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Abstract

Recently, a boom of papers has shown ex-
traordinary progress in zero-shot and few-shot
learning with various prompt-based models. It
is commonly argued that prompts help mod-
els to learn faster in the same way that hu-
mans learn faster when provided with task in-
structions expressed in natural language. In
this study, we experiment with over 30 prompt
templates manually written for natural lan-
guage inference (NLI). We find that models
can learn just as fast with many prompts that
are intentionally irrelevant or even pathologi-
cally misleading as they do with instructively
“good” prompts. Further, such patterns hold
even for models as large as 175 billion parame-
ters (Brown et al., 2020) as well as the recently
proposed instruction-tuned models which are
trained on hundreds of prompts (Sanh et al.,
2021). That is, instruction-tuned models of-
ten produce good predictions with irrelevant
and misleading prompts even at zero shots. In
sum, notwithstanding prompt-based models’
impressive improvement, we find evidence of
serious limitations that question the degree to
which such improvement is derived from mod-
els understanding task instructions in ways
analogous to humans’ use of task instructions.

1 Introduction

Suppose a human is given two sentences: “No
weapons of mass destruction found in Iraq yet.”
and “Weapons of mass destruction found in Iraq.”
They are then asked to respond 0 or 1 and receive a
reward if they are correct. In this setup, they would
likely need a large number of trials and errors be-
fore figuring out what they are really being re-
warded to do. This setup is akin to the pretrain-and-
fine-tune setup which has dominated NLP in recent
years, in which models are asked to classify a sen-
tence representation (e.g., a CLS token) into some

∗Unabridged version available on arXiv. Code, interactive
figures, and statistical test results available at https://github.
com/awebson/prompt_semantics

arbitrary dimensions of a one-hot vector. In con-
trast, suppose a human is given a prompt such as:
Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “Given that “no weapons of mass destruction found
in Iraq yet.”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “”, is it definitely correct that “weapons
of mass destruction found in Iraq.”?”?”?”?”?”?”?”?”?”?”?”?”?”?”?”?”?1 Then it would
be no surprise that they are able to perform the task
more accurately and without needing many exam-
ples to figure out what the task is.

Similarly, reformatting NLP tasks with prompts
such as the underlined text above has dramatically
improved zero-shot and few-shot performance over
traditional fine-tuned models (Schick and Schütze,
2021b; Le Scao and Rush, 2021; Sanh et al., 2021;
Wei et al., 2021). Such results naturally give rise to
the hypothesis that the extra prompt text included
within each input example serves as semantically
meaningful task instructions which help models
to learn faster, in the way task instructions help
humans to learn faster. This hypothesis is implic-
itly assumed by many and explicitly argued by
Mishra et al. (2021), Schick and Schütze (2021a),
and Brown et al. (2020).

While last years saw a gold rush of papers (sum-
marized in §2) that proposed automatic methods for
optimizing prompts, Logan IV et al. (2021) com-
pare a representative sample of these newly pro-
posed methods and report that Schick and Schütze
(2021b)’s manually written prompts still on aver-
age outperform the automatically searched prompts
across a range of SuperGLUE tasks (Wang et al.,
2019). Such findings suggest that expert-crafted
prompts are among the best, if not the best, which
reinforces the above hypothesis that models benefit
from meaningful instructions.

In this paper, we test this hypothesis by evaluat-
ing various models on NLI in zero-shot and few-
shot settings using more than 30 manually written
templates and 13 sets of LM target words for a

1This prompt is adapted from MultiNLI (Williams et al.,
2018, p. 3)’s instructions to crowdsourced workers, while the
example is the first one in RTE’s training set.
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total of over 390 prompts. We find that in most
cases models learn identically as fast when given
irrelevant or misleading templates as they do when
given instructively good templates. Further, models
ranging from 235 million to 175 billion parame-
ters all exhibit this behavior, as do the instruction-
tuned models, which are trained on hundreds of
manually written prompts. While we confirm Sanh
et al. (2021)’s finding that instruction tuning sub-
stantially improves the performance and robustness
of prompts, we also find that instruction-tuned mod-
els can be, in some sense, too robust and less sensi-
tive to the semantics of the prompts, as compared
to their non-instruction-tuned equivalents. Finally,
models are much more sensitive to the choice of
the LM target words as opposed to the meaning of
the instruction templates. In sum, despite prompt-
based models’ dramatic improvement in zero-shot
and few-shot learning, we find limited evidence
that models’ improvement is derived from models
understanding task instructions in ways analogous
to humans’ use of task instructions.

2 Related Work

2.1 Prompt-Based Models

At the time of writing, the terms “prompt tuning”
and “prompting” can refer to any one or combina-
tion of three approaches described below:

Discrete Prompts reformat each example
with some template text. For example, in a
sentiment analysis task, the template can be
{sent} In summary, the restaurant
is [prediction], where the predicted mask
word is then converted to a class prediction by
a predefined mapping, e.g., {“great” → positive,
“terrible” → negative}. The prompts can be
manually written (Schick and Schütze, 2021a;
Bragg et al., 2021) or automatically generated (Gao
et al., 2021b; Shin et al., 2020). This approach
typically tunes all parameters of the model, but
its few-shot performance can exceed that of very
large models (e.g., GPT-3 175B) despite using a
3 orders of magnitude smaller LM (Schick and
Schütze, 2021b; Tam et al., 2021).

Priming (a.k.a. in-context learning) prepends
k priming examples to the evaluation example,
where each example is optionally wrapped in a
template such as Question: {sent1} True
or false? {label1} ... Question:
{sentk} True or false? {labelk}
Question: {eval_sent} True or

false? [prediction]. Notably, although
models see labeled examples, their parameters
do not receive gradient updates based on those
examples. Although this approach is intriguing,
Brown et al. (2020) report that it only performs
well on the largest GPT-3 model, the API of which
is costly and difficult to use for academic research
(see Appendix B for details).

Continuous Prompts prepend examples with
special tokens, optionally initialized with word em-
beddings; but during learning, those tokens can be
updated arbitrarily such that the final embeddings
often do not correspond to any real word in the
vocabulary (e.g., Lester et al., 2021; Li and Liang,
2021; Qin and Eisner, 2021). This approach often
efficiently tunes a much smaller set of model pa-
rameters, but these methods have not yet reported
success in few-shot settings. Moreover, foregoing
prompts as expressed in natural language makes it
much harder to study their semantics, and it is not
clear if continuous prompts serve as task-specific
instructions or simply more efficient model param-
eters (see He et al., 2021 for a detailed analysis).

2.2 Analyses of Prompts

In this paper, we focus on discrete prompts because
we can manually write and control their wording
and semantics. We measure the effect of prompt se-
mantics by the model’s k-shot performance where
k = {0, 4, 8, 16, 32, 64, 128, 256}. This setup re-
sembles that of Le Scao and Rush (2021), but their
study focuses on comparing Schick and Schütze
(2021b)’s existing small set of prompts against tra-
ditional fine-tuning over the training trajectories of
entire training sets, whereas our study focuses on
the few-shot learning trajectories among a much
more diverse set of prompts designed to test spe-
cific hypotheses about the effect of prompt seman-
tics on few-shot learning speed.

At a high-level, our findings contradict Mishra
et al. (2021)’s claim that models benefit from elab-
orate instructions adapted from crowdsourcing an-
notation guides. But note that they define “instruc-
tions” more broadly as including priming examples,
and they find that “GPT-3 benefits the most from
positive examples, mildly from definition, and de-
teriorates with negative examples.” (p. 18). In other
words, if we ablate priming and narrow “instruc-
tions” to just the description of a task, we in fact
have the same finding that instructions are only
modestly beneficial over no instructions (cf. our
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irrelevant templates). In a similar vein, concurrent
work by Lampinen et al. (2022) finds that other
components of a prompt such as explanations of
priming examples are helpful, but models are indif-
ferent to whether the instructions in fact describe
their tasks.

Finally, a growing body of concurrent work also
questions the degree to which models need mean-
ingful instructions (Khashabi et al., 2021; Prasad
et al., 2022). One particularly noteworthy finding
is that Min et al. (2022) show that models learn
just as well with incorrect labels as opposed to cor-
rect labels in priming, concluding that prompts are
helping models to learn the distribution of the input
text and space of possible labels (as opposed to
specifying instructions of the task).

3 Overall Setup

We implement a manual discrete prompt model-
which in essence is the same as that of Schick and
Schütze (2021b), except their implementation in-
cludes several augmentations such as self-labeling
and ensembling of multiple prompts for compet-
itive results. In order to focus on measuring the
effect of prompts themselves, our implementation
does not include those augmentations. Following
Sanh et al. (2021) and Wei et al. (2021), we evalu-
ate by a rank classification of the target words.

Baseline Model In preliminary experiments, we
fine-tuned and prompt-tuned BERT, DistilBERT,
RoBERTa, ALBERT, and T5 (Devlin et al., 2019;
Sanh et al., 2019; Liu et al., 2019; Lan et al., 2020;
Raffel et al., 2020; all implemented via Wolf et al.,
2020). Confirming prior work (Schick and Schütze,
2021b; Tam et al., 2021), we find that ALBERT
consistently yields the best performance, so we use
it as our baseline model.

To verify that our implementation is compara-
ble with prior work, Figure 10 reports the RTE
validation accuracy of our baseline model. At 32
shots, our implementation yields a median accu-
racy of 70.22% (mean = 69.29%, std. dev. = 6.3%),
which is comparable to the 69.8% reported by
Schick and Schütze (2021b). Further, Figure 10
confirms Le Scao and Rush (2021)’s finding that,
while both fine-tuning and prompt-tuning converge
to similar results when fully trained on the entire
set (n = 2490 for RTE), prompt-tuning yields the
largest improvement in the few-shot setting. Go-
ing forward, we focus on studying the few-shot
learning trajectory between 4 and 256 examples.

Instruction-Tuned Model We additionally ex-
periment with T0, a recently proposed instruction-
tuned model which is trained on over 60 datasets
formatted with hundreds of manually written
prompts (Sanh et al., 2021). We experiment with
both sizes of T0 (3B and 11B), as well as their non-
instruction-tuned version, T5 LM-Adapted (Lester
et al., 2021), as a baseline.

Very Large Model Lastly, we experiment with
the largest GPT-3 (175B) via priming (a.k.a. in-
context learning). Although fine-tuning is techni-
cally available, it is extremely limited by OpenAI’s
various quotas. See Appendix B for details on how
we circumvent challenges in reproducing Brown
et al. (2020)’s results.

Data NLI is a task where a model is asked to
classify whether one piece of text (the “premise”)
entails another (the “hypothesis”). We focus on NLI
because all T0 variants holds out all NLI prompts
and all NLI datasets in its training, which makes it
a fair comparison to other models in this paper.

We use Recognizing Textual Entailment (RTE,
Dagan et al., 2006, inter alios), a series of expert-
annotated NLI datasets. Specifically, we use the
SuperGLUE collection of RTE (i.e., RTE1, 2, 3,
and 5; all converted to binary classification) and
report their validation accuracy for comparability
with prior work on prompts.

We also experiment with Adversarial NLI
(ANLI, Nie et al., 2020), Heuristic Analysis for
NLI Systems (HANS, McCoy et al., 2019), and
Winograd Schema Challenge (WSC, Levesque
et al., 2012), reported in Appendices G.2, K, and
L, respectively. We find no qualitative difference
between their and the main RTE results except that
ANLI requires much larger number of shots be-
fore obtaining any above-random accuracy, as it is
designed to be a highly challenging set.

Random Seeds & Example Sampling All
experiments are run over the same set of 4 random
seeds. Within a given seed, all models see the
same set of examples. For instance, under seed
1, the 4-shot models see examples 550–553, the
8-shot models see examples 550–557, and so on.
Across different seeds, a different starting example
index is drawn. The exact training example indices
are also recorded in our GitHub repository for
reproducibility.
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Statistical Tests We use both ANOVA and its
nonparametric equivalent, the Kruskal–Wallis test.
After finding a significant difference among multi-
ple categories of templates, we report pairwise sig-
nificance with the independent two-sample t-test
and the Wilcoxon rank-sum test. We set α = 0.05
and apply the Bonferroni correction to account for
multiple comparisons. For all results reported in
this paper, both t-test and Wilcoxon agree.

4 Effect of Templates

Our research question is whether models under-
stand prompts as meaningful task instructions anal-
ogous to how humans would. For intuition, sup-
pose an experimenter provides a human annotator
with an informative instruction of a reasonably easy
task. If the annotator understands the instruction,
we expect them to perform better than when the
experimenter provides intentionally misleading in-
structions, makes irrelevant chitchat, or says noth-
ing at all. Accordingly, we write various prompt
templates that correspond to these different scenar-
ios and evaluate models’ performance with these
templates in zero-shot and few-shot settings.

4.1 Method

We write 5 categories of templates (Table 1), with
at least 5 templates for each category (10 for in-
structive):

• Instructive: how we would describe the NLI
task to a human who has never seen this task
before.

• Misleading-Moderate: instruct the models to
perform a task related or tangential to NLI
such that, if the model were to perform the
task as explicitly instructed, it would perform
poorly on NLI in general.2

• Misleading-Extreme: instruct the models to
perform a task unrelated to NLI.

• Irrelevant: concatenate the premise, a sentence
unrelated to any NLP task, and the hypothesis.

• Null: concatenate the premise and the hypoth-
esis without any additional text.

2An author manually labeled the 30 training examples
seen by models under random seed 1 (example nos. 550–580),
among which we find 17 pairs of entailment, 5 or 8 pairs
(depending on how strictly one judges their acceptability) of
summarizations, and only one pair of paraphrase.

Category Examples

instructive
{prem} Are we justified in saying that “{hypo}”?
Suppose {prem} Can we infer that “{hypo}”?

misleading-
moderate

{prem} Can that be paraphrased as: “{hypo}”?
{prem} Are there lots of similar words in “{hypo}”?

misleading-
extreme

{prem} is the sentiment positive? {hypo}
{prem} is this a sports news? {hypo}

irrelevant
{prem} If bonito flakes boil more than a few seconds
the stock becomes too strong. "{hypo}"?

null
{premise} {hypothesis}
{hypothesis} {premise}

Table 1: Example templates for NLI.

See Table 1 for examples and Appendix F
for the full list. We use “prompt” to mean a
unique combination of a template and a pre-
defined LM target word for each class label.
For example, {“yes” → entailment, “no” →
non-entailment} are the default targets for the
template {premise} Should we assume
that {hypothesis}? [prediction]. In
this section, to control for the effect of target words,
a template’s performance is always reported with
“yes”/“no” as its target words, which consistently
perform best. In Section 5, we control for the tem-
plates and study the effect of different target words.
We further control for punctuation, declarative vs.
interrogative templates, and the order of concate-
nation (always {premise} some template
text {hypothesis}[prediction]).

After preliminary experiments, to avoid cherry
picking, all prompts reported in this paper were
written prior to evaluation, i.e., we do not allow
retroactively editing prompts for performance ma-
nipulations, except for an ablation study that explic-
itly studies the effect of punctuation (Appendix A).

4.2 Result

Irrelevant Templates We find that models
trained with irrelevant templates learn just as fast
as those trained with instructive templates, with no
practical difference3 at any number of shots (Fig-
ure 1). This is true for all models and all datasets
in our experiments, including the largest GPT-3
(Figure 2).

3We acknowledge that a lack of a statistically significant
difference does not entail “no difference”. While it is true that
we find no statistically significant difference with the inde-
pendent two-sample t-test and the Wilcoxon rank-sum test
whenever we say “no practical difference”, note that our argu-
ment, here and throught the paper, hinges on the very small
effect sizes, not the significance tests, i.e., the two categories
of prompts perform too similarly in absolute terms.

2303



4 8 16 32 64 128 256

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
instructive
irrelevant

Number of Shots

RT
E 

Va
lid

at
io

n 
A

cc
ur

ac
y

Figure 1: T0 (3B) on RTE. There is no practical dif-
ference between the performance of the models trained
with instructive templates vs. those trained with irrele-
vant templates at any number of shots.

GPT-3 (175B) T5 LMA (11B) T0 (11B) T0++ (11B)
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0.9

instructive irrelevant mis-moderate mis-extreme null

Figure 2: 16-shot accuracy of four large models on
RTE. For GPT-3, there is no practical difference be-
tween any template categories except null (not plotted
because they are below 0.5). For T5, there is no prac-
tical difference between instructive and irrelevant. For
T0, there is no practical difference between instructive
and irrelevant nor between instructive and misleading-
moderate. For T0++, there is no practical difference be-
tween instructive and irrelevant nor between instructive
and misleading-extreme.

Misleading Templates There is no consistent re-
lation between the performance of models trained
with templates that are moderately misleading (e.g.
{premise} Can that be paraphrased
as "{hypothesis}"?) vs. templates that are
extremely misleading (e.g., {premise} Is
this a sports news? {hypothesis}).
T0 (both 3B and 11B) perform better given
misleading-moderate (Figure 3), ALBERT and
T5 3B perform better given misleading-extreme
(Appendices E and G.4), whereas T5 11B and
GPT-3 perform comparably on both sets (Figure 2;
also see Table 2 for a summary of statistical
significances.) Despite a lack of pattern between
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Figure 3: T0 (3B) on RTE. There is no practical dif-
ference between models trained with instructive and
misleading-moderate templates at any number of shots.
But models trained with misleading-extreme templates
are statistically significantly worse from 8 to 128 shots.

the two misleading categories, however, it is con-
sistent that each model exhibits significantly better
performance on instructive templates compared to
at least one category of misleading templates.

Null Templates Models trained with null tem-
plates perform far worse than all other categories
of templates (see Appendix G for all null re-
sults). Here, we focus on ALBERT (an encoder-
only masked language model), which allows more
permutation of concatenation orders by placing
mask in the middle of sentences. We see that, al-
though null templates are much worse in aggregate,
some subset of them (e.g., {premise} [mask]
{hypothesis}) are still able to learn nearly as
fast as the average instructive template after 32
shots (Figure 13).

Zero-Shot So far, we have focused on few-shot
results. At zero shots, all models (including GPT-3
175B) perform only marginally above random, ex-
cept the instruction-tuned T0. Thus, for our analysis
of zero shot performance, we focus on T0. Figure 4
shows that there is no practical difference between
the performance of T0 3B given instructive tem-
plates and either category of misleading templates.
T0 11B performs better, although it also shows no
practical difference between misleading-moderate
and instructive templates. Lastly, T0++ (trained on
more datasets than other T0 variants), is the only
model in this paper that shows statistically signifi-
cantly different performance across all categories
of prompts. However, there remains the caveat that
it still performs arguably too well in absolute terms
with pathological prompts, which we discuss in the
next section.
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given… is it 
guaranteed true that

does the paragraph 
start with “the”

is this 
grammatically 

correct

are there lots of 
similar words

is the 
sentiment 
positiveinflections are 

annoying

are we justified 
in saying that

Figure 4: Zero-shot accuracy of instruction-tuned models on RTE. Each prompt’s performance is a single point
(unlike the few-shot figures where each prompt is approximated by multiple points with multiple samplings of
few-shot examples.) Arrows highlight some prompts with their excerpts. See Appendix I for the full results.

size #shots inst. > mis-moderate inst. > mis-extreme inst. > irrelevant inst. > null

T0 3B 0 3

T0 11B 0 3 3 3

T0++ 11B 0 3 3 3 3

ALBERT 235M 4 - 256 3 3

T5 LMA 770M 4 - 256
T5 LMA 3B 4 - 256 3 3

T0 3B 4 - 256 3 3

T5 LMA 11B 16 3 3 3

T0 11B 16 3 3

T0++ 11B 16 3 3

GPT-3 175B 16 3

Table 2: Checkmarks indicate where two categories of templates lead to statistically significantly different perfor-
mance, as measured by an independent two-sample t-test and a Wilcoxon rank-sum test; both tests always agree
in this table. A lack of checkmark indicates where model performance fails to differentiate the two categories,
i.e., models do not understand the differences between the prompt categories. We consider significant differences
(checkmarks) between categories of prompts to be necessary—but not sufficient—for language understanding.

4.3 Discussion

Recall that a common assumption in the literature
is that prompts require experts to clearly and cor-
rectly describe the task at hand (§1). In contrast,
Table 2 summarizes that, with the exception of
T0++ at zero shots, all models perform essentially
as well with some pathological prompts as they do
with proper prompts. Notably, despite being much
larger than its competitors, GPT-3 shows the same
patterns of behaviors, suggesting that mere scaling
does not address this issue. Meanwhile, the evi-
dence from instruction tuning is mixed. Although
Sanh et al. (2021) are right that instruction tuning
yields substantial improvement in performance as

well as robustness as measured by variance, T0 is
somewhat too robust and less sensitive to the se-
mantics of the prompts in terms of distinguishing
proper instructions from pathological ones, com-
pared to T5 of the same size in the few-shot setting
(Figure 2).

In the zero-shot setting, we do see that that
the largest model instruction-tuned with the most
datasets (T0++) improves a model’s sensitivity
to prompt semantics. This is a positive result,
but it comes with the caveat that there still exist
numerous examples of pathological prompts that
perform just as well as the proper ones do. To be
charitable to randomness in neural models, we hold
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Figure 5: The best-performing instructive template for
ALBERT on RTE, {prem} Are we justified
in saying that "{hypo}"? with select LM
targets from each category.

this study to a higher standard by comparing means
and medians among categories with statistical tests.
Nevertheless, for our research question, existence
proofs alone are still alarming. For example,
without any gradient update nor priming, it is
striking that out-of-the-box T0++ scores a high
accuracy of 78% with the extremely misleading
{premise} Is that grammatically
correct? {hypothesis}, the same accu-
racy as it achieves with a proper instruction
{premise} Are we justified in
saying "{hypothesis}"? If models were
truly classifying whether the text is grammatical, it
would have only scored 52.7% because RTE is writ-
ten by experts and all examples are grammatical.
Even templates that underperform the instructive
ones seem to be too good. For example, it is
difficult to imagine a human scoring 72% zero-shot
with the prompt {premise} Inflections
are annoying and thank god that
Middle English got rid of most of
them. {hypothesis} for a nuanced task like
NLI.

5 Effect of Target Words

5.1 Method

In this experiment, we study the effect of different
LM target words given a fixed template. We write
4 categories of targets, with at least 3 pairs of target
words for each category (except the singleton yes-
no category):

1. Yes-no: Model is expected to predict the
word “yes” for entailment and “no” for non-
entailment.

4 8 16 32 64 128 256
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Figure 6: T0 (3B) on RTE. Misleading templates + yes-
no targets (red) learn substantially faster than instruc-
tive templates + arbitrary targets (green), which is the
opposite of what we expect from humans.

2. Yes-no-like: Semantically equivalent to yes-
no but using superficially different words, e.g.,
“true”/“false”, “positive”/“negative”.

3. Arbitrary: Model is expected to predict arbi-
trary words that have no semantic relation to
the entailment task, e.g., “cat” for entailment,
“dog” for non-entailment.

4. Reversed: Model is expected to predict the
opposite of the (intuitive) yes-no and yes-no-
like labels, e.g., “no” for entailment, “yes” for
non-entailment.

See Appendix F.3 for the full list. Within the arbi-
trary category, in addition to the common anglo-
phone first names as Le Scao and Rush (2021) use,
we also include word pairs with high semantic sim-
ilarity, low similarity, and pairs which are highly
frequent in the English language, but we find no
consistent difference among these various subcate-
gories of the arbitrary category.

5.2 Result
For both ALBERT and T0, we find that models
trained with yes-no targets learn a good deal faster
than those trained with yes-no-like targets and dra-
matically faster than those with arbitrary and re-
versed targets. For example, Figure 5 shows the
top-performing instructive template trained with
different target words. At 32 shots, the difference
between the median accuracies of “yes”/“no” vs.
“no”/“yes” is 22.2%, far larger than the effect size
of varying categories of templates in Section 4. Ag-
gregating over all combination of templates and
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targets, Figure 16 confirms that the choice of target
words matter much more than the meaning of the
templates.

5.3 Discussion
The fact that models consistently learn slower with
arbitrary and reversed target words is a positive
result: this type of performance differential is con-
sistent with what we expect for models that are
correctly sensitive to the semantics of the words.
However, there are several important negative re-
sults in these experiments as well. First, the effect
of the target words overrides the semantics of the
overall prompt. Consider two kinds of template-
target combinations:

1. An irrelevant or misleading template + yes-no
targets, e.g., {premise} Does the
paragraph start with "the"?
[yes/no] {hypothesis}

2. An instructive template + arbitrary tar-
gets, e.g., {premise} Based on the
previous passage, is it true
that "{hypothesis}"? [cat/dog]

Figure 6 shows that combinations such as (1) often
dramatically outperform (2). However, (2) simply
requires figuring out a mapping: “Reply ‘cat’ if en-
tailed and reply ‘dog’ if not entailed”. For humans,
this can be learned in a few shots, e.g., Ferrigno
et al. (2017) showed that adults can reach 60% ac-
curacy in 18 trials4 for an arbitrary map of {more
numerous → star shape, less numerous → diamond
shape} without receiving any language instructions.
In contrast, models under many arbitrary LM tar-
gets struggle to reach 60% median accuracy even
by 64 shots with instructive templates (Figure 6
green; Figure 5 red, purple).

Further, even given intuitive yes-no-like targets
such as “agree”/“disagree” and “good”/“bad”, mod-
els learn much slower compared to when given
“yes”/“no”. As Figure 5 (green vs. dark green) and
Figure 16 (first vs. second x-axis group) show, there
exists a large performance gap between yes-no and
yes-no-like targets which is not closed until 256
shots. Moreover, when we try to help the models
by appending target hints such as “True or false?”
to the templates, performance often drops instead,
echoing Sanh et al. (2021) and Wei et al. (2021)’s

4And this comparison is heavily charitable to the models
because “18 trials” means that humans see 18 examples for 18
times in total, whereas “20-shot” means that models can see
the same 20 examples over and over again for many epochs.

findings that including answer choices in input se-
quence make models perform worse for certain
tasks.

6 General Discussion

6.1 Summary and Interpretation

Our main research question is whether models un-
derstand prompts as meaningful task instructions
analogous to how humans would. Again, suppose
an experimenter provides a human annotator with
an informative instruction of a reasonably easy task.
If the annotator understands the instruction, we
expect them to perform better than when the ex-
perimenter provides misleading instructions, irrele-
vant instructions, or no instructions at all. Section 4
shows that the performance of most models is insen-
sitive to the difference between instructive and irrel-
evant templates, moderately sensitive between in-
structive and misleading templates, and highly sen-
sitive between instructive and null templates. Com-
paring to the effect of the templates, however, Sec-
tion 5 shows that models are much more sensitive
to the semantics of the target words: they learn far
slower with arbitrary or reversed target words as de-
sired. However, they are overly sensitive to seman-
tically equivalent yes-no-like words (i.e., perform-
ing much worse with “agree”/“disagree” than with
“yes”/“no”), and the choice of target words over-
ride the semantics of the templates (e.g., perform-
ing much better given a irrelevant template with
“yes”/“no” targets than with an instructive template
with arbitrary targets such as “cat”/“dog”).

Our main argument throughout the paper shares
the same logic as a recent line of studies (Sinha
et al., 2021; O’Connor and Andreas, 2021; Pham
et al., 2021; Gupta et al., 2021) which argue that
the fact that LMs achieve good performance un-
der ideal conditions is insufficient to establish lan-
guage understanding because they also succeed
under pathological conditions (e.g., sentences with
shuffled word order) where humans fail catastroph-
ically.5 In other words, the fact that models are so
good at inferring the gold labels from pathologi-

5See Ravishankar et al. (2022), Papadimitriou et al. (2022),
and Kulmizev and Nivre (2021) for a nuanced ongoing debate
on the extent models know vs. use syntactic coding properties
on what kinds of examples. But even considering these new
evidences, we think Sinha et al. (2021) are at least correct
that, as they find that human experts perform far worse on
shuffled NLI inferences than RoBERTa does, models must
be processing linguistic inferences quite differently from how
humans do, regardless of whether models know word order
information.
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cal inputs casts major doubts on whether models
make inferences in any way that resembles how
humans make inferences. For our results, the fact
that models are so good at learning from patho-
logical instructions likewise casts major doubts on
whether models understand prompts as instructions
in any way that resembles how humans understand
instructions.

6.2 Alternative Interpretations and Future
Directions

As with any extrinsic evaluation, accuracy cannot
directly measure understanding. For example, a hu-
man could perfectly understand an instruction but
still, e.g., have the same accuracy with instructive
vs. irrelevant templates because the task itself is
too hard (a lack of competence) or because they for
some reason ignore the instructions (a lack of com-
pliance). We discuss these two possibilities below.

Lack of Competence This is primarily a con-
cern for non-instruction-tuned models at zero shots,
where all models perform only slightly above ran-
dom, and thus a lack of statistical significance
among template categories is ambiguous as to
whether models lack understanding of NLI instruc-
tions vs. if models lack the competence in NLI per
se. This is why our study largely focuses on the few-
shot setting, where a lack of competence is less of
a concern, as models do competently achieve good
accuracies that are only moderately below the state-
of-the-art non-few-shot models.

Another counterargument is that maybe no mod-
els ever actually reason about if a premise entails a
hypothesis. Maybe they just always exploit spuri-
ous or heuristic features and, if only they were com-
petent in properly reasoning about entailment rela-
tions, then the meaning of NLI instructions would
matter. This argument is possible, although, first, it
hinges on to what extent NLI (or any other behav-
ioral evaluation) can measure language understand-
ing, which is a complex debate beyond the scope
of this paper. Second, in preliminary experiments
(Appendix K), our models actually zero-shot trans-
fer reasonably well to HANS (McCoy et al., 2019),
a dataset designed to diagnoses models use of NLI
heuristics. Thus, it is unlikely that models are en-
tirely incompetent in reasoning about entailment
relations and solely rely on heuristics. Regardless,
further differentiating competence in understand-
ing task instructions vs. competence in tasks per se
is an important direction for future work.

Lack of Compliance Another interpretation is
that irrelevant prompts perform the same as the in-
structive ones because models simply ignore the
prompts altogether. However, a lack of compliance
alone cannot explain our results. If models truly ig-
nore the prompts, we should not see any systematic
differences between any categories of prompts. In-
stead, we do see consistent patterns that instructive
and irrelevant templates make models learn signifi-
cantly faster than misleading and null templates do
(Table 2).

A more nuanced counterargument is that al-
though models do not ignore their prompts entirely,
perhaps it “takes less effort” for models to use the
spurious or heuristic features for predictions as
opposed to the more complex syntactic or seman-
tic features (Lovering et al., 2021; Warstadt et al.,
2020) required to properly comply with the instruc-
tions. However, spurious features alone likewise
cannot explain the observed performance gaps. Re-
call that, within each random seed, all models see
exactly the same training examples (with the same
spurious features). Thus, to the extent that models
perform differently with some prompts compared
to others, it may be due to some complex interac-
tions between the (spurious or semantic) features
in prompts and the spurious features in data ex-
amples. One possible example of this interaction
is that punctuation has a large effect for irrelevant
templates, but instructive templates seem to be able
to suppress such effect (Appendix A). Investigating
the nature of this interaction is a promising direc-
tion for future work, and it suggests a way in which
the semantics of the prompt might matter, e.g., by
affecting the models’ inductive biases, even if mod-
els do not interpret or use the instructions in the
same way as humans would.

7 Conclusion

In this study, we train several models with over
30 manually written templates and 13 sets of LM
targets for NLI. We find that models often learn
equally fast with misleading and irrelevant tem-
plates as they do with instructive ones, and that
the choice of the target words overrides the mean-
ing of the overall prompts. Although models do
not entirely ignore the meaning of the prompts,
our results contradict a hypothesis commonly as-
sumed in the literature that models use prompts as
semantically meaningful task instructions in ways
analogous to humans’ use of instructions.
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Ethical Considerations

The fact that even the largest LMs appear to fol-
low yet do not actually follow users’ instructions
has important implications, especially considering
the increasing commercial use of LMs. While tra-
ditional fine-tuned models also pose challenges
in interpretability, with prompt-based models, an
illusion of instruction following can be more per-
nicious than having no instructions at all. The in-
tuitive interface that prompts provide might make
them more accessible to lay users, and can mis-
lead users to think that their instructions are being
understood and followed. Our results suggest that
cautions are needed even more than they were with
traditional fine-tuned models.
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Figure 7: ALBERT on RTE. Note that (1) irrelevant
templates slightly outperform the instructive templates,
albeit without statistical significance. (2) Irrelevant tem-
plates are far worse without quotation and question
marks. (3) But there is no significant difference be-
tween instructive templates with or without qmarks.
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Figure 8: T0 (3B) on RTE. Like ALBERT, irrelevant
sans qmarks are significantly worse than irrelevant at
each and every shot, but there is no significant differ-
ence between instructive with or without qmarks.

A Effect of Punctuation

For irrelevant templates, we find a large effect
from the use of quotation and question marks in
templates. It is natural to write such punctuation
in instructive templates as they help humans
to parse an NLI hypothesis as an embedded
clause within an instruction sentence (e.g.,
Given {premise} Should we assume
that "{hypothesis}" is true?). For
control, we also use quotation and question
marks (“qmarks” hereafter) in irrelevant tem-
plates where they would not have made sense
naturally, e.g., {premise} Single-family
zoning is bad for American cities.
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Figure 9: T5 LM-Adapted (3B). Unlike the other mod-
els, there is no statistical significance between irrele-
vant with or without qmarks. However, instructive sans
qmarks statistically significantly outperform instructive
at 32 and 64 shots.

"{hypothesis}"? As an ablation, when we
remove these qmarks from irrelevant templates,
the performance of ALBERT and T0 drops
substantially (Figures 7 and 8). In contrast, for
T5, qmarks make no difference for irrelevant
templates; yet, removing qmarks from instructive
templates—where qmarks are natural—boosted
performance instead for T5 (Figure 9), but not for
T0 nor ALBERT.

Additionally, as a coincidence, most mislead-
ing templates contain both quotation and question
marks, while most misleading-far templates con-
tain only question marks (Appendix F). But as
noted in Section 4.2, there is no consistent pat-
tern between those two misleading categories. In
other words, punctuations alone cannot explain ev-
erything. As discussed in Section 6.2, the full ex-
planation is likely a combined interactions between
the spurious features and the semantics of the tem-
plates.

Lastly, note that Schick and Schütze (2021b)
and many subsequent papers’ prompts for
NLI (e.g., "{hypothesis}" ? | [mask].
"{premise}") are basically null templates with
some variation in punctuation between the hy-
pothesis and the premise. We find that models
learn poorly with the vanilla {hypothesis}
[mask] {premise}, but they learn as fast
as the instructive templates with Schick &
Schütze’s punctuated version. That being said,
note again that punctuation alone cannot explain
the performance gap, since models trained with
[mask] {hypothesis} {premise} (Fig-
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ure 13, pink) perform second to best, yet swapping
their premises and hypotheses (Figure 13, purple)
makes it the worst performing among all null tem-
plates.

B Details and Lessons from
Experimenting with GPT-3’s API

B.1 Choice of Model

We use the davinci model provided by OpenAI
LP’s API, which corresponds to6 the 175 billion
parameter model reported in Brown et al. (2020).
Concurrent to our work, OpenAI released a new
product called the “Instruct Series”, but we decided
to not experiment with the Instruct Series because
no academic paper or technical documentation of
any kind is available with the Instruct Series at the
time of writing aside from the following claim on
their website:7

The Instruct models share our base
GPT-3 models’ ability to understand and
generate natural language, but they’re
better at understanding and following
your instructions. You simply tell the
model what you want it to do, and it
will do its best to fulfill your instruc-
tions. This is an important step forward
in our goal of building safe models that
are aligned with human interests.

Crucially, the Instruct Series is inappropriate for
reproducible research because it is unknown what
datasets and prompts these models are trained on,
and whether any task categories are systematically
held out as done by Sanh et al. (2021) and Wei et al.
(2021). If it is trained on any prompt or dataset of
NLI, it would not be zero-shot, making it an un-
fair comparison to other models in our experiments.
Second, it is still in beta and its training, held-out,
and prompt mixtures could change. At least two
Instruct Series models were made available in se-
quence during our writing, and it is not clear if we
experiment on an older version, whether it will still
be available and reproducible in the future.

6OpenAI never actually discloses which one of their com-
mercially named ada, babbage, curie, davinci
“engines” correspond to models of which size. However, Gao
et al. (2021a) estimate that they correspond to 350M, 1.3B,
6.7B, and 175B respectively.

7http://beta.openai.com/docs/engines/instruct-series-beta

B.2 Priming vs. Fine-Tuning
As mentioned in Section 3, we use priming (a.k.a.
in-context learning) in lieu of fine-tuning because,
at the time of writing, OpenAI’s fine-tuning API is
limited to 10 runs per month. To train 30 prompts
at only two number of shots would take 6 months,
assuming we get hyperparameters right at first try.
Further, each training run is limited to a maximum
of 5 epochs, which often entails an insufficient
number steps for few-shot training. We were unable
to fine-tune GPT to any reasonable accuracy with
our allowed 10 tries in the first month. Finally, the
fine-tuning API is limited to GPT variants up to
6.7B, not the 175B model we plan to experiment
with.

With priming, we are able to reproduce Brown
et al. (2020)’s zero-shot performance on RTE but
only with their exact prompt reported in their Fig-
ure G.31, all other (even instructive) prompts per-
form at random at zero shots, suggesting that their
reported prompt is highly cherry-picked. We are
unable to reproduce their reported few-shot result
because they report it at 32 shots, but their API only
permits a context length up to 2049 tokens, which
is insufficient for RTE. We find that 16 shots are
the highest one can reach within the token limit.8

Like the gradient updated models, we document
the exact examples we use for few-shot priming in
our GitHub repository. Unlike the gradient updated
models, which are trained on the same k exam-
ples, priming models use different sets of k prim-
ing examples for each inference example (Brown
et al., 2020, p. 20). This means that GPT’s perfor-
mance reflects the fact that, overall, it has seen far
more than k examples, making it not directly com-
parable to the few shots of the gradient updated
models. This is not ideal, but our GPT few-shot
performance already underperforms what Brown
et al. (2020) report, so we choose to not further
restrict it to have the same fixed priming examples
for all inference examples, which could run into
a lack of competence issue (§6.2) that make its
results unusable for our research question.

Lastly, unlike the gradient updated models, we
do not run multiple seeds with our GPT experi-
ments because, first, they are expensive. As the
API bills by token, using k shots of priming exam-
ple effectively multiplies the total cost by k. Sec-

8Depending on the length of the prompt template, 2 or 3
examples still exceed the token limit, in which case we remove
one priming example, keeping the other 15 priming examples
and the to-be-predicted example unmodified.

2314

http://beta.openai.com/docs/engines/instruct-series-beta


ond, OpenAI imposes a monthly quota for each lab,
so running multiple seeds will take several more
months to complete.

B.3 Other Tips for Working with GPT-3

Using the logprobs argument in their API, we
obtain the top 99 predicted target word and their
log probabilities.9 Following Sanh et al. (2021) and
Wei et al. (2021), we evaluate by a rank classifi-
cation of the target words, i.e., if the gold target
word is “yes”, we consider it as correct as long as
the probability of “yes” is higher than that of “no”,
regardless of whether “yes” is the top-1 prediction
generated by the model.

Alarmingly, we find that these top-99 predictions
are semantically inconsistent ranked, e.g., for one
data example and its top-99 word predictions, it is
often the case that, e.g., P(yes) > P(no) but P(Yes)
< P(No). Thus, the choice of the target words’ sur-
face form makes a substantial difference in the
overall performance. (Not to mention the prob-
lem of choosing between yes/no, true/false, cor-
rect/incorrect, etc. as studied in Section 5.) OpenAI
recommends having no trailing space in the input
and let the model predict the first token with a lead-
ing space as in “ Yes”. We find that although strip-
ping the leading space sometimes leads to higher
performance for some prompts, overall not apply-
ing stripping or other token normalization performs
the best.

Another point researchers should pay attention
to is the use of what OpenAI calls a “separator”
inserted between priming examples. In preliminary
experiments, we initially use newline characters as
appeared in Brown et al. (2020)’s Appendix G. We
later discover that OpenAI recommends using ###
or \n###\n as separators. We use the latter and
find consistent performance improvement over just
using newline characters, and we use it throughout
in our main experiments.

C Hyperparameters

For encoder-only models, we follow Schick and
Schütze (2021b) and Le Scao and Rush (2021)’s
recommendations and use a learning rate of 1e−5.
For T5 and T0 models, we follow Raffel et al.
(2020) and Sanh et al. (2021)’s recommendations

9Although sometimes the API returns less than the num-
ber of logprobs the user specifies, in which case we con-
tacted OpenAI’s customer support who provided us refund by
store credit. At the time of publishing, OpenAI now restricts
logprobs to a maximum of 5.

and use a learning rate of 1e−4. We run sev-
eral preliminary experiments with learning rates
(3e−4, 1e−4, 5e−5, 1e−5) deviating from their rec-
ommendations and they perform worse, although
our search is not exhaustive due to the high cost
of running multiple prompts with multiple random
seeds.

Note that T5 and T0 are trained with the Adafac-
tor optimizer (Shazeer and Stern, 2018) in Mesh
TensorFlow. Our implementation is in PyTorch, and
we find that fine-tuning T5 with PyTorch’s imple-
mentation of Adafactor yields substantially worse
results than the usual choice of the AdamW opti-
mizer. We corresponded with Raffel et al. (2020),
who advised us that it might be due to the fact that
PyTorch does not have the same learning rate sched-
uler implementation as TensorFlow’s Adafactor
does. They recommended us to simply use AdamW,
which is what we did. This is somewhat unfortunate
because Adafactor is much more memory efficient,
which would have drastically reduced the compute
resources required and thus enable more compre-
hensive experiments of the 11B models, which are
currently limited to 0 shots and 16 shots only.

Although most models seem to obtain the high-
est validation accuracy at very early epochs, we
train all models to 30 epochs (20 epochs for 11B
models) to be safe and select the checkpoint with
the highest validation accuracy.

All models use a batch size of 4 with 4 gradient
accumulation steps for an effective batch size of
16.

Note that because we use a rank classification
of single-token target words, decoding sampling
methods (e.g., beam search, top-k, top-p) are un-
necessary.

We follow Raffel et al. (2020) and add EOS to-
kens for input sequences, which yields higher few-
shot performance compared to not adding EOS as
done by Sanh et al. (2021). However, we omit EOS
in the zero-shot setting, which exactly reproduces
the results reported by Sanh et al. (2021). See T0’s
GitHub repository readme10 for more information.

D Compute Used

Each ALBERT 235M model is trained on a single
Nvidia RTX3090. Their main experiments took
approximately 192 GPU hours.

10https://github.com/bigscience-workshop/t-zero/tree/
master/examples
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Each T5 LMA 770M model is trained on a sin-
gle A6000. Their main experiments took approxi-
mately 48 GPU hours.

The 3B models are each trained by partitioning
their layers over four RTX3090s. T5 and T0’s main
experiments took approximately 2,304 GPU hours
in total.

The 11B models are each trained on eight V100s
(each with 32GB of memory). T5, T0, and T0++’s
main experiments took approximately 1,728 GPU
hours in total. (Due to their large GPU memory
requirement, we were only able to complete one
number of shots.)

E Additional Figures Discussed in the
Main Text
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Figure 10: How to read these figures: Each dot is
the performance of one prompt under one random
seed (which controls the sets of few-shot examples) of
our baseline model (ALBERT) on RTE validation set.
Boxes span from the first quartile to the third quartile,
while lines inside boxes mark the medians. Later fig-
ures omit the points except outliers in order to improve
legibility. See the interactive figures in our GitHub
repository or Appendix H for the results of individual
prompts.

4 8 16 32 64 128 256

0.55

0.6

0.65

0.7

0.75

0.8

0.85 instructive
irrelevant

Number of Shots

RT
E 

Va
lid

at
io

n 
A

cc
ur

ac
y

Figure 11: ALBERT on RTE. Models trained with irrel-
evant templates actually slightly outperform the instruc-
tive templates, albeit without statistical significance at
any number of shots.
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Figure 12: ALBERT on RTE. There is no statistical sig-
nificance between misleading-extreme and instructive
at any number of shots. In contrast, models trained with
misleading-moderate templates are significantly worse
than the instructive ones from 16 to 64 shots.
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Figure 13: ALBERT on RTE. After 32 shots, models
trained with 2 null templates learn just as fast as the
instructive templates, but models trained with other null
templates (e.g., purple) are much worse.
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Figure 14: The best-performing instructive template
for T0 (3B) on RTE, {prem} Based on the
previous passage, is it true that
"{hypo}"? with select LM targets from each
category.
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Figure 15: Median accuracies of all template-target
combinations at 32 shots. In general, the choice of tar-
get words (x-axis groups) matters much more than the
choice of templates (colors).
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Figure 16: T0 (3B)’s 32-shot accuracy with of all
template-target combinations on RTE. In general, the
choice of target words (x-axis groups) matters much
more than the choice of templates (colors).

2317



F All Prompts

F.1 Main Experiment Templates
category template adapted from

instructive
{premise} Using only the above description and what you know about the world,
"{hypothesis}" is definitely correct. Yes or no?

Williams et al. (2018, p. 3)

instructive {premise} \nquestion: {hypothesis}Yes or no?\nanswer: Brown et al. (2020, p. 59)
instructive {premise} Are we justified in saying that "{hypothesis}"?
instructive Given {premise} Should we assume that "{hypothesis}" is true?
instructive {premise} Based on the previous passage, is it true that "{hypothesis}"?
instructive Given {premise} Is it guaranteed true that "{hypothesis}"?
instructive Suppose {premise} Can we infer that "{hypothesis}"?
instructive Given that {premise} Does it follow that "{hypothesis}"?
instructive {premise} Question: Does this imply that "{hypothesis}"?
instructive Given that {premise} Therefore, it must be true that "{hypothesis}"?

misleading-moderate {premise} Do most of the above words appear in the following passage? {hypothesis}
misleading-moderate {premise} Are there lots of similar words in "{hypothesis}"?
misleading-moderate {premise} Does that have the same meaning as "{hypothesis}"?
misleading-moderate {premise} Can that be paraphrased as: "{hypothesis}"?
misleading-moderate {premise} Can that be summarized as "{hypothesis}"?

misleading-extreme {premise} Does the paragraph start with "the"? {hypothesis}
misleading-extreme {premise} Is this grammatically correct? {hypothesis}
misleading-extreme {premise} Is the sentiment positive? {hypothesis}
misleading-extreme {premise} Is this a sports news? {hypothesis}
misleading-extreme {premise} Is this French? {hypothesis}

irrelevant {premise} Single-family zoning is bad for American cities. "{hypothesis}"?

irrelevant
{premise} Inflections are annoying and thank god that
Middle English got rid of most of them. "{hypothesis}"?

irrelevant
{premise} When Bolyai sent Gauss his discovery of non-Euclidean geometry,
Gauss replied that he arrived at the same results 30 years ago. "{hypothesis}"?

Greenberg (1974, p. 141)

irrelevant
{premise} If bonito flakes boil more than a few seconds,
the stock becomes too strong? "{hypothesis}"?

Tsuji and Sutherland (1980, p. 148)

irrelevant
{premise} Is the pious loved by the gods because it is pious?
Or is it pious because it is loved by the gods? "{hypothesis}"?

Plato (c. 399 BC, 10a)

null {premise} {hypothesis}
null {hypothesis}{premise}
null (MLM only) {premise} {mask} {hypothesis}
null (MLM only) {hypothesis}{mask} {premise}
null (MLM only) {mask} {premise} {hypothesis}
null (MLM only) {mask} {hypothesis}{premise}

Table 3: All prompts used in the main text of the paper. All templates use “yes”/“no” as target words for the
entailment and non-entailment classes, respectively. For ternary NLI datasets, we use “unclear” for the neutral class,
which performs best after preliminary experiments with other ternary words: “maybe”, “sometimes”, “perhaps”,
“possibly”, and “neither”. Keen readers may notice that some of the instructive templates (e.g., should we
assume) do not instruct a strict entailment task. We intentionally wrote a mixture of instructions that asks for
strictly logical entailment and pragmatic inference, intending to measure if models can distinguish between the
two on datasets such as HANS (McCoy et al., 2019) that magnify different predictions caused by pragmatic effects.
Of course, this research question became moot as we found that models cannot even distinguish among much more
pathological prompts.
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F.2 Ablation Experiment Templates
category template

instructive sans qmarks {premise} Using only the above description and what you know about the world, {hypothesis}is definitely correct. Yes or no
instructive sans qmarks {premise} \nquestion: {hypothesis}Yes or no\nanswer:
instructive sans qmarks {premise} Are we justified in saying that {hypothesis}
instructive sans qmarks Given {premise} Should we assume that {hypothesis}is true
instructive sans qmarks {premise} Based on the previous passage, is it true that {hypothesis}
instructive sans qmarks Given {premise} Is it guaranteed true that {hypothesis}
instructive sans qmarks Suppose {premise} Can we infer that {hypothesis}
instructive sans qmarks Given that {premise} Does it follow that {hypothesis}
instructive sans qmarks {premise} Question: Does this imply that {hypothesis}
instructive sans qmarks Given that {premise} Therefore, it must be true that {hypothesis}

irrelevant sans qmarks {premise} Single-family zoning is bad for American cities. {hypothesis}
irrelevant sans qmarks {premise} Inflections are annoying and thank god that Middle English got rid of most of them. {hypothesis}

irrelevant sans qmarks
{premise} When Bolyai sent Gauss his discovery of non-Euclidean geometry,
Gauss replied that he arrived at the same results 30 years ago. {hypothesis}

irrelevant sans qmarks {premise} If bonito flakes boil more than a few seconds, the stock becomes too strong. {hypothesis}
irrelevant sans qmarks {premise} Is the pious loved by the gods because it is pious. Or is it pious because it is loved by the gods. {hypothesis}

Table 4: Used in the study of the effect of question and quotation marks in Appendix A.

F.3 All Target Words

Category Target Words

yes-no yes;no

yes-no-like true;false
yes-no-like positive;negative
yes-no-like right;wrong
yes-no-like correct;incorrect
yes-no-like agree;disagree
yes-no-like good;bad

reversed no;yes
reversed false;true
reversed negative;positive

arbitrary B;C
arbitrary cat;dog
arbitrary she;he

Table 5: LM targets used in Section 5. Again, for ternary NLI datasets, we use “unclear” for the neutral class,
which performs best after preliminary experiments with other ternary words: “maybe”, “sometimes”, “perhaps”,
“possibly”, and “neither”. Within the arbitrary category, in addition to the common anglophone first names as
Le Scao and Rush (2021) use, we also tried word pairs with high semantic similarity (“cat”/“dog”), low similar-
ity (“cake”/“piano”, “write”/“sleep”), and pairs which are highly frequent in the English language (“she”/“he”,
“the”/“a”) in preliminary experiments, but we find no consistent difference among these various subcategories of
the arbitrary category.
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G Aggregated Results

G.1 ALBERT on RTE
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num. shots template category median q3 - q1 mean std. dev.

4 instructive 0.5830 0.0885 0.5907 0.0517
4 irrelevant 0.6300 0.1291 0.6170 0.0645
4 misleading-extreme 0.5884 0.0469 0.5787 0.0342
4 misleading-moderate 0.5650 0.0722 0.5753 0.0418
4 null 0.5560 0.0433 0.5599 0.0324
8 instructive 0.6155 0.0920 0.6186 0.0524
8 irrelevant 0.6570 0.0307 0.6471 0.0374
8 misleading-extreme 0.6101 0.0677 0.5899 0.0595
8 misleading-moderate 0.6047 0.0767 0.5969 0.0490
8 null 0.5632 0.0397 0.5586 0.0326

16 instructive 0.6697 0.0605 0.6594 0.0558
16 irrelevant 0.6787 0.0488 0.6787 0.0294
16 misleading-extreme 0.6390 0.0506 0.6413 0.0384
16 misleading-moderate 0.6083 0.0443 0.6072 0.0427
16 null 0.5722 0.0379 0.5767 0.0327
32 instructive 0.7022 0.0813 0.6929 0.0638
32 irrelevant 0.7292 0.0235 0.7206 0.0236
32 misleading-extreme 0.7076 0.0334 0.7056 0.0340
32 misleading-moderate 0.6516 0.0992 0.6350 0.0666
32 null 0.6318 0.0731 0.6414 0.0392
64 instructive 0.7545 0.0542 0.7353 0.0548
64 irrelevant 0.7491 0.0198 0.7455 0.0218
64 misleading-extreme 0.7509 0.0416 0.7451 0.0299
64 misleading-moderate 0.7310 0.0993 0.6953 0.0688
64 null 0.7004 0.0848 0.6998 0.0516

128 instructive 0.7834 0.0451 0.7661 0.0551
128 irrelevant 0.7671 0.0343 0.7704 0.0200
128 misleading-extreme 0.7798 0.0334 0.7729 0.0255
128 misleading-moderate 0.7744 0.0550 0.7354 0.0842
128 null 0.7329 0.0695 0.7369 0.0389
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G.2 ALBERT on ANLI R1

32 64 128 256 512 1024
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num. shots template category median q3 - q1 mean std. dev.

32 instructive 0.3640 0.0232 0.3625 0.0166
32 irrelevant 0.3660 0.0140 0.3681 0.0134
32 misleading-extreme 0.3380 0.0100 0.3404 0.0081
32 misleading-moderate 0.3455 0.0130 0.3470 0.0098
32 null 0.3540 0.0177 0.3567 0.0122
64 instructive 0.3735 0.0408 0.3738 0.0251
64 irrelevant 0.3760 0.0210 0.3788 0.0178
64 misleading-extreme 0.3485 0.0135 0.3510 0.0129
64 misleading-moderate 0.3525 0.0197 0.3574 0.0171
64 null 0.3660 0.0208 0.3675 0.0184

128 instructive 0.4050 0.0562 0.3992 0.0356
128 irrelevant 0.4105 0.0240 0.4120 0.0176
128 misleading-extreme 0.3840 0.0262 0.3843 0.0204
128 misleading-moderate 0.3720 0.0295 0.3725 0.0199
128 null 0.3800 0.0235 0.3857 0.0247
256 instructive 0.4625 0.0490 0.4504 0.0450
256 irrelevant 0.4695 0.0175 0.4694 0.0147
256 misleading-extreme 0.4350 0.0297 0.4263 0.0231
256 misleading-moderate 0.4375 0.0492 0.4265 0.0353
256 null 0.4155 0.0475 0.4167 0.0365
512 instructive 0.5085 0.0235 0.4992 0.0434
512 irrelevant 0.5185 0.0230 0.5154 0.0186
512 misleading-extreme 0.5050 0.0172 0.5008 0.0177
512 misleading-moderate 0.4930 0.0285 0.4839 0.0413
512 null 0.4480 0.0550 0.4564 0.0399

1024 instructive 0.5555 0.0270 0.5557 0.0449
1024 irrelevant 0.5560 0.0345 0.5729 0.0351
1024 misleading-extreme 0.5330 0.0265 0.5477 0.0316
1024 misleading-moderate 0.5405 0.0247 0.5447 0.0388
1024 null 0.4990 0.0588 0.5062 0.0392
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G.3 T5 770M on RTE

4 8 16 32 64 128
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num. shots template category median q3 - q1 mean std. dev.

4 instructive 0.5433 0.0406 0.5493 0.0219
4 irrelevant 0.5469 0.0424 0.5532 0.0252
4 misleading-extreme 0.5560 0.0361 0.5561 0.0263
4 misleading-moderate 0.5542 0.0325 0.5531 0.0220
4 null 0.5451 0.0487 0.5451 0.0578
8 instructive 0.5487 0.0235 0.5516 0.0232
8 irrelevant 0.5415 0.0280 0.5480 0.0244
8 misleading-extreme 0.5632 0.0379 0.5545 0.0322
8 misleading-moderate 0.5487 0.0280 0.5543 0.0192
8 null 0.5217 0.0560 0.5122 0.0317

16 instructive 0.5668 0.0406 0.5662 0.0277
16 irrelevant 0.5578 0.0298 0.5558 0.0199
16 misleading-extreme 0.5632 0.0190 0.5634 0.0160
16 misleading-moderate 0.5632 0.0343 0.5666 0.0239
16 null 0.5542 0.0271 0.5469 0.0381
32 instructive 0.6047 0.0433 0.6078 0.0317
32 irrelevant 0.6029 0.0361 0.6025 0.0366
32 misleading-extreme 0.5939 0.0352 0.5996 0.0292
32 misleading-moderate 0.5884 0.0424 0.5986 0.0311
32 null 0.5722 0.0460 0.5772 0.0443
64 instructive 0.6264 0.0433 0.6318 0.0324
64 irrelevant 0.6697 0.0542 0.6585 0.0421
64 misleading-extreme 0.6318 0.0478 0.6336 0.0355
64 misleading-moderate 0.6227 0.0578 0.6195 0.0400
64 null 0.6173 0.0496 0.6115 0.0442

128 instructive 0.6859 0.0514 0.6820 0.0421
128 irrelevant 0.6805 0.0307 0.6749 0.0362
128 misleading-extreme 0.7022 0.0361 0.6987 0.0260
128 misleading-moderate 0.6516 0.0379 0.6597 0.0295
128 null 0.6191 0.1291 0.6277 0.0717
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G.4 T5 3B on RTE

4 8 16 32 64 128

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85 instructive
irrelevant
misleading-moderate
misleading-extreme
null

Number of Shots

RT
E 

Va
lid

at
io

n 
A

cc
ur

ac
y

num. shots template category median q3 - q1 mean std. dev.

4 instructive 0.5433 0.0442 0.5524 0.0297
4 irrelevant 0.5560 0.0469 0.5611 0.0308
4 misleading-extreme 0.5668 0.0442 0.5671 0.0251
4 misleading-moderate 0.5379 0.0415 0.5497 0.0247
4 null 0.5523 0.0514 0.5575 0.0334
8 instructive 0.5650 0.0514 0.5680 0.0427
8 irrelevant 0.5704 0.0343 0.5676 0.0332
8 misleading-extreme 0.5848 0.0397 0.5773 0.0431
8 misleading-moderate 0.5523 0.0442 0.5485 0.0309
8 null 0.5542 0.0523 0.5553 0.0459

16 instructive 0.5866 0.0505 0.6005 0.0467
16 irrelevant 0.5921 0.0406 0.5907 0.0279
16 misleading-extreme 0.5921 0.0262 0.5953 0.0271
16 misleading-moderate 0.5704 0.0298 0.5693 0.0212
16 null 0.5848 0.0614 0.5833 0.0481
32 instructive 0.6227 0.1056 0.6463 0.0757
32 irrelevant 0.6336 0.0623 0.6349 0.0416
32 misleading-extreme 0.6191 0.0542 0.6315 0.0393
32 misleading-moderate 0.6011 0.0298 0.6134 0.0440
32 null 0.5939 0.0848 0.6031 0.0548
64 instructive 0.7220 0.1227 0.7113 0.0784
64 irrelevant 0.7040 0.0578 0.7032 0.0408
64 misleading-extreme 0.7076 0.0478 0.7039 0.0352
64 misleading-moderate 0.6697 0.0957 0.6792 0.0569
64 null 0.6390 0.0984 0.6397 0.0618

128 instructive 0.7996 0.0496 0.7769 0.0627
128 irrelevant 0.7473 0.0415 0.7468 0.0271
128 misleading-extreme 0.7653 0.0262 0.7604 0.0295
128 misleading-moderate 0.7690 0.0632 0.7685 0.0373
128 null 0.6661 0.1318 0.6640 0.0716
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G.5 T0 3B on RTE
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num. shots template category median q3 - q1 mean std. dev.

4 instructive 0.6805 0.0704 0.6677 0.0580
4 irrelevant 0.6534 0.0596 0.6695 0.0450
4 misleading-extreme 0.6336 0.0379 0.6368 0.0469
4 misleading-moderate 0.6805 0.0966 0.6644 0.0525
4 null 0.6282 0.0442 0.6223 0.0292
8 instructive 0.6859 0.0361 0.6850 0.0438
8 irrelevant 0.6769 0.0487 0.6579 0.0674
8 misleading-extreme 0.6444 0.0749 0.6401 0.0543
8 misleading-moderate 0.6968 0.0478 0.6747 0.0530
8 null 0.6047 0.0514 0.6137 0.0357

16 instructive 0.7238 0.0325 0.7290 0.0284
16 irrelevant 0.7166 0.0433 0.7171 0.0315
16 misleading-extreme 0.6895 0.0415 0.6879 0.0410
16 misleading-moderate 0.7166 0.0523 0.7191 0.0337
16 null 0.6227 0.0596 0.6322 0.0423
32 instructive 0.7545 0.0542 0.7627 0.0369
32 irrelevant 0.7599 0.0695 0.7621 0.0397
32 misleading-extreme 0.7256 0.0451 0.7278 0.0361
32 misleading-moderate 0.7491 0.0406 0.7551 0.0279
32 null 0.6968 0.0632 0.6859 0.0578
64 instructive 0.8014 0.0289 0.8027 0.0190
64 irrelevant 0.7978 0.0298 0.8040 0.0204
64 misleading-extreme 0.7834 0.0271 0.7827 0.0201
64 misleading-moderate 0.7978 0.0361 0.8000 0.0225
64 null 0.7112 0.0912 0.7053 0.0600

128 instructive 0.8303 0.0253 0.8292 0.0161
128 irrelevant 0.8231 0.0153 0.8244 0.0118
128 misleading-extreme 0.8087 0.0190 0.8088 0.0174
128 misleading-moderate 0.8195 0.0135 0.8215 0.0152
128 null 0.7238 0.0966 0.7401 0.0505
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G.6 T0 3B on ANLI R1
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num. shots template category median q3 - q1 mean std. dev.

32 instructive 0.3640 0.0185 0.3664 0.0129
32 irrelevant 0.3660 0.0190 0.3637 0.0119
32 misleading-extreme 0.3610 0.0200 0.3638 0.0117
32 misleading-moderate 0.3650 0.0175 0.3631 0.0125
32 null 0.3580 0.0115 0.3580 0.0096
64 instructive 0.3835 0.0395 0.3797 0.0255
64 irrelevant 0.3810 0.0160 0.3878 0.0141
64 misleading-extreme 0.3830 0.0340 0.3753 0.0223
64 misleading-moderate 0.3775 0.0400 0.3749 0.0259
64 null 0.3785 0.0368 0.3817 0.0275

128 instructive 0.4260 0.0233 0.4226 0.0214
128 irrelevant 0.4150 0.0170 0.4190 0.0219
128 misleading-extreme 0.3930 0.0340 0.3975 0.0227
128 misleading-moderate 0.4140 0.0318 0.4092 0.0274
128 null 0.3850 0.0247 0.3852 0.0179
256 instructive 0.4790 0.0197 0.4804 0.0181
256 irrelevant 0.4650 0.0185 0.4640 0.0161
256 misleading-extreme 0.4700 0.0355 0.4654 0.0259
256 misleading-moderate 0.4690 0.0242 0.4670 0.0167
256 null 0.4355 0.0460 0.4260 0.0388
512 instructive 0.5135 0.0185 0.5123 0.0147
512 irrelevant 0.5080 0.0205 0.5088 0.0147
512 misleading-extreme 0.5010 0.0265 0.5007 0.0233
512 misleading-moderate 0.5065 0.0105 0.5066 0.0127
512 null 0.4590 0.0565 0.4615 0.0389

1024 instructive 0.5375 0.0477 0.5539 0.0406
1024 irrelevant 0.5490 0.0740 0.5690 0.0406
1024 misleading-extreme 0.5350 0.0255 0.5447 0.0304
1024 misleading-moderate 0.5350 0.0467 0.5403 0.0279
1024 null 0.5225 0.0543 0.5353 0.0651
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G.7 T5 11B, T0 11B, and GPT-3 175B (Figure 2)

model template category median q3 - q1 mean std. dev.

GPT-3 (175B) instructive 0.6534 0.0722 0.6472 0.0429
GPT-3 (175B) irrelevant 0.6101 0.0361 0.6260 0.0326
GPT-3 (175B) misleading-extreme 0.6173 0.0072 0.6217 0.0143
GPT-3 (175B) misleading-moderate 0.6498 0.0578 0.6318 0.0480
T5 LMA (11B) instructive 0.6679 0.1462 0.6797 0.0823
T5 LMA (11B) irrelevant 0.6426 0.0776 0.6368 0.0488
T5 LMA (11B) misleading-extreme 0.5993 0.0794 0.6070 0.0619
T5 LMA (11B) misleading-moderate 0.5957 0.1137 0.6072 0.0653
T5 LMA (11B) null 0.5560 0.0442 0.5578 0.0332
T0 (11B) instructive 0.7942 0.0623 0.7959 0.0392
T0 (11B) irrelevant 0.7906 0.0632 0.7942 0.0384
T0 (11B) misleading-extreme 0.7401 0.0650 0.7338 0.0496
T0 (11B) misleading-moderate 0.7942 0.0397 0.7858 0.0356
T0 (11B) null 0.6986 0.0695 0.6847 0.0484
T0++ (11B) instructive 0.8321 0.0316 0.8319 0.0282
T0++ (11B) irrelevant 0.8267 0.0433 0.8207 0.0323
T0++ (11B) misleading-extreme 0.8051 0.0614 0.8029 0.0593
T0++ (11B) misleading-moderate 0.8159 0.0487 0.8039 0.0333
T0++ (11B) null 0.7509 0.0505 0.7379 0.0362
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H Results of Individual Templates

H.1 ALBERT
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{premise} If bonito flakes boil more than a few seconds, the stock becomes too strong? "{hypothesi
{premise} Inflections are annoying and thank god that Middle English got rid of most of them. "{hy
{premise} Is the pious loved by the gods because it is pious? Or is it pious because it is loved by the
{premise} Single-family zoning is bad for American cities. "{hypothesis}"? {mask}
{premise} When Bolyai sent Gauss his discovery of non-Euclidean geometry, Gauss replied that he 
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Figure 17: ALBERT with all irrelevant templates and the aggregated instructive for reference.
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aggregated instructive templates
{premise} Are there lots of similar words in "{hypothesis}"? {mask}
{premise} Can that be paraphrased as: "{hypothesis}"? {mask}
{premise} Can that be summarized as "{hypothesis}"? {mask}
{premise} Do most of the above words appear in the following passage? {hypothesis} {mask}
{premise} Does that have the same meaning as "{hypothesis}"? {mask}
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Figure 18: ALBERT with all misleading-moderate templates and the aggregated instructive for reference.
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aggregated instructive templates
{premise} Does the paragraph start with "the"? {hypothesis} {mask}
{premise} Is the sentiment positive? {hypothesis} {mask}
{premise} Is this French? {hypothesis} {mask}
{premise} Is this a sports news? {hypothesis} {mask}
{premise} Is this grammatically correct? {hypothesis} {mask}
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Figure 19: ALBERT with all misleading-extreme templates and the aggregated instructive for reference.

2329



4 8 16 32 64 128 256

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Given that {premise} Does it follow that "{hypothesis}"? {mask}
Given that {premise} Therefore, it must be true that "{hypothesis}"? {mask}
Given {premise} Is it guaranteed true that "{hypothesis}"? {mask}
Given {premise} Should we assume that "{hypothesis}" is true? {mask}
Suppose {premise} Can we infer that "{hypothesis}"? {mask}
{premise} question: {hypothesis} Yes or no? answer: {mask}
{premise} Are we justified in saying that "{hypothesis}"? {mask}
{premise} Based on the previous passage, is it true that "{hypothesis}"? {mask}
{premise} Question: Does this imply that "{hypothesis}"? {mask}
{premise} Using only the above description and what you know about the world, "{hypothesis}" is d
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Figure 20: ALBERT with all instructive templates.
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H.2 T0 (3B)
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{premise} If bonito flakes boil more than a few seconds, the stock becomes too strong? "{hypothesi
{premise} Inflections are annoying and thank god that Middle English got rid of most of them. "{hy
{premise} Is the pious loved by the gods because it is pious? Or is it pious because it is loved by the
{premise} Single-family zoning is bad for American cities. "{hypothesis}"?
{premise} When Bolyai sent Gauss his discovery of non-Euclidean geometry, Gauss replied that he 
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Figure 21: T0 (3B) with all irrelevant templates and the aggregated instructive for reference.

2331



4 8 16 32 64 128 256

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

aggregated instructive templates
{premise} Are there lots of similar words in "{hypothesis}"?
{premise} Can that be paraphrased as: "{hypothesis}"?
{premise} Can that be summarized as "{hypothesis}"?
{premise} Do most of the above words appear in the following passage? {hypothesis}
{premise} Does that have the same meaning as "{hypothesis}"?
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Figure 22: T0 (3B) with all misleading-moderate templates and the aggregated instructive for reference.
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aggregated instructive templates
{premise} Does the paragraph start with "the"? {hypothesis}
{premise} Is the sentiment positive? {hypothesis}
{premise} Is this French? {hypothesis}
{premise} Is this a sports news? {hypothesis}
{premise} Is this grammatically correct? {hypothesis}
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Figure 23: T0 (3B) with all misleading-extreme templates and the aggregated instructive for reference.
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Given that {premise} Does it follow that "{hypothesis}"?
Given that {premise} Therefore, it must be true that "{hypothesis}"?
Given {premise} Is it guaranteed true that "{hypothesis}"?
Given {premise} Should we assume that "{hypothesis}" is true?
Suppose {premise} Can we infer that "{hypothesis}"?
{premise} question: {hypothesis} Yes or no? answer:
{premise} Are we justified in saying that "{hypothesis}"?
{premise} Based on the previous passage, is it true that "{hypothesis}"?
{premise} Question: Does this imply that "{hypothesis}"?
{premise} Using only the above description and what you know about the world, "{hypothesis}" is d

Number of Shots

RT
E 

Va
lid

at
io

n 
A

cc
ur

ac
y

Figure 24: T0 (3B) with all instructive templates.
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H.3 T5 LM-Adapted (3B)
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{premise} If bonito flakes boil more than a few seconds, the stock becomes too strong? "{hypothesi
{premise} Inflections are annoying and thank god that Middle English got rid of most of them. "{hy
{premise} Is the pious loved by the gods because it is pious? Or is it pious because it is loved by the
{premise} Single-family zoning is bad for American cities. "{hypothesis}"?
{premise} When Bolyai sent Gauss his discovery of non-Euclidean geometry, Gauss replied that he 
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Figure 25: T5 LM-Adapted (3B) with all irrelevant templates and the aggregated instructive for reference.
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aggregated instructive templates
{premise} Are there lots of similar words in "{hypothesis}"?
{premise} Can that be paraphrased as: "{hypothesis}"?
{premise} Can that be summarized as "{hypothesis}"?
{premise} Do most of the above words appear in the following passage? {hypothesis}
{premise} Does that have the same meaning as "{hypothesis}"?
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Figure 26: T5 LM-Adapted (3B) with all misleading-moderate templates and the aggregated instructive for refer-
ence.
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{premise} Does the paragraph start with "the"? {hypothesis}
{premise} Is the sentiment positive? {hypothesis}
{premise} Is this French? {hypothesis}
{premise} Is this a sports news? {hypothesis}
{premise} Is this grammatically correct? {hypothesis}
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Figure 27: T5 LM-Adapted (3B) with all misleading-extreme templates and the aggregated instructive for refer-
ence.
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Given that {premise} Does it follow that "{hypothesis}"?
Given that {premise} Therefore, it must be true that "{hypothesis}"?
Given {premise} Is it guaranteed true that "{hypothesis}"?
Given {premise} Should we assume that "{hypothesis}" is true?
Suppose {premise} Can we infer that "{hypothesis}"?
{premise} question: {hypothesis} Yes or no? answer:
{premise} Are we justified in saying that "{hypothesis}"?
{premise} Based on the previous passage, is it true that "{hypothesis}"?
{premise} Question: Does this imply that "{hypothesis}"?
{premise} Using only the above description and what you know about the world, "{hypothesis}" is d
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Figure 28: T5 LM-Adapted (3B) with all instructive templates.
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I Zero-Shot Results (Figure 4)

model category template name accuracy

T0 (3B) instructive MNLI_YN 0.7148
T0 (3B) instructive GPT_YN 0.6823
T0 (3B) instructive justified_in_saying 0.6426
T0 (3B) instructive should_assume 0.6498
T0 (3B) instructive is_it_true 0.6462
T0 (3B) instructive guaranteed_true 0.6209
T0 (3B) instructive can_we_infer 0.6354
T0 (3B) instructive does_it_follow 0.6715
T0 (3B) instructive does_this_imply 0.6679
T0 (3B) instructive modal_be_true 0.6354
T0 (3B) misleading-moderate words_appear 0.6462
T0 (3B) misleading-moderate similar_words 0.6354
T0 (3B) misleading-moderate same_meaning 0.6968
T0 (3B) misleading-moderate paraphrase 0.6390
T0 (3B) misleading-moderate summarize 0.6462
T0 (3B) misleading-extreme start_with_the 0.6968
T0 (3B) misleading-extreme grammatical 0.6859
T0 (3B) misleading-extreme sentiment 0.6462
T0 (3B) misleading-extreme sportsball 0.6426
T0 (3B) misleading-extreme french 0.5668
T0 (3B) irrelevant zoning 0.5704
T0 (3B) irrelevant gauss 0.5523
T0 (3B) irrelevant katsuobushi 0.5668
T0 (3B) irrelevant inflection 0.6751
T0 (3B) irrelevant euthyphro 0.6606
T0 (3B) null concat_PHM 0.6426
T0 (3B) null concat_HPM 0.6029

model category template name accuracy

T0 (11B) instructive MNLI_YN 0.8051
T0 (11B) instructive GPT_YN 0.8014
T0 (11B) instructive justified_in_saying 0.7112
T0 (11B) instructive should_assume 0.7437
T0 (11B) instructive is_it_true 0.8051
T0 (11B) instructive guaranteed_true 0.6968
T0 (11B) instructive can_we_infer 0.7690
T0 (11B) instructive does_it_follow 0.7509
T0 (11B) instructive does_this_imply 0.8014
T0 (11B) instructive modal_be_true 0.6895
T0 (11B) misleading-moderate words_appear 0.7184
T0 (11B) misleading-moderate similar_words 0.7148
T0 (11B) misleading-moderate same_meaning 0.7256
T0 (11B) misleading-moderate paraphrase 0.7256
T0 (11B) misleading-moderate summarize 0.6679
T0 (11B) misleading-extreme start_with_the 0.6823
T0 (11B) misleading-extreme grammatical 0.6390
T0 (11B) misleading-extreme sentiment 0.6318
T0 (11B) misleading-extreme sportsball 0.5921
T0 (11B) misleading-extreme french 0.5271
T0 (11B) irrelevant zoning 0.6318
T0 (11B) irrelevant gauss 0.5560
T0 (11B) irrelevant katsuobushi 0.5740
T0 (11B) irrelevant inflection 0.7004
T0 (11B) irrelevant euthyphro 0.6931
T0 (11B) null concat_PHM 0.6570
T0 (11B) null concat_HPM 0.6209
T0++ (11B) instructive MNLI_YN 0.8592
T0++ (11B) instructive GPT_YN 0.8231
T0++ (11B) instructive justified_in_saying 0.7726
T0++ (11B) instructive should_assume 0.8231
T0++ (11B) instructive is_it_true 0.8556
T0++ (11B) instructive guaranteed_true 0.8231
T0++ (11B) instructive can_we_infer 0.8303
T0++ (11B) instructive does_it_follow 0.7798
T0++ (11B) instructive does_this_imply 0.8664
T0++ (11B) instructive modal_be_true 0.8087
T0++ (11B) misleading-moderate words_appear 0.7076
T0++ (11B) misleading-moderate similar_words 0.7329
T0++ (11B) misleading-moderate same_meaning 0.7545
T0++ (11B) misleading-moderate paraphrase 0.7617
T0++ (11B) misleading-moderate summarize 0.6968
T0++ (11B) misleading-extreme start_with_the 0.6498
T0++ (11B) misleading-extreme grammatical 0.7762
T0++ (11B) misleading-extreme sentiment 0.7365
T0++ (11B) misleading-extreme sportsball 0.5307
T0++ (11B) misleading-extreme french 0.4838
T0++ (11B) irrelevant zoning 0.5018
T0++ (11B) irrelevant gauss 0.5090
T0++ (11B) irrelevant katsuobushi 0.4801
T0++ (11B) irrelevant inflection 0.7220
T0++ (11B) irrelevant euthyphro 0.6715
T0++ (11B) null concat_PHM 0.6426
T0++ (11B) null concat_HPM 0.6029
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J Comparison of LM targets, Controlling for the Template
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Figure 29: The best performing irrelevant prompt for ALBERT, {premise} Single-family zoning is
bad for American cities. "{hypothesis}"? [mask] with all LM targets.
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Figure 30: The best-performing misleading prompt for ALBERT, {premise} Does the paragraph
start with "the"? [mask] "{hypothesis}" with all LM targets.
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Figure 31: The best-performing null prompt for ALBERT, {premise} [mask] "{hypothesis}" with all
LM targets.
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K Preliminary Results on HANS

Figure 32: Few-shot RTE-trained ALBERT’s zero-shot performance on HANS (McCoy et al., 2019). L = lexical,
S = subsequence, C = constituency. E = true label is entailment. N = true label is non-entailment. Apologies but
note the template category colors are different from those in the main text. “Intuitive” = instructive templates. In
general, models perform similarly with instructive and irrelevant templates, but models with misleading templates
fare worse, especially for lexical non-entailment cases (LN, fourth row). A full analysis will be furnished in a
future version of this paper.
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L Preliminary Results on Winograd

category template accuracy

instructive Is “{pronoun}" the same as {referent}? Yes or No? 0.6538
instructive Does “{pronoun}" refer to {referent}? Yes or No? 0.6731
instructive Is “{pronoun}" {referent}? Yes or No? 0.5385
instructive Should “{pronoun}" be {referent}? Yes or No? 0.5962
instructive Does “{pronoun}" mean {referent}? Yes or No? 0.6442
instructive Is“{pronoun}" equivalent to {referent}? Yes or No? 0.6058
instructive Does “{pronoun}" stand for {referent}? Yes or No? 0.6346
instructive Can the pronoun “{pronoun}" be replaced with {referent}? Yes or No? 0.6250

misleading-extreme Did “{pronoun}" eat cakes with {referent}? Yes or No? 0.6346
misleading-extreme Is “{pronoun}" mother of {referent}? Yes or No? 0.6346
misleading-extreme Was “{pronoun}" friend to {referent}? Yes or No? 0.6058
misleading-extreme Did “{pronoun}" marry {referent}? Yes or No? 0.6346
misleading-extreme Can “{pronoun}" rent a car with {referent}? Yes or No? 0.6346
misleading-extreme Should “{pronoun}" be brother of {referent}? Yes or No? 0.6346
misleading-extreme Did “{pronoun}" speak to {referent}? Yes or No? 0.5673
misleading-extreme Is “{pronoun}" cousins with {referent}? Yes or No? 0.6154
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Figure 33: Zero-shot accuracy of T0 on Winograd Schema Challenge (Levesque et al., 2012; SuperGLUE version).
We find no statistically significant difference between instructive and misleading-extreme templates.
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