
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2116 - 2127

July 10-15, 2022 ©2022 Association for Computational Linguistics

KroneckerBERT: Significant Compression of Pre-trained Language Models
Through Kronecker Decomposition and Knowledge Distillation

Marzieh S. Tahaei
Huawei Noah’s Ark Lab

marzieh.tahaei@huawei.com

Ella Charlaix
Huawei Noah’s Ark Lab
charlaixe@gmail.com

Vahid Partovi Nia
Huawei Noah’s Ark Lab

vahid.partovinia@huawei.com

Ali Ghodsi
Department of Statistics

Actuarial Science, University of Waterloo
ali.ghodsi@uwaterloo.com

Mehdi Rezagholizadeh
Huawei Noah’s Ark Lab

Mehdi.rezagholizadeh@huawei.com

Abstract
The development of over-parameterized pre-
trained language models has made a significant
contribution toward the success of natural lan-
guage processing. While over-parameterization
of these models is the key to their generaliza-
tion power, it makes them unsuitable for de-
ployment on low-capacity devices. We push
the limits of state-of-the-art Transformer-based
pre-trained language model compression us-
ing Kronecker decomposition. We present our
KroneckerBERT, a compressed version of the
BERTBASE model obtained by compressing the
embedding layer and the linear mappings in the
multi-head attention, and the feed-forward net-
work modules in the Transformer layers. Our
KroneckerBERT is trained via a very efficient
two-stage knowledge distillation scheme us-
ing far fewer data samples than state-of-the-art
models like MobileBERT and TinyBERT. We
evaluate the performance of KroneckerBERT
on well-known NLP benchmarks. We show
that our KroneckerBERT with compression fac-
tors of 7.7× and 21× outperforms state-of-the-
art compression methods on the GLUE and
SQuAD benchmarks. In particular, using only
13% of the teacher model parameters, it retain
more than 99% of the accuracy on the majority
of GLUE tasks.

1 Introduction

In recent years, the emergence of Pre-trained Lan-
guage Models (PLMs) has led to a significant break-
through in Natural Language Processing (NLP).
The introduction of Transformers and unsupervised
pre-training on enormous unlabeled data are the
two main factors that contribute to this success.

Transformer-based models (Devlin et al., 2018;
Radford et al., 2019; Yang et al., 2019; Shoeybi
et al., 2019) are powerful yet highly over-
parameterized. The enormous size of these models

does not meet the constraints imposed by edge de-
vices on memory, latency, and energy consumption.
Therefore there has been a growing interest in de-
veloping new methodologies and frameworks for
the compression of these large PLMs. Similar to
other deep learning models, the main directions for
the compression of these models include low-bit
quantization (Gong et al., 2014; Prato et al., 2019),
network pruning (Han et al., 2015), matrix decom-
position (Yu et al., 2017; Lioutas et al., 2020) and
Knowledge distillation (KD) (Hinton et al., 2015).
These methods are either used in isolation or in
combination to improve compression-performance
trade-off.

Recent works have been relatively successful
in compressing Transformer-based PLMs to a cer-
tain degree (Sanh et al., 2019; Sun et al., 2019;
Jiao et al., 2019; Sun et al., 2020; Xu et al., 2020;
Wang et al., 2020; Kim et al., 2021); however, mod-
erate and extreme compression of these models
(compression factors >5 and 10 resepctively) is
still quite challenging. In particular, several works
(Mao et al., 2020; Zhao et al., 2019a, 2021) that
have tried to go beyond the compression factor of
10, have done so at the expense of a significant drop
in performance.

Following the classical assumption that matri-
ces often follow a low-rank structure, low-rank de-
composition methods have been used for compres-
sion of weight matrices in deep learning models
(Yu et al., 2017; Swaminathan et al., 2020; Winata
et al., 2019) and especially Transformer-based mod-
els (Noach and Goldberg, 2020; Mao et al., 2020).
However, low-rank decomposition methods only
exploit redundancies of the weight matrix in the
horizontal and vertical dimensions and thus limit
the flexibility of the compressed model. Kronecker
decomposition on the other hand exploits redun-
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Figure 1: An example of Kronecker product of two 2 by
2 matrices.

dancies in predefined patches and hence allows
for more flexibility in their representation. Recent
works prove Kronecker product to be more effec-
tive in retaining accuracy after compression than
SVD (Thakker et al., 2019).

This work proposes a novel framework that
uses Kronecker decomposition for compression
of Transformer-based PLMs and provides a very
promising compression-performance trade-off for
medium and high compression levels, with 13%
and 5% of the original model parameters respec-
tively. We use Kronecker decomposition for the
compression of both Transformer layers and the
embedding layer. For Transformer layers, the com-
pression is achieved by representing every weight
matrix both in the multi-head attention (MHA) and
the feed-forward neural network (FFN) as a Kro-
necker product of two smaller matrices. We also
propose a Kronecker decomposition for compres-
sion of the embedding layer. Previous works have
tried different techniques to reduce the enormous
memory consumption of this layer (Khrulkov et al.,
2019; Li et al., 2018). Our Kronecker decomposi-
tion method can substantially reduce the amount of
required memory while maintaining low computa-
tion.

Using Kronecker decomposition for large com-
pression factors leads to a reduction in the model
expressiveness. This is due to the nature of the
Kronecker product and the fact that elements in
this representation are tied together. To address
this issue, we propose to distill knowledge from the
intermediate layers of the original uncompressed
network to the Kronecker network during training.

Training of the state-of-the art BERT compres-
sion models (Zhao et al., 2019a,b; Sun et al., 2020,
2019) involve an extensive training which requires
vast computational resources. For example in (Sun
et al., 2020), first a specially designed teacher, i.e
IB-BERTLARGE is trained from scratch on the en-

tire English wikipedia and Book Corpus. The stu-
dent is then pretrained on the same corpus via KD
while undergoing an additional progressive KD
phase. Another example is TinyBERT(Jiao et al.,
2019) which requires pretraining on the entire En-
glish Wikipedia and also uses extensive data aug-
mentation (20×) for fine-tuning on the downstream
tasks. We show that our Kronecker BERT can out
perform state-of-the-art with significantly less train-
ing requirements. More precisely, our Kronecker-
BERT model undergoes a very light pretraining on
only 10% of the English Wikipedia for 3 epochs
followed by finetuning on the original downstream
data.

Note that, while our evaluations in this work
are limited to BERT, this proposed compression
method can be directly used to compress other
Transformer-based NLP models. The main con-
tributions of this paper are as follows:

• Compression of the embedding layer using
the Kronecker decomposition with very low
computational overhead.

• Deploying the Kronecker decomposition for
the compression of Transformer modules.

• Efficient training the compressed model via
an intermediate-layer KD that uses only 10%
of English Wikipedia in the pretraining stage.

• Evaluating the proposed framework for com-
pression of BERTBASE model on well-known
NLP benchmarks

2 Related Work

In this section, we first go through some of the
most related works for BERT compression in the
literature and then review the few works that have
used Kronecker decomposition for compression of
CNNs and RNNs.

2.1 Pre-trained Language Model
Compression

In recent years, many model compression methods
have been proposed to reduce the size of PLMs
while maintaining their performance on different
tasks. KD, which was first introduced by (Buciluǎ
et al., 2006) and then later generalized by (Hin-
ton et al., 2015), is a popular compression method
where a small student network is trained to mimic
the behavior of a larger teacher network. Recently,
using KD for the compression of PLMs has gained
a growing interest in the NLP community. BERT-
PKD (Sun et al., 2019), uses KD to transfer knowl-
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edge from the teacher’s intermediate layers to the
student in the fine-tuning stage. TinyBERT (Jiao
et al., 2019) uses a two-step distillation method
applied both at the pre-training and at the fine-
tuning stage. MobileBERT (Sun et al., 2020) also
uses an intermediate-layer knowledge distillation
methodology, but the teacher and the student are de-
signed by incorporating inverted-bottleneck struc-
ture. Authors in (Zhao et al., 2019a) use a mixed-
vocabulary training method to train models with
a smaller vocabulary. They combine this method
with intermediate layer KD through shared projec-
tion matrices. In (Mao et al., 2020), the authors
present LadaBERT, a lightweight model compres-
sion pipeline combining SVD-based matrix factor-
ization with weight pruning while using KD for
training to achieve a high compression factor.

2.2 Kronecker Decomposition
Kronecker products have previously been utilized
for the compression of CNNs and small RNNs.
Zhou and Wu 2015 was the first work that uti-
lized Kronecker decomposition for NN compres-
sion. They used a summation of multiple Kro-
necker products to replace weight matrices in the
fully connected and convolution layers in simple
CNN architectures like AlexNet. Thakker et al.,
2020 used Kronecker product for the compression
of very small language models for deployment on
IoT devices. To reduce the amount of performance
drop after compression, they propose a hybrid ap-
proach where the weight matrix is decomposed
into an upper part and lower part. The upper part
remains un-factorized, and only the lower part is
factorized using the Kronecker product. More re-
cently, Thakker et al. 2020 tried to extend the pre-
vious work to non-IoT applications. Inspired by
robust PCA, they add a sparse matrix to Kronecker
product factorization and propose an algorithm for
learning these two matrices together.

To the best of our knowledge, this work is the
first attempt to compress Transformer-based lan-
guage models using Kronecker decomposition. Un-
like prior arts, we use a simple Kronecker product
of two matrices for the representation of linear lay-
ers and uses KD framework to improve the perfor-
mance.

3 Methodology

In this section, we first introduce the background
of Kronecker decomposition and then explain our

Look-up table Look-up table

see see

=

Conventional Proposed  
(Kronecker Embedding)

Figure 2: Illustration of our proposed method for the
compression of the embedding layer. Left: conven-
tional embedding stored in a lookup table. Right: Our
proposed compression method where the original em-
bedding matrix is represented as a Kronecker product
of a matrix and a row vector. The matrix is stored in a
lookup table to minimize computation overhead.

compression method in detail.

3.1 Kronecker Product
Kronecker product is an operation that is applied
on two matrices resulting in a block matrix. Let
A be a matrix ∈ IRm1×n1 , and let B be a matrix
∈ IRm2×n2 , then the Kronecker product of A and
B denoted by ⊗ is a block matrix, where each block
(i, j) is obtained by multiplying the element Ai,j

by matrix B. Therefore, the resulting matrix A⊗B
is ∈ IRm×n where m = m1m2 and n = n1n2.
Figure 1 illustrates the Kronecker product between
two small matrices. See (Graham, 2018) for more
detailed information on Kronecker products. Re-
placing matrix product with Kronecker product re-
places the projection of the original linear space
by a more constrained linear space in in which the
projection angle is defined by the core tensors, see
Figure 5 in the appendix.

3.2 Kronecker Decomposition
Given a shape for A and B, i.e. (m1, n1,m2, n2),
any matrix W ∈ IRm×n, can be approximated
as a summation of Kronecker product of matrices
Ar ∈ IRm1×n1 and Br ∈ IRm2×n2 :

W ≈
I∑

i=1

Ai ⊗ Bi (1)

we can obtain exact representation of W by setting
the number of Kronecker summations I equal to
min(m1n1,m2n2). However, in order to achieve
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compression, a much smaller value of I is often
used. In fact prior arts show promising results
using a single Kronecker product (Thakker et al.,
2019, 2020). When decomposing a matrix W ∈
IRm×n, as A⊗B, there are different choices for the
shapes of A and B. The dimensions of A i.e m1

and n1 can be any factor of m and n respectively,
the dimensions of B will subsequently be equal to
m2 = m/m1 and n2 = n/n1.

3.2.1 The Nearest Kronecker Product
The nearest Kronecker problem is defined as find-
ing matrices A and B that their Kronecker product
best approximate a given W (for a given shape of
A and B):

min
A,B

∥W −A⊗B∥F . (2)

(Van Loan and Pitsianis, 1993) show that this
problem can be solved using rank-1 SVD approxi-
mation of rearranged W:

min
A,B

∥∥∥Rn1,m1(W)− V(A)V(B)⊤
∥∥∥
F
. (3)

Here, V is an operation that transforms a matrix to
a vector (vectorizes) by stacking its columns and
Rm2,n2 is a rearrangement operation that extracts
patches of size m2 × n2, vectorizes the resulting
patches and finally concatenates them together to
form a matrix of size m2n2 × m1n1. The rear-
rangement operation turns the Kronecker product
into a matrix of rank one while retaining the Frobe-
nius norm making the minimizations in Eq.3 and
Eq.2 equivalant. Hence, the rank-one SVD solu-
tion U(:,1)σV(:,1)T can be used to obtain the
optimum A and B as:

A = V−1
m1,n1

(√
σU(:, 1)

)
(4)

B = V−1
m2,n2

(√
σV(:, 1)

)
(5)

Here, V−1
m1,n1

(x) is an operation that transforms a
vector x to a matrix of size m1 × n1 by dividing
the vector to columns of size m1 and concatenating
the resulting columns together. Similarly, rank-r
SVD decomposition can be used to approximate
summation of Kronecker products. We use this
method for the initialization of Kronecker layers
from the non-compressed model.

3.2.2 Relation to SVD
By choosing n1 = 1 and m2 = 1, A becomes a
column vector of size ∈ IRm×1 and B becomes a

row vector of size IR1×n, then the Kronecker de-
composition becomes equivalent to rank-1 SVD
decomposition. Therefore rank-1 SVD is a spe-
cial case of Kronecker product decomposition and
rank-r SVD is a special case of Kronecker product
summation decomposition. This indicates that with
Kronecker product one can achieve more flexibility
than low rank decomposition.

3.2.3 Memory and Computation Reduction
When representing W as A ⊗ B, the number of
elements is reduced from mn to m1n1 + m2n2.
Moreover, using the Kronecker product to repre-
sent linear layers can reduce the required compu-
tation. In fact, a linear projection of any vector x
can be performed efficiently without explicit recon-
struction of A ⊗ B using the following popular
property of Kronecker product:

(A⊗B)X = V(BV−1
n2,n1

(X)A⊤) (6)

where A⊤ is A transpose. The consequence of per-
forming multiplication in this way is that it reduces
the number of FLOPs from (2m1m2 − 1)n1n2 to:

min
(
(2n2 − 1)m2n1 + (2n1 − 1)m2m1,

(2n1 − 1)n2m1 + (2n2 − 1)m2m1

)
(7)

3.3 Kronecker Embedding Layer
The embedding layer in large language models is a
very large lookup table X ∈ IRv×d, where v is the
size of the dictionary and d is the embedding di-
mension. In order to compress X using Kronecker
decomposition, the first step is to define the shape
of Kronecker factors AE and BE . We define AE

to be a matrix of size v × d
n and BE to be a row

vector of size n. There are two reasons for defin-
ing BE as a row vector. 1) it allows disentangled
embedding of each word since every word has a
unique row in AE . 2) the embedding of each word
can be obtained efficiently in O(d). More precisely,
the embedding for the i’th word in the dictionary
can be obtained by the Kronecker product between
AE

i and BE :

Xi = AE
i ⊗BE (8)

whereAE is stored as a lookup table. Note that
since AE

i is of size 1× d
n and BE is of size 1×n, the

computation complexity of this operation is O(d).
Figure 2 shows an illustration of the Kronecker
embedding layer.
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Figure 3: Illustration of the proposed framework. Left: A diagram of the teacher BERT model and the student
KroneckerBERT. Right: The two-stage KD methodology used to train KroneckerBERT.

3.4 Kronecker Transformer
The Transformer layer is composed of two main
components: MHA and FFN. We use Kronecker de-
composition to compress both. In the Transformer
block, the self-attention mechanism is done by pro-
jecting the input into the Key, Query, and Value
embeddings and obtaining the attention matrices
through the following:

O = QK⊤
√
dk

(9)

Attention(Q,K,V) = softmax(O)V

where Q, K, and V are obtained by multiplying
the input by WQ, WK , WV respectively. In a
MHA module, there is a separate WQl , WKl , and
WVl matrix per attention head to allow for a richer
representation of the data. In the implementation
usually, matrices from all heads are stacked to-
gether resulting in 3 matrices W′k, W′Q and W′V .
Instead of decomposing the matrices of each head
separately, we use Kronecker decomposition after
concatenation:

W′K = Ak ⊗BK (10)

W′Q = AQ ⊗BQ

W′V = AV ⊗BV

By choosing m2 to be smaller than the output di-
mension of each attention head, matrix B in the
Kronecker decomposition is shared among all at-
tention heads resulting in more compression. The
result of applying Eq.9 is then fed to a linear map-
ping (WO) to produce the MHA output. We use

Kronecker decomposition for compressing this lin-
ear mapping as well the two weight matrices in the
subsequent FFN block:

WO = AO ⊗BO (11)

W1 = A1 ⊗B1 (12)

W2 = A2 ⊗B2 (13)

3.5 Knowledge Distillation
In the following section, we describe how KD is
used to improve the training of the KroneckerBERT
model.

3.5.1 Intermediate KD
Let S be the student, and T be the teacher, then
for a batch of data (X,y), we define fS

l (X)
andfT

l (X) as the output of the lth layer for the
student network and the teacher network respec-
tively. The teacher here is the BERTBASE and the
student is its corresponding KroneckerBERT that is
obtained by replacing the embedding layer and the
linear mappings in MHA and FFN modules with
Kronecker factors(see Sections 3.3 and 3.4 for de-
tails). Note that like other decomposition methods,
when we use Kronecker factorization to compress
the model, the number of layers and the dimen-
sions of the input and output of each layer remain
intact. Therefore, when performing intermediate
layer KD, we can directly obtain the difference in
the output of a specific layer in the teacher and
student networks without the need for projection.
In the proposed framework, the intermediate KD
from the teacher to student occurs at the embedding
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Model Compression
Factor

FLOPS WK,WQ,
WV,WO

W1,W2
T WE Number of sums

n,m d
BERTBASE 1× 21.7B 768, 768 768, 3072 768 1

n1,m1 n
KroneckerBERT8 7.8× 5.2B 384, 384 2, 8 8 1
KroneckerBERT21 21× 1.4B 48, 384 2, 16 16 1
KroneckerBERT5 5.5 × 9.4B 384, 384 384, 384 12 4

Table 1: Configuration of the Kronecker layers for the three KroneckerBERT models used in this paper. n and m
are the input and output dimensions of the weight matrices (W ∈ IRm×n). m1, n1 indicates the shape of the first
Kronecker factor (A ∈ IRm1×n1 ). For embedding layer we only need to set the size of the row vector BE ∈ IR1×n.

layer output, attention matrices and FFN outputs:

LEmbedding(X) = MSE
(
ES ,ET )

LAttention(X) =
∑

l

MSE
(
OS

l ,O
T
l

)

LFFN(X) =
∑

l

MSE
(
HS

l ,H
T
l

)

where ES and ET are the output of the embedding
layer from the student and the teacher respectively.
OS

l and OT
l are the attention matrices (Eq.9), HS

l

and HT
l are the outputs of the FFN, of layer l in

the student and the teacher respectively.
Our final loss is as follows:

L(x, y) =
∑

(x,y)

LEmbedding(x) + (14)

LAttention(x) + LFFN(x) +

LLogit(x) + LStudent(x, y),

where LStudent(x) is the supervised loss of the stu-
dent, e.g. the cross entropy loss when fine-tuning
for sequence classification tasks.

3.5.2 KD at pre-training
Inspired by prior works we use KD at the pre-
training stage to capture the general domain knowl-
edge from the teacher. For the pre-training distil-
lation, the pretrained BERTBASE model is used as
the teacher. Intermediate layer KD is then used to
train the KroneckeBERT network in the general do-
main. KD at pre-training improves the initialization
of the Kronecker model for the task-specific KD
stage. The loss at the pre-training stage involves
the intermediate KD loss as in Eq. 14 as well as
the masked language modeling and next sentence
prediction. Unlike other methods, we perform pre-
training distillation only on a small portion of the
dataset (10% of the English Wikipedia) for a few
epochs (3 epochs) which makes our training far
more efficient. See Table 10 in the Appendix for

a comparison of training requirements by various
methods.

3.6 Model Settings
The first step of the proposed framework is to de-
sign the Kronecker layers by defining the shape of
A and B. Once the shape of one of them is set,
the shape of the other one can be obtained accord-
ingly. Therefore we only searched among different
choices for m1 and n1 which are limited to the
factors of the original weight matrix (m and n re-
spectively). We used the same configuration for
all the matrices in the MHA. Also For the FFN,
we chose the configuration for one layer, and for
the other layer, the dimensions are swapped. For
the embedding layer, since BE is a row vector, we
only need to choose n. The shapes of the Kro-
necker factors were chosen to obtain the desired
compression factor and FLOPS reduction accord-
ing to Eq.7. To investigate the effect of summation
we also selected one configuration with summation
of 4 Kronecker products. Similarly, after fixing the
number of summation we chose the configuration
that provided the desired compression and latency
reduction. Table 1 summarises the configuration of
Kronecker factorization for the three compression
factors used in this work.

3.7 Implementation details
For KD at the pre-training stage, the Kronecker-
BERT model was initialized using the teacher (pre-
trained BERTBASE model). This means that for
layers that were not compressed like the last layer,
the values are copied from the teacher to the student.
For initialization of the compressed layers in the
pre-training stage, the nearest Kronecker solution
explained in section 3.2.1 is used to approximate
Kronecker factors (A and B) from the pre-trained
BERTBASE model. In the pre-training stage, 10%
of the English Wikipedia was used for 3 epochs.
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Model Params MNLI-(m/mm) SST-2 MRPC CoLA QQP QNLI RTE STS-B Avg
BERTBASE 109.5M 83.9/83.4 93.4 87.9 52.8 71.1 90.9 67 85.2 79.5
BERT4-PKD 7.6B 79.9/79.3 89.4 82.6 24.8 70.2 85.1 62.3 79.8 72.6
MobileBERTTINY 15.1M 81.5/81.6 91.7 87.9 46.7 68.9 89.5 65.1 80.1 77.0
TinyBERT 14.5M 82.5/81.8 92.6 86.4 44.1 71.3 87.7 66.6 80.4 77.0
KroneckerBERT8 14.3M 83.0/82.7 91.9 88.5 39.8 71.5 90.2 67.2 84.5 77.7

Table 2: Results on the test set of GLUE official benchmark. The results for BERT, BERT4-PKD and TinyBERT are
taken from (Jiao et al., 2019). For all other baselines, the results are taken from their associated papers. Note that
our KroneckerBERT only performs pre-training KD on 10% of the Wikipedia. Also MobileBERT distils knowledge
from a specially designed teacher that is trained from scratch and TinyBERT uses an extensive data augmentation in
the fine-tuning stage.

Model Params MNLI-(m/mm) SST-2 MRPC CoLA QQP QNLI RTE STS-B
BERTBASE 108.5M 83.9/83.4 93.4 87.9 52.8 71.1 90.9 67 85.2
SharedProject 5.6M 76.4/75.2 84.7 84.9 - - - - -
LadaBERT4 11M 75.8/76.1 84.0 - - 67.4 75.1 - -
KroneckerBERT21 5.2M 81.3/80.1 88.4 87.1 28.3 70.5 86.1 64.7 81.3

Table 3: Results on the test set of the GLUE official benchmark for extreme compression factors. The results of
the baselines are taken from their associated papers. LadaBERT and SharedProject refer to (Mao et al., 2020) and
(Zhao et al., 2019a) respectively.

The batch size in pre-training was set to 64 and
the learning rate was set to e-3. After pre-training,
the obtained Kronecker model is used to initial-
ize the Kronecker layers in the student model for
task-specific fine-tuning. The Prediction layer is
initialized from the fine-tuned BERTBASE teacher.
For fine-tuning on each task, we optimize the hyper-
parameters based on the performance of the model
on the dev set. See appendix for more details on
the results and the selected hyperparameters.

4 Experiments

In this section, we compare our KroneckerBERT
with the sate-of-the-art compression methods ap-
plied to BERT on GLUE and SQuAD. We also
perform an ablation study to investigate the effect
of pretraining and KD.

4.1 Baselines
As for baselines we select two main categories of
compression methods, those with compression fac-
tor <10 and those with compression factor >10.
In the first category, we have BERTPKD (Sun
et al., 2019) with a low compression factor, and
models with similar compression factor as our
KroneckerBERT8: MobileBERT (Sun et al., 2020)
and TinyBERT (Jiao et al., 2019). We also com-
pare our results to the dynaBERT model (Hou et al.,
2020). For the second category, we compare our
results with SharedProject (Zhao et al., 2019a) and
LadaBERT (Mao et al., 2020) with compression
factors in the rage of 10-20x.

4.2 Results on the GLUE Benchmark
We evaluated the proposed framework on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark which consists
of 9 natural language understanding tasks. We
submitted the predictions of our proposed mod-
els on the test data sets for different tasks
to the official GLUE benchmark (https://
gluebenchmark.com/). Table 2 summarizes
the results on GLUE test set for compression fac-
tors less than 10. We can see that KroneckerBERT8

outperforms other baselines in the majority of tasks
as well as on average. Moreover, the average per-
formance of KroneckerBERT8 excluding CoLA
is 82.4 which is only 0.5% less than that of the
teacher.

Table 3 shows the results for extreme compres-
sion on the GLUE test set. As indicated in the
table, the baselines for the higher compression fac-
tors only provided results on a limited set of GLUE
tasks. We can see that for higher compression fac-
tors, KroneckerBERT21 outperforms the baselines
on all available results.

In table 4 we compare the performance of Kro-
neckerBERT with the dynaBERT model (Hou et al.,
2020). We compare the results on dev set since the
results on test set were not provided in their pa-
per. We see that KroneckerBERT can outperform
dynaBERT with fewer number of parameters on all
GLUE tasks.
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Model Params MNLI-(m/mm) SST-2 MRPC CoLA QQP QNLI RTE STS-B Avg
KroneckerBERT5 20M 82.8/83.5 91.2 87.2 49.5 91.1 89.4 68.9 88.1 81.3
KroneckerBERT8 14.3M 82.8/83.5 91.1 87.5 43.6 90.9 90.7 69.66 88.0 80.9
DynaBERT 27M 83/83.6 91.6 83.1 48.5 91.0 90.0 67.9 88.2 80.8

Table 4: Results on the dev set of the GLUE. The results for DynaBERT are taken from (Hou et al., 2020)

CMP SQuAD1.1 SQuAD2.0
Model Factor EM F1 EM F1
BERTBASE 1× 80.5 88 74.5 77.7
BERT4-PKD 2.1× 70.1 79.5 60.8 64.6
TinyBERT 7.5× 72.7 82.1 68.2 71.8
KroneckerBERT8 7.8× 78.1 86.3 70.4 73.8
KroneckerBERT21 21× 70.7 80.5 66.9 69.3

Table 5: Results of the baselines and KroneckerBERT
on question SQuAD dev dataset. The results of the
baselines are taken from (Jiao et al., 2019).

Pre-training Fine-tuning MNLI-m SST-2 MRPC
(393k) (67k) (3.7k)

w KD w KD 82.8 91.0 87.5
None w KD 80.7 86.6 70.8
w KD w/o KD 80.0 88.8 86.5

Table 6: Ablation study of the effect pretraining and KD
in the fine-tuning stage. The results show the perfor-
mance of the KroneckerBERT8 on GLUE dev. w and
w/o denote with and without, respectively.

4.3 Results on SQuAD
In this section, we evaluate the performance of the
proposed model on SQuAD datasets. SQuAD1.1
(Rajpurkar et al., 2016) is a large-scale reading
comprehension which contains questions that have
answers in given context. SQuAD2.0 (Kudo and
Richardson, 2018) also contains unanswerable
questions. Table 5 summarises the performance
on dev set. For both SQuAD1.1 and SQuAD2.0,
KroneckerBERT8 with fewer number of parame-
ters can significantly outperform both TinyBERT
and BERT4-PKD baselines. We have also listed
the performance of KroneckerBERT21. The results
of baselines with higher compression factors on
SQuAD were not available.

4.4 Ablation Study
In this section, we investigate the effect of pre-
training and KD in reducing the gap between the
original BERTBASE model and the compressed Kro-
neckerBERT. Table 6 summarises the results for
KroneckerBERT8. Our proposed method uses KD
in both the pre-training and the fine-tuning stages.
For this ablation study, pre-training is only per-
formed via KD with the pre-trained BERTBASE as
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Figure 4: T-SNE visualization of the output of the
middle Transformer layer of the fine-tuned models
on SST-2 dev. Left: Fine-tuned BERTBASE, mid-
dle: KroneckerBERT8 fine-tuned without KD, right:
KroneckerBERT8 when trained using KD in two stages.
The colours indicate the positive and negative classes.

the teacher. We perform experiments on 3 tasks
from the GLUE benchmark with different sizes of
training data, namely MNLI-m, SST-2, and MRPC.
For all tasks, the highest performance is obtained
when the two-stage KD is used (first row). Note
that our light pretraining plays an important row
in improving the performance as shown in the first
and the second row (with and without pretraining
respectively). As the size of the task dataset de-
creases the effect of pretraining becomes more sig-
nificant. Also, removing KD from the fine-tuning
stage (task-agnostic compression) leads to an accu-
racy drop on all task. However, the drop is not as
pronounced as removing the pretraining stage. It
seems that KD in the fine-tuning stage has a larger
impact on tasks with larger datasets.

We also used t-SNE to visualize the output of
the FFN of the middle layer (layer 6) of the fine-
tuned KroneckerBERT8 with and without KD in
comparison with the fine-tuned teacher, on SST-
2 dev. Figure 4 shows the results. See how KD
helps the features of the middle layer to be more
separable with respect to the task compared to the
no KD case.

5 Conclusion

We introduced a novel method for compressing
Transformer-based language models that uses Kro-
necker decomposition for the compression of the
embedding layer and the linear mappings within
the Transformer blocks. The proposed framework
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was used to compress the BERTBASE model. We
used a very light two-stage KD method to train the
compressed model. We show that the proposed
framework can significantly reduce the size and the
number of computations while outperforming state-
of-the-art. The proposed method can be directly ap-
plied for compression of other Transformer-based
language models. The combination of the proposed
method with other compression techniques such
layer truncation, pruning and quantization can be
an interesting direction for future work.
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A Appendix

A.1 Training Details
In this section, we include more details of our exper-
imental settings presented in Section 4 of the paper.
For optimization, we used BERTadam and searched
learning rate in range {5e− 5, e− 4, 5e− 4, }. For
pretraining the learning rate was set to 1e-13 and
the number of epochs was set to 3. The batch size
in all experiments were set to 32. For the GLUE
benchmark, We searched epochs in range {5-15}
for all tasks except CoLA. For CoLA we searched
epochs in range {15-30}. This is because similar
to other studies (Mosbach et al., 2020; Zhang et al.,
2020) we noticed that running CoLA for more
epochs is necessary to reduce its sensitivity to ran-
dom seed. The sequence length at the pre-training
stage is set to 512 and at the fine-tuning stage is
set to 128 for GLUE benchmark. For SQuAD1.1
and SQuAD2 the sequence length is set 384 and
the batch size was set to 64 and the epochs were
varied in the range {1-14}. Also, the learning rate
was set to e-4 and

Table 7 shows the result of the best-performing
models on dev set for KroneckerBERT21. Tables 8
shows the learning rate for the best-performing
models. The training was performed on V100
GPU and the average latency for training of
KroneckerBERT21 for a batch size of 64 was 32ms.
All the values are the results of single runs.

A.2 Out of domain robustness
It is shown that pre-trained Transformer-based lan-
guage models are robust to out-of-domain (OOD)
samples (Hendrycks et al., 2020). In this sec-
tion, we investigate how the proposed compression

Wx

A⊗B

(A ⊗ B)x

Figure 5: Geometrical interpretation of projecting a
matrix product onto a Kronecker product. The angle of
projection is defined by the the size of A and B.

method affects the OOD robustness of BERT by
evaluating the fined-tuned models on MRPC and
SST-2 on PAWS (Zhang et al., 2019) and IMDb
(Maas et al., 2011) respectively. We compare OOD
robustness with the teacher, BERTBASE and Tiny-
BERT. TinyBERT fine-tuned checkpoints are ob-
tained from their repository. Table 9 lists the results.
KroencekrBERT8 outperforms TinyBERT on two
of the three OOD experiments. We can see the
fine-tuned KroneckerBERT8 models on MRPC is
robust to OOD since there is a small increase in
performance compared to BERTBASE. On IMDb
our KroenckerBERT8 has a small drop in accuracy
(1.5% compared to 9.5% for TinyBert) after com-
pression.

A.3 Training efficiency
Table 10 shows the training requirements of differ-
ent compression methods in terms of their training
data. Some models require pretraining a designed
teacher from scratch before pretraining the student.
KroneckerBERT however only pretrain on 10% of
Wikipedia for 3 epochs. For fine-tuning in contrast
to TinyBERT our KroneckerBERT model is trained
for on the original data. The number of fine-tuning
epochs for the majority of the GLUE tasks is less
than 15.

A.4 Geometrical interpretation of Kronecker
product projection

Figure 5 shows a geometrical interpretation of Kro-
necker product projection versus the original lin-
ear projection. It shows how Kronecker product
constraints the space of possible projections. The
flexibility of this space is a function of the shape of
the core matrices A and B.
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Model MNLI-(m/mm) SST-2 MRPC CoLA QQP QNLI RTE STS-B Average
KroenckerBERT21 80.6/80.6 88.9 86.2 34 90 87.2 66.4 86.4 77.8

Table 7: The results of the best-performing models on GLUE dev.

Hyperparamter MNLI-m MNLI-mm SST-2 MRPC CoLA QQP QNLI RTE STS-B
KroneckerBERT8 e-4 e-4 e-4 e-4 5e-5 e-4 e-4 1e-5 e-4
KroneckerBERT21 5e-4 5e-4 5e-4 5e-4 5e-4 e-4 5e-4 5e-5 5e-4

Table 8: The hyper-parameters for the KroneckerBERT models

Model MRPC → PAWS SST-2 → IMDb RTE → HANS
BERTBASE 61.3 88.0 50.7
TinyBERT 61.3 78.5 51.2
KroneckerBERT8 61.4 86.5 50.4

Table 9: The results of out of distribution experiment. Fined-tuned models on MRPC and SST-2 are evaluated on
the dev sets of PAWS and IMDb respectively.

Model Pretraining a specific teacher Pretraining student Fine-tuning student
MobileBert IB-BERTLARGE on EW+BC EW+BC task data
Shared project BERTLARGE with mixed vocabulary on EW+BC EW+BC task data
TinyBert None EW task data + Data Augmentation(20x)
KroneckerBERT None 10% EW task data

Table 10: Sample efficiency during training in various methods. EW and BC denotes English Wikipedia and Book
corpus with 2.5B and 800M words respectively.

A.5 Datasets
We evaluate the proposed framework on the Gen-
eral Language Understanding Evaluation (GLUE)
(Wang et al., 2018) benchmark (https://
gluebenchmark.com/). This benchmark con-
sist of the following tasks in English language:
Stanford Sentiment Treebank (SST-2)(Socher et al.,
2013) and CoLA (Warstadt et al., 2019) for Senti-
ment Classification. , on Microsoft Research Para-
phrase Corpus (MRPC) (Dolan and Brockett, 2005)
Quora Question Pairs (QQP) (Chen et al., 2018) for
Paraphrase Similarity Matching, Multi-Genre Nat-
ural Language Inference (MNLI) (Williams et al.,
2017), and Recognizing Textual Entailment (RTE)
(Bentivogli et al., 2009) for Natural Language in-
ference.

We also evaluate the performance of the model
on SQuAD datasets (https://rajpurkar.
github.io/SQuAD-explore). The datasets
are distributed under the CC BY-SA 4.0 license.
SQuAD1.1 (Rajpurkar et al., 2016) is a large-scale
English reading comprehension that contains 87K
question that have answers in the training set(10k
in the dev set). SQuAD2.0 (Rajpurkar et al., 2018)
combines the questions in SQuAD1.1 with over
50,000 unanswerable questions (130k samples in
the training and 11k in the dev set).
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