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Abstract

Neural text generation models are typically
trained by maximizing log-likelihood with the
sequence cross entropy (CE) loss, which en-
courages an exact token-by-token match be-
tween a target sequence with a generated se-
quence. Such training objective is sub-optimal
when the target sequence is not perfect, e.g.,
when the target sequence is corrupted with
noises, or when only weak sequence supervi-
sion is available. To address the challenge, we
propose a novel Edit-Invariant Sequence Loss
(EISL), which computes the matching loss of
a target n-gram with all n-grams in the gen-
erated sequence. EISL is designed to be ro-
bust to various noises and edits in the target
sequences. Moreover, the EISL computation
is essentially an approximate convolution op-
eration with target n-grams as kernels, which
is easy to implement and efficient to compute
with existing libraries. To demonstrate the ef-
fectiveness of EISL, we conduct experiments
on a wide range of tasks, including machine
translation with noisy target sequences, unsu-
pervised text style transfer with only weak train-
ing signals, and non-autoregressive generation
with non-predefined generation order. Exper-
imental results show our method significantly
outperforms the common CE loss and other
strong baselines on all the tasks. EISL has a
simple API that can be used as a drop-in re-
placement of the CE loss.1

1 Introduction

Neural text generation models have ubiquitous ap-
plications in natural language processing, includ-
ing machine translation (Bahdanau et al., 2015,
Sutskever et al., 2014, Wu et al., 2016, Vaswani
et al., 2017), summarizations (Nallapati et al., 2016,
See et al., 2017), dialogue systems (Li et al., 2016),
etc. They are typically trained by maximizing the
log-likelihood of the output sequence conditioning
on the inputs with the cross entropy (CE) loss. The

1Code: https://github.com/guangyliu/EISL

a cat is on the red blanket

on the red blanket there is a cat

Paraphrase:

a cat is on the red blanket

Noisy Target:

a cat is is on the red blanket

Image:

Figure 1: Invariance exists in both image and text, e.g.,
image is invariant to translation (top), and text is robust
to many forms of edits (bottom).

CE loss can be easily factorized into individual
loss terms and can be optimized efficiently with
stochastic gradient descent. Due to its computa-
tional efficiency and ease to implement, the train-
ing paradigm has played an important role in build-
ing successful large text generation models (Lewis
et al., 2020, Radford et al., 2019). However, the
CE loss minimizes the negative log-likelihood of
only the reference output sequence, while all other
sequences are equally penalized through normaliza-
tion. This is over-restrictive since for a given refer-
ence target sentence, many possible paraphrases are
semantically close, hence should not completely
be treated as negative samples. For example, as
shown in Figure 1, a cat is on the red
blanket should be treated equally with on the
red blanket there is a cat. A model
trained with CE loss falls short of modeling such
type of invariance for text.

The problem is even exaggerated when the super-
vision from a target sequence is not perfect (Pinnis,
2018). On one hand, there could be noises in the
reference sequence which makes itself not a valid
sentence. As in the last example shown in Figure 1,
there is a repetition error in the target sequence,
which is common in human generated text. With
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Figure 2: Sensitivity of CE and EISL loss w.r.t different types of text edits as the amount of edits increases (x-axis).
We use a fixed machine translation model, synthesize different types of edits on target text, and measure the CE and
EISL losses, respectively. The edit types include shuffle (changing the word order), repetition (words being selected
are repeated), and word blank (words being replaced with a blank token). CE loss tends to increase drastically once
a small amount of edits is applied. In contrast, EISL loss increases much more slowly, showing its robustness.

the CE loss, the model is forced to copy all tokens
including the error, and assign a high loss for the
grammatically correct sequence. The exact tokens
matching renders the CE loss sensitive to noises in
the target, as shown in Figure 2. On the other hand,
there are many problems with only weak supervi-
sion for target sequences (Tan et al., 2020, Wang
et al., 2021, Lin et al., 2020). For example, in tasks
of unsupervised text style transfer (Jin et al., 2022)
aiming to rewrite a sentence from one style to an-
other, the original sentence offers weak supervision
for the content (rather than the style). Yet using a
CE loss here is problematic since it encourages the
model to copy every original token.

Prior works have tried to address this problem us-
ing reinforcement learning (RL) (Guo et al., 2021,
O’Neill and Bollegala, 2019, Wieting et al., 2019).
For example, policy gradient was used to optimize
sequence rewards such as BLEU metric (Ranzato
et al., 2016, Liu et al., 2017). Such algorithms
assign high rewards to sentences that are close to
the target sentence. Though it is a valid objective
to optimize, policy optimization faces significant
challenges in practice. The high variance of gradi-
ent estimate makes the training extremely difficult,
and almost all previous attempts rely on fine-tuning
from models trained with CE loss, often with un-
clear improvement (Wu et al., 2018).

In this paper, we propose an alternative loss to
overcome the above weakness of CE loss, but re-
serve all nice properties such as being end-to-end
differentiable, easy to implement, and efficient to
compute, which hence can be used as a drop-in re-
placement or combined with CE. The loss is based
on the observation that a viable candidate sequence
shares many sub-sequences with the target. Our
loss, called edit-invariant sequence loss (EISL),
models the matching of each reference n-gram
across all n-grams in a candidate sequence. The

design is motivated by the translation invariance
properties of ConvNets on images (see Figure 3),
and captures the edit invariance properties of text
n-grams in calculating the loss. Figure 2 shows the
invariance property of EISL in comparison with
CE. Appealingly, we show the conventional CE
loss is a special case of EISL—when n equals
to the sequence length, EISL calculates the exact
sequence matching loss and reduces to CE. More-
over, the computations of EISL is essentially a
convolution operation of candidate sequence using
target n-grams as kernels, which is very easy to
implement with existing deep learning libraries.

To demonstrate the effectiveness of EISL loss,
we conduct experiments on three representative
tasks: machine translation with noisy training tar-
get, unsupervised text style transfer (only weak ref-
erences are available), and non-autoregressive gen-
eration with flexible generation order. Experiments
demonstrate EISL loss can be easily incorporated
with a series of sequence models and outperforms
CE and other popular baselines across the board.

2 Related Work

Deep neural sequence models such as recurrent
neural networks (Sutskever et al., 2014, Mikolov
et al., 2010) and transformers (Vaswani et al., 2017)
have achieved great progress in many text genera-
tion tasks like machine translation (Bahdanau et al.,
2015, Vaswani et al., 2017). These models are
typically trained with the maximum-likelihood ob-
jective, which can lead to sub-optimal performance
due to CE’s exact sequence matching assumption.
There are lots of works trying to overcome this
weakness. For examples, some works (Ranzato
et al., 2016, Rennie et al., 2017, Liu et al., 2017,
Shen et al., 2016, Smith and Eisner, 2006) proposed
to use policy gradient or minimum risk training
to optimize the expected BLEU metric (Papineni
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et al., 2002a). Due to the high variance and unsta-
bleness in RL training, a variety of training tricks
are used in practice. Wieting et al. (2019) devel-
oped a new reward function based on semantic
similarity for translation. Guo et al. (2021) intro-
duced soft Q-learning for more efficient RL train-
ing. On the other hand, Zhukov and Kretov (2017),
Casas et al. (2018) made the initial attempts to
develop differentiable BLEU objectives, making
soft approximations to the count of n-gram match-
ing in the original BLEU formulation. Shao et al.
(2018, 2021, 2020) minimized the n-gram differ-
ence between the model outputs and targets in non-
autoregressive generation.

Another line of research that is relevant to our
work is learning with noisy labels in classification
(Zhang and Sabuncu, 2018, Xu et al., 2019, Wang
et al., 2019b, Hu et al., 2019). For text generation,
Nicolai and Silfverberg (2020) proposed student
forcing to substitute teacher forcing, which can al-
leviate the influence of noise in the target sequence
during decoding. Kang and Hashimoto (2020) pro-
posed loss truncation, which adaptively removes
high-loss examples considered as invalid data. Our
empirical study shows substantial improvement of
our approach over the previous ones.

3 Edit-Invariant Sequence Loss

In this section, we first review the conventional
cross-entropy (CE) loss for sequence learning, and
point out its weakness, especially when the target
sequence is edited. We then introduce the EISL
loss which gives a model the flexibility to learn
from sub-sequences in a target sequence.

We first establish notations for the sequence gen-
eration setting. Let (x,y∗) be a paired data sample
where x is the input and y∗ = (y∗1, ..., y

∗
T ∗) is the

reference target sequence. Define y = (y1, ..., yT )
as a candidate sentence. Our goal is to build a
model pθ(y|x) that scores a candidate sequence
y with parameter θ. In the sequel, we omit the
condition x and the subscript θ for simplicity.

3.1 The Difficulty of Cross Entropy Loss
The standard approach to learn the sequence model
is to minimize the negative log-likelihood (NLL)
of the target sequence, i.e., minimizing the CE
loss LCE(θ) = − log p(y∗). The CE loss assumes
exact matching of a candidate sequence y with the
target sequence y∗. In other words, it maximizes
the probability of only the target sequence y∗ while
penalizing all other possible sequence outputs that

might be close but different with y∗.
The assumption can be problematic in many

practical scenarios: (1) For a given target sentence,
there could be many ways of paraphrasing the sen-
tence such as word reordering, synonyms replace-
ment, active to passive rewriting, etc. Many of the
paraphrases are viable candidate sequences, and/or
share many sub-sequences with the reference sen-
tence, and thus should not be treated completely as
negative samples. Similar to the translation invari-
ance which is shown to be effective in image mod-
eling, a sequence loss that is robust to the shift and
edits of sub-sequences in the reference sequence
is preferred in order to model the rich variations
of sequences; (2) The edit-invariance property is
particularly desirable when the reference target se-
quence is corrupted with noise or is only weak
sequence supervision. For instance, in Figure 3,
the word is is repeated twice, which is one of the
common errors in typing. Using CE loss in the
noisy target setting forces the model to learn the
data errors as well. In contrast, a sequence loss
robust or invariant to the shift of sub-sequences
assigns a high probability to the correct sentence
even though it does not match the noisy target ex-
actly. The loss thus offers flexibility for the model
to select right information for learning.

3.2 EISL: Edit-Invariant Sequence Loss
Motivated by the above discussion, in this section,
we draw inspirations from the convolution opera-
tion that enables translation invariance in image
modeling (Figure 3, left), and propose an edit-
invariant sequence loss (EISL) as illustrated in Fig-
ure 3 (right). Intuitively, for instance, given a 4-
gram on the red blanket, because there is
no extra knowledge to determine the position of the
4-gram in the noisy target sequence, we compute
the losses across all positions in the noisy target
sequence and aggregate. This is essentially a con-
volution over the target noisy sequence with the
given n-gram as a convolution kernel.

We now derive the EISL loss in more details.
Let ya:b = (ya, ..., yb−1) denote a sub-sequence of
y that starts from index a and ends at index b− 1,
which is of length b− a. Thus y∗

i:i+n denotes the i-
th n-gram in the reference y∗. Denote C(y∗

i:i+n,y)
as the number of times this n-gram occurs in y:

C(y∗
i:i+n,y) =

T−n+1∑

i′=1

1(yi′:i′+n = y∗
i:i+n), (1)

where 1(·) is the indicator function that takes value
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Desired output: a cat is on the red blanket

Noisy target: a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

a cat is is on the red blanket

Image:

Figure 3: Inspired by the ConvNet convolution which applies a convolution kernel to different positions in an image
and aggregate (left), we devise similar n-gram matching and convolution, which is robust to sequence edits (noises,
shuffle, repetition, etc) (right).

1 if the n-grams match, and 0 otherwise. Intu-
itively, for a text generation model, we would like
to maximize the occurrence of an n-gram from the
reference in the target sequence. For a given prob-
abilistic model pθ(y) (we omit the parameter θ
wherever the meaning is clear), the expected value
of C(y∗

i:i+n,y) can be computed as follow:

Ey∼p(y)[C(y∗
i:i+n,y)]

=

T−n+1∑

i′=1

Ep(yi′:i′+n) [1(yi′:i′+n = y∗
i:i+n)]

=

T−n+1∑

i′=1

p(yi′:i′+n = y∗
i:i+n).

(2)

Thus, for each i-th n-gram in the reference, a
straightforward way to define the learning objective
is to minimize the negative log value of its expected
occurrence, i.e., − logEy∼p(y)[C(y∗

i:i+n,y)].
The above loss requires computation of the

marginal probability p(yi′:i′+n = y∗
i:i+n) of an n-

gram, which is intractable in practice. We therefore
derive an upper bound of the loss and use it as the
surrogate to minimize in training. We denote the
upper bound surrogate as our EISL loss. Specifi-
cally, since for a given i′, p(yi′:i′+n = y∗

i:i+n) =∑
y p(y<i′)p(yi′:i′+n = y∗

i:i+n|y<i′), then:

− logEy∼p(y)[C(y∗
i:i+n,y)]

= − log

T−n+1∑

i′=1

p(yi′:i′+n = y∗
i:i+n),

≤ −Ey∼p(y)

∑T−n+1
i′=1 log p(yi′:i′+n = y∗

i:i+n|y<i′)

T − n+ 1

:= LEISL
n,i (θ).

(3)

The detailed derivation is attached in Appendix A.1.
Notice that the EISL loss involves only the condi-
tional distribution p(yi′:i′+n = y∗

i:i+n|y<i′) which
is convenient to compute—we first sample tokens
from the model up to the i′ position, then compute
NLL of the reference n-gram y∗

i:i+n occurring at

position i′ under the model distribution. The full n-
gram EISL loss is then defined by averaging across
all n-gram positions in the reference:

LEISL
n (θ) =

1

T ∗ − n+ 1

T∗−n+1∑

i=1

LEISL
n,i (θ). (4)

In practice, inspired by the standard BLEU metric
(more in section 3.3), we could also straightfor-
wardly combine different n-gram losses depending
on tasks:

LEISL(θ) =
∑

n
wn · LEISL

n (θ), (5)

where wn is the weight of the n-gram loss. The rule
of thumb is that a n-gram EISL loss with lower n is
more robust to noises, as shown in our experiments.
Following BLEU, we found that simply using equal
weights for different n-grams up to n = 4 often
produces good performance.

As discussed shortly, it is appealing that the n-
gram EISL loss is indeed a direct generalization
of the CE loss on the n-gram level: we sum the
CE loss of an n-gram over all candidate sequence
positions by conditioning on samples from the
model. Besides, the derivation of the upper bound
makes no assumption on the probability function
p(y), hence holds for both autogressive and non-
autoregressive sequence models as demonstrated
in our experiments.

Position Selection Minimizing the gram match-
ing loss over all positions can make the model
assign equal probabilities at all positions, which
causes the training to collapse. We further adapt
the loss to enable the model to automatically learn
the positions of reference n-grams. For notation
simplicity, let gni,i′ denote the conditional proba-
bility p(yi′:i′+n = y∗

i:i+n|y<i′) involved above
(Eq.3). We can vectorize the probability to get
gn
i = [gni,1, ..., g

n
i,T−n+1]

T , spanning all potential
positions in the candidate sequence. We then
normalize the probability vector gn

i by Gumbel
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Input (Estimation, 𝒚)

log 𝑝2 log 𝑝3 log 𝑝4

log𝑝(𝒚2:5 = [is,on,the]|𝑦1) = log 𝑝(𝒚2:5 = 𝒚3:6
∗ |𝑦1)is on the

Kernel (Ground Truth, 𝒚∗)

Figure 4: As convolution is a common operation for translation invariance in image, we adopt a convolution to
achieve the translation invariance in text. The input is the distribution from the model output in log domain, kernel
represents the convolution kernel and ∗ is the convolution operation. In this 3-gram example, there are 5 kernels,
which correspond to the 5 rows on the right.

softmax (Jang et al., 2017), denoted as qni =
Gumbel_softmax(gn

i ), which we use as the
weight for every n-gram positions. We multiply
the weight with the original log probability to get
the new adjusted loss:

LEISL
n,i (θ) ≈ −qn

i · log gn
i . (6)

The loss can roughly be viewed as the “entropy”
of the unnormalized probabilities gn

i , which has
minimal value if the mass of the probability is
assigned to one location only. Intuitively, if an
gni,i′ is large, then it is likely i′ is the correct posi-
tion for the reference n-gram, hence the weight
for this position should also be large. This is
like the greedy exploitation in reinforcement learn-
ing (Mnih et al., 2015). On the other hand, to
overcome over-exploitation, the Gumbel softmax
introduces randomness in the weight assignment,
which helps balance the exploitation-exploration
trade-off in position selection for the model.

Efficient Approximate Computation: EISL
as Convolution We show the EISL loss can be
computed efficiently using the common convolu-
tion operator, with very little additional cost com-
pared with the CE loss. The computation involves
moderate approximation if the generation model
is an autoregressive model, and is exact in the
case of a non-autoregressive model (e.g., as in
section 4.3). We first discuss the easy case when
the model is a non-autoregressive model, where
we have gni,i′ = p(yi′:i′+n = y∗

i:i+n|y<i′) =∏n
j=1 p(yi′+j−1 = y∗i+j−1). Denote V as the vo-

cabulary size. Let P = [p1,p2, ...pT ] be the prob-
ability output by the model across positions, where
pi′ ∈ RV is the probability output after softmax
at i′-th position, and each pi′ is independent with

each other. On this basis, we compute the key
quantity log gn

i in Eq. 6 as the direct output of the
convolution operator. As shown in Figure 4, we
can get log gn

i by applying convolution on logP ,
with yi:i+n as the kernels:

log gn
i = Conv(logP ,Onehot(y∗

i:i+n)), (7)

where Onehot(·) maps each token to its corre-
sponding one-hot representation and Conv(·, ·) is
the convolution operation with the first argument as
input and the second as the kernel. We transform P
into log domain to turn the probability multiplica-
tion into log probability summations, where Conv
can be directly applied. As shown in Figure 4,
logP is of shape V × T and Onehot(y∗

i:i+n) is
of shape V ×n, so Conv(logP ,Onehot(y∗

i:i+n))
is an one-dimensional convolution on the sequence
axis. Formally, the i′-th convolutional output is:

log gni,i′ =
n∑

j=1

logpi′+j−1 · Onehot(y∗
i+j−1)

=
n∑

j=1

log p(yi′+j−1 = y∗
i+j−1|y<i′+j−1)

(8)

After obtaining gn
i by convolution, the EISL

loss in Eq. 6 can be easily calculated. We now
discuss the case of autoregressive model, where
by definition we have gni,i′ =

∏n
j=1 p(yi′+j−1 =

y∗i+j−1|y<i′ ,y
∗
i:i+j−1). The dependence on both

y<i′ and y∗
i:i+j−1 in each conditional makes exact

estimation of log gn
i very complicated and costly.

We thus introduce the approximation where we
approximate gni,i′ as g̃ni,i′ =

∏n
j=1 p(yi′+j−1 =

y∗i+j−1|y<i′+j−1). That is, instead of conditioning
on y∗

i:i+j−1, we use the model-generated tokens
yi′:i′+j−1 as the condition. This simple approxi-
mation enables us to define the probability output
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Figure 5: Results of Translation with Noisy Target on German-to-English(de-en) from Multi30k. BLEU scores are
computed against clean test data. The x-axis of all figures denotes the level of noise we injected to target sequences
in training. (a) Shuffle: selected tokens are shuffled; (b) Repetition: selected tokens are repeated; (c) Blank: selected
tokens are substituted with a special blank token; (d) Synthetical noise: the combination of all three noises (x = x0

stands for the combination of 5x0% of all kinds of noises); (e) Ablation study of n-grams for EISL on synthetical
noise. BLEURT results are shown in Appendix A.3.

P as in the non-autoregressive case, by just per-
forming a forward pass of the model (i.e., sampling
a token y′

i for each position i′ and feeding it to
the next step to get pi′+1). We can then apply the
same convolution operator to approximately obtain
log gn

i as in Eq. 7. Besides the great gain of com-
putational efficiency, we note that the approxima-
tion is also effective, especially due to the position
selection discussed above. Specifically, for each
reference n-gram y∗

i:i+n, the position selection in
effect (softly) picks those large-value gni,i′ (while
dropping other low-value ones) to evaluate the loss.
A large gni,i′ value indicates the candidate yi′:i′+n is
highly likely to match the reference y∗

i:i+n, mean-
ing that using yi′:i′+n in replacement of y∗

i:i+n is a
reasonable approximation for evaluating the above
conditionals. We provide empirical analysis of the
approximation in Appendix A.8, where we show
the efficient approximate EISL loss values are very
close to the exact EISL values.

3.3 Connections with Common Techniques
CE is a special case of EISL A nice property of
EISL is that it subsumes the standard CE loss as
a special case. To see this, set n = T ∗ (the target
sequence length), and we have:

LEISL
T∗ = LEISL

T∗,1 = − log gT∗
1 = − log p(y = y∗) = LCE.

The connection shows the generality of EISL. As a
generalization of CE, it enables learning at arbitrary
n-gram granularity.

Connections between BLEU and EISL Both
our method and the popular BLEU (Papineni et al.,
2002b) metric use n-grams as the basis in formula-
tion. Here we articulate the connections and differ-
ence between the two. Let us first take a review of
the BLEU metric. Specifically, BLEU is defined as
a weighted geometric mean of n-gram precisions:

BLEU = BP · exp
(

N∑

n=1

wn log precn

)

precn =

∑
s∈gramn(y) min(C(s,y), C(s,y∗))

∑
s∈gramn(y) C(s,y)

,

where BP is a brevity penalty depending on the
lengths of y and y∗; N is the maximum n-gram
order (typically N = 4); {wn} are the weights
which usually take 1/N ; precn is the n-gram pre-
cision, gramn(y) is the set of unique n-gram sub-
sequences of y; and C(s,y) is the number of times
a gram s occurs in y as defined in Eq. 1. The
conventional formulation above enumerates over
unique n-grams in y. In contrast, we enumerate
over token indexes in calculating the n-gram match-
ing loss. BLEU considers the n-gram precisions
and has a penalty term while EISL simply maxi-
mizes the log probability of n-gram matchings.

The non-differentiability of BLEU makes it hard
to optimize directly, hence most prior attempts re-
sort to reinforcement learning algorithms and use
BLEU as the reward (Ranzato et al., 2016, Liu
et al., 2017). There are also some works trying to
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introduce differentiable BLEU metric using approx-
imation like (Zhukov and Kretov, 2017). However,
such losses are often too complicated and have not
yet demonstrated to perform well in practice.

4 Experiments

In this section, we present the experimental results
on three text generation settings to test EISL’s
effectiveness, including learning from noisy text,
learning from weak sequence supervision, and non-
autoregressive generation models that require flex-
ibility in generation orders. More details of the
experimental setting are provided in Appendix A.2.

4.1 Learning from Noisy Text

To test the robustness to noise, we evaluate on the
task of machine translation with noisy training tar-
get, in which we train the models with noisy se-
quence targets and evaluate with clean test data.

Setup We test EISL loss on Multi30k and
WMT18 raw corpus. We use German-to-English
(de-en) dataset from Multi30k (Elliott et al., 2016),
which contains 29k training instances. As inspired
by Shen et al. (2019), to simulate various noises
in the real data, we introduce four types of noises:
shuffle, repetition, blank, and the synthetical noise,
i.e., the combination of the aforementioned three
types of noise. The noises are only added to the
training target sequences. To verify the validity
of EISL on real noisy data, we also use German-
to-English (de-en) dataset from WMT18 raw cor-
pus, which is a very noisy de-en corpus crawled
from the web. We randomly select different num-
ber of training samples to test the influence of the
data scale. We use a Transformer-based pretrained
model BART-base (Lewis et al., 2020) and adopt
greedy decoding in training and beam search (beam
size = 5) in evaluation. We compare EISL loss
with CE loss, Policy Gradient (PG), and Loss Trun-
cation (LT). We also conduct ablation experiments
to explore the effect of different n-grams in EISL
loss. We use both BLEU (Papineni et al., 2002b)
and BLEURT, an advanced model-based metric
(Sellam et al., 2020), as the automatic metrics for
evaluation. Due to space limit, we report BLEU re-
sults in the main paper, and defer BLEURT results
in the appendix, where we can see BLEURT leads
to the same conclusion as BLEU.

Results The results on noisy Multi30k are pre-
sented in Figure 5. The proposed EISL loss pro-
vides significantly better performance than CE loss
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Figure 6: Results of German-to-English(de-en) Transla-
tion on WMT18 raw corpus. BLEU scores are computed
against clean parallel test data. On x-axis, 0k denotes
the performance of the pretrained model. BLEURT re-
sults are similar as shown in Appendix A.3.

Model Acc BLEU BLEU PPL POS
(%) (Human) Distance

Hu et al. (2017) 86.7 58.4 - 177.7 -
Shen et al. (2017) 73.9 20.7 7.8 72.0 -

He et al. (2020) 87.9 48.4 18.7 31.7 -
Dai et al. (2019) 87.7 54.9 20.3 73.0 -

Tian et al. (2018) 88.8 65.71 22.56 42.07 0.352
with EISL (Ours) 88.8 68.51 23.17 41.56 0.275

Tian et al. (2018) (%) with EISL (Ours) (%) equal (%)

22.0 30.7 47.3

Table 1: Top: automatic evaluations on the Yelp review
dataset. The BLEU (human) is calculated using the
1000 human annotated sentences as ground truth from
Li et al. (2018). The first four results are from the
original papers. Bottom: human evaluation statistics
of base model vs. with EISL. The results denotes the
percentages of inputs for which the model has better
transferred sentences than other model.

and PG on all the noise types, especially on the
high-level noise end. For synthetical noise as
shown in Figure 5(d), it’s interesting to see that
CE and PG completely fail when the noise level is
beyond 6, but model trained with EISL has high
BLEU score, demonstrating EISL can select use-
ful information to learn despite high noise. This
validates that the proposed EISL is much less sen-
sitive to the noise than the traditional CE loss and
policy gradient training method. The results of dif-
ferent n-gram are shown in Figure 5(e). As the
noise increases, the importance of lower grams,
e.g., 1-gram, is more obvious. The results on real
noisy data, WMT18 raw data, are shown in Fig-
ure 6. EISL loss achieves better performance than
CE loss and PG, and the difference is getting larger
when the training data scale increases. This again
demonstrates EISL could learn more valid informa-
tion in rather noisy data, while CE loss which only

2061

http://www.statmt.org/wmt18/parallel-corpus-filtering.html
http://www.statmt.org/wmt18/parallel-corpus-filtering.html


considers whole-sentence matching could struggle
on noisy data. In Appendix A.3, we provide more
results (e.g., comparison with loss truncation (Kang
and Hashimoto, 2020)) and case studies.

4.2 Learning from Weak Supervisions: Style
Transfer

We experiment on transferring two types of text
styles (Jin et al., 2022), namely sentiment and po-
litical slant, to verify EISL can learn from weak
sequence supervisions.

Setup We use the Yelp review dataset and politi-
cal dataset. Yelp contains almost 250k negative sen-
tences and 380K positive sentences, of which the
ratio of training, valid and test is 7 : 1 : 2. Li et al.
(2018) annotated 1000 sentences as ground truth
for better evaluation. The political dataset is com-
prised of top-level comments on Facebook posts
from all 412 members of the United States Senate
and House who have public Facebook pages (Voigt
et al., 2018). The data set contains 270K demo-
cratic sentences and 270K republican sentences.
And there exists no ground truth for evaluation. The
data preprocessing follows Tian et al. (2018). The
structured content preserving model (Tian et al.,
2018) is adopted as the base model.

Following previous work, we compute automatic
evaluation metrics: accuracy, BLEU score, perplex-
ity (PPL) and POS distance. We also perform hu-
man evaluations on Yelp data to further test the
transfer quality.

Results As sentiment results are shown in Ta-
ble 1, the BLEU gets improved from 65.71 to 68.51
with EISL loss. On the premise of the correctness
of sentiment transfer, EISL loss plays a critical
role to guarantee lexical preservation. In the mean-
while, all of BLEU(human), PPL, and POS dis-
tance get improved. It is not surprising that EISL
loss helps generate sentences more fluently and
select the more appropriate words conditions on
the content information. As the human evaluation
results are shown in Table 1, the model with EISL
loss performs better, in accord with the automatic
metrics. After analyzing the generated samples, we
found EISL loss could drive the model to adopt the
words which fit the scene better and could under-
stand more semantics but not just replace some key-
words. See some examples in the Appendix A.4.1.

We report the results of political data in Ap-
pendix A.4.2. Our method outperforms all models
on BLEU, PPL, and POS distance with comparable

accuracy. For a more fair comparison with the base
model, our EISL loss improves the base model on
all four metrics, including the accuracy.

The results demonstrate the effectiveness of
EISL for weak supervision task, improving both
transfer accuracy fluency and content preservation.

4.3 Learning Non-Autoregressive Generation

Non-autoregressive neural machine translation
(NAT, (Gu et al., 2018)) is proposed to predict
tokens simultaneously in a single decoding step,
which aims at reducing the inference latency. The
non-autoregressive nature makes it extremely hard
for models to keep the order of words in the sen-
tences, hence CE often struggles with NAT prob-
lems. In experiments, we show EISL is superior
to CE in NAT which requires modeling flexible
generation order of the text.

Setup We use English-to-German dataset from
WMT14 (Luong et al., 2015), which contains 4.5M
training instances. We apply our proposed EISL
loss on both fully NAT models (Gu et al., 2018, Sun
et al., 2019) and iterative NAT models (Lee et al.,
2018, Gu et al., 2019, Ghazvininejad et al., 2019),
showing its general applicability and superiority,
and we also compare with a wide range of recent
methods (Shao et al., 2020, Wang et al., 2019a,
Li et al., 2019, Ghazvininejad et al., 2020). We
evaluate with both BLEU and BLEURT metrics.

Results We first summarize the comparison of
BLEU between EISL loss and CE loss in Table 2
(comparison of BLEURT is in Appendix A.5.2).
The proposed EISL improves the model perfor-
mance on both the KD and original datasets.
More specifically, for fully NAT models (Vanilla-
NAT and NAT-CRF), EISL gives strong improve-
ment. For iterative NAT models (iNAT, LevT, and
CMLM), EISL also significantly outperforms the
baselines when the iteration step is restricted to a
small level as suggested by Kasai et al. (2020). (We
show in Appendix A.5.1 that, with increasing itera-
tion steps, the difference fades away. However, as
studied in Kasai et al. (2020), iterative NAT models
with many iteration steps do not hold the intrinsic
advantage of speed since Transformer baselines
with a shallow decoder can achieve comparable
speedup and only at the sacrifice of minor perfor-
mance drop.) Table 3 provides more comparison of
with recent strong baselines. Specifically, we apply
our EISL on the CMLM base model (Ghazvinine-
jad et al., 2019) which shows strong superiority. We
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Decoding method Model WMT14 en-de KD WMT14 en-de

CE EISL CE EISL

Autoregressive Transformer base (Vaswani et al., 2017) 27.48

Non-Autoregressive

Vanilla-NAT (Gu et al., 2018) 17.9 22.2 9.12 15.46
NAT-CRF (Sun et al., 2019) 21.88 22.43 - -
iNAT (Lee et al., 2018) 16.67 22.59 - -
LevT (Gu et al., 2019) 17.84 23.61 9.91 18.47
CMLM (Ghazvininejad et al., 2019) 17.12 23.05 - -

Table 2: The test-set BLEU of EISL loss and CE loss applied to non-autoregressive models. “KD” refers to
the standard “knowledge distillation” setting in NAT (Gu et al., 2018). iNAT, LevT and CMLM are iterative
non-autoregressive models, that could run in multiple decoding iterations. However, the first decoding iteration of
these models is fully non-autoregressive, which is what we use as our baselines.

Fully Non-Autoregressive model WMT14 en-de KD

CMLM with CE (Ghazvininejad et al., 2019) 17.12
Auxiliary Regularization (Wang et al., 2019a) 20.65
Bag-of-ngrams Loss (Shao et al., 2020) 20.90
Hint-based Training (Li et al., 2019) 21.11
CMLM with AXE (Ghazvininejad et al., 2020) 23.53
CMLM with EISL (Ours) 24.17

Table 3: The test-set BLEU of CMLM trained with our EISL, compared to other recent fully non-autoregressive
methods. The baseline results are from (Ghazvininejad et al., 2020), where CMLM-with-AXE generates 5 candidates
and ranks with loss. Our method follows the same generation configuration as CMLM-with-AXE.

provide qualitative analysis in Appendix A.5.3.

5 Conclusions

We have developed Edit-Invariant Sequence Loss
(EISL) for end-to-end training of neural text gener-
ation models. The proposed method is insensitive
to the shift of n-grams in target sequences, hence
suitable for training with noisy data and weak su-
pervisions, where CE loss fails easily. We show
CE loss is a special case of EISL and build the
connection of EISL with BLEU metric and con-
volution operation, which both have the invariant
property. Experiments on translation with noisy
target, text style transfer, and non-autoregressive
neural machine translation demonstrate the supe-
riority of our method. The more general appli-
cations and superiority of EISL on other diverse
text generation problems as well as fundamental
challenges, such as compositional generalization
(Andreas et al., 2019) and causal invariance (Hu
and Li, 2021) in language, remain to be explored
further, which we are excited to study in the future.
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A Appendix

A.1 Additional Derivation
For a given i′,

p(yi′:i′+n = y∗
i:i+n)

=
∑

y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′),

then we derive the detail of Eq. 3 in Eq. 9, where
the first inequality holds since T − n+ 1 ≥ 0; and
the second inequality holds by Jensen’s inequality.

A.2 Detailed Experimental Setup
A.2.1 Learning from Noisy Text
We use a Transformer-based pretrained model
BART-base (Lewis et al., 2020), containing 6 layers
in the encoder and decoder. We train the model us-
ing the Adam optimizer with learning rate 3×10−5

with polynomial decay and the maximum number
of tokens is 6000 in one step. The models are
trained on one Tesla V100 DGXS with 32GB mem-
ory. We start with CE training using teacher forcing
for fast initialization. We then switch to combined
1- and 2-gram EISL with weight 0.8 : 0.2, which
we select using the validation set. We adopt greedy
decoding in training and beam search (beam size
= 5) in evaluation. We use fairseq2 (Ott et al.,
2019) to conduct the experiments. We compare
EISL loss with CE loss and Policy Gradient (PG),
where PG is used to finetune the best CE model.
Teacher forcing is employed in CE training.

A.2.2 Learning from Weak Supervisions:
Style Transfer

We use the Adam optimizer with learning rate
5 × 10−4, the batch size is 128 and the model
is trained on one Tesla V100 DGXS 32GB. We
compare the results between the base model and
the model with EISL. Specifically, on top of the
base model, we add the EISL loss (a combination
of 2, 3 and 4-gram with the same weights 1/3) to
reduce the discrepancy between the transferred sen-
tence generated by language model and the original
sentence. We assign EISL loss with weight 0.5.

Following previous work, we compute automatic
evaluation metrics: accuracy, BLEU score, perplex-
ity (PPL) and POS distance. For accuracy, we adopt
a CNN-based classifier, trained on the same train-
ing data, to evaluate whether the generated sentence
possesses the target style. Then we measure BLEU

2Fairseq(-py) is MIT-licensed.

score and BLEU(human) score of transferred sen-
tences against the original sentences and ground
truth, respectively. PPL metric is evaluated by GPT-
2 (Radford et al., 2019) base model after finetuning
on the corresponding dataset, with the goal to as-
sess the fluency of the generated sentence. POS
distance is used to measure the model’s semantics
preserving ability (Tian et al., 2018).

We also perform human evaluations on Yelp data
to further test the transfer quality. We first ran-
domly select 100 sentences from the test set, use
these sentences as input and generate sentences
from the base model (Tian et al., 2018) and our
model. Then for each original sentence, we present
the outputs of the base model and ours in random
order. The three annotators are asked to evalu-
ate which sentence is preferred as the transferred
sentence of the original sentence, in terms of con-
tent preservation and sentiment transfer. They can
choose either output or select the same quality. We
measure the percentage of times each model out-
performs the other.

A.2.3 Learning Non-Autoregressive
Generation

We use the Adam optimizer with learning rate
5 × 10−4 with inverse square root scheduler. We
apply sequence-level knowledge distillation to the
dataset, which can reduce the complexity of the
dataset, making it easier for the model to learn and
improving the performance. The models are first
trained by CE loss for fast initialization, then fo-
cus on 2-gram, 3-gram, and 4-gram with the same
weights. Fairseq (Ott et al., 2019) is adopted to
conduct the experiments. We average the last 5
checkpoints as the final model.

A.3 Additional Results of Learning from
Noisy Text

A.3.1 Results of BLEURT Metric
In this section, we evaluate the results of CE, PG
and EISL on BLEURT (Sellam et al., 2020) metric.
We use the recommended BLEURT-20 checkpoint.
It gives a score for every sentence pair, and we
averaged the scores to get the final score. The
results are shown in Figure 7. Both BLEU metric
and BLEURT metric show the superiority of our
proposed EISL loss.

A.3.2 Comparison with Loss Truncation
The Loss Truncation (LT (Kang and Hashimoto,
2020)), method adaptively removes high log loss
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lEISL
n,i (θ) = − log

T−n+1∑

i′=1

p(yi′:i′+n = y∗
i:i+n), (9)

= − log
1

T − n+ 1

T−n+1∑

i′=1

∑

y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′)− log(T − n+ 1),

≤ − log
1

T − n+ 1

T−n+1∑

i′=1

∑

y

p(y<i′)p(yi′:i′+n = y∗
i:i+n|y<i′),

≤ − 1

T − n+ 1

T−n+1∑

i′=1

∑

y

p(y<i′) log p(yi′:i′+n = y∗
i:i+n|y<i′),

= − 1

T − n+ 1
Ey∼p(y)

T−n+1∑

i′=1

log p(yi′:i′+n = y∗
i:i+n|y<i′),

= LEISL
n,i (θ),

examples as a way to optimize for distinguishabil-
ity. In this section, We’d like to show the com-
parisons with Loss Truncation. We evaluated two
variants of LT: (1) LT_Pre which first trains the
model with CE loss and then adds LT for further
training, and (2) LT which directly trains the model
with CE loss and LT together. Hyperparameters
were selected on the validation set. For simplic-
ity, we remove the PG curves (Figure 5), and the
comparison results with LT are shown in Figure 8.

We can see Loss Truncation can sometimes
slightly improve over CE, especially when the data
is clean or with low/moderate noise. However, by
simply ignoring high-loss data, LT is not good at
handling data with high noise (which often leads
to high loss). In comparison, our proposed EISL
achieves a substantial improvement in the presence
of high noise.

A.3.3 Reasons of Better Performance with
Lower-gram EISL

In this section, we discuss the reason of why the
performance of using lower grams is better than
higher-gram EISL in Figure 5(e).

Lower-gram EISL is less sensitive to noise. For
example, 1-gram EISL focuses mostly on match-
ing individual tokens without caring much about
the order of tokens; while a high-gram EISL (e.g.,
consider the extreme case of T ∗-gram where T ∗ is
the target length) reduces to CE (as discussed in
Sec 3.3) and is highly sensitive to noise. Thus, in
the presence of high data noise, lower-gram EISL
would be more robust and perform better.

Besides, on low-noise data (e.g., noise-level =
0 or 1), lower-gram EISL performs comparably
with higher-gram EISL, both close to the CE per-
formance. This is because we pretrained the model
with CE (as mentioned in the experimental setup),
and finetuning with EISL (either with lower- or
higher-grams) would not change the performance
a lot given the low-noise data.

A.3.4 Cases Study

As shown in Table 8, 9, 10, 11 and 12, we randomly
sample some examples from generated sentences
of the models trained with different types of noise
on Multi30k dataset. For the sake of convenience,
we use abbreviations in the tables, i.e., SC, RR,
BR and NL are short for Shuffle Count, Repetition
Ratio, Blank Ratio and Noise Level (for Synthetical
Noise), respectively.

Shuffle Noise When there exist a few shuffle
noises, e.g., SC = 3, CE loss may lead word redu-
plicated (Example 1 and Example 2) and slightly
wrong word order (Example 4 and Example 5), and
there are some information mistranslated (beautiful
in Example 4) or extra irrelevant information added
(black in Example 5). As shuffle count increases,
the aforementioned problems are increasingly se-
vere, resulting the generated sentences meaning-
less. Especially, there are some words untranslated
in PG examples (eingezäunten in Example 1, ir-
gendwo in Example 2, haben in Example 5, ). But
EISL loss could keep the content consistency and
grammatical correctness as far as possible.
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Figure 7: Results of Translation with Noisy Target on German-to-English(de-en) from Multi30k. BLEURT scores
are computed against clean test data.
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Figure 8: Comparison results with Loss Truncation(LT) of Translation with Noisy Target on German-to-English(de-
en) from Multi30k. BLEU scores are computed against clean test data.

Repetition Noise The main problem of the mod-
els trained by CE and PG with repetition noises
is that the models can’t filter the repetition noise
out in training samples, and try to learn the wrong
distribution, leading to generate reduplicated words
frequently (Example 1-5). Specifically, the exam-
ples of CE and PG in RR = 50% are very repre-
sentative. However, it’s amazing that EISL can
almost avoid such a problem even the repetition ra-
tio achieves 50%. Meanwhile, the main semantics
is preserved and the grammar is correct.

Blank Noise When adding blank noise, some to-
kens in targets will be substituted as unk so the
targets will lose some information. We could mea-
sure from two aspects: one is the term frequency
of meaningless token unk in generated sentences,

and the other is the meaningful contents preserved
by the models. Obviously, EISL loss handles better
than CE loss on both aspects. Especially, when BR
= 20%, unlike models with CE, models with PG
and EISL barely generate the unk token, and could
translate the core content (Example 1-5). As BR in-
creases, EISL could preserve more key information
and produce less unk than CE and PG. Moreover,
PG performs rather poor when BR is high (like BR
= 45%), and it almost loses all information (Exam-
ple 1-5) and generates some confusing words (teil
in Example 1, afroamerikanischer and irgendwo in
Example 3, beachaufsichtgebäude in Example 4,
and holzstück in Example 5).

Synthetical Noise We then evaluate the results
of models trained by synthetical noise. Such a
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Source my “ hot ” sub was cold and the meat was watery .
Base Model my “ hot ” sub was excellent and the meat was excellent .
with EISL my “ hot ” sub was delicious and the meat was delicious .

Source the man did not stop her .
Base Model the man did definitely right her .
with EISL the man did definitely stop her .

Table 4: Examples of the generated sentences.

Model Accuracy(%) BLEU PPL POS distance

Prabhumoye et al. (2018) 86.5 7.38 - 7.298
Hu et al. (2017) 90.7 47.50 - 3.524

Tian et al. (2018) 88.0 59.63 28.46 2.348
with EISL 89.2 60.26 27.85 2.191

Table 5: The results on the political dataset. The first two results are reported by (Tian et al., 2018).

situation combines aforementioned three types of
noises. One most highlighted advantage of EISL
is that the generated sentences are almost gram-
matically correct and include main content as far
as possible. However, CE can only stiffly joint
some words, and can’t guarantee the grammatical
correctness (word order, word repetition and so
on). PG performs worst, involving all the problems
in CE cases and the meaningless word generation
problem (Example 1-5).

A.4 Additional Results of Text Style Transfer

A.4.1 Examples on Yelp dataset

Some examples of generated sentences are given
in Table 4. The model with EISL can select more
appropriate adjective and improve the quality of the
sentences. In the first example, the model should
transfer the negative adjectives cold and watery to
some positive adjectives that describe food. Ob-
viously, the delicious is more appropriate than ex-
cellent. In the second example, the base model
reverses both not and stop, leading to wrong sen-
timent and inconsistent content. While the model
with EISL could avoid such a situation and generate
more suitable sentence.

A.4.2 Results on Political dataset

Since the instances from democratic data and re-
publican data are quite different, names of politi-
cians have high correlation with the political slant.
Therefore the BLEU score and POS distance have
a big gap with the sentiment results. The results
are shown in Table 5.

A.5 Additional Results of Non-Autoregressive
Generation

A.5.1 Results of Iterative NAT Models

As shown in Figure 9, with the increasing of itera-
tion steps, the difference fades away.

A.5.2 Results of BLEURT Metric

To show the superiority of our method, We
also evaluate on recent text generation metric,
BLEURT (Sellam et al., 2020). BLEURT is an
evaluation metric for Natural Language Generation.
It takes a pair of sentences as input, a reference
and a candidate, and it returns a score that indicates
to what extent the candidate is fluent and conveys
the mearning of the reference. We use the recom-
mended BLEURT-20 checkpoint. It gives a score
for every sentence pair, and we averaged the scores
to get the final score. The results are shown in
Table 6.

A.5.3 Qualitative Analysis on NAT
Experiments

Given the non-autoregressive nature (i.e., all to-
kens are generated simultaneously), the one-to-one
matching of CE loss can lead to severe mismatch-
ing. We consider the example: the predicted sen-
tence is a cat is on the red blanket
and the target sentence is a cat is sitting
on the red blanket. The "on the red blan-
ket" part of the prediction will be corrected to
match the target positions, and this may lead to
overcorrection (e.g., "on the red red blanket .").
Repetition is often a sign of overcorrection. How-
ever, with EISL, this situation will not happen be-
cause the phrase will be matched to appropriate
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Figure 9: Results of iterative NAT on different decoding iterations.

Model WMT14 en-de KD WMT14 en-de

CE EISL CE EISL

Vanilla-NAT (Gu et al., 2018) 0.346 0.416 0.194 0.277
NAT-CRF (Sun et al., 2019) 0.441 0.464 - -
iNAT (Lee et al., 2018) 0.332 0.437 - -
LevT (Gu et al., 2019) 0.355 0.458 0.214 0.333
CMLM (Ghazvininejad et al., 2019) 0.345 0.450 - -

Table 6: The results (test set BLEURT) of EISL loss and CE loss applied to non-autoregressive models.

target tokens. Let’s have a look at a real example
in Figure 10.

Source Anja Schlichter managed the tournament
Target Anja Schlichter leitet das Turnier
CE Anja Schlichter leitdas Turnier Turnier
EISL Anja Schlichter leitete das Turnier geleitet

Figure 10: Examples of the generated sentences.

Take the non-autoregressive model
CMLM (Ghazvininejad et al., 2019) for ex-
ample, we evaluate the translation of CMLM
models trained by CE and EISL. As shown
in Figure 11, our proposed EISL can reduce
repetition to a large extent.
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Figure 11: The percentage of repeated tokens under
different iteration steps.

A.6 Efficiency Analysis

Complexity analysis Given T ∗ tokens, the time
complexity of CE loss is O(T ∗), while the com-
plexity of n-gram EISL loss is O(n(T ∗ − n +
1)2) ≈ O(T ∗2), assuming small n is used in prac-
tice (e.g., n ∈ {1, 2, 3, 4}). However, in practice,
the computation cost of the loss (either CE or EISL)
is negligible compared to the cost of model forward
and backward during training. Thus, the extra cost
introduced by the EISL loss is rather minor.

Empirical comparison of time cost To quan-
tify the computational cost of different methods,
we adopt CE and EISL on top of the same model
and setting, and evaluate the consumed time for 1
training epoch. For comparison on both small and
large dataset, we evaluate on Multi30k (29k train-
ing data, 1k test data) and 1M scale WMT-18 raw
corpus (1M training data, 3k test data). The mod-
els are tested on one Tesla V100 DGXS with 32
GB memory, the batch size is 128, max number of
tokens is 6000 and update frequency is 4. For each
method, we test 6 times and average the results as
final time. The results are shown in Figure 12.

Empirical total time cost of EISL training As
discussed in the experiments in the paper, we first
pretrain the model with the CE loss until conver-
gence, and then finetune with the EISL loss. Here
we report the total time cost of each stage, based
on the WMT-18 translation setting as described in
Section 4.1. The results are shown in Table 7. As
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Figure 12: Results of training and inference time. EISL-n represents n-gram EISL loss and EISL-12 represents the
combination of 1-gram and 2-gram EISL loss.

the data size increases, the convergence time of
both pretraining and finetuning grows. The time
cost of the finetuning stage is less than half of that
of the pretraining stage.

A.7 Hyperparameters
Regarding which n-grams to use and their weights
wn in the EISL loss, we found in our experiments
that the default values largely following the stan-
dard BLEU metric (i.e., maximum n = 4 with
equal weights) work well. Specifically, we use
n ∈ {2, 3, 4} and equal weights wn = 1/3 as our
default values. Most of our experiments adopt the
default values which achieve consistent substantial
improvement over CE and other rich baselines as
shown in our experiments. (except for the synthetic
experiment where we show the effect of different n-
grams including those selected using the validation
set).

Besides, in our experiments, we first pretrain
the model with the CE loss (i.e., EISL with n =
T ∗ and teacher forcing, see Section 3.3) and then
finetune with the EISL loss. We simply do the CE
pretraining until convergence before switching to
the EISL finetuning. Therefore, there is no need of
tuning for the training iterations of pretraining.

A.8 Analysis of Efficient Implementation
In order to validate the efficiency and accuracy
of our approximation (for autoregressive models)

discussed in Section 3.2, we conduct the analysis
experiments, showing that the approximate (and
efficient) EISL loss values are very close to exact
(but expensive) EISL value. We use the same set-
ting as section 4.1, and finetune the model with
our efficient approximate EISL loss on Multi30k.
Throughout the course of training, we record the
loss values of both the exact implementation and
our approximate implementation. As shown in Fig-
ure 13(a) and (b), the tendency of two losses is very
close to each other. We also plot the absolute dif-
ference of the two losses as shown in Figure 13(c).
We can see the difference decreases as training pro-
ceeds. The observations validate the effectiveness
of our approximate implementation.

We note that training the model with the exact
loss is costly, which necessitates our approxima-
tion. Specifically, for n-gram loss, we need to run
the forward pass of the decoder (T − n)2 times,
and keep the whole computation graph for back-
propagation, which will consume much more time
and memory. Even for only loss evaluation (with-
out the backward pass), we found the runtime of
the exact loss is about 15 times longer than that of
the efficient approximate implementation based on
convolution operator.
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Data Size PreTraining Time (CE) Finetuning Time (EISL)

1M 1h 40min 57s 49min 33s
2M 5h 56min 57s 1h 35min 10s
4M 8h 55min 18s 3h 57min 44s

Table 7: Convergence time of pretraining and finetuning stages.

   

   

   

 

   

                  

b) Efficient Approximate Implementation

   

   

   

   

                  
c) Absolute Difference

    

    

    

    

                  
a) Exact Implementation

Figure 13: The change of loss values during training. The x-axis represents the training step. a) gives the loss
curve of exact implementation; b) gives the loss curve of efficient approximate implementation as we discussed in
section 3.2; and c) gives the absolute difference between the two implementations.
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Source (de) ein junger mann nimmt an einem lauf teil und derjenige , der dies aufzeichnet ,
lächelt .

Target (en) a young man participates in a career while the subject who records it smiles .

SC = 3
CE young man is running on a a and the other man is smiling .
PG young man is running on a track and the other man is smiling .
EISL young man is running in a dirt course and the other is smiling .

SC = 6
CE young man is running a a race and the other is smiling .
PG young man taking a race and the other smiling . a
EISL young man is running a race and the other guy is smiling .

SC = 9
CE young man . a a the is running up and up hill smiling taking
PG young man takes on a slope and thejenige , the the smiles . a
EISL young man is on a hillside smiling and the others , who is smiling .

RR = 15%
CE young man is running on a track and the other is smiling .
PG young man is running on a track and the other is smiling .
EISL young man is running in a race and the runner is smiling .

RR = 30%
CE young man man is is running on a track track and the the other is is smiling

smiling .

PG young man man is is running on a track track and the other man man who is
is is smiling .

EISL young man is running in a race and the other is smiling at him . .

RR = 50%
CE a young young man man is is smiling smiling at at a a window window while

another smiles smiles at him him . .

PG a young man man is is napping napping on on a a grassy grassy field field and
and some people people are are smiling smiling . .

EISL young man running in a race and the other is smiling at the action . .

BR = 20%
CE young man unk unk a run and the unk is smiling .
PG young man is running in a race and the one who is looking at him is smiling .
EISL young man is running in a race with the runner who is up .

BR = 35%
CE young man unk unk a unk , and the unk is smiling unk
PG young man unk unk track unk others unk .
EISL young man unk is un in a race and the other un is un at the finish .

BR = 45%
CE young unk is unk on a unk unk and the unk smiles unk
PG young man unk a unk teil unk unk .
EISL young unk un is un in a race , the other is smiling back .

NL = 5
CE young man is running a race and the one who is running is smiling .
PG young man is running a race and the one scoring is smiling .
EISL young man is running a race and one of the runners is up to him .

NL = 15
CE young man is unk unk a unk and the other man is smiling .
PG young man is on a unk smiling at thejenige . .
EISL young man is in a race , the other smiling .

NL = 20
CE a young man is unk unk a unk and unk is smiling at him .
PG young smiles on in ail and thejenige smile on . . .
EISL young man unk unk a ladder and unk , who is unk smiling .

Table 8: Example 1.
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Source (de) 15 große hunde spielen auf einem eingezäunten grundstück neben einem haus .

Target (en) 15 large dogs playing in a fenced yard beside a house .

SC = 3
CE large dogs play on a a dirt path next to a house .
PG 15 large dogs play on an earthen platform next to a house .
EISL large dogs are playing on a dirt path next to a house .

SC = 6
CE large dogs play on a a play area next to abandoned house .
PG 15 large dogs playing on a eingezäunten group stage next to a house .
EISL group of dogs play on a abandoned path next to a house .

SC = 9
CE large dogs play a . on a field next to abandoned house
PG dogs play on a snowy grundstück next to a house .15 large
EISL . 15 large dogs play on an abandoned hillside next to a house .

RR = 15%
CE large dogs are playing on a fenced in area next to a house .
PG large dogs are playing on a fenced in area next to a house .
EISL large dogs are playing on a fenced track next to a house .

RR = 30%
CE large dogs dogs play on on a a dirt track near a house house .
PG large dogs dogs play on a fenced-in area area next to a house .
EISL large dogs play on a fenced walkway next to a house . .

RR = 50%
CE small dogs dogs play on on a a grassy grassy field field next next to to a house

house . .

PG 15 large dogs dogs are are playing playing on on a a grassy grassy field field
next next to to a house house . .

EISL 15 large dogs playing on a fenced terrain next to a house . .

BR = 20%
CE large dogs play in a fenced yard next to a house .
PG large dogs are playing on an overcast walk next to a house .
EISL large dogs are playing in a fenced area near to a house .

BR = 35%
CE unk dogs play unk a unk unk by a house .
PG large dogs unk a unk path unk unk house .
EISL large dogs unk play in a fenced area next to a house .

BR = 45%
CE unk dogs unk on a unk unk next to unk house .
PG large dogs unk a unk unk .
EISL large unk un are un in a fenced-out game next to a house .

NL = 5
CE large dogs are playing on a fenced in area next to a house .
PG large dogs are playing on a fenced in area next to a house .
EISL large dogs are playing on a fenced backwalk next to a house .

NL = 15
CE large dogs are playing on a unk grassy field next to a house .
PG large dogs playing on a unk next to a house . . .
EISL large dogs play on a covered piece of furniture next to a house .

NL = 20
CE large dogs are playing on on a a a grassy grassy field next to a house .
PG large play play in auntenck in a house . . .
EISL large dogs play on a unk unk next to a house . .

Table 9: Example 2.
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Source (de) ein afroamerikanischer mann spielt irgendwo in der stadt gitarre und singt

Target (en) an african american man playing guitar and singing in an urban setting .

SC = 3
CE african american man is playing the guitar and singing in the city .
PG african american man is playing the guitar in the city and singing
EISL african american man is playing the guitar in the city and singing .

SC = 6
CE african-american man is playing guitar in the a and singing city .
PG african american man playing irgendwo in the city guitar singing
EISL african american man is playing the guitar in the city

SC = 9
CE african-american man playing guitar in the a and singing city
PG african americanischer man plays irgendwo in the city guitar singing . a
EISL african american man is playing the guitar in the city and singing

RR = 15%
CE african american american man plays guitar guitar in the city city .
PG african american man is playing guitar in the city and singing .
EISL african american man is playing guitar in the city and singing .

RR = 30%
CE african american man plays guitar guitar in in the city city while singing .
PG african american man man plays guitar guitar in the city city and sings .
EISL an african american man playing guitar in the city and singing . .

RR = 50%
CE african african american american man playing guitar guitar in in the the

city city and singing singing .

PG african american american man man is is playing playing guitar guitar
in in the the city city . .

EISL an african american man playing guitar in the city and singing . .

BR = 20%
CE african american man plays guitar unk sings unk
PG african american man is playing guitar and singing in the city .
EISL african american man is playing the guitar and singing .

BR = 35%
CE african american man unk unk guitar unk singing unk
PG african american man unk guitar unk singing unk
EISL african american unk is un a guitar and singing in the city .

BR = 45%
CE african american unk unk playing unk guitar in unk city unk
PG afroamerikanischer man unk irgendwo unk unk
EISL af unk un playing some sort of guitar in the city and singing .

NL = 5
CE african american man plays guitar and sings somewhere in the city .
PG african american man is playing guitar and singing in the city .
EISL african american man is playing guitar and singing somewhere in the city .

NL = 15
CE african american man is playing the guitar in the city and singing .
PG afroamerikanischer man is irgendwo in the city guitarre .
EISL african american man playing some sort of guitar in the city and singing .

NL = 20
CE african american american man is playing the guitar in the the city unk
PG afroamerikanischer singt in the city guitarre singt .
EISL african american man plays unk unk in the city unk

Table 10: Example 3.
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Source (de) ein strandaufsichtgebäude steht im sand , es ist ein bewölkter tag .

Target (en) a lifeguard building is on the sand on a cloudy day .

SC = 3
CE beach a is standing in the sand on a beautiful day .
PG beachfront building is standing in the sand on a beautiful day .
EISL beach view building is standing in the sand on a cloudy day .

SC = 6
CE beach a is in the sand building on a beautiful day .
PG beach viewgeb building standing in sand on a beautiful day .
EISL beach view building is standing in the sand on a beautiful day .

SC = 9
CE beach a in the sand . a cloudy day stands beach
PG beachaufsichtge building stands in sand , the is a beautiful day . a
EISL . a beachfront building standing in the sand is a beautiful day .

RR = 15%
CE beachfront building is standing in the sand on a cloudy day .
PG beachfront building is standing in sand , it is a cloudy day .
EISL beach building is standing in the sand , it is a cloudy day .

RR = 30%
CE beachfront beachfront building building is is standing standing in the sand

sand on a cloudy day .

PG beachfront beachfront building building is standing in sand sand on a cloudy
day .

EISL beachfront building is standing in the sand , it is a cloudy day . .

RR = 50%
CE a beachfront beachfront building building is is standing standing in in the

sand sand , it looks like it is is a beach resort resort . .

PG a beachfront beachfront building building is is standing standing in in sand
sand . .

EISL a beach view building is in the sand , it is a cloudy day . .

BR = 20%
CE beachfront building is standing in sand on a cloudy day unk
PG beachfront building is standing in sand on a cloudy day .
EISL beach view building is standing in the sand , it is a cloudy day .

BR = 35%
CE beach unk unk standing in sand on a cloudy day unk
PG beach unk building unk unk sand unk a cloudy day .
EISL beach building unk is un in the sand on a cloudy day .

BR = 45%
CE unk unk is standing unk the sand unk it is a beautiful day unk
PG beachaufsichtgebäude unk unk sand unk .
EISL beach unk un is un in the sand , this is a cloudy day .

NL = 5
CE beachfront view building is standing in the sand on a cloudy day .
PG beachfront view building is standing in sand on a cloudy day .
EISL beachfront building is standing in the sand , it is a cloudy day .

NL = 15
CE beach unk unk is standing in the sand unk it is a sunny day .
PG beach unk is in sand on a snowy day . .
EISL beach building is in the sand , it is a cloudy day .

NL = 20
CE beach unk unk is standing in the sand unk it is a sunny sunny day .
PG beachaufsichtgebäude steht in sand , es is a day . .
EISL beach unk stands in sand unk it is a sunny day . .

Table 11: Example 4.
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Source (de) zwei hunde haben beim spielen dasselbe holzstück im maul .

Target (en) two dog is playing with a same chump on their mouth .

SC = 3
CE dogs are two playing with . pieces of wood in their mouths two
PG dogs are playing with pieces of black wood in their mouths .
EISL two dogs are playing with pieces of wood in their mouths .

SC = 6
CE dogs are two . playing with sticks in their mouths two
PG dogs have been playing with pieces of wood in their mouths . two
EISL two dogs are playing with pieces of wood in their mouths .

SC = 9
CE two dogs their . are playing with sticks in muzzled
PG dogs haben beim play pieces in their mouth . two
EISL . two dogs have been playing with sticks in their mouth .

RR = 15%
CE two dogs are are playing with a a piece piece of wood in their mouth .
PG dogs are playing with white wooden blocks in their mouth .
EISL two dogs are playing with some pieces of wood in their mouths .

RR = 30%
CE two dogs dogs are are playing with a a piece piece of of wood in their mouths .
PG dogs dogs are are playing with white wooden blocks blocks in their mouth .
EISL two dogs are playing with pieces of wood in their mouths . .

RR = 50%
CE two dogs dogs are are playing playing with with plastic plastic sticks sticks in

in their their mouth mouth . .

PG two dogs dogs are are playing playing with with plastic holsters holsters in in
their maul maul . .

EISL two dogs have playing with some white wood in their mouths . .

BR = 20%
CE dogs unk unk pieces of wood in their mouths .
PG dogs are playing with wet wood in their mouths .
EISL dogs are playing with wet pieces of wood in their mouths .

BR = 35%
CE unk have unk pieces of unk in their mouths .
PG two dogs unk unk piece of wood unk their mouth .
EISL two dogs unk playing with some piece of wood in their mouth .

BR = 45%
CE dogs are playing with unk unk in unk mouth unk
PG dogs unk unk piece of unk holzstück unk .
EISL dogs unk un are un while play with some wood pieces in their mouth .

NL = 5
CE two dogs are playing with the same piece of wood in their mouths .
PG dogs have pieces of of wood in their mouths .
EISL two dogs are playing with the same piece of wood in their mouths .

NL = 15
CE two dogs are are are playing with unk unk in their mouths .
PG dogs haben on a game unk unk . . .
EISL two dogs have been playing with a piece of wood in their mouth .

NL = 20
CE two dogs are are are playing with unk unk in their mouths .
PG dogs haben in a playenselbeck in their mouth . .
EISL two dogs are playing with unk sticks in their mouths . .

Table 12: Example 5.
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