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Abstract
Inference tasks such as answer sentence se-
lection (AS2) or fact verification are typically
solved by fine-tuning transformer-based mod-
els as individual sentence-pair classifiers. Re-
cent studies show that these tasks benefit from
modeling dependencies across multiple candi-
date sentences jointly. In this paper, we first
show that popular pre-trained transformers per-
form poorly when used for fine-tuning on
multi-candidate inference tasks. We then pro-
pose a new pre-training objective that models
the paragraph-level semantics across multiple
input sentences. Our evaluation on three AS2
and one fact verification datasets demonstrates
the superiority of our pre-training technique
over the traditional ones for transformers used
as joint models for multi-candidate inference
tasks, as well as when used as cross-encoders
for sentence-pair formulations of these tasks.

1 Introduction
Pre-trained transformers (Devlin et al., 2019; Liu
et al., 2019; Clark et al., 2020) have become the
de facto standard for several NLP applications, by
means of fine-tuning on downstream data. The
most popular architecture uses self-attention mech-
anisms for modeling long range dependencies be-
tween compounds in the text, to produce deep con-
textualized representations of the input. There are
several downstream NLP applications that require
reasoning across multiple inputs candidates jointly
towards prediction. Some popular examples in-
clude (i) Answer Sentence Selection (AS2) (Garg
et al., 2020), which is a Question Answering (QA)
task that requires selecting the best answer from a
set of candidates for a question; and (ii) Fact Verifi-
cation (Thorne et al., 2018), which reasons whether
a claim is supported/refuted by multiple evidences.
Inherently, these tasks can utilize information from
multiple candidates (answers/evidences) to support
the prediction of a particular candidate.

∗Work done as an intern at Amazon Alexa AI
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Pre-trained transformers such as BERT are used
for these tasks as cross-encoders by setting them
as sentence-pair classification problems, i.e, ag-
gregating inferences independently over each can-
didate. Recent studies (Zhang et al., 2021; Ty-
moshenko and Moschitti, 2021) have shown that
these tasks benefit from encoding multiple candi-
dates together, e.g., encoding five answer candi-
dates per question in the transformer, so that the
cross-attention can model dependencies between
them. However, Zhang et al. only improved over
the pairwise cross-encoder by aggregating multiple
pairwise cross-encoders together (one for each can-
didate), and not by jointly encoding all candidates
together in a single model.

In this paper, we first show that popular pre-
trained transformers such as RoBERTa perform
poorly when used for jointly modeling inference
tasks (e.g., AS2) using multi-candidates. We show
that this is due to a shortcoming of their pre-training
objectives, being unable to capture meaningful de-
pendencies among multiple candidates for the fine-
tuning task. To improve this aspect, we propose a
new pre-training objective for ‘joint’ transformer
models, which captures paragraph-level semantics
across multiple input sentences. Specifically, given
a target sentence s and multiple sentences (from
the same/different paragraph/document), the model
needs to recognize which sentences belong to the
same paragraph as s in the document used.

Joint inference over multiple-candidates entails
modeling interrelated information between multi-
ple short sentences, possibly from different para-
graphs or documents. This differs from related
works (Beltagy et al., 2020; Zaheer et al., 2020;
Xiao et al., 2021) that reduce the asymptotic com-
plexity of transformer attention to model long con-
tiguous inputs (documents) to get longer context for
tasks such as machine reading and summarization.

We evaluate our pre-trained multiple-candidate
based joint models by (i) performing AS2 on
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ASNQ (Garg et al., 2020), WikiQA (Yang et al.,
2015), TREC-QA (Wang et al., 2007) datasets; and
(ii) Fact Verification on the FEVER (Thorne et al.,
2018) dataset. We show that our pre-trained joint
models substantially improve over the performance
of transformers such as RoBERTa being used as
joint models for multi-candidate inference tasks,
as well as when being used as cross-encoders for
sentence-pair formulations of these tasks.

2 Related Work

Multi-Sentence Inference: Inference over a set
of multiple candidates has been studied in the
past (Bian et al., 2017; Ai et al., 2018). The most
relevant for AS2 are the works of Bonadiman and
Moschitti (2020) and Zhang et al. (2021), the for-
mer improving over older neural networks but fail-
ing to beat the performance of transformers; the
latter using task-specific models (answer support
classifiers) on top of the transformer for perfor-
mance improvements. For fact verification, Ty-
moshenko and Moschitti (2021) propose jointly
embedding multiple evidence with the claim to-
wards improving the performance of baseline pair-
wise cross-encoder transformers.
Transformer pre-training Objectives: Masked
Language Modeling (MLM) is a popular trans-
former pre-training objective (Devlin et al., 2019;
Liu et al., 2019). Other models are trained us-
ing token-level (Clark et al., 2020; Joshi et al.,
2020; Yang et al., 2019; Liello et al., 2021) and/or
sentence-level (Devlin et al., 2019; Lan et al., 2020;
Wang et al., 2020) objectives. REALM (Guu et al.,
2020) uses a differentiable neural retriever over
Wikipedia to improve MLM pre-training. This dif-
fers from our pre-training setting as it uses addi-
tional knowledge to improve the pre-trained LM.
DeCLUTR (Giorgi et al., 2021) uses a contrastive
learning objective for cross-encoding two sentences
coming from the same/different documents in a
transformer. DeCLUTR is evaluated for sentence-
pair classification tasks and embeds the two inputs
independently without any cross-attention, which
differs from our setting of embedding multiple can-
didates jointly for inference.
Modeling Longer Sequences: Beltagy et al.
(2020); Zaheer et al. (2020) reduce the asymp-
totic complexity of transformer attention to model
very long inputs for longer context. For tasks with
short sequence lengths, LongFormer works on par
or slightly worse than RoBERTa (attributed to re-

Figure 1: Multi-sentence ‘Joint’ transformer model. Ei

refers to embedding for the question/each candidate.

duced attention computation). These works en-
code a single contiguous long piece of text, which
differs from our setting of having multiple short
candidates, for a topic/query, possibly from differ-
ent paragraphs and documents. DCS (Ginzburg
et al., 2021) proposes a cross-encoder for the task
of document-pair matching. DCS is related to our
work as it uses a contrastive pre-training objective
over two sentences extracted from the same para-
graph, however different from our joint encoding
of multiple sentences, DCS individually encodes
the two sentences and then uses the InfoNCE loss
over the embeddings. CDLM (Caciularu et al.,
2021) specializes the Longformer for document-
pair matching and cross-document coreference res-
olution. While the pre-training objective in CDLM
exploits information from multiple documents, it
differs from our setting of joint inference over mul-
tiple short sentences.

3 Multi-Sentence Transformers Models

3.1 Multi-sentence Inference Tasks
AS2: We denote the question by q, and the set of
answer candidates by C={c1, . . . cn}. The objec-
tive is to re-rank C and find the best answer A for
q. AS2 is typically treated as a binary classifica-
tion task: first, a model f is trained to predict the
correctness/incorrectness of each ci; then, the can-
didate with the highest likelihood of being correct
is selected as an answer, i.e., A=argmaxni=1 f(ci).
Intuitively, modeling interrelated information be-
tween multiple ci’s can help in selecting the best
answer candidate (Zhang et al., 2021).
Fact Verification: We denote the claim by F , and
the set of evidences by C={c1 . . . cn} that are re-
trieved using DocIR. The objective is to predict
whether F is supported/refuted/neither using C
(at least one evidence ci is required for support-
ing/refuting F ). Tymoshenko and Moschitti (2021)
jointly model evidences for supporting/refuting a
claim as they can complement each other.
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3.2 Joint Encoder Architecture

For jointly modeling multi-sentence inference
tasks, we use a monolithic transformer cross-
encoder to encode multiple sentences using self-
attention as shown in Fig 1. To perform joint infer-
ence over k sentences for question q or claim F , the
model receives concatenated sentences [s0 . . . sk]
as input, where the first sentence is either the ques-
tion or the claim (s0=q or s0=F ), and the remain-
der are k candidates si=ci , i={1 . . . k}. We pad
(or truncate) each sentence si to the same fixed
length L (total input length L×(k + 1)), and use
the embedding for the [CLS] / [SEP] token in front of
each sentence si as its embedding (denoted by Ei).
Similar to Devlin et al., we create positional embed-
dings of tokens using integers 0 to L(k+1)−1, and
extend the token type ids from {0, 1} to {0 . . . k}
corresponding to (k + 1) input sentences.

3.3 Inference using Joint Transformer Model

We use the output embeddings [E0 . . . Ek] of sen-
tences for performing prediction as following:
Predicting a single label: We use two separate
classification heads to predict a single label for the
input to the joint model [s0 . . . sk]: (i) IE1: a linear
layer on the output embedding E0 of s0 (similar to
BERT) referred to as the Individual Evidence (IE1)
inference head, and (ii) AE1: a linear layer on the
average of the output embeddings [E0, E1, . . . , Ek]
to explicitly factor in information from all candi-
dates, referred to as the Aggregated Evidence (AE1)
inference head. For Fact Verification, we use pre-
diction heads IE1 and AE1.
Predicting Multiple Labels: We use two separate
classification heads to predict k labels, one label
each for every input [s1 . . . sk] specific to s0: (i)
IEk: a shared linear layer applied to the output em-
bedding Ei of each candidate si , i ∈ {1 . . . k} re-
ferred to as k-candidate Individual Evidence (IEk)
inference head, and (ii) AEk: a shared linear layer
applied to the concatenation of output embedding
E0 of input s0 and the output embedding Ei of
each candidate si , i ∈ {1 . . . k} referred to as k-
candidate Aggregated Evidence (AEk) inference
head. For AS2, we use prediction heads IEk and
AEk. Prediction heads are illustrated in Figure 2.

3.4 Pre-training with Paragraph-level Signals

Long documents are typically organized into para-
graphs to address the document’s general topic
from different viewpoints. The majority of trans-

Figure 2: Inference heads for joint transformer model.
Ei refers to embedding for the question/each candidate.

former pre-training strategies have not exploited
this rich source of information, which can possibly
provide some weak supervision to the otherwise
unsupervised pre-training phase. To enable joint
transformer models to effectively capture depen-
dencies across multiple sentences, we design a new
pre-training task where the model is (i) provided
with (k + 1) sentences {s0 . . . sk}, and (ii) tasked
to predict which sentences from {s1 . . . sk} belong
to the same paragraph P as s0 in the document D.
We call this pre-training task Multi-Sentences in
Paragraph Prediction (MSPP). We use the IEk and
AEk prediction heads, defined above, on top of the
joint model to make k predictions pi corresponding
to whether each sentence si, i∈{1 . . . k} lies in the
same paragraph P ∈ D as s0. More formally:

pi =

{
1 if s0, si ∈ P in D
0 otherwise

∀i={1, . . . , k}

We randomly sample a sentence from a paragraph
P in a document D to be used as s0, and then
(i) randomly sample k1 sentences (other than s0)
from P as positives, (ii) randomly sample k2 sen-
tences from paragraphs other than P in the same
document D as hard negatives, and (iii) randomly
sample k3 sentences from documents other than D
as easy negatives (note that k1+k2+k3= k).

4 Experiments

We evaluate our joint transformers on three AS2
and one Fact Verification datasets 1. Common LM
benchmarks, such as GLUE (Wang et al., 2018),
are not suitable for our study as they only involve
sentence pair classification.

4.1 Datasets
Pre-training: To eliminate any improvements
stemming from usage of more data, we perform
pre-training on the same corpora as RoBERTa: En-
glish Wikipedia, the BookCorpus, OpenWebText
and CC-News. For our proposed pre-training, we
randomly sample sentences from paragraphs as s0,

1We will release the code and all pre-trained model
checkpoints at https://github.com/alexa/
wqa-multi-sentence-inference
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Model ASNQ WikiQA TREC-QA

P@1 MAP MRR P@1 MAP MRR P@1 MAP MRR

Pairwise RoBERTa-Base 61.8 (0.2) 66.9 (0.1) 73.1 (0.1) 77.1 (2.1) 85.3 (0.9) 86.5 (1.0) 87.9 (2.2) 89.3 (0.9) 93.1 (1.0)

Joint RoBERTa-Base→ FT IEk 3.4 (2.3) 8.0 (1.9) 10.0 (2.4) 19.7 (1.9) 39.4 (1.6) 40.3 (1.8) 30.9 (5.4) 41.9 (2.4) 50.8 (3.9)

Joint RoBERTa-Base→ FT AEk 3.6 (2.7) 8.0 (2.2) 10.2 (2.8) 18.7 (3.9) 39.0 (2.8) 39.7 (2.9) 29.7 (6.9) 42.3 (3.2) 49.2 (5.0)

(Ours) Joint MSPP IEk → FT IEk 63.0 (0.3) 67.2 (0.2) 73.7 (0.2) 82.7 (2.2) 88.5 (1.5) 89.0 (1.5) 91.7 (2.2) 91.1 (0.5) 95.2 (1.3)

(Ours) Joint MSPP AEk → FT AEk 63.0 (0.3) 67.3 (0.2) 73.7 (0.2) 81.9 (2.6) 87.9 (1.4) 89.0 (1.5) 88.7 (0.8) 90.1 (1.0) 93.6 (0.6)

Table 1: Results (std. dev. in parenthesis) on AS2 datasets. MSPP, FT refer to our pre-training task and fine-tuning
respectively. We indicate the prediction head (IEk/AEk) used for both pre-training and fine-tuning. We underline
statistically significant gains over the baseline (Student t-test with 95% confidence level).

and choose k1=1, k2=2, k3=2 as the specific val-
ues for creating positive and negative candidates
for s0. For complete details refer to Appendix A.
Fine-tuning: For AS2, we compare performance
with MAP, MRR and Precision of top ranked an-
swer (P@1). For fact verification, we measure
Label Accuracy (LA). Brief description of datasets
is presented below (details in Appendix A):

• ASNQ: A large AS2 dataset (Garg et al., 2020)
derived from NQ (Kwiatkowski et al., 2019), where
the candidate answers are from Wikipedia pages
and the questions are from search queries of the
Google search engine. We use the dev. and test
splits released by Soldaini and Moschitti.
• WikiQA: An AS2 dataset (Yang et al., 2015)
where the questions are derived from query logs of
the Bing search engine, and the answer candidate
are extracted from Wikipedia. We use the most
popular clean setting (questions having at least one
positive and one negative answer).
• TREC-QA: A popular AS2 dataset (Wang et al.,
2007) containing factoid questions. We only re-
tain questions with at least one positive and one
negative answer in the development and test sets.
• FEVER: A dataset for fact extraction and veri-
fication (Thorne et al., 2018) to retrieve evidences
given a claim and identify if the evidences sup-
port/refute the claim. As we are interested in
the fact verification sub-task, we use evidences
retrieved by Liu et al. using a BERT-based DocIR.

4.2 Experimental Details and Baselines

We use k=5 for our experiments (following (Zhang
et al., 2021) and (Tymoshenko and Moschitti,
2021)), and perform continued pre-training start-
ing from RoBERTa-Base using a combination of
MLM and our MSPP pre-training for 100k steps
with a batch size of 4,096. We use two different pre-
diction heads, IEk and AEk, for pre-training. For
evaluation, we fine-tune all models on the down-
stream AS2 and FEVER datasets using the corre-

Model ASNQ WikiQA TREC-QA

Pairwise RoBERTa-Base 61.8 (0.2) 77.1 (2.1) 87.9 (2.2)
Joint RoBERTa-Base→ FT IEk 25.2 (3.1) 24.6 (3.1) 57.6 (4.8)
Joint RoBERTa-Base→ FT AEk 25.4 (3.3) 26.4 (2.2) 60.9 (4.9)
(Ours) Joint MSPP IEk → FT IEk 63.9 (0.8) 82.7 (3.0) 92.2 (0.8)
(Ours) Joint MSPP AEk → FT AEk 64.3 (1.1) 82.1 (1.1) 91.2 (2.9)

Table 2: P@1 of joint models for AS2 when re-ranking
answers ranked in top-5 by pairwise RoBERTa-Base.
Statistically significant results (Student t-test 95%) are
underlined. Complete results in Appendix C.

sponding IEk and AEk prediction heads. We con-
sider the pairwise RoBERTa-Base cross-encoder
and RoBERTa-Base LM used as a joint model with
IEk and AEk prediction heads as the baseline for
AS2 tasks. For FEVER, we use several baselines:
GEAR (Zhou et al., 2019), KGAT (Liu et al., 2020),
Transformer-XH (Zhao et al., 2020), and three mod-
els from (Tymoshenko and Moschitti, 2021): (i)
Joint RoBERTa-Base with IE1 prediction head, (ii)
Pairwise RoBERTa-Base with max-pooling, and
(iii) weighted-sum heads. For complete experimen-
tal details, refer to Appendix B.

4.3 Results

Answer Sentence Selection: The results for AS2
tasks are presented in Table 1, averaged across
five independent runs. From the table, we can
see that the RoBERTa-Base when used as a joint
model for multi-candidate inference using either
the IEk or AEk prediction heads performs inferior
to RoBERTa-Base used as a pairwise cross-encoder.
Across five experimental runs, we observe that fine-
tuning RoBERTa-Base as a joint model faces con-
vergence issues (across various hyper-parameters)
indicating that the MLM pre-training task is not
sufficient to learn text semantics which can be ex-
ploited for multi-sentence inference.

Our MSPP pre-trained joint models (with both
IEk, AEk heads) get significant improvements
over the pairwise cross-encoder baseline and very
large improvements over the RoBERTa-Base joint
model. The former highlights modeling improve-
ments stemming from joint inference over multiple-
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Model Dev Test

GEAR 70.69 71.60
KGAT with RoBERTa-Base 78.29 74.07
Transformer-XH 78.05 72.39
Pairwise RoBERTa-Base + MaxPool 79.82 -
Pairwise RoBERTa-Base + WgtSum 80.01 -
Joint RoBERTa-Base + FT IE1 79.25 73.56
(Ours) Joint Pre IEk + FT IE1 81.21 (0.24) 74.39
(Ours) Joint Pre IEk + FT AE1 81.10 (0.15) 74.25
(Ours) Joint Pre AEk + FT IE1 81.18 (0.14) 73.77
(Ours) Joint Pre AEk + FT AE1 81.21 (0.16) 74.13

Table 3: Results on FEVER dev and test sets. For our
method, prediction heads (IE1/AE1) are only used for
fine-tuning (FT), while for pre-training (Pre) we use
(IEk/AEk) heads. ‘-’ denotes models not released pub-
licly, and results not reported in the paper. Statistically
significant results (Student t-test 95%) are underlined.

candidates, while the latter highlights improve-
ments stemming from our MSPP pre-training strat-
egy. Across all three AS2 datasets, our joint models
are able to get the highest P@1 scores while also
improving the MAP and MRR metrics.

To demonstrate that our joint models can effec-
tively use information from multiple candidates
towards prediction, we perform a study in Table 2
where the joint models are used to re-rank the top-k
candidates ranked by the pairwise RoBERTa-Base
cross-encoder. Our joint models can significantly
improve the P@1 over the baseline for all datasets.
The performance gap stems from questions for
which the pairwise RoBERTa model was unable
to rank the correct answer at the top position, but
support from other candidates in the top-k helped
the joint model rank it in the top position.
Fact Verification: The results for the FEVER task
are presented in Table 3 and show that our joint
models (pre-trained with both the IEk and AEk

heads and fine-tuned with the IE1 and AE1 heads)
outperform all previous baselines considered, in-
cluding the RoBERTa-Base joint model directly
applied for multi-sentence inference.
Compute Overhead: We present a simplified la-
tency analysis for AS2 (assuming sentence length
L) as follows: a pairwise cross-encoder uses k
transformer steps with input length 2L, while our
model uses 1 step with input length (k+1)×L.
Since transformer attention scales quadratic on in-
put length, our model should take (k+1)2

4k times the
inference time of the cross-encoder, which is 1.8
when k=5. However, when we fine-tune for Wik-
iQA on one A100-GPU, we only observe latency
increasing from 71s→81s (only 14.1% increase).
The input embeddings and feedforward layers vary

ASNQ

Q: Who invented the submarine during the civil war?
A1: H.L. Hunley , often referred to as Hunley , was a submarine of the Confedera
A2: Hunley , McClintock , and Baxter Watson first built Pioneer , which was tested
in February 1862 in the Mississippi River and was later towed to Lake Pontchartrain
for additional trials .
A3: She was named for her inventor, Horace Lawson Hunley , shortly after she was
taken into government service under the control of the Confederate States Army
at Charleston , South Carolina.
A4: 1864 painting of H.L. Hunley by Conrad Wise Chapman History Confederate States
Name : H.L. Hunley Namesake : Horace Lawson Hunley Builder : James McClintock
Laid down : Early 1863 Launched : July 1863 Acquired : August 1863 In service: Feb-
ruary 17 , 1864 Out of service : February 17, 1864 Status : Awaiting conservation General
characteristics Displacement : 7.5 short tons ( 6.8 metric tons ) Length : 39.5 ft
A5: Johan F. Carlsen was born in Ærøskøbing April 9, 1841.

WikiQA

Q: What is the erb/heart?
A1: Heart valves are labeled with "B", "T", "A", and "P".First heart sound: caused by
atrioventricular valves - Bicuspid/Mitral (B) and Tricuspid (T).

A2: Second heart sound caused by semilunar valves – Aortic (A) and Pulmonary/
Pulmonic (P).
A3: Front of thorax , showing surface relations of bones , lungs (purple), pleura (blue),
and heart (red outline).
A4: In cardiology, Erb’s point refers to the third intercostal space on the left sternal
border where sS2 is best auscultated .
A5: It is essentially the same location as what is referred to with left lower sternal
border (LLSB).

TREC-QA

Q: When was the Khmer Rouge removed from power ?
A1: Sihanouk was named head of state after the Khmer Rouge seized power in 1975,
but was locked in his palace by the communists as they embarked on their brutal
attempt to create an agrarian utopia .
A2: When a Vietnamese invasion drove the Khmer Rouge from power in 1979,
Duch fled with other Khmer Rouge leaders into the jungles.
A3: Religious practices were revived after the Khmer Rouge were driven from power
by a Vietnamese invasion in 1979
A4: Moreover, 20 years after the Khmers Rouges were ousted from power, Cambodia
still struggles on the brink of chaos , ruled by the gun , not by law .
A5: Sihanouk resigned in 1976 , but the Khmer Rouge kept him under house arrest
until they were driven from power by an invading Vietnamese army in 1979 .

Table 4: Examples from AS2 datasets where the pair-
wise RoBERTa-Base model is unable to rank a correct
answer for the question at the top position, but our joint
model (Joint MSPP IEk→ FT IEk) can. We present an-
swers {A1, . . . , A5} in their ranked order by the pair-
wise RoBERTa-Base model. For all these examples
we highlight the top ranked answer by the pairwise
RoBERTa-Base model in red since it is incorrect.

linearly with input length, reducing overheads of
self-attention. Refer to Appendix C.3 for details.
Qualitative Examples: We present some qualita-
tive examples from the three AS2 datasets high-
lighting cases where the pairwise RoBERTa-Base
model is unable to rank the correct answer on the
top position, but our pre-trained joint model (Joint
MSPP IEk → FT IEk) can do this using supporting
information from other candidates in Table 4.

5 Conclusions
In this paper we have presented a multi-sentence
cross-encoder for performing inference jointly on
multiple sentences for tasks like answer sentence
selection and fact verification. We have proposed a
novel pre-training task to capture paragraph-level
semantics. Our experiments on three answer selec-
tion and one fact verification datasets show that our
pre-trained joint models can outperform pairwise
cross-encoders and pre-trained LMs when directly
used as joint models.
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Appendix

A Datasets

We present the complete details for all the datasets
used in this paper along with links to download
them for reproducibility of results.

A.1 Pre-training Datasets

We use the Wikipedia2, BookCorpus3, OpenWeb-
Text (Gokaslan and Cohen, 2019) and CC-News4

datasets for performing pre-training of our joint
transformer models. We do not use the STORIES
dataset as it is no longer available for research use
5. After decompression and cleaning we obtained
6GB, 11GB, 38GB and 394GB of raw text respec-
tively from the BookCorpus, Wikipedia, OpenWeb-
Text and CC-News.

A.2 Finetuning Datasets

We evaluate our joint transformers on three AS2
and one Fact Verification datasets. The latter differs
from the former in not selecting the best candidate,
but rather explicitly using all candidates to predict
the target label. Here are the details of the finetun-
ing datasets that we use for our experiments along
with data statistics for each dataset:

Dataset Split # Questions # Candidates Avg. # C/Q

A
SN

Q Train 57,242 20,377,568 356.0
Dev 1,336 463,914 347.2
Test 1,336 466,148 348.9

W
ik

iQ
A Train 2,118 20,360 9.6

Dev 122 1,126 9.2
Test 237 2,341 9.9

T
R

E
C

-Q
A Train 1,226 53,417 43.6

Dev 69 1,343 19.5
Test 68 1,442 21.2

Table 5: Statistics for ASNQ, WikiQA and TREC-QA
datasets.

• ASNQ: A large-scale AS2 dataset (Garg et al.,
2020)6 where the candidate answers are from
Wikipedia pages and the questions are from search
queries of the Google search engine. ASNQ
is a modified version of the Natural Questions

2https://dumps.wikimedia.org/enwiki/
20211101/

3https://huggingface.co/datasets/
bookcorpusopen

4https://commoncrawl.org/2016/10/
news-dataset-available/

5https://github.com/tensorflow/models/
tree/archive/research/lm_commonsense#
1-download-data-files

6https://github.com/alexa/wqa_tanda

(NQ) (Kwiatkowski et al., 2019) dataset by convert-
ing it from a machine reading to an AS2 dataset.
This is done by labelling sentences from the long
answers which contain the short answer string as
positive correct answer candidates and all other an-
swer candidates as negatives. We use the dev. and
test splits released by Soldaini and Moschitti7.

• WikiQA: An AS2 dataset released by Yang
et al.8 where the questions are derived from query
logs of the Bing search engine, and the answer can-
didate are extracted from Wikipedia. This dataset
has a subset of questions having no correct answers
(all-) or having only correct answers (all+). We
remove both the all- and all+ questions for our ex-
periments (“clean" setting).

• TREC-QA: A popular AS2 dataset released by
Wang et al.. For our experiments, we trained on
the train-all split, which contains more noise but
also more question-answer pairs. Regarding the
dev. and test sets we removed the questions with-
out answers, or those having only correct or only
incorrect answer sentence candidates. This setting
refers to the “clean" setting (Shen et al., 2017),
which is a TREC-QA standard.

• FEVER: A popular benchmark for fact extrac-
tion and verification released by Thorne et al. The
aim is to retrieve evidences given a claim, and then
identify whether the retrieved evidences support or
refute the claim or if there is not enough informa-
tion to make a choice. For supporting/refuting a
claim, at least one of the retrieved evidences must
support/retrieve the claim. Note that the perfor-
mance on FEVER depends crucially on the retrieval
system and the candidates retrieved. For our experi-
ments, we are interested only in the fact verification
sub-task and thus we exploit the evidences retrieved
by Liu et al. using a BERT-based DocIR9.

Split # Claims # Evidences Avg. # E/C

Train 145,406 722,473 4.97
Dev 19,998 98,915 4.95
Test 19,998 98,839 4.94

Table 6: Statistics for the FEVER dataset where evi-
dences has been retrieved using (Liu et al., 2020).

7https://github.com/alexa/
wqa-cascade-transformers

8http://aka.ms/WikiQA
9https://github.com/thunlp/KernelGAT/

tree/master/data
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B Experimental Setup

B.1 Complete Experimental Details
Following standard practice, the token ids, posi-
tional ids and token type ids are embedded using
separate embedding layers, and their sum is fed as
the input to the transformer layers. We use k=5
for our experiments (following Zhang et al.; Ty-
moshenko and Moschitti), and perform continu-
ous pre-training starting from the RoBERTa-Base
checkpoint using a combination of MLM and our
MSPP pre-training objective for 100,000 steps with
a batch size of 4096. We use a triangular learning
rate with 10,000 warmup steps and a peak value of
5 ∗ 10−5. We use Adam optimizer with β1 = 0.9,
β2 = 0.999 and ε = 10−8. We apply a weight
decay of 0.01 and gradient clipping when values
are higher than 1.0. We set the dropout ratio to
0.1 and we use two different prediction heads for
pre-training: IEk and AEk. We follow the strat-
egy of (Devlin et al., 2019; Lan et al., 2020), and
equally weight the the two pre-training loss objec-
tives: MLM and MSPP.

For evaluation, we fine-tune all models on the
downstream AS2 and FEVER datasets: using the
same IEk and AEk prediction heads exploited in
pre-training for AS2 and using either IE1 or AE1

prediction heads for FEVER. We finetune every
model with the same maximum sequence length
equal to 64 ∗ (k + 1) = 384 tokens. For ASNQ
we train for up to 6 epochs with a batch size of 512
and a learning rate of 10−5 with the same Adam
optimizer described above but warming up for only
5000 steps. We do early stopping on the MAP of
the development set. For WikiQA and TREC-QA,
we created batches of 32 examples and we used
a learning equal to 2 ∗ 10−6 and 1000 warm up
steps. We train for up to 40 epochs again with early
stopping on the MAP of the development set. On
FEVER, we use a batch size of 64, a learning rate of
10−5, 1000 warm up steps and we do early stopping
checking the Accuracy over the development set.
We implemented our code based on HuggingFace’s
Transformers library (Wolf et al., 2020).

B.2 Baselines
For AS2, we consider two baselines: (i) pair-
wise RoBERTa-Base model when used as a cross-
encoder for AS2, and (ii) RoBERTa-Base LM when
used as a joint model with IEk and AEk prediction
heads independently for AS2 tasks.

For FEVER, we use several recent baselines

from Tymoshenko and Moschitti: (i) GEAR (Zhou
et al., 2019), (ii) KGAT (Liu et al., 2020), (iii)
Transformer-XH (Zhao et al., 2020), (iv) joint
RoBERTa-Base with IE1 prediction head (Ty-
moshenko and Moschitti, 2021), (v) pairwise
RoBERTa-Base when used as a cross-encoder with
max-pooling head (Tymoshenko and Moschitti,
2021), (vi) pairwise RoBERTa-Base when used
as a cross-encoder with weighted-sum head (Ty-
moshenko and Moschitti, 2021).

We used metrics from Torchmetrics (Detlefsen
et al., 2022) to compute MAP, MRR, Precision@1
and Accuracy.

B.3 Metrics

The performance of AS2 systems in practical ap-
plications is typically (Garg and Moschitti, 2021)
measured using the Accuracy in providing correct
answers for the questions (the percentage of correct
responses provided by the system), also called the
Precision-at-1 (P@1). In addition to P@1, we use
Mean Average Precision (MAP) and Mean Recipro-
cal Recall (MRR) to evaluate the ranking produced
of the set of candidates by the model.

For FEVER, we measure the performance using
Label Accuracy (LA), a standard metric for this
dataset, that measures the accuracy of predicting
support/refute/neither for a claim using a set of
evidences.

C Complete Results and Discussion

C.1 Results on AS2 with cascaded pairwise
and Joint re-ranker

Below we present results of evaluating our joint
models to re-rank the top-k candidates ranked by
the pairwise RoBERTa-Base cross-encoder. Our
joint models can significantly improve the P@1,
MAP and MRR over the baseline for all datasets.
The performance gap stems from questions for
which the pairwise RoBERTa model was unable
to rank the correct answer at the top position, but
support from other candidates in the top-k helped
the joint model rank it in the top position.

C.2 Results on FEVER

Here we present complete results on the FEVER
dataset in Table 8, by also presenting some addi-
tional baselines such as: (i) pairwise BERT-Base
cross-encoder (Tymoshenko and Moschitti, 2021),
(ii) joint BERT-Base cross-encoder with IE1 pre-
diction head, (iii) DOMLIN++ (Stammbach and
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Model ASNQ WikiQA TREC-QA

P@1 MAP MRR P@1 MAP MRR P@1 MAP MRR

Pairwise RoBERTa-Base 61.8 66.9 73.1 77.1 85.3 86.5 87.9 89.3 93.1
Joint RoBERTa-Base→ FT IEk 25.2 44.0 45.6 24.6 49.3 49.7 57.6 73.7 74.6
Joint RoBERTa-Base→ FT AEk 25.4 44.8 46.2 26.4 50.6 51.1 60.9 74.6 76.7
(Ours) Joint MSPP IEk → FT IEk 63.9 71.3 73.1 82.7 88.5 89.0 92.2 93.5 95.4
(Ours) Joint MSPP AEk → FT AEk 64.3 71.5 73.4 82.1 87.9 88.7 91.2 93.5 94.9

Table 7: Complete results of our joint models for AS2 datasets when re-ranking the answer candidates ranked
in top-k by Pairwise RoBERTa-Base. MSPP, FT refer to our pre-training task and finetuning respectively. We
indicate the prediction head (IEk/AEk) used for both pre-training and finetuning.

Model Dev Test

GEAR 70.69 71.60
KGAT with RoBERTa-Base 78.29 74.07
Transformer-XH 78.05 72.39
Pairwise BERT-Base 73.30 69.75
Pairwise RoBERTa-Base + MaxPool 79.82 -
Pairwise RoBERTa-Base + WgtSum 80.01 -
Joint BERT-Base 73.67 71.01
Joint RoBERTa-Base + FT IE1 79.25 73.56
(Ours) Joint Pre IEk + FT IE1 81.21 (0.24) 74.39
(Ours) Joint Pre IEk + FT AE1 81.10 (0.15) 74.25
(Ours) Joint Pre AEk + FT IE1 81.18 (0.14) 73.77
(Ours) Joint Pre AEk + FT AE1 81.21 (0.16) 74.13

Methods with larger models and/or sophisticated retrieval
DOMLIN++ 77.48 76.60
DREAM 79.16 76.85

Table 8: Complete Results on FEVER dev and test sets.
For our method, prediction heads (IE1/AE1) are only
used for finetuning (FT), while for pre-training (Pre)
we use the (IEk/AEk) heads. ’-’ denotes models that
are not publicly released and have no reported results
on the test split in their published paper. Statistically
significant results (T-Test 95%) are underlined.

Ash, 2020) which uses additional DocIR compo-
nents and data (MNLI (Williams et al., 2018)) for
fine-tuning, (iv) DREAM (Zhong et al., 2020) that
uses the XL-Net model. Note that comparing our
joint models with (iii) and (iv) is unfair since they
use additional retrieval components, datasets and
larger models. We just include these results here
for the sake for completeness. Interestingly, our
joint models outperform DREAM and DOMLIN++
on the dev set without using additional retrieval
and larger models.

C.3 Compute Overhead of Joint Models

Change in Number of Model Parameters: The
transformer block of our joint inference model is
identical to pre-trained models such as RoBERTa,
and contains the exact same number of parame-
ters. Classification heads IE1, IEk and AE1 all
operate on the embedding of a single token, and
are identical to the classification head of RoBERTa
(AEk operates on the concatenation of two token
embeddings, and contains double the number of

parameters as the RoBERTa). The maximum se-
quence length allowed for both the models is the
same (512). The exact number of parameters of our
joint model with AEk and the RoBERTa model are
124, 062, 720 and 124, 055, 040 respectively.
Change in Inference Latency: While our joint
model provides a longer input sequence to the
transformer, it also reduces the number of forward
passes that need to be done by a pairwise cross-
encoder. A simplified latency analysis for AS2
(assuming each sentence has a length L): pairwise
cross-encoder will need to make k forward passes
of the transformer with a sequence of length 2L
(q with each candidate ci), while our joint model
will only need to make 1 forward pass of the trans-
former with input length (k+1)×L (q with k can-
didates). Transformer self-attention is quadratic in
input sequence length, so this should lead to the in-
ference time of out joint model being (k+1)2

4k times
the inference time of the cross-encoder. However,
the input embedding layer and the feedforward
layers are linear in input sequence length, so this
should lead to a reduction in the inference time of
our joint model by (k+1)

2k times the inference time of
the cross-encoder. Empirically, when we fine-tune
for WikiQA on one A100-GPU, we only observe
latency increasing from 71s→81s (increase of only
14.1%).
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