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Abstract

Users write to-dos as personal notes to them-
selves, about things they need to complete, re-
member or organize. To-do texts are usually
short and under-specified, which poses a chal-
lenge for current text representation models.
Yet, understanding and representing their mean-
ing is the first step towards providing intelli-
gent assistance for to-do management. We ad-
dress this problem by proposing a neural multi-
task learning framework, LITE, which extracts
representations of English to-do tasks with a
multi-head attention mechanism on top of a
pre-trained text encoder. To adapt representa-
tion models to to-do texts, we collect weak-
supervision labels from semantically rich ex-
ternal resources (e.g., dynamic commonsense
knowledge bases), following the principle that
to-do tasks with similar intents have similar
labels. We then train the model on multiple
generative/predictive training objectives jointly.
We evaluate our representation model on four
downstream tasks and show that our approach
consistently improves performance over base-
line models, achieving error reduction of up to
38.7%.

1 Introduction

Task management tools are widely used to orga-
nize tasks and keep track of progress in work and
daily lives. Examples include Microsoft To-do,
Todoist, Trello, and digital assistants such as Ama-
zon Alexa and Google Assistant. Machine learn-
ing techniques can automate various aspects of
task management such as task creation (Mukherjee
et al., 2020), organization (Landes and Di Eugenio,
2018), prioritization, and decomposition of com-
plex tasks (Nouri et al., 2020; Zhang et al., 2021).

The goal of this work is to develop a single,
general-purpose encoding system that converts to-
do task texts into real-valued vector representa-

∗This work was done while the first author was an intern
at Microsoft Research.
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Figure 1: Our aim is to encode user-generated to-do
texts (list names and descriptions) into vector represen-
tations so that machine learning systems can provide
various kinds of intelligent assistance.

tions (Fig. 1). Using one encoding system for mul-
tiple task functions (task detection, organization,
recommendation, etc.) as opposed to having mul-
tiple dedicated encoders saves the computational
costs of updating models regularly and encoding
texts from millions of users.

Representation learning has been extensively
studied in natural language processing (Camacho-
Collados and Pilehvar, 2018). Adapting models
pre-trained on massive amounts of raw texts to a
target domain or a task has become common prac-
tice (Qiu et al., 2020), with many publicly available
pre-trained models such as BERT (Devlin et al.,
2019), GPT-2 (Radford et al., 2018), and sentence
encoders (Cer et al., 2018; Reimers and Gurevych,
2019). Leveraging word context is one of the key
strengths of these pre-trained models. However,
to-do texts exhibit unique characteristics that make
this context-based modeling less effective (§2).

Our analysis on a dataset of 6.5 million entries
shows that to-do texts are short and often lack an ac-
tion verb. While similar to web search queries, they
are not written to be understood by a search engine
but instead are personal notes to the users them-
selves and assume rich personal context. On the
other hand, some task management applications
allow users to organize their to-dos under user-
defined lists, which, our analysis shows, can some-
times convey important information about their
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meaning (e.g., a “grocery” list vs. a “today” list).
Our hypothesis is that we can effectively

fine-tune contextualized representation models
for under-specified texts using multiple weakly-
supervised prediction/generation tasks that focus
on knowledge about to-do tasks. We induce su-
pervision signals semi-automatically from exist-
ing resources so that to-do tasks that have simi-
lar intents share similar target labels. To this end,
we propose LITE,1 a framework for training to-
do task representation models using the following
auxiliary tasks: (1) autocompletion of to-do de-
scriptions, (2) pre-action and goal generation based
on COMET (Bosselut et al., 2019; Hwang et al.,
2021), and (3) action attribute predictions based
on FrameNet (Ruppenhofer et al., 2016). We im-
plement LITE on top of existing pre-trained lan-
guage models and evaluate its performance through
downstream tasks on two proprietary and two pub-
licly available datasets (Jauhar et al., 2021; Landes,
2018): urgent and important to-do detection, action-
able to-do classification, co-located and co-timed
to-do pair detection, and intent detection.

Overall, we make the following contributions:
(1) A neural multi-task learning framework to
fine-tune embeddings of to-do texts based on in-
tents.2 (2) A methodology to collect weak supervi-
sion signals from various resources without costly
manual annotations. (3) An empirical compari-
son of contextual embeddings models on real to-
do texts, where LITE outperforms various base-
line models including BERT, RoBERTa, Sentence-
BERT/RoBERTa, achieving error reduction of 4.8-
38.7%.

2 User-generated To-do Data

2.1 Data Collection

For training and data analysis, we use a dataset
based on the now-retired Wunderlist task manage-
ment app. The app was available on multiple plat-
forms and had more than 13 million users in 2015.
The dataset (henceforth WL) contains 6.5 million
English to-do texts. Each to-do text includes a
description (e.g., “call mom”) and associated list
name (e.g, “today”). See Appendix A for more
details on how the dataset was anonymized.

We performed a basic linguistic analysis on the
WL data. As observed by Landes and Di Euge-

1Short for Latent Intent Task Embedding
2The code is available at github.com/microsoft/Intent-

based-Task-Representation-Learning

nio (2018), general-purpose analyzers often fail
to analyze to-do texts correctly due to the writing
style and the lack of context words. To alleviate
this problem, we use frequency information ob-
tained from a large corpus to correct automatically
assigned POS tags, through the following 3-step
process. First, we run the spaCy tagger (Honni-
bal et al., 2020)3 to assign POS tags. Then, as
proposed by Keyaki and Miyazaki (2017), we cor-
rect the POS tags based on frequency information
derived from 3 billion sentences from the DepCC
corpus (Panchenko et al., 2018).4 Finally, we apply
the spaCy dependency parser to the texts with the
corrected POS tags and identified main verbs and
arguments.

2.2 Observations
To-do descriptions are very short: The mean
number of tokens per to-do description is
2.4, which is similar to that of search engine
queries (Taghavi et al., 2012), but with two key dif-
ferences: (1) many search queries are intended for
information seeking (Broder, 2002), while to-dos
typically express things to perform or to remem-
ber, and (2) people write search queries with the
capabilities of a search engine in mind, but to-do
descriptions are personal notes to the users them-
selves.
Most to-do descriptions have no action verb: We
observed that 87.8% of to-do descriptions do not
have action verbs. If an action verb is present,
75.1% and 12.7% have a direct object and a prepo-
sitional phrase, respectively. The degree of under-
specification depends on a to-do’s list name. An
action verb is more frequently used in to-do de-
scriptions that appear in generic lists, such as
“inbox”5 (29.7%), “to do” (28.4%), and “today”
(22.1%). When list names already imply a specific
action, the action verb is more likely to be omitted
such as in the “shopping” (3.3%) and “movies to
watch” (4.7%) lists.
List names can be indicative of task intents: For
example, a to-do text (description = “avocados”,

3We use the English model en_core_web_lg v3.0.0
4We extracted the first 100 files from DepCC and re-tagged

the sentences using spaCy. We counted the frequencies of 1-3
grams of token-XPOS pairs and replaced tokens that appeared
fewer than 100 times with an out-of-vocabulary token. The
frequencies were used to score the sequences of the POS to-
kens obtained in the previous step, and replace them with more
frequent ones, if found. One of the authors manually evalu-
ated the 100 frequent to-do descriptions with tags changed by
post-processing and found 17/57 errors were corrected.

5“Inbox” was the default list name in the Wunderlist app.
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Figure 2: t-SNE (van der Maaten and Hinton, 2008) visualization of the embeddings of to-do texts generated by (1)
BERT-base, (2) BERT-base domain-adapted by masked language modeling on WL, and (3) LITE.

list name = “to buy”) signifies the intent “to buy
avocados”, but the same description can appear
also in generic lists, such as “to do” or “reminders”.
When a list name is generic, a task description
needs to be weighted more to accurately capture
the intent of a task. Fig. 2 shows that this is a non-
trivial problem for pre-trained language models
like BERT. The figure visualizes the distribution of
the embeddings of the “buy <grocery>” and “call
<person>” to-do texts6 expressed in two ways: (1)
the descriptions “buy <grocery>” and “call <per-
son>” are paired with generic list names (“to do”
and “reminders”); or (2) the descriptions “<gro-
cery>” and “<person>” are paired with specific
list names (indicating the actions “to buy” and “to
call”). To produce embeddings, we concatenated
descriptions and list names in the input and ex-
tracted their pooled output from the encoders (§3.1).
We can see that a BERT model cannot capture the
similarity within the buy nor call intent groups even
after domain adaptation (DA) to to-do texts (see
§4.3 for more details on DA). Our model, LITE,
can successfully ignore the generic lists and group
similar tasks together.

3 Method: Multi-task Learning (MTL)

We propose a multi-task learning (MTL) frame-
work to represent to-do descriptions along with
their list names (Fig. 3). Our model first encodes
text using off-the-shelf encoders (§3.1). The token
representations along with information about their
types are merged by an intent extractor with multi-
head attention (§3.2). We train the encoder and
extractor on three auxiliary tasks (§3.3,3.4).

3.1 Off-the-shelf Text Encoder
We encode input texts using off-the-shelf pre-
trained transformer-based language models,
BERT (Devlin et al., 2019) and RoBERTa (Liu

6<grocery> stands for grocery items, and <person> stands
for person names taken from the following web pages: vegeta-
blesfruitsgrains.com and ssa.gov/oact/babynames

et al., 2019b).7 Our model takes as input the
concatenation of two types of texts, descriptions
and list names, separated by the token [SEP]:
<s> desc. [SEP] list name </s>, where
<s> and </s> are beginning-of-sentence and
end-of-sentence tokens pre-defined for the encoder.
The encoder converts a sequence of N input
tokens w1, w2, · · ·wN into real-valued vector
representations using multiple layers of attention
mechanism and fully-connected networks. We use
the last hidden states H = {hi}i=1,2,··· ,N as the
contextual token representations of the input.

3.2 Intent Extraction with Attention

List names are often–but not always–indicative of
task intents (§2). For example, a “shopping” list
tends to have items that a user wishes to purchase
and is useful for identifying intents, but some list
names merely express time (e.g., “today”), top-
ics/targets (e.g., “family”), or nothing specific (e.g.,
“things to do”). In these cases, the model should
“pay more attention” to the to-do description.

To handle this, we use a multi-head attention
mechanism (Vaswani et al., 2017; Chaudhari et al.,
2021) to extract a vector representing the intent of
a to-do task and introduce token type embeddings
to explicitly inform a model of text types.

Multi-head attention: An attention mechanism is
suitable to model the variable nature of token im-
portance. We use a multi-head, scaled dot-product
attention mechanism (Vaswani et al., 2017) and
aggregate H based on token importance into the
intent embedding z.

Suppose we have T attention heads. For each
head, we convert a token representation hi ∈ H
into vectors ut

i,v
t
i ∈ Rd′ by trainable transforma-

tion matrices, W t
u,W

t
v ∈ Rd′×d. We set d′ to d/T .

ut
i = W t

u tanh (hi) (1)

vt
i = W t

v tanh (hi) (2)

7Note that our method is applicable to other encoder types.
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[SEP]

+
       +       +       +       +

(§3.1)

In
ten

t Extracto
r

Last hidden states + Type embeddings

(2) Pre-action & Goal

(3) Action arguments

(§3.2)

Multi-task learning (MTL)To-do 
embedding

MTL loss

(§3.3) (§3.4)

Figure 3: LITE model overview. We encode input tokens with an off-the-shelf text encoder and feed the hidden
states and type embeddings to an intent extractor to obtain the representation of the to-do task. We train LITE over
three training objectives (1-3) jointly.

We then compute attention scores αt ∈ (0, 1) and
an output vector ot ∈ Rd′ :

αt
i =

exp (qt
T
ut
i/
√
d′)

∑N
j=1 exp (q

tTut
j/
√
d′)

(3)

ot =

N∑

i=1

αt
iv

t
i , (4)

where qt ∈ Rd′ is a trainable vector. Finally, we
obtain an intent vector z by concatenating the out-
put vectors of the T attention heads:

z = Concatenate(o1,o2, · · · ,oT ) (5)

Token type embedding: We introduce token type
embeddings, etask, elist, eother ∈ Rd, to inform a
model of the source of each token. BERT injects
token type embeddings in the lowest layer, the
embedding layer, and we train them during pre-
training (Devlin et al., 2019), but other models do
not (Radford et al., 2018; Liu et al., 2019b; Raffel
et al., 2020). To avoid breaking the pre-trained
parameters of those models, we add type embed-
dings to H and feed it to the multi-head attention
module:

h′
i = tanh (hi) + tanh (etype(i)) (6)

where type(i) is the type of the i-th token.

3.3 Auxiliary Tasks for MTL
One straightforward way to train the extractor is to
directly optimize it to predict the intent of a given
to-do task. However, task intents are often obscure
and hard to discretize into a fixed number of cat-
egories. As a result, manual collection of such
categories can be costly and subjective. For exam-
ple, “buy milk” and “buy a car” are both purchase
action, but they differ in many aspects: different lo-
cations, different prerequisite events, and different
motives.

Input(desc., list) Output

(milk, groceries) buy milk
(buy milk, things to do) buy milk
(eggs, costco) buy eggs at costco∗

(Chris, today) call Chris today∗

Table 1: Examples of texts for the autocompletion ob-
jective (§3.3.1). Suppose to-do descriptions “buy milk”,
“buy eggs” and “call Chris” exist in the WL dataset. We
use list-based templates to generate the last two exam-
ples denoted by *.

Instead, we propose to train the extractor on mul-
tiple auxiliary tasks with weak supervision that
provide semantic augmentation to under-specified
to-do texts. The underlying assumption is that tasks
with similar intents have similar target labels/texts
in the auxiliary tasks. Below, we present our three
auxiliary training tasks.

3.3.1 Autocompletion

Motivation: Inspired by Lewis et al. (2020), our
first task focuses on surface-level information of
to-do texts, namely prediction of missing tokens
based on context tokens. Specifically, we feed a
to-do text (the combination of a description and a
list name) to a model, convert it into an intent em-
bedding, and generate the maximal form of a to-do
description that is inferable from the input. We call
this auxiliary task autocompletion objective. We au-
tomatically collect such forms for under-specified
to-do descriptions from the WL dataset.
Data collection: As previously observed, to-do
descriptions under generic lists (e.g., “today”) tend
to be more specified than those under lists whose
names imply specific action. For each to-do de-
scription in our WL dataset, we collect their longer
descriptions (i.e., super-strings) up to five. We also
use several templates for lists that represent loca-
tions and times to further expand descriptions (see
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Input(desc.) Output

buy milk go to store get milk for breakfast
call Chris find number talk to someone
subscribe Netflix go to website watch a movie

Relation used: xNeed xIntent

Table 2: Texts generated for the pre-action and goal
objective (§3.3.2) by COMET (Bosselut et al., 2019;
Hwang et al., 2021).

details in Appendix B). Table 1 shows examples,
two of which were generated with templates. The
resulting dataset contains 1,487,161 pairs of short
and long to-do descriptions. We combine them
with specified to-do descriptions, which already
have action verbs and do not have longer counter-
parts, and sample 2M examples (50% of examples
are under-specified.) During training, one genera-
tion target is picked at random for each instance.

3.3.2 Pre-action and Goal Generation
Motivation: This task aims to represent to-do tasks
based on their prerequisite actions (what we must
do beforehand) and goal events (what we want to
achieve), assuming that tasks with similar intents
have similar prerequisites and goals. Here, a model
is trained to generate prerequisite and goal actions
for a given to-do item (a task description and a list
name). We call this objective pre-action and goal
generation objective.
Data collection: We leverage COMET (Hwang
et al., 2021), a BART model (Lewis et al., 2020)
fine-tuned on ATOMIC20

20, to collect weak super-
vision signals about to-do tasks’ prerequisites and
goals.8 Specifically, we feed a long description of
a to-do task generated in the previous step (§3.3.1)
to the BART model as a prompt followed by a re-
lation token: (1) xNeed (prerequisite) token to
generate the task’s prerequisite or (2) xIntent
(goal) token to generate the task’s goal. We use
beam search with width of 3 and collect the top-3
results for each relation. Table 2 shows generation
results for three example to-dos.

3.3.3 Action Arguments Prediction
Motivation: Different to-do tasks have different
domain-specific arguments. For example, a pur-

8We can retrieve prerequisites and goals of some to-do
tasks from knowledge bases such as ATOMIC20

20 (Hwang et al.,
2021) and ConceptNet (Speer et al., 2017) without relying on
language generation, but it is not always the case that we can
find the action of interest in the existing resources. The use of
COMET is advantageous in handling unseen actions as shown
by several studies (Bosselut et al., 2019; Hwang et al., 2021).

Input(desc.) Output

buy milk Buyer, Goods Money, · · ·
call Chris Addressee, Topic, · · · Medium, · · ·
FEs used: Core Non-core

Table 3: Labels collected from FrameNet (Ruppen-
hofer et al., 2016) for the action arguments prediction
task (§3.3.3).

chase task must have a purchase target, and possi-
bly a price argument. In contrast, contact tasks usu-
ally have a receiver and a topic of communication
argument. We design a multi-label training task
called action arguments prediction, where, given a
description and a list name, a model predicts all the
action arguments associated with the to-do task.
Data collection: We use FrameNet (Ruppenhofer
et al., 2016), a manually-created database on the
meaning and usage of English words/phrases. Se-
mantic representations are defined for concepts and
events (called frames) and for their semantic ele-
ments (called frame elements, FEs); example texts
that trigger frames and FEs are also provided. FEs
can be core FEs (essential information for a frame),
or non-core (optional). Table 3 shows examples.

Using the “long” to-do descriptions collected
for the autocompletion task (§3.3.1), we identify
frames in them using an off-the-shelf frame identi-
fier (Swayamdipta et al., 2017). As our focus is on
to-do tasks, we discard frames whose root frame
is not Event. We then collect FEs for each frame
from FrameNet. If a to-do description has two or
more frames, we take the union of their FEs. For
non-core FEs, we calculate importance weights
by TF-IDF over the whole FrameNet repository
so that common FEs appearing in many frames
(e.g., Manner) have low weight. We normalize
the weights into (0, 1] by dividing them by the
maximum weight.

3.4 Optimization

For the autocompletion as well as the pre-action
and goal generation tasks, we employ a two-layer
GRU (Cho et al., 2014) decoder with a cross-
attention mechanism (Luong et al., 2015). We
use the embedding layer of the encoder also in
the decoder. We train the model to minimize the
following cross-entropy loss for each instance:

Lgen = −
M∑

j=1

logP (yj |y<j , z, H), (7)
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where M is the length of the output text. We ap-
ply label smoothing with a smoothing factor of
0.1 (Pereyra et al., 2017).

For the action arguments prediction task (multi-
label classification), we use GILE as a label-
embedding approach (Pappas and Henderson,
2019). Given an intent embedding and label em-
bedding, GILE projects them into a joint vector
space and computes an association score from their
element-wise product. Concretely, for each label l,
we calculate its score P (l) ∈ (0, 1) as follows:

ein = Act(Winz) (8)

e
(l)
label = Act(Wlabelv

(l)) (9)

P (l) = Sigmoid
(
Wout(ein ⊙ e

(l)
label)

)
,

(10)

where v(l) ∈ Rd is a pre-computed label embed-
ding (constant), Act is an activation function and
Win,Wlabel ∈ Rd×d and Wout ∈ R1×d are model
parameters. To compute the label embeddings for
FEs (Eq(9)), we encode the definitions of FEs in
FrameNet with pre-trained transformer models.

We define the loss function to be:

Lclf =
1
C

∑C
c=1 (c logP (c) + (1− c) log (1− P (c))),

(11)
where C is the number of classes.

We optimize a model to minimize the following
weighted loss across three MTL objectives:

L =
∑

task

Ltask

logNtask
, (12)

where Ntask is the number of target labels in a sub-
task (Aghajanyan et al., 2021).

4 Experiments

Our aim is to obtain a single, general-purpose
representation model that is effective on various
downstream applications. We run LITE on top of
BERTbase, BERTlarge, and RoBERTa and evaluate
its performance.

4.1 Evaluation Tasks
We evaluate LITE on four downstream tasks (Ta-
ble 4): (1) urgent and important to-do detection
(UIT), (2) actionable to-do classification (AT),
(3) co-located and co-timed to-do pair detection
(CoLoc and CoTim), and (4) intent detection (ID).
Urgent and Important To-do Detection (UIT):
The goal of this task is to detect urgent or important

tasks, an essential step for to-do prioritization in
real applications. To evaluate this task we use a
proprietary dataset (derived from WL) containing
2,254 human-labeled to-do descriptions. Each de-
scription is categorized into urgent and not-urgent
classes based on the majority vote of 3 annotators.
This dataset does not provide list names, hence we
use a dummy list name “inbox” for LITE.

Actionable To-do Classification (AT): This task
aims to identify to-do tasks that require a concrete,
individual action to accomplish (ActionableTask)
(e.g., “Sign up for dance class”). We evaluate this
task using a proprietary dataset (derived from WL)
containing 12,189 to-dos. Each instance consists
of a description and a list name, and is manually
categorized into ActionableTask, Note, and Action-
ableCollection. A Note is a list item that users add
for future use, without the need for immediate ac-
tion (e.g., “baby names”). Tasks that are labeled as
ActionableCollection are not performed individu-
ally but rather as part of a collection of items in a
larger task: “tomatoes” in the “groceries” list, for
example, are part of the larger task "do groceries"
where all the individual to-dos are addressed at the
same time and location. Each example was anno-
tated by 3 annotators, the majority label is the gold
label. Tasks where one or more annotators were
unsure about the correct label were eliminated.

Co-located and Co-timed To-do Pair Detection
(CoLoc/CoTim): This task focuses on the loca-
tion and time where to-do tasks are accomplished.
Time and location are particularly powerful cues
for task recommendations and reminders (Graus
et al., 2016). In this task, given a pair of to-do items,
the model predicts whether the two to-do tasks can
be completed in the same location (CoLoc) or at
the same time (CoTim). To evaluate this task we
use the MS-LaTTE (Jauhar et al., 2021) dataset
(derived from WL), which contains 25,000 pairs of
to-do tasks (description + list name), of which 398
are labeled as CoLoc and 401 as CoTim.

Intent Detection (ID): This task focuses on pre-
dicting the intent associated with a to-do descrip-
tion. We use Landes and Di Eugenio (2018)’s
dataset, which contains 253 to-do instances, each
one labeled with one of nine intent classes (“calen-
dar”, “find-service”, “buy”, etc.). No list name is
provided in this dataset, so we use the generic list
name “inbox” for LITE.
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Task Size Example: (description, list name) [class]

Urgent and Important To-do Detection (UIT) 2,254 (pick up packages at FedEx, n/a) [urgent],
(sign up for HBO, n/a) [non-urgent]

Actionable To-do Classification (AT) 12,189 (Sign up for dance class, inbox) [Actionable],
(tomatoes, groceries) [ActionableCollection],
(StarWars, movies to watch) [Notes]

Co-located To-do Pair Detection (CoLoc) 25,000 (fix tv, inbox)-(clearn sink, today) [+],
(fix tv, inbox)-(refill medicines, today) [-]

Co-timed To-do Pair Detection (CoTim) 25,000 (get breakfast, daily)-(check news, inbox) [+],
(get breakfast, daily)-(pickup dryclearner, inbox) [-]

Intent Detection (ID) 253 (schedule appointments with site managers, n/a) [calendar],
(fix the CD ROM drive on my computer, n/a) [find-service]

Table 4: Evaluation tasks. Note that the UIT and ID datasets do not have list names.

4.2 Setup
In all tasks, we first generate vector representations
of instances in the dataset with a pre-trained en-
coder and train a simple classifier on them. The
quality of the embeddings is measured by the per-
formance of the classifier. We use a logistic re-
gression classifier implemented in scikit-learn (Pe-
dregosa et al., 2011), with or without a penalty term.
To train a classifier for CoLoc and CoTim, which
provide two to-do descriptions as input (see section
4.1), we concatenate the vector representations of
the two items along with their element-wise prod-
uct and difference vectors (Mou et al., 2016).

We generate 20 sets of training, validation, and
test splits at random (Gorman and Bedrick, 2019)9,
and, in each trial, we use a validation split to tune
hyperparameters by grid search (a regularization
∈ {None, L1, L2} and a regularization coefficient
∈ {2−5, 2−4, 2−3, 2−2, 2−1, 1}).

4.2.1 Implementation Details
We implemented our MTL framework using Py-
Torch v1.10.0 (Paszke et al., 2019) and ran ex-
periments on NVIDIA GeForce GTX TITAN X
and RTX A6000 (for BERTlarge). We use un-
cased BERTbase, uncased BERTlarge, and cased
RoBERTabase, in the transformers library
v4.6.1 (Wolf et al., 2020) with the default pa-
rameters for dimensions, activation functions, and
dropout. We set the number of attention heads
in the extractor and the dimension of hidden
states based on the choice of a text encoder,
namely (T, d) = (12, 768) for BERTbase-LITE
and RoBERTa-LITE, and (T, d) = (16, 1024) for
BERTlarge-LITE. We applied dropout of 0.1 to our
modules except for the output layers. We optimized
the model parameters using AdamW (Loshchilov

9We split data into 6:2:2 for UIT, AT, and CoLoc/CoTim,
and 8:1:1 for ID.

and Hutter, 2019) with batch size of 2,048, learning
rate of 5e-5, L2 weight decay of 0.01, and linear
learning rate decay with warm-up steps of 2% of
the total steps. We also apply gradient norm clip-
ping of 1. We train our models for 15 epochs, and
freeze the transformer encoder for the first 5 epochs.
We sampled 3,459 examples as validation data, on
which we evaluate a model every epoch, and termi-
nate training if the validation loss does not improve
for three consecutive epochs. We tuned hyperpa-
rameters and architectural choices (§3.2) based on
the average validation scores over 20 random trials
on all the datasets (more details in Appendix C).

4.3 Baselines

We compare the following encoders as baselines.10

BERT (Devlin et al., 2019): We take the embed-
ding of the first token, [CLS], to represent a to-do
text. [CLS] embeddings are trained to represent
the whole input sequence by next sentence predic-
tion (NSP). We compare the base (12 layers, 768D)
and large (24 layers, 1024D) models.

RoBERTa (Liu et al., 2019b): We take the aver-
age of the last hidden states to represent an input
sequence as RoBERTa is not trained with NSP. We
use RoBERTa base(12 layers, 768D).

Motivated by Gururangan et al. (2020), we also
compare the domain-adapted (“DA”) version of
BERT and RoBERTa. We perform additional pre-
training to BERTbase and RoBERTa on the 6M
raw to-do texts (<s> description [SEP] list name
</s>) from WL.

Sentence-Transformer: We also test off-the-
shelf general-purpose sentence encoders based
on Transformers. These encoders are pre-trained
to induce sentence embeddings with siamese and

10We evaluate additional baselines in Appendix E. The
implementation details can be found in Appendix F.
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UIT AT CoLoc CoTim ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

BERT .826 .798 .811 .906 .800 .917 .855 .511 .362 .423 .628
BERT-DA .862 .821 .840 .928 .801 .921 .857 .510 .386 .439 .614
Sentence-BERT .821 .787 .803 .901 .817 .892 .853 .499 .396 .442 .542
BERT-LITE .871 .855 .863 .932 .826 .901 .862 .511 .409 .454 .670

RoBERTa .805 .763 .783 .868 .777 .923 .844 .492 .335 .398 .506
RoBERTa-DA .819 .745 .779 .913 .787 .922 .849 .488 .360 .414 .500
Sentence-RoBERTa .831 .789 .809 .897 .820 .893 .855 .493 .386 .433 .572
RoBERTa-LITE .871 .847 .859 .919 .826 .905 .864 .509 .402 .449 .674

BERTlarge .817 .795 .805 .896 .805 .910 .854 .488 .404 .442 .636
BERTlarge-LITE .863 .849 .855 .936 .830 .907 .867 .516 .441 .475 .718

Table 5: Results on downstream applications. The best scores in each text encoder are denoted in bold, and the
overall best scores are underlined. The results of statistical significance tests can be found in Appendix D.

triplet network on top of pre-trained Transformer
models (Reimers and Gurevych, 2019). We use
the pre-trained encoder based on BERTbase and
RoBERTa base. The encoders are trained on about
286k of natural language inference and textual sim-
ilarity instances.

4.4 Results

Table 5 shows our main results. LITE consistently
achieves the best performance on all tasks for all
three encoders, demonstrating the generality of the
learned representations. DA brings in performance
improvements but only marginally on most tasks11.
This is probably because to-do texts are too short
to perform effective language model training.

Sentence-Transformers have proven effective
in various sentence-level tasks (Reimers and
Gurevych, 2019), but it is not the case in this exper-
iment. The vanilla BERT and RoBERTa encoders
perform on par with their Sentence-Transformer
counterparts and in some cases outperform them.
We conjecture that those sentence encoders cannot
leverage contextual information effectively as they
are pre-trained on sentences that are quite different
from to-do texts. Our training framework can also
fine-tune Sentence Transformers to adapt them to
short and under-specified to-do texts, which we
leave for future work.

Our goal is to train a general-purpose encoder.
However, the interested reader can find an evalua-
tion of task-specific fine-tuning in Appendix G.

11It is also possible to combine domain adaptation by lan-
guage modeling and LITE, however, it underperformed LITE
overall. With BERTbase, the performance were UIT 0.873, AT
0.931, CoLoc 0.863, CoTim 0.447, and ID 0.656.

UITF1 ATAcc CoLocF1 CoTimF1 IDAcc

Full .863 .932 .862 .454 .670
-Ac .855 .931 .861 .448 .656
-PG .859 .923 .860 .449 .726
-Aa .857 .928 .860 .440 .702

Table 6: Ablation study on BERT-LITE demonstrat-
ing the effect on F1 and accuracy scores of removing
(A)uto(c)ompletion, (P)re-action and (G)oal generation,
or (A)ction (A)rguments prediction.

List Attn. × Norm

errands .036±.004
to do list .040±.003
things to do .040±.003
movies to watch .040±.004
house to do .041±.004
...
trip .093±.005
target .094±.006
cleaning .097±.005
bring .097±.006
movies .098±.007

Table 7: To-do lists that are assigned low and high
attention weight × vector norm scores by LITE. Generic
lists are denoted in bold, and specific lists in italic.

4.5 Analysis

Table 6 shows the contribution of our auxiliary
tasks to the overall performance. The full model
performs the best in all the tasks except ID.

As discussed earlier, our model needs to com-
bine information from descriptions and list names
to infer the meaning of to-dos. We show that our
model successfully learns when to attend lists. We
extract list names from the AT dataset that appear
with more than 17 different to-do descriptions (90%
percentile) and analyze the product of attention
weights and vector norms of descriptions and list
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tokens (Kobayashi et al., 2020). Table 7 shows list
names with the highest and lowest average scores
assigned by BERT-LITE. Generic list names have
low scores (‘to do list”, “house to do”) while spe-
cific (action-related) list names have much higher
scores (“bring”, “cleaning”).

However, we believe it would not be prudent to
just ignore generic lists as they can still convey se-
mantic/pragmatic clues. For example, a list named
“wishlist” typically has to-dos which a user does
not need to act on immediately. Hence, this list is a
strong indicator of a non-actionable task (in AT).

5 Related Work
To-do Management: Intelligent systems can as-
sist users with task management in many ways (Gil
et al., 2012). To-do tasks can be inferred automat-
ically from emails (Mukherjee et al., 2020). Sys-
tems can detect types of to-do items and suggest
relevant applications or resources to users (Landes
and Di Eugenio, 2018; Gil et al., 2012; Shah and
White, 2021). Once to-do tasks have been created,
a system can help users manage the completion
progress, e.g., by sending reminders (Graus et al.,
2016). Complex tasks can be decomposed automat-
ically into more manageable sub-steps (Nouri et al.,
2020; Zhang et al., 2021). In all these use cases, a
common step is to represent the input language as
computational vector representations, but none of
the existing studies has produced general-purpose
representations of to-do tasks.

Short-text Representations: Multiple NLP ar-
eas involve very short texts with some unique
characteristics. Several methods have been de-
veloped for tweets (e.g., Nguyen et al., 2020).
Tweets pose the added challenge of containing
many non-standard colloquial expressions and con-
tain non-language text like URLs. Still, Wang et al.
(2020) present a similar finding to ours: massively
pre-trained encoders do not always perform well.
Search queries are also short, with an average of
three terms (Taghavi et al., 2012). Unlike to-dos,
information such as click logs (Zhang et al., 2019)
can be used as an indicator of user intent. Another
key difference is that search queries are written
with the goal of having a machine interpret them.

Multi-task Learning: Multi-task learning im-
proves the performance of pre-trained language
models in various NLP tasks (Liu et al., 2019a;
Shuster et al., 2020; Aghajanyan et al., 2021). The
common perception in the research community is

that auxiliary training tasks are effective when they
are similar to the target domain/task (Shui et al.,
2019). However, there are few relevant tasks and
datasets for the to-do domain. Our study is the first
work to propose a time- and cost-efficient way to
harvest weak-supervision for MTL in that domain.

6 Conclusion

We discussed how to produce general-purpose rep-
resentations of short and under-specified to-do texts
for performing various kinds of intelligent task as-
sistance with a single encoder. Our method, LITE,
uses a multi-head attention mechanism with token
type embeddings on top of an off-the-shelf con-
textual text encoder to effectively induce semantic
information from the combination of to-do descrip-
tions and list names. The model is trained using
three auxiliary tasks: autocompletion, pre-action
and goal generation, and action arguments predic-
tion.

We applied LITE to BERTbase, BERTlarge, and
RoBERTa and compared them with various base-
line models on four downstream tasks. LITE con-
sistently outperformed the baselines, demonstrat-
ing the effectiveness of our method.
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A Ethical Considerations

The proprietary Wunderlist data was anonymized
and personally identifiable information was
scrubbed. Names were replaced by random names.
In addition, k-anonymization was performed on the
data so that tasks that were created by fewer than
five users or fewer than 100 times in total were
automatically discarded. The result is an aggregate
view of the logs, devoid of any identifiers, private
information or infrequent tasks that can be corre-
lated back to a user. The data cleaning process was
approved by an internal legal review board before
the data was cleared for internal use. None of the
data is exposed in this paper. Example texts pre-
sented in this paper are made up by the authors, and
no text is taken verbatim from the original data.

As LITE is essentially built on pre-trained lan-
guage models, biases existing in the original lan-
guage models can still remain in the final model
(e.g., biased associations between gender and ac-
tions). We did not observe any undesired associ-
ations caused by the models in our experiments,
but it may be required to monitor biases and apply
debiasing techniques before deploying the model
to production systems.

Although LITE is not specifically designed for
English, it will require significant cost to deliver the
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list name Expansion

<date> (description) on <date>
<shop> (description w/ verb) at <shop>

buy (description w/o verb) at <shop>
netflix watch (description w/ verb) on netflix
mom (description) for mom

Table 8: Examples of the templates used to generate
autocompletion data. Tokens added by the templates are
denoted in bold (<date>=monday,tuesday,weekend,· · · ,
<shop>=costco,wholefoods,· · · , etc.)

UITF1 ATAcc CoLF1 CoTF1 IDAcc

None .860 .900 .860 .443 .676
Input .851 .923 .856 .448 .670
Intent ext. .856 .929 .863 .453 .714

Table 9: Best validation scores with different type em-
bedding settings: no token-type embeddings, injection
into the input layer, and injection into the intent extrac-
tor. The models were trained on a 500k subset of the
Wunderlist dataset.

outcome to other languages due to the dependence
on English resources (knowledge bases used for
training COMET and English FrameNet).

B Templates for Autocompletion Data

We used 312 hand-crafted templates for collect-
ing the autocompletion data. We first created tem-
plates for common nouns used in list names such
as “today”, “monday”, “mom”, and “home”. We
then used a publicly available dataset12 to mine
list names that represent company names such as
“costco” and “target”. We show some examples in
Table 8.

C Architecture Search

We present the validation scores with different ar-
chitectural choices in Table 9 (how to inject type
embeddings) and Table 10 (number of attention
heads in the intent extractor). We used BERTbaseas
a base text encoder and trained BERT-LITE on
500k samples of our dataset.

D Statistical Significance Test

Following the recommendation of Gorman and
Bedrick (2019), we performed a permutation test
with 5,000 trials between vanilla Transformer vs.
DA, vanilla Transformer vs. LITE, and DA vs.

12kaggle.com/peopledatalabssf/free-7-million-company-
dataset/version/1

UITF1 ATAcc CoLF1 CoTF1 IDAcc

1 .857 .893 .856 .446 .650
4 .862 .925 .862 .450 .700
8 .860 .923 .862 .447 .740
12 .856 .929 .863 .453 .714

Table 10: Best validation scores with different numbers
of attention heads (T ). The models were trained on a
500k subset of the Wunderlist dataset.

UIT AT CoL CoT ID

BERTbase

vanilla < DA 0 20 0 1 0
vanilla < LITE 7 20 4 8 0
DA < LITE 1 0 1 2 0
Sent. < LITE 14 20 5 0 0

RoBERTa
vanilla < DA 0 20 3 2 0
vanilla < LITE 20 20 20 19 1
DA < LITE 13 1 20 10 1
Sent. < LITE 6 20 6 0 0

BERTlarge

vanilla < LITE 6 20 3 9 1

Table 11: The number of random trials (out of 20) where
the test score of the model on the right side is signifi-
cantly better than the model on the left side after Bon-
ferroni correction (α = 0.05).

LITE for each of twenty trials. We applied Bonfer-
roni correction to the obtained p-values (Dror et al.,
2017) to avoid over-estimate statistical significance.
Table 11 reports the number of random trials where
one model’s score is significantly higher than that
of the other model (α = 0.05). We can see that
LITE performs significantly better than the vanilla
counterpart more often than DA does. The results
show that RoBERTa-LITE’s score is even signifi-
cantly higher than that of RoBERTa-DA in some
tasks (UIT, CoLoc and CoTim).

E Additional Baseline Results

In this section, we present experimental results with
the following additional baselines:
GPT-2 (Radford et al., 2018): We take the aver-
age of the last hidden states to represent an input
sequence as we do for RoBERTa. Unlike BERT
and RoBERTa, GPT-2 is a unidirectional encoder.

Sentence-MPNet: MPNet is a Transformer-
based pre-trained language model that is re-
ported to outperform BERT and RoBERTa (Song
et al., 2020). Sentence-Transformer (Reimers
and Gurevych, 2019) based on MPNet (Sentence-
MPNet) is trained on 1.2B sentences from vari-
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UIT AT CoL CoT ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

GPT-2 .845 .803 .823 .908 .805 .907 .853 .501 .353 .414 .544

Sentence-MPNet .865 .834 .849 .919 .798 .924 .856 .499 .386 .435 .654

word2vec .856 .804 .829 .789 .780 .925 .846 .493 .284 .360 .628
word2vec-DA .857 .816 .835 .805 .798 .896 .844 .506 .279 .360 .604
fastText .856 .816 .835 .797 .780 .923 .845 .492 .282 .358 .678

BERT-LITE .871 .855 .863 .932 .826 .901 .862 .511 .409 .454 .670
RoBERTa-LITE .871 .847 .859 .919 .826 .905 .864 .509 .402 .449 .674
BERTlarge-LITE .863 .849 .855 .936 .830 .907 .867 .516 .441 .475 .718

Table 12: Performance of additional baseline models and LITE (from Table 5) on downstream applications. The
overall best scores are denoted in underlines.

UIT AT CoLoc CoTim ID
Prec. Rec. F1 Acc. Prec. Rec. F1 Prec. Rec. F1 Acc.

BERT .828 .840 .833 .938 .898 .942 .919 .542 .608 .563 .320
RoBERTa .849 .859 .853 .940 .864 .952 .905 .411 .432 .384 .288

Table 13: Result of in-dataset fine-tuning.

ous tasks and is considered to be the best-quality
general-purpose encoder (Reimers, 2021).
word2vec and fastText: Unlike the other base-
line encoders, word2vec (Mikolov et al., 2013) and
fastText (Bojanowski et al., 2017) do not contextu-
alize embeddings. We use a 300D word2vec model
trained on Google News 100B and extend it by
Magnitude (Patel et al., 2018) for OOV words. For
fastText, we use a 300D model trained on Common-
Crawl 2M. We also train a word2vec model from
scratch on the same texts without special tokens as
the domain-adapted version (DA).

Results (Table 12): GPT-2 performed worse than
BERT and RoBERTa. Sentence-MPNet is trained
with a huge amount of additional training data but
still under-performs LITE. word2vec and fastText
performed similarly and outperform vanilla BERT
and RoBERTa on UIT and ID. The two datasets
do not provide list names as input and have fewer
data points than the other datasets. Thus, we con-
jecture that (1) there is not enough word context
that vanilla BERT and RoBERTa can leverage and
(2) the dimension of embeddings is too high for
a classifier to find generalizable patterns from a
small amount of data.

F Implementation Details of Baselines

We implemented the baseline encoders with the
following libraries.
Transformers: We used Huggingface’s
transformers library (Wolf et al., 2020) to run

pre-trained Transformer models.

Sentence Transformers: We use the Sentence-
BERT library (Reimers and Gurevych, 2019)13 to
run pre-trained sentence encoders. We used the
following pre-trained models:

BERT: roberta-base-nli-stsb-mean-tokens14

RoBERTa:
roberta-base-nli-stsb-mean-tokens15

MPNet: all-mpnet-base-v216

G Fine-tuning BERT and RoBERTa

We present the performance of BERT and
RoBERTa fine-tuned on downstream datasets. Note
that our main goal is to train a general-purpose en-
coder that does not need to be re-trained for each
downstream task as we describe in §1. We aim to
answer the following two hypothetical questions.

Q1 (In-dataset fine-tuning): How well could
BERT and RoBERTa perform if they were
fine-tuned on the target dataset? This
approach is commonly practiced for task-
specific representations (Devlin et al., 2019).

13www.sbert.net/
14huggingface.co/sentence-transformers/bert-base-nli-

stsb-mean-tokens
15huggingface.co/sentence-transformers/roberta-base-nli-

stsb-mean-tokens
16huggingface.co/sentence-transformers/all-mpnet-base-

v2
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→Test

↓Train UIT AT CoLoc CoTim ID

UIT .833 .638 .793 .394 .110
AT .604 .938 .801 .405 .134
CoLoc .497 .560 .919 .394 .116
CoTim .325 .512 .814 .563 .148
ID .362 .541 .782 .394 .320

LITE .863 .932 .862 .454 .670

(a) BERTbase

→Test

↓Train UIT AT CoLoc CoTim ID

UIT .853 .645 .793 .373 .112
AT .536 .940 .798 .372 .110
CoLoc .412 .570 .905 .328 .104
CoTim .276 .513 .823 .384 .106
ID .359 .509 .796 .360 .288

LITE .859 .919 .864 .449 .674

(b) RoBERTabase

Table 14: Test performance of fine-tuned BERT and
RoBERTa. The diagonal cells show the performance
of the models trained with the in-dataset fine-tuning
setting.

Q2 (Cross-dataset fine-tuning): How well could
BERT and RoBERTa perform on the target
dataset if they were fine-tuned on another
dataset? (Were the fine-tuned encoders gener-
alizable to multiple to-do datasets?)

Setup: We fine-tune and evaluate BERTbase and
RoBERTabase models on the 20 random splits
used in the main experiments. We follow Devlin
et al. (2019) and add a linear classification layer
that takes in the final hidden state of the first to-
ken ([CLS] token). For fine-tuning, the encoder
and classifier are trained to optimize a binary cross
entropy loss (UIT, CoLoc, and CoTim) or a cross
entropy loss (ID and AT). We use the same opti-
mization configurations described in §4.2.1. We
continue training for 5 epochs and take the check-
point that achieves the best validation score. For
the cross-dataset experiment, we initialize the en-
coder with the fine-tuned parameters and freeze
it during training. We use the same optimization
settings except that we set a learning rate to 0.001.

A1 (Table 13): As expected, the fine-tuned mod-
els perform better than LITE on several datasets
(AT, CoLoc, and CoTim with BERT, and AT with
RoBERTa). When the main goal is to build task-
specific representations, and there is a sufficiently
large training dataset, task-specific fine-tuning will
be a better solution than LITE. However, the result

shows the fine-tuned models do not always outper-
form LITE. We conjecture that for datasets without
a sufficient number of training instances like UIT
and AT, a fine-tuning strategy is not very effective.

A2 (Table 14): Performance consistently drops
when the encoders are trained on another dataset,
and all the scores are far below those of
BERT/RoBERTa-LITE. This result indicates that
LITE is more effective for training generalizable
encoders than fine-tuning on a single dataset.
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