an
Adam optimizer with a learning rate of 5e-4 and no
weight decay. A discount factor of 0.99 is used for
the reinforcement learning rewards. The batch size
was 8. Training was halted once 30 consecutive
epochs did not improve the validation score.

The MMR function within our models uses TF-
IDF vector cosine similarity for all SIM instances
(in Equations 1 and 12). The TF-IDF vectorizer
is initialized with the document set on which the
MMR score is computed.

As is commonly practiced, selection of an out-
put sentence/phrase eout

t is done by sampling prob-
ability distribution pt (in Equation 8) at train
time, and by extracting the maximum scoring sen-
tence/phrase at inference time.

The MLP in Equation 3 transforms the MMR
score with a feed-forward network with one-hidden
layer of dimension 80 following (Mao et al., 2020).

B.3 Query-Assisted Summarization Model
Model configurations. The architecture of the
MSumm model and its training allowed for much
creativity in the configuration process. Other than
the combinations mentioned in the paper in Table
1, we also experimented with other components.
We list here many of the experiments, without for-
mal results. Anecdotes are taken by looking at
validation scores and some eyeballing.

(1) The β value in the query-focused MMR
function in Equation 2, that impacts the weight of
the query on a sentence versus the document set
on the sentence. We tried out a few β values and
mainly noticed that a value of 0.5 kept validation
results more stable across configurations, or kept
training time shorter. In our experiments, to cancel
out this component (both at training and inference
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time), we simply set β = 1 so that the query is not
considered.

(2) Different summary reward functions.
ROUGE∆ recall (instead of F1) was also a good
alternative, but gave somewhat less stable results
across configurations. ROUGE (not as ∆) was also
less stable with recall and F1, and gave too short
and irrelevant sentences with precision. We also
tried sentence level ROUGE-L, like in (Mao et al.,
2020), eventually outputting sentences that were
much less compliant to queries.

(3) Using only the query similarity reward in-
stead of the dual reward mechanism worked sur-
prisingly well. This may be due to the queries on
which the model was trained on. These queries
were very relevant to the gold reference summaries,
hence possibly implicitly providing a strong signal
to salient sentences within the document set. Still,
this was less productive than our final choice of
reward.

(4) Adding training data (additional DUC
MDS datasets) did not impact the results. Impor-
tantly, since DUC 2007 is most similar to the test
DUC 2006 set, it seems to be more beneficial to
include DUC 2007 in the training set.

(5) We also tried representing the query in the
input by concatenating it’s raw text to each input
sentence before get the sentence representations.

(6) To represent the sentences, we also tried
using average w2v vectors (Honnibal and Montani,
2021) and Sentence-BERT (Reimers and Gurevych,
2019) instead of the CNN network. These did
not show any apparent improvements, and were
notably expensive in terms of execution time.

(7) For the sentence similarity in the query-
MMR component, we tried w2v and Sentence-
BERT representations instead of TF-IDF vectors.
Similarly to (6), they did not show improvements
over using TF-IDF, and were very time-costly.

(8) Instead of the dual-reward mechanism that
alternates between the two rewards from batch to
batch, we also considered using a weighted average
of the two rewards, consistently over all batches.
Further experimentation is required on this tech-
nique for a more conclusive judgment.

Queries used for training. The queries used for
training the MSumm model can affect the way it
learns to respond to a query. Seemingly, the most
natural approach would be to train the model as
close as possible to the model’s use at inference
time. This would mean training MSumm with

queries from real sessions. However, a session’s
queries are dependent on outputs previously pro-
duced by the used system. It is therefore not certain
that the sequence of queries from a different sys-
tem’s usage would necessarily benefit the training
process when compared to a synthesized sequence
of queries. I.e., it’s not actually possible to train
with “real sessions” in a conventional way.

Also, as stated in §3.3, the synthetic queries we
eventually used direct the model to select salient
sentences, which can support our dual-objectives:
to get a sentence that is both globally salient to the
topic, as well as responsive to the query. We tried
training on other query types, synthesized with
various keyphrase extraction techniques, and found
that our final choice of queries more consistently
gave good results overall.

Sentence length. We segmented the sentences in
the document sets with the NLTK8 sentence tok-
enizer, and removed sentences that contain quotes
in them or do not end with a period.

During training we did not constrain the input
sentences in any way. Some of the configuration ex-
periments described above were done to check how
the configuration might influence the length of the
selected sentences. The best configurations, includ-
ing the one we eventually used in our tests, tended
to output somewhat longer sentences. Very long
sentences are usually tedious for human readers,
and we hence limited the sentences to 30 tokens at
inference time. We found that this length constraint
caused a slight degradation in simulation score re-
sults of our models, however still gave superior
informativeness results compared to the baseline
system.

Initial summary length. Sentences are accumu-
lated until surpassing 75 tokens. Therefore sum-
maries are not shorter than 75 tokens, but mostly
not much longer than that.

B.4 Suggested Queries Extraction Model

Model configurations. We experimented with
different configurations and hyper-parameter fine-
tuning in the MSugg model as well. Tuning was
performed in accordance to the validation scores
and generic keyphrase extraction scores on the
MK-DUC-01 multi-document keyphrase extraction
dataset of Shapira et al. (2021a).

8https://www.nltk.org
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(1) In the reward function in Equation 13, we
set γ1 = 0.5 and γ2 = 0.9, i.e., the preceding
output phrases are more strongly accounted for than
the phrases in the session history. We tested several
values between 0 and 1 for both hyper-parameters.

(2) We implemented altered versions of the re-
ward function in Equation 13. Instead of phrase
unigram-level frequency, we tried computing the
full phrase frequency and computing partial phrase
frequency, i.e., a maximal phrase template match
within a reference summary. All functions tested
were adequate overall, though our final choice of
reward function was closest to the keyphrase ex-
traction task unigram overlap metric, and gave best
results overall.

(3) We also attempted noun phrase extraction
with the spaCy9 noun chunker and named entity
recognizer. This combined approach misses some
noun phrases within the text, but mainly is also
more computationally heavy than the simple POS
regex search that we use.

Extracting phrases with regular-expression.
We extracted all noun-phrases from the docu-
ment set by first mapping all tokens to their
part-of-speech tags, and then applying a regular-
expression chunker with regex: {(<JJ>*
<NN.*>+ <IN>)? <JJ>* <NN.*>+}.
These steps were accomplished with NLTK.

Phrase length. There is no limit set on the phrase
length. We tried training and inferring with a
phrase length constraint of 4 words, but found that
this gave worse results overall.

History sentences to phrases. MSugg works on
the phrase level. Meanwhile, in our extractive in-
teractive setting, the history is a set of sentences
already presented to the reader. Therefore, when
extracting phrases from D, we also link each phrase
to its source sentence, and obtain Ein by compiling
the phrases linked from the history sentences.

C Dataset Notes

While DUC 2006 (our test set) and 2007 (our
train/validation set) were originally designed for
the query-focused summarization task, they con-
tain excessive topic concentration due to their long
and descriptive topic queries (Baumel et al., 2016).
Hence, their reference summaries can practically
be considered generic.

9https://spacy.io/

D Session Collection

Controlled crowdsourcing protocol. We fol-
lowed the controlled crowdsourcing protocol of
Shapira et al. (2021b), which includes three steps:
(1) a trap task for finding qualified workers; (2)
practice tasks for explaining the interface and the
purpose, as well as reiterating the generic infor-
mation goal (see below) during exploration; (3)
the session collection tasks. We used the Amazon
Mechanical Turk HITs prepared by Shapira et al.
(2021b).

Process cost. We paid $0.40 for a trap task assign-
ment, with 400 assignments released, and $0.90 for
a practice task assignment, with 28 assignments
completed. The session collection assignment paid
$0.70, and a bonus mainly according to the length
of interaction and additional comments provided.
The bonus was between $0.15 and $0.35. A total
of 111 sessions were recorded from 6 high qual-
ity workers. The full process cost about $385 in
total (including the Mechanical Turk fees) for the
experiment including configuration v in Table 1.

The second round of experiments done on an-
other variant of our system (configuration i) also
included 28 practice tasks and compiled 10 fi-
nal workers for a total of 180 collected sessions.
Bonuses ranged from $0.10 and $0.40 on the ses-
sion collection task. The full process cost of the
second experiment was about $475 in total (includ-
ing the Mechanical Turk fees).

Session collection data preparation. We used
the same 20 test topics as Shapira et al. (2021b),
and created 2 batches of tasks. For the first batch,
in alternating order of topics, 10 topics were paired
with our system, and the other 10 were paired with
the S2 baseline. The other batch consisted of the
complementing topic-system pairings. The work-
ers were assigned a batch to work on such that half
of the workers would work on each batch.

User informational goal. Since all sessions on
a topic are evaluated against the same reference
summaries, it is important that users aim to ex-
plore similar information. Following Shapira et al.
(2021b), during practice tasks all users received a
common informational goal to follow, so that the
sessions are comparable. The emphasized descrip-
tion was: “produce an informative summary draft
text which a journalist could use to best produce an
overview of the topic”.
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Sessions filtering. In the first experiment, we
filtered out 7 sessions that accumulated less than
250 tokens (from 2 different workers).

In the second experiment, 9 of the 10 workers
completed at least 19 of the 20 topics One worker
completed only 3 tasks and we disregarded those
sessions. We also threw away 9 sessions that accu-
mulated less than 250 tokens.

INTSUMM user interface. We used the same
user interface developed by Shapira et al. (2021b)
with a small change to enable suggested query list
updates after each interaction (the interface was
designed for the baselines, where the suggested-
query list is static). To refrain from any possible
user experience bias, we made the UI change as
least apparent as possible.

System response time. MSumm is able to gen-
erate summaries mostly in under a second, and
MSugg prepares the list in a few seconds. The
summary expansion is hence presented to the user
almost immediately after query submission, and the
suggested queries list is shown shortly afterwords,
before the user finishes reading the expansion. The
small delay in suggested query updating is hence al-
most unnoticed. The baseline summarizer responds
similarly fast to MSumm, making response-time
difference unperceivable between the systems.

User feedback. Many of the users provided feed-
back about the session collection tasks after finish-
ing their assignment batch. The overall impression
was that there was no strong preference for either
system. For example, one user wrote: “I did not
discern a consistent difference between the two
systems that would result in having a clear pref-
erence.” This kind of comment was repeated by
several users. Generally, there were no explicit
comments about the difference in quality of the
summary outputs, and topics were mostly scored
or commented on similarly between the two sys-
tems since the complexity of the topic influenced
the ability of the systems to comply to the user.

A comment in favor of updating suggested
queries during interaction said: “It was nice to
have a new list as you progressed through the task,
it helped me think of where to go next if I got stuck...”
This specific comment was written by a user that
explored topics quite deeply. On the other hand,
a user that explored more shallow liked that used
suggested queries in the static list were marked: “I
did notice...the red font color on the used queries.

That was helpful.” It therefore seems that updating
suggested queries are more useful for lengthy ex-
ploration, but for quick navigation, the static list
might naturally be enough.

E More Results

E.1 Overall System Assessment

Metric Ours S2 Baseline
Rr

1 AUC @ [106, 250] 42.52 (±1.65) 40.34 (±1.40)
RF1

1 @ initial 0.260 (±.011) 0.231 (±0.014)
RF1

1 @ 250 0.390 (±.015) 0.382 (±.014)
QSIM query-resp. 0.527 (±.016) 0.603 (±.022)
Manual query-resp. 3.66 (±0.29) 3.79 (±0.25)
Manual UMUX-Lite 73.8 (±3.6) 75.8 (±2.9)

Table 3: Average scores of our system and a baseline
INTSUMM system on real user sessions, in an experi-
ment using a different MSumm configuration (configu-
ration i) compared to the experiment of Table 2 (con-
figuration v). Our system exposes topical information
better, while the overall user experience is not signifi-
cantly harmed. Intervals at 95% confidence level.

We conducted two comparative session collec-
tion and analysis experiments, one using MSumm

model configuration v (from Table 1), as presented
in §5.3 and Table 2, and another with MSumm

model configuration i. As explained in §5.2, these
two configurations performed best, on simulations,
out of their respective configuration sets.

We show here results of the second experiment,
where we used MSumm model configuration i, with
the same MSugg model as in the first experiment.
The S2 baseline was similarly used for compari-
son. We also kept the same AUC length limits (106
to 250 tokens) for easy comparability to Table 2.
Table 3 shows the results. Here too, while less
substantially, informativeness is improved with our
system without significantly harming the user expe-
rience. Overall, it seems that users were somewhat
more satisfied with the INTSUMM system that uses
MSumm configuration v than configuration i. Inter-
estingly, it seems the users may have appreciated
the slightly better informativeness of configuration
v even if the query-responsiveness was not as good
as in configuration i, as shown through the QSIM

score. In addition, we see that absolute manual
scores in Table 3 are lower than in Table 2, but
trends are generally similar. It is common that scal-
ing of manually supplied scores can fluctuate (e.g.
Gillick and Liu, 2010).

Figures 3 and 4 show the averaged (per topic and
then over all topics) recall curves of the collected
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sessions in the experiment described in §5.3 and
above, respectively. The x-axis is the accumulat-
ing token-length of the session, and the y-axis is
the ROUGE-1 recall. The points on the curve are
the average interpolated values from all the ses-
sions. The vertical dashed lines are the intersecting
bounds of the sessions, from 106 tokens to 250.
The area under the curve (AUC) is computed for
each of the curves, and reported in the first row of
Tables 2 and 3. The higher AUC scores obtained
from the recall curves of our models, compared
to those of the S2 baseline, highlight the ability
to expose more salient information earlier in the
session.

E.2 Execution Time of Systems

Systems that are made for interacting with humans
must respond quickly in order to keep the user’s
engagement. The exact amount of time does not
affect the user experience as long as it does not
surpass some limit, after which the user starts los-
ing interest or feeling irritated (Attig et al., 2017;
Anderson, 2020).

As mentioned in Appendix D, MSumm generates
summaries in under a second and MSugg prepares
the list in a few seconds. The baseline summarizer
also responds in under a second. The difference
between the systems is virtually unperceivable dur-
ing interaction. There were no comments from the
users in our experiments that stated any issue with
execution time.

Figure 3: Averaged recall curves of our system and the
S2 baseline system in the experiment described in §5.3
and Table 2 (using MSumm configuration v from Table
1). The intersecting range is bounded by dashed lines
(between 106 and 250 tokens).

E.3 Assessment of Suggested Queries
Functionality

In this analysis, we assessed what modes of query
submission users relied on over the course of a
session. To that end, (1) we divided each session
to three segments (first, second and third part of
the session), and counted the types of queries. The
types are “suggested query”, “free-text”, “highlight”
(a span from the summary text) and “repeat” (re-
peating the last submitted query). (2) We then com-
puted the percentage of each mode in each segment.
(3) The percentages over all sessions and all topics
were computed for each of the three segments.

This process was conducted only for sessions
between 4 and 20 interactions, as the few long and
short sessions often show different behavior. For
the first experiment, this left 43 sessions with avg.
8.63 (std. 2.32) interactions for our system, and 50
sessions with 8.44 (2.48) interaction for S2. For the
second experiment, it left 72 sessions with 10.24
(4.82) interactions for our system, and 74 sessions
with 9.59 (4.42) interactions for S2.

We focus here on the use of suggested queries
versus all other query types. In the first experiment
we observe a change of +9% from the first to the
third segment in our system, and -20% in S2. In the
second experiment we see +18% and -28% in S2.
As discussed in §5.3, this suggests the effectiveness
of updated suggested queries, especially by the end
of a session.

Figure 4: Averaged recall curves of our system and the
S2 baseline system in the experiment described here in
Appendix E.1 and Table 3 (using MSumm configuration
i from Table 1). The intersecting range is bounded by
dashed lines (between 106 and 250 tokens).
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F Further Explanations on Evaluation
Metrics

The normalized AUC score for the validation
metric (explained in §3.3) is computed over the
recall curve produced from the accumulating sum-
mary expansions. Each point on the curve marks
an accumulating token-length (x-axis) and an accu-
mulating recall score (y-axis) of an interactive state,
as depicted in Figures 3 and 4 (although these fig-
ures show the averaged session recall curves with
bounds, whereas during validation the curve is for
a single session and there are no bounds set). By
computing the area under the full curve, and divid-
ing by the full length, the normalized AUC score is
obtained. The normalization gives an approximate
absolute value that can be compared at different
lengths (although at large length differences this is
not comparable due to the decaying slope of the
curve).

The manual query-responsiveness score, re-
ported in Tables 2 and 3, is obtained by asking
users, at the end of a session, “During the inter-
active stage, how well did the responses respond
to your queries?”, for which they rate on a 1-to-5
scale. The scores are averaged over the topic and
then over all topics. This follows the evaluation
defined in Shapira et al. (2021b).

The UMUX-Lite score (Lewis et al., 2013), re-
ported in Tables 2 and 3, is obtained by asking
users to rate (1-to-5) two statements at the end of
a session: (1) “The system’s capabilities meet the
need to efficiently collect useful information for
a journalistic overview” and (2) “The system is
easy to use”. The first question refers to the users’
informational goal that they received, in order to
follow a consistent objective goal during their ex-
ploration. The final score is a function of these two
scores, and is used as a replacement for the popular
SUS metric (Brooke, 1996) (with a much longer
questionnaire), to which it shows very high cor-
relation, thus offering a cheaper alternative. This
also follows the evaluation defined in Shapira et al.
(2021b).

All confidence intervals in Tables 1, 2 and 3
are computed as margins-of-error, on the topic-
level, over the standard error of the mean with 95%
confidence.10

The token-length values in Table 1 are averages
with standard deviations.

10E.g., see https://www.calculator.net/
standard-deviation-calculator.html

G A2C Policy Learning

A policy gradient-based reinforcement learning ap-
proach (Williams, 1992) allows optimizing on non-
differentiable metrics, and eliminates the exposure
bias that occurs with traditional training methods,
like cross-entropy, on generation tasks (Ranzato
et al., 2016).

Specifically, we use the Advantage Actor Critic
(A2C) policy gradient training method. See tech-
nical explanations in the appendix of (Chen and
Bansal, 2018). At a high level, an output reward
(subtracted by a baseline reward – computed on a
version of the model without MMR attention) is
used to weight the output selection in the loss func-
tion. In so, outputs with higher rewards increase
the likelihood of those outputs and lower rewards
decrease the likelihood. Since the reward function
is not differentiable, it is used as a weight on the
probability of the selected output, which is then
given to the loss function.

H INTSUMM Example

We show in Figure 5 an example of an INTSUMM

system using the web application of Shapira et al.
(2021b) and our our MSumm (configuration i from
Table 1) and MSugg models in the backend.
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(a) (b)

(c)

Figure 5: An INTSUMM system using the web application of Shapira et al. (2021b), with our MSumm and MSugg

models run in the backend, on one of the topics in DUC 2006 with 25 news documents about “Global Warming”.
Sub-figure (a) shows the initial summary and the initial list of suggested queries. Sub-figure (b) shows the result of
clicking the “carbon dioxide gas” suggested query (with the query response and updated suggested queries list).
Sub-figure (c) shows the result of subsequently submitting the query “water level”. Query responses should be
informative for the general topic, while also complying to the user queries. System summaries and expansions must
be output fast in order to allow smooth interaction and human engagement.
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